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Abstract 

Understanding the process of software adoption is of paramount importance to software start-ups. 

We study a monopolistic seller’s optimal consumer network structure formation (seeding, 

segmentation, sequencing, and pricing strategies) under network effects. We demonstrate the 

importance of adoption sequencing as well as controllability over the seeding process to seller’s 

profit, consumer surplus, and social welfare. Under multi-pricing, full information, and full control 

over the seeding process, with both multiplicative and additive forms of network effects, we show 

that all segments contain only paying customers except the first one, which contains both seeded 

and paying customers; and segments are opened in order of the customer valuation. Further, the 

seller’s optimal strategy is socially optimal. Under single-pricing and limited seeding control, 

worst case seeding (where all seeds go to the high-valuation customers) leads to higher social 

welfare and consumer surplus than uniform seeding, as the former covers a larger portion of the 

market while charging a lower price. In the case of random seeding with limited control, we 

identify an optimal strategy and conditions under which the optimal price is not affected by the 

randomness of seeding. 
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1. Introduction  

In order to jumpstart the process of new software adoption, many software vendors are embracing seeding 

strategies by giving away products for free to a fraction of the potential customer base  to take advantage of the 

network effects (Aral et al. 2011; Galeotti and Goyal 2009; Niculescu and Wu 2011). For example, Microsoft offers 

fully functional software to both early-stage startups (via its BizSpark program
2
) and high-school/college students 

(via its DreamSpark program
3
) for free on a global scale. IBM recently followed suit by offering free software to 

startups (via its new Global Entrepreneur program
4
), and free software to faculty and college students (via IBM 

Academic Initiatives). In 2009, Autodesk seeded 100 clean-tech startups with software bundles each worth 

$150,000
5

. Salesforce offers its CRM enterprise edition software for free to more than 9, 000 non-profit 

organizations
6
.  

Despite there being a rich and growing literature on the economics of network effects (Economides 1996; 

Farrell and Saloner 1986; Katz and Shapiro 1994), little is known about the structure formation of a software 

consumer network (Niculescu et al. 2011), and its impact as measured by seller's profit, consumer surplus, and 

social welfare. Our study attempts to fill this gap by exploring the role of adoption sequencing in controlling the 

process of creating a consumer network, which goes beyond the extant literature that mostly focuses on installed 

base growth.  

This paper aims to shed light on relevant managerial questions for software entrepreneurs. First, what 

percentage of the market should be seeded and how should the seeds be allocated? Second, how should the seller 

segment the market and price each segment? Third, what would be the associated adoption sequence and consumer 

network formation process? 

We investigate a monopolistic seller’s optimal seeding, market segment sequencing, and pricing strategies. Our 

analysis contributes to the literature on price discrimination by considering the impacts adoption sequencing in the 

presence of network effects. We stress the importance of adoption sequence as well as seller’s degree of control over 

the seeding process to seller profit, consumer surplus and social welfare. Under a multiple-pricing scheme, full 

information and full control over the seeding process, we show that it is optimal to seed only inside the segment with 

lowest valuation. The optimal sequence of opening the segments follows an ascending order of customer valuation. 

Furthermore, seller’s optimal strategy is socially optimal. Under a single-pricing scheme and limited seeding control, 

worst case seeding (where all seeds go to highest-valuation customers) leads to a higher social welfare and consumer 

surplus than uniform seeding; as the former covers a larger market while charging a lower price. In the case of 

random seeding with limited control, we identify an optimal strategy and conditions under which the optimal price is 

not affected by the randomness of seeding.   

                                                           

2http://www.microsoft.com/bizspark/ 
3http://www.webpronews.com/microsoft-dreamspark-ignites-interest-2008-02. 
4http://www-304.ibm.com/isv/startup 
5http://nvcatoday.nvca.org/index.php/autodesk-offering-cleantech-entrepreneurs-free-software-grants.html 
6Private communication, Robert Pickeral, Senior VP,  Global Technology Services, salesforce.com. 
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The rest of the paper is organized as follows. We first provide a brief review of the literature in Section 2. 

Section 3 studies the optimal seeding when the seller has full control over the allocation outcome of the seeding 

process. In Section 4, we extend the analysis to the case where the seller has only limited control over the allocation 

outcome of the seeding process. Section 5 compares seller profit, consumer surplus and social welfare under 

different models. Section 6 concludes. 

2. Literature Review 

We use Table 1 to summarize related literature on seeding and sampling. Our review is by no means exhaustive. 

Rather we intend to use Table 1 to highlight some gaps in the literature and justify our intended contributions.   

As shown in Table 1, there is a small but growing body of literature on seeding. A software firm may give 

away the fully functional new product to a fraction of the potential customer base in order to simply catalyze the 

adoption process (Jiang and Sarkar 2009). Under dynamic pricing, seeding is optimal only for limited situations but 

does not appear to be optimal when there is a premature downturn/stalling in sales (Lehmann and Esteban-Bravo 

2006).  Most of the literature follows the classic Bass diffusion model (Bass 1969), which is at the macro level 

instead of the individual level as we do. In a different context (social networks), the role of seeding has recently 

been explored via simulation (Aral et al. 2011; Galeotti and Goyal 2009). In a two-period setting under word-of-

mouth effects, Niculescu and Wu (2011) find that uniform seeding is always dominated by either time-limited 

freemium models (give away the product to the entire customer base in the first period and charge afterwards) or 

conventional for-fee models.  

Product sampling and free demonstration are also widely used as methods to boost adoption. Product sampling 

involves giving away samples to customers in order to update their priors on the product value. Jain et al. (1995) 

study the optimal number of free samples based on the classic Bass model. Heiman and Muller (1996) extend this 

study by controlling the sampling time. Bawa and Shoemaker (2004) empirically test impacts of sampling and 

document that free samples can produce measurable long-term effects on sales. Cheng and Tang (2010) compare the 

free-trial and versioning strategies and find that the strength of network effects plays a critical role. Cheng and Liu 

(2010) extend the model to include time-sensitive network effects and derive conditions under which a time-limited 

model may be preferred. 

To the best of our knowledge, the extant literature has not explored in depth how the seller should control the 

adoption process under various seeding scenarios. In this study, we attempt to fill this gap by focusing on the path of 

adoption, taking into account the individual-level consumer adoption decision as well as the seller’s degree of 

control over the outcome of the seeding process. 

3. Seeding with Full Control 

In this section, we present our general model. We assume the seller has full information about the consumers.  

Initially, we assume the seller has full control over the allocation of the seeds by being able to pick and choose 

which customer to seed. Essentially, we consider price discrimination in the presence of network effects. We begin  



 

4   

 



          

  5 

with several very simple examples to highlight key ideas in our model. Next, we then characterize seller’s optimal 

strategies. We then extend our analysis to consider general utility function, general distribution function, and 

additive form of network effects. 

3. 1. The Model Setup 

We consider a software market with a monopolistic seller and a mass of potential customers. The total number 

of the customers is .K  Following the standard literature, customer type   is assumed to be uniformly distributed on 

[0,1]. Denote [0,1] 
 
as the current fraction of customers who have already adopted the product, then 

customer 's willingness-to-pay (WTP) is ( , ) .u K     

The above multiplicative setting captures network effects in that early adopters would influence the WTP of 

late adopters. Later on, we extend our analysis to consider general utility function, distribution function and additive 

form of network effects. Customers are assumed not to be able to collude and arbitrage cannot occur among 

customers. We further assume that they are myopic in the sense that a potential customer adopts as soon as her 

updated WTP based on current installed base exceeds the price. If more than one customer’s WTP exceeds the price 

at the same time, we break the tie by assuming that the customer with the higher type adopts first.  

The seller wishes to divide the entire market into n  disjoint segments 
1( , ]i i   1,2,...,i n  where

0 0 
 
and 

1n  . Within each segment, the seller can choose to seed some customers and charge the rest a unique price 0ip  . 

Denote 
1( , ]i i 

as interval .i  throughout the rest of the paper, we use "segment" and "interval" interchangeably. We 

assume throughout this section that the seller has full information over customer type and their WTP. We consider 

several scenarios corresponding to seller’s degree of control over the seeding process (full, limited, or no control) 

and the capability to observe the seeding outcome. 

We assume the seller can also control the sequence of releasing the product by segments. Let  be the 

sequence of opening the segments, where ( )j m   means that interval j is the 
thm opened segment in the sequence.   

Denote   as the seeding strategy (identifying customers who receive the product for free) and 

 1 2, ,..., np p pP as the price vector. The seller problem becomes: 

, ,
max ( , , ).




 

P
P       (1) 

For each customer, network effects manifest within and across intervals as each potential customer's WTP is 

driven by the total number of existing adopters. Following the literature on software adoption (e.g., Niculescu and 

Wu 2011), we assume that the software development cost is sunk and marginal reproduction and distribution costs 

are negligible. We are interested in the optimal structure formation (seeding, adoption sequencing, and pricing) of a 

software consumer network, and its impact on seller profit, consumer surplus, and social welfare. 

3.2. Discrete Examples 
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For simplicity, we will use a few discrete customer type examples to illustrate our key ideas and intended 

insights.  Our purpose is to show that seeding and sequencing matter in consumer network formation and business 

performance. These examples are based on a popular MBA class network game originally developed by Prof. 

Abraham Seidmann of University of Rochester (Seidmann 2009). It is straightforward to see that our continuous 

customer type model is a generalization of the discrete customer case, and all our major results apply to the discrete 

case as well.   

Consider a set of six customers indexed by i ={A, B, C, D, E, F}, corresponding to a set of customer types {1, 

2, 3, 4, 5, 6}. If there are M existing adopters, then customer i ’s WTP is M i due to network effects. When there 

is no adopter, customer i ’s WTP is equal to her type.  

First let us consider the case that no customer is seeded and only one price can be charged for all customers. 

We show that the optimal pricing is to * 5,p   as other pricing strategies either leave money on the table or stall the 

adoption process prematurely (thus suboptimal). The adoption sequence associated with optimal pricing follows the 

sequence of F, E, D, C, B, and finally to the last paying customer, A. We depict this adoption sequence in Figure 1, 

in which each block/node represents a customer identified in the middle cell. The top cell records the price charged 

to customer i  and the bottom cell is her current WTP which increases as the number of adopters grows. Solid lines 

connect adopters that form the customer network, while dotted lines indicate network effects of existing adopters to 

potential new adopters. Note that consumers B to F all enjoy net surplus at the end of this adoption process due to 

the continuous growth of the installed base post their adoption. Such benefit may not be present at the time of their 

adoptions, case of point is customer E, whose net surplus is zero (5 – 5 = 0) when she first adopted.    

 

Figure 1.  No Seeding, One Price, Full Information  

Next, we consider the case that no customer is seeded but the seller can conduct perfect price discrimination. It 

can be shown that the optimal strategy is  penetration pricing by charging *p (A, B, C, D, E, F) = (1, 2, 6, 12, 20, 30) 

One price w/o seeding

Total Profit 30

Consumer Surplus 75

Social Welfare 105

ip

i

price for customer i

m i WTP
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and the associated adoption sequence follows A, B, C, D, E and finally F. Note that this optimal sequence is in the 

reverse order of that under the no seeding and one price. 

 

Figure 2.  No Seeding, Perfect Price Discrimination, Full Information  

  In the third example, we allow seeding and assume customers A, B, and C are  seeded. Then customer F’s 

WTP is updated from the initial value of 6 to 18 = 3*6 due to three existing adopters (seeded customers A, B, and C). 

If the price is 18, F adopts as this price equals F’s current WTP. E follows suit after F adopts, as E’s WTP is updated 

from the initial value of 5 to be 4*5=20, which exceeds the price. Finally D adopts as 5*4 = 20 > 18. The seller 

makes a profit of 18*3 = 54. At the end of the adoption process, F enjoys a surplus of 12 (= 30 – 18) because her 

final WTP is 30 and the price F paid is 18. Total surplus of all 6 customers is 51, leading to a social welfare of 105. 

 

Figure 3.  One Price, Full Seeding Control 

As proved in the next section, such a seeding and sequencing strategy is optimal if the seller wishes to charge 

only one positive price. Comparing with Figure 1 and 2, we can see that, when only one price can be charged, 

PenetratingPricing

Total Profit 71

Consumer Surplus 34

Social Welfare 105

ip

i

price for customer i

inv WTP

One price with seeding

Total Profit 54

Consumer Surplus 51

Social Welfare 105

ip

i

price for customer i

WTPM i
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seeding significantly improves the profit under no seeding. However, the profit under seeding does not exceed the 

profit with price discrimination. 

Figure 4 visualizes the consumer adoption network formation process if the seller wishes to charge two positive 

prices. We will show that the optimal seeding and sequencing strategy is as follows. The seller should balance to the 

extent possible the size of the three segments (free, low price, and high price). 

 

Figure 4.  Two Prices, Full Seeding Control 

 In particular, in this example, each segment should have two customers.  The seeds should go to the lower end 

of the market{A, B} . The seller then opens the low price segment {C, D} by charging a price that is equal to D’s 

WTP, which is 2*4 = 8. Within the segment, C’s WTP becomes 3*3 = 9 immediately after D adopts, so C would 

also adopt. Finally, the seller opens the high price segment {E, F}, by charging a price that is equal to the WTP of 

the highest type customer (F), which is 4*6 = 24. E adopts after F, as 5*5 = 25 > 24. Notice that this strategy 

remains socially optimal. However, by adding one more segment, the seller is able to profit more and give away 

fewer.   

What if, for some reasons, the seller is unable to fully control the seeding process? Assume the seller wishes to 

seed three customers and charge one price to the rest. Suppose that a random draw allocates the seeds to customers 

{A, C, E}and the seller observes this outcome. It is straightforward to see that the optimal price is 16, yielding 

adoption of F, followed by D but B would not adopt (as 5*2 = 10 < 16). As depicted in Figure 3, and compared with 

Figure 1, seller profit, consumer surplus and social welfare all decrease. This example illustrates the potential market 

inefficiency if the seller is unable to fully control the seeding process.  

Two prices with seeding

Total Profit 64

Consumer Surplus 41

Social Welfare 105

ip

i

price for customer i

WTPM i
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Figure 5.  One Price, Limited Seeding Control 

3.3. Optimal Solution to Basic Model with Full Seeding Control 

We first solve the seller's problem with the assumption that the seller can fully control the seeding allocation 

process. Lemma 1 characterizes the necessary conditions for optimality to the seller’s problem (as defined earlier). 

Lemma 1 (Necessary conditions for optimality). The seller’s optimal strategies must satisfy the following 

necessary conditions:  

(a) The market is fully covered; (ii) all segments contain only paying customers except the first one, which 

contains both seeded and paying customers;  

(b) Segments are opened in order of the customer valuation; a higher valuation segment will not be opened 

until the immediately lower valuation segment has completed the adoption process.  

 

Figure 6.  The Optimal Adoption Sequence with n Prices 

One price with random seeding

Total Profit 32

Consumer Surplus 44

Social Welfare 76

ip

i

price for customer i

WTPM i

adoption
sequence


1

0

seeded

*

nsegment for p

*

2segment for p

*

*

1

*

2

*

1n 

* * *

3 4 1, ,..., nsegments for p p p 

  

*

1segment for p
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It follows immediately from Lemma 1 that finding the optimal seeding strategy *  is equivalent to finding the 

optimal seeding mass 
*
 
at the beginning of the lowest segment. Figure 6 illustrates the optimal adoption sequence. 

The horizontal axis depicts the adoption sequence and y-axis refers to customer’s initial WTP. Segment
*

1[0, ] is 

opened first by first seeding 
*[0, ]  and then charging a price  * *

1p   to the rest
* *

1( , ]   , followed in order by 

segments
* *

1 2( , ]   with price
*

2 .p  Within each segment, the adoption goes from high to low customer type. After 

everyone in the segment has adopted, next segment will be opened, so on and so forth. Given Lemma 1, Proposition 

1 gives the optimal strategy.  

Proposition 1 (n-price optimal strategies). The seller’s optimal strategies are the following: 

(a) (Optimal Seeding * ) 
 
Seed exactly half of the lowest segment 

*[0, ] with * *

1 / 2.K   

(b) (Optimal Segmentation)  Size equally each segment except the first one, with the following cutoff points 
*

i  

where * 1
, 1,2,... .

1
i

i
i n

n



 


 

(c) (Optimal Pricing)  Optimal price for each segment is 

* * *

1 2

( 1)
,  2,..., .

( 1)
i i i

i i K
p K i n

n
 


  


 

(d) (Optimal Profit) the seller's optimal profit is 

2
*

2

( 2)
.

3( 1)
n

n n K

n






     (2) 

Proposition 1 provides several insights on the structure of the seller’s problem. First, as expected, seller’s profit 

increases as the number of segments increases, and is bounded by 
2

3

K
. Second, when the seller can charge only one 

single price, percentage of seeded market is the largest. In this case, optimal seeding ratio, price, and profit are given 

by
* 1

2
  ,

*

2

K
p  , 

2
*

4

K
  , respectively.  

3.4. Extension: General Utility Function  

In this section, we consider a more general form of utility function  ( , ) ,u Kw    where ( )w  is 

continuous, increasing, and second order differentiable. Assume further (0) 0, (1) 1.w w   To focus on adoption 

sequencing, we restrict our analysis to the case when the seller charges every paying customer a single price (i.e., 

1n  ). It is straightforward to verify that Lemma 1 holds in this generalized utility case.  Lemma 2 below 

characterizes the optimal seeding and pricing strategy:  



          

  11 

 Lemma 2. The optimal strategy ( , )p must satisfy the following constraint: 

1

 ( 1 ) ( ) . min
x

p x w x K



 

 

 

Given any seeding strategy, the above constraint embodies three necessary conditions for optimal pricing and 

sequencing. First, for adoption to start, price cannot exceed the WTP of the highest type (i.e., p K ). Second, for 

adoption to cover the entire non-seeded market, price cannot exceed the WTP of the last paying customer 

(i.e., ( )p w K ); and adoption should not stall in between, which requires 
1

( 1 ) ( )min
x

p x w x K



 

   . Note that 

under uniform distribution assumption of consumer types, it is straightforward to see that the first two conditions are 

identical. The seller’s problem is now defined as: 

,
max (1 )

p
p K




 

     1

. .  ( 1 ) ( )   min
x

s t p x w x K



 

 

 

0,  (0,1).p    

Solving the seller’s problem, we have the following Proposition 2.  

Proposition 2. The following hold true: 

(a).  When ( )w x  is concave, then the optimal strategy is
* 1

2
   and

 

*

2

K
p  ; 

(b).When ( )w x  is convex, then the optimal strategy is of the form p*= ( *)w 
 
where 

1
*

2
    and satisfies 

equation
( *)

1 *
'( *)

w

w





   which has a unique solution when 

'( ) 1

''( ) 2

w x x

w x


 for [0,1]x . 

Proposition 2 extends our findings under the basic model where the utility function is linear to the more general 

non-linear case. Under a concave utility function, the optimal strategy remains identical as in the basic model. This 

is due to the fact that optimal pricing remains the same and concavity ensures the remaining two constraints are 

satisfied, because
*( 1 ) ( ) ( )w K w K K p         . 

Note that the optimal seeding ratio is larger than 
1

2
, in which case the seller gives away free products to the 

majority of the market in order to capture the amplified WTP of  a few high type customers through network effects. 

For example, if 
10( )w   , it can be shown that the optimal seeding ratio is  

* 10

11
  , meaning the seller seeds 10 

customers in order to harvest one paying customer. This free/fee ratio is referred in practice as the freemium rate, 

and some software entrepreneurs are advocating a “good” freemium rate is around 10, but our model suggests that 

the optimal freemium rate depends on the form of the consumer’s utility function.  
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3.5. Extension: General Distribution Function  

So far we have assumed that customers are uniformly distributed. Now we consider a general customer type 

cumulative distribution function (CDF) ( )F  with density function ( )f  . We assume the WTP function is in linear 

form such that ( ) .w    We restrict to the case of no price discrimination, i.e., 1.n   It can be verified that (a) of 

Lemma 1 holds for this case of general distribution function. We have the following Lemma 3 as the necessary 

condition for the optimal strategy. 

Lemma 3. The optimal strategy ( , )p must satisfy the following constraint: 

 
1

 .( ) 1 ( ) min
x

p xKF F x



 

 

 

The proof of Lemma 3 is similar to the proof of Lemma 2. First, for the adoption to start, price cannot exceed 

the WTP of the highest type (i.e., ( )p F K ). Second, for the adoption to complete, pricing cannot exceed the 

WTP of the last paying customer (i.e., p K ). Finally, to ensure the continuous adoption flows, we must have all 

customers in between would also adopt, which requires  
1

 .( ) 1 ( ) min
x

p xKF F x



 

   The seller’s problem is 

now defined as: 

 
,

max 1 ( )
p

p KF



 

     

 
1

. .  .( ) 1 ( ) min
x

s t p xKF F x



 

 

 

              0,  (0,1).p    

The optimal solution to the seller's problem is subject to the customer type distribution function.  We use 

Figure 7 below to show numerically how customer distribution affects WTP functions, and, implicitly, the pricing 

strategies. For each type, the figure depictes the WTP function precisely at the adoption time when all the seeds have 

been allocated and higher type customers have adopted. Customers in Panel (a) follow a uniform distribution and 

customers in Panel (b) follow a truncated normal distribution over [0,1] . From panel (a), it is straightforward to see 

that the optimal price is 50 (as we proved in Proposition 1).  

However, under the truncated normal distribution, as Panel (b) indicates, the WTP function does not reach the 

minimum at boundaries. If the price is set at 50, the adoption sequence would have stalled after the first paying 

customer adopts. In this case, the solution given by Proposition 1 is no longer optimal. We need to use Lemma 3 to 

find the optimal pricing strategy. In Panel (b) of Figure 5, the minimum is approximately 47.645<50, which is 

reached at customer type around 0.83. Hence, compared with the optimal strategy under the uniform distribution, the 

seller needs to either decrease the price or increase the number of seeds. Computed numerically,  the optimal 

solution is * 0.59  and * 64.72p   under the truncated normal distribution. 
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                ( ) ( )a WTP under F                    ( ) ( ) (0.5,0.25)b WTP under F N  

Figure 7.  The WTP functions at adoption time under different distributions 

(K=100, seeding interval [0,0.5] ) 

This example illustrates how customer distribution affects the optimal strategies. Essentially, when the 

minimum WTP (at adoption time) is not reached at the boundaries, Lemma 3 is needed to find the optimal price. 

Otherwise, there would be customers leftover without the product, which is suboptimal under full visibility due to 

Lemma 1. 

3.6. Extension: Additive Form of Network Effects 

So far, we have been using the multiplicative form to characterize the network effects. In this subsection, we 

extend our model to an additive form of network effects (e.g. Conner 1995; Jing 2007; Cheng and Tang 2010) 

following the standard linear form: 

( , ) ,u K      

where  characterizes the strength of the network effects and u represents the current WTP . Consider the case 

where the type distribution is uniform. It can be verified that Lemma 1 still holds (see proof of Proposition 3 in the 

appendix). The following result characterizes the optimal firm strategies in this setting.  

Proposition 3 (n-price optimal strategies). The seller’s optimal strategies are the following:  

(a)  (Optimal Seeding * ) 
 
The optimal seeding strategy is  

 

 

*

(1 ) / , 11 (1 )

0, 1

( 1) / , 1.1 (1 )

K KK K n

K

K KK K n

  

 

  

    


 
    

 

(b) (Optimal Segmentation)  The optimal cutoff points 
*

i  are 

   

   

*

/ , 11 (1 ) 1 (1 )

/ , 1

/ , 1.1 (1 ) 1 (1 )

i

KK K i K K n

i n K

KK K i K K n
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(c) (Optimal Pricing) Optimal price for each segment is 

   

   

*

(1 ) / , 1(1 ) 1 (1 )

(2 1) / , 1

(1 ) / , 1.(1 ) 1 1 (1 )

i

K KK i K K K n

p i n K

K KK i K K n

    



   

      


  
      

 

Comparing Propositions 1 and 3, we can see that the optimal market segmentation structure is similar under our 

two forms of network effects. The only difference is the optimal seeding ratio. Under the multiplicative setting, the 

market is equally segmented and the mass of seeded customers is equal to the mass of paying customers in intervals 

2 to n . In contrast, under additive setting, the mass of seeded customers is smaller than the mass of customers in any 

other segment. Specifically, in the case of no price discrimination when 1n  , the ratio of seeded customers is 

*

(1 ) / 2, 1

0, 1

( 1) / 2 , 1,

K K

K

K K K

 

 

  

 


 
  

 

which is always smaller than 1/ 2, the optimal seeding ratio under the multiplicative setting. This can be explained 

by the structure of network effects. Under the additive form of network effects, seeded customers contribute the 

same amount of network effects to other potential buyers. Under the multiplicative form of network effects, however, 

the network effects are larger for the potential buyers with higher types. In the latter case, the seller should seed 

more customers to profit more from the high-end customers.  

We also observe that the seeding fraction *  is decreasing in the number of segments ( )n . An interesting case 

is when 1,K  in which case seeding is not necessary. For illustration purposes, we explain the intuition behind 

this result in the simple case when 1.n   If a fraction   of customers are seeded, the WTP of customer x  is 

( , ) ( 1 )=1 .u x x x         Hence the optimal price is 1 .  Profit is 2(1 )(1 ) (1 )K K      which is 

maximized at 0.   This indicates that the  additional value created by seeding is  smaller than the  profit the seller 

can obtain by charging the seeded customers.  

Because the optimal market structure is similar under both forms of network effects, we will use the 

multiplicative form in the rest of the paper. 

4. Seeding with Limited Control 

So far we have assumed that the seller has full controllability over the seeding process. We now extend the 

analysis to the case where the seller cannot fully control the seeding outcome. We consider two sub-cases: (1). 

although the seller cannot fully control seeding (limited controllability), he is able to observe the seeding outcome 

(full visibility); (2) the seller can neither fully control seeding (limited controllability) nor observe the seeding 

outcome (limited visibility). We will discuss these two sub-cases respectively. In the case of limited controllability 

but with full visibility, we consider two potential scenarios: the worst seeding case (when all the seeds go to the 

highest valuation customers) and the uniform case (when the seeds are uniformly distributed among all customers). 



          

  15 

In the case of limited controllability and limited visibility, we identify conditions for an optimal pricing strategy that 

is independent of the seeding outcome.  

For simplicity, we restrict our analysis to the case when WTP is linear such that ( ) ,w     the consumer type 

distribution is uniform, and there is no price discrimination ( 1n  ).  

4.1. Worst Seeding Case 

The worst case occurs when all the seeds go to the high end of the market. In this case, let us denote the seller’s 

optimal strategy by ( , ),w wp where all the seeds go to the interval [1 ,1]w . To ignite the adoption process, the 

seller is constrained to charge (1 )w w wp K   . Since customer types follow the uniform distribution, given 

any
wp , there must exist a customer 

w who is the marginal customer satisfying (1 )w w wp K   . For any 

customer ( , )w wx   , at the moment of adoption, the WTP is (1 )x x K  , which is concave with minimum value 

attained at one of the boundaries. Therefore  

(1 ) (1 ) .w w w w wp K K      
 

The mass of paying customers is (1 ) .w w K    The seller’s optimization problem becomes 

2

,

max(1 )(1 )
w w

w w w wK
 

     
 

. . (1 ) (1 )w w w ws t      
 

  01 w w K     

, (0,1).w w  
 

We prove in the appendix that the optimal strategy is
23 3 3

, , .
6 6 18

w w w uK K
p  


     Note that, in this 

worst case scenario, the market is not fully covered: customers in interval
3 3

0,
6

 
 
 

end up not adopting the 

software, thus contributing no value to the seller or other adopters.  

4.2. Uniform Seeding Case 

The second limited control scenario we consider is uniform seeding where the seeds are uniformly distributed 

among all customers. Assume the seeding ratio is u , such that there are u K   seeded customers in interval [0, ] , 

for any  0,1  .  

Given price up , for adoption to start, we need u up K . Denote by u the last paying customer. For any 

paying customer [ ,1]ux  , at the moment of adoption, the WTP is (1 )ux x xK   which is also concave with the 

minimum value  achieved on the boundaries. Therefore we have (1 )u u u up K     . Note that the number of 
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paying customers is (1 )(1 )u u K   which is always non-negative for any , (0,1)u u   .  The seller’s problem 

becomes 

2

,

max(1 ) (1 )(1 )
u u

u u u u u u K
 

        
 

. . (1 )u u u u us t       
 

, (0,1).u u  
 

We show in the appendix the seller’s optimal strategies are 
21 1

, , , .
4 3 4 8

u u u uK K
p       

Note that the seller’s profit decreases from full control, to uniform seeding, and to worst seeding, which 

highlights the importance of controllability of the seeding process, from the seller’s perspective.  

4.3.  Random Seeding with Limited Control 

In this section, we discuss the case where the seller can neither fully control seeding nor observe the seeding 

outcome.  

Instead of jointly optimizing on both the number of seeds and price, we introduce an optimal pricing strategy 

which is subject to the seller's controllability over the allocation of the seeds. We will show that our optimal pricing 

strategy is not affected by the seeding outcome.  This “trick” could dramatically simplify the seller’s decision 

making process when he faces randomness in seeding. 

When seeds are not controllable, we assume that all the seeds go to countably many intervals on [0,1] . Thus we 

can formalize any possible seeding outcome in the following way: For [0,1],   assume ( )g  represents the number 

of seeded customers with a lower initial WTP than customer .  If the total number of seeds is ,K  we 

require ( )g   satisfy:  (0) 0; (1) ;  ( ) ;  '( ) 0.g g K g K g         

            

Figure 8.  An example of general random seeding 

Since all the seeds go to countably many seeding intervals, ( )g  is differentiable almost everywhere (a.e.). 

Figure 8 shows an example of ( )g   where the dark area on the horizontal line is seeded, corresponding to an 

( )y g K
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increase in ( ) where ( ) 1 0.g g     The slope of the curve is 1 (same for the curve y  ) at the seeded customers 

and equal to 0 otherwise (except at a countable number of points). Hence ''( ) 0g    holds almost everywhere.  

Denote r K as the maximum mass of seeds the seller can seed with limited controllability, where we define 

limited controllability as the seller’s capability to seed without full visibility the low-end half of the market (i.e., 

customers in 
1

[0, ]
2

). In other words, the seller can seed r K  customers in  
1

[0, ]
2

 but cannot control the seeding 

outcome nor see precisely  the types of those seeded customers. For example, if 
1

2

r  ,  it means that the seller can 

seed everyone in interval 
1

[0, ]
2

, which would lead to the maximum profit as computed in Proposition 1. However, 

if 
1

6

r  ,  it means that the seller can seed one third of the customers in 
1

[0, ]
2

 but it could either be 
1

[0, ]
6

, 

1 1
[ , ]
3 2

or any other seeding outcome (e.g., discontinuous).  Thus, r  indicates a certain degree to which the seller 

can identify that some customers belong to the low-end. Given r , Proposition 4 provides an optimal pricing 

strategy which is not affected by the randomness of the seeding process.  

Proposition 4. Given r , if the seller is restricted/committed to seeding r K and can do so with limited 

controllability (defined as above), when 
2 1

2

r


   the optimal pricing strategy is * rp K . 

Proposition 4 provides an optimal pricing strategy for the seller who can only seed the customers with limited 

controllability and limited visibility. It suggests that if r  is not too big in that 
2 1

2

r


 , charging 

rp K always yields the maximum profit  regardless of the randomness of the seeding process. This result could 

be of great help to small software startups who have limited visibility/information of their target customers. It will 

be much easier for them to identify the low-end half of the market and distribute the seeds since the optimal price 

does not depend on the seeding outcome but on the number of seeds. 

4.4. Information Acquisition 

When the seller cannot observe the seeding outcome, an alternative is to pay for the information on customers’ 

WTP (e.g., hire a target advertising company or purchase customer data from a third party). We consider this case in 

this section. 

Without loss of generality, we assume the cost of acquiring information on the customers in interval [0, ]  

is 2 2c K . This form implies that the marginal cost of acquiring customer information increases as the size of the 

targeted customer group increases. Recall that in this section we have assumed a uniformly-distributed customer 
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type. After spending 2 2c K  to obtain user information, the seller can perfectly seed the customers in [0, ] . The 

seller's problem is  

2 2

,
max (1 )

p
p K c K


  

 

. .s t p K  

0,  (0,1).p    

The optimal solution to this problem is 
*

2(1 )

K
p K

c
 


. As c  increases, the optimal number of seeds is 

decreasing since the cost of information acquisition increases. For a seller with limited seeding controllability, the 

following result provides cost thresholds that can assist the seller in choosing between (1) optimal seeding by paying 

for information acquisition and (2) random seeding with no information acquisition. 

Proposition 5 . If the seller commits to seeding  r K  and can do so with limited controllability, then  

(a) When information acquisition cost exceeds a threshold such that 1
1

2 r
c


  ,  random seeding with limited 

control is optimal; 

(b) When information acquisition cost is below a threshold  such that 1
1,

4 (1 )r r
c

 
 


 acquiring customer 

information  is optimal; 

(c) Otherwise when 
1 1

1, 1 ,
4 (1 ) 2r r r

c
  

 
   

 either strategy can be optimal depending on the realization of  

the random seeding.  

Proposition 5 provides useful guidelines that can help the seller choose between different strategies. It 

formalizes the intuition that information acquisition outperforms random seeding when the information acquisition 

cost is small. However, when this cost is moderate (see case c in Proposition 5), either one can be optimal depending 

on the randomness in the seeding outcome.  

5. Social Welfare Analysis 

In this section, we compare the social welfare implications of four models: (1) n-price with optimal seeding, (2) 

one price with optimal seeding, (3) one price with uniform seeding, and (4) one price with worst seeding. Table 2 

summarizes the seller's profit, consumers' surplus, and social welfare corresponding to each model. Note that 

consumer surplus and social welfare are both computed after the entire adoption process has been completed, as we 

show earlier on in our discrete case examples.  
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Table 2. Social Welfare Analysis 

 Model Seller's Profit
 

Consumer Surplus
 

Social Welfare
 

Multiple-price 
n-Price with optimal 

seeding 

2

2

( 2)

3( 1)

n n K

n




 

2

2

1 1

6 3( 1)
K

n

 
    

2

2

K

 

One price 

Optimal Seeding 
2

4

K

 

2

4

K

 

2

2

K

 

Uniform Seeding 
2

8

K

 

2

48

11K

 

2

48

17K

 

Worst Seeding 
2

18

3K

 

2

24

5 3
K

 
 
 

 2

72

15 7 3
K

 
 
 

 

From Table 2, optimal seeding leads to social welfare maximization regardless of how the market is segmented 

(however, the seller makes more profit by increasing segments). The social welfare decreases when the seller loses 

control over the seeding process. Interestingly, the case of worst seeding has a higher social welfare than the case of 

uniform seeding, because the former is associated with a lower optimal price (than the latter), thus attracting more 

paying customers. In other words, more customers are left unserved in the case of uniform seeding.   

Consumer surplus is the other side of the same coin. The case of worst seeding offers consumers a higher 

surplus, due to the increase in the social welfare and decrease in seller’s profit. Compared with the case of uniform 

seeding, worse seeding covers a larger portion of the market at a lower price.  

Finally, it is worth noting where the consumer surplus is coming from. Under our setting, consumers are 

myopic and they adopt the software as soon as their WTP exceeds the price charged to them. However, they 

ultimately enjoy additional surplus as the installed base grows over time.   

6. Conclusion 

Understanding the process of software adoption is of paramount importance to software start-ups, who are 

increasingly embracing the seeding strategy to jumpstart adoption and boost the willingness-to-pay of potential 

paying customers via network effects. We study the seller’s optimal seeding, sequencing, and pricing strategies in 

the presence of network effects. We demonstrate the importance of sequencing as well as controllability over the 

seeding process to seller’s profit, consumer surplus, and social welfare. 

With both multiplicative and additive forms of network effects, we find that under multiple pricing and full control 

of the seeding process, it is optimal to seed only the lower half of the lowest valuation segment and then charge non-

zero prices to every other customer. The optimal sequence of opening the segments follows an ascending order of 

customer types, while within each segment, paying customers adopt in descending order of their types. Social 

welfare is maximized under optimal seeding but decreases when the seller loses control over the seeding process. 

Under single pricing and limited seeding control, worst case seeding has a higher social welfare and consumer 

surplus than uniform seeding, because the former covers a larger market at a lower price. In the case of random 

seeding with limited control, we identify an optimal strategy and conditions under which the optimal price is not 
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affected by the randomness of seeding. The model in this paper provides a new perspective to study the adoption 

path and to enhance our understanding of software adoption dynamics. Specifically, we focus on how to shape the 

software adoption process via seeding in a consumer network.  Our framework and findings may help software 

vendors to efficiently and effectively design their marketing strategies.  
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Appendix 

Proof of Lemma 1.  

(a). (i) We show that under optimality, the market is fully covered. We do so in two steps.  

First, we show that in each segment, the seller should complete seeding before start selling. Suppose otherwise: 

after adoption by a set of paying customers, the seller seeds a set of non-buying customers. Then seeding the same 

set of non-buying customers before selling strictly increases the WTP of each and every customer in the same set of 

paying customers. The seller thus can make a higher profit by charging a higher price without shrinking the installed 

base of paying customers.  

Second, we prove by contradiction that, the market is fully covered under optimality.  Suppose otherwise: the 

market is not fully covered. There exists at least one segment, say, 1( , ]k k  that is not fully covered. Given any 

0,kp   since by assumption adoption occurs from high  to low type within each segment, there exists a marginal 

customer 1k k  
 
such that customers in  1,k k  would not pay (all customers above k  can afford to pay for the 

product). Thus, any uncovered customers must be in this interval  1, .k k   However, seeding these non-buying 

customers before charging will only increase WTP of the rest customers in this segment and all customers in 

subsequent segments. Thus the seller can raise the price by  1 1k k k    for this segment without shrinking the 

installed base of paying customers, thus making a strictly higher profit. This contradicts the optimality of the 

original strategy.  

(ii). We show that under optimality, all segments contain only paying customers except for the first one, which 

contains both seeded and paying customers.   
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We first show that in each segment, seeding the low end is optimal (where the mass of seeding could be zero, 

i.e., no seeding is a special case of seeding). Suppose otherwise: under optimality, there exists at least one segment, 

say,
1( , ]k k 

that contains at least one interval 
1( , ]k k  

 of seeded customers who are adjacent to a set of paying 

customers
1( , ]k k 

. For any customer x  in 
1( , ]k k 

, at the time  of adoption, the size of installed base is 

( )kI x K  ,  where I is the mass of the installed base prior to the adoption by customer
k . Hence the WTP of 

customer x is ( )kI x xK  . Now let us consider a candidate strategy such that customers in 
1( , ]c

k k 
are seeded 

(see Figure 7 below), where 
1 1

c

k k k k       and customers in 
1( , ]c

k k  
 is charged, and all the other things 

remaining unchanged. We map one-on-one each customer 
1( , ]k kx    to a customer y in 

1( , ]c

k k  
  by shifting, 

1k ky x     . Note that the mass of the installed base prior to 
1k 
remains I , such that the WTP of customer y is 

1( ) .kI y yK   Note that, since
1k ky x     due to one-on-one mapping, we have  

1( ) ( ) ( ) ( ) ( )( ) 0.k k k k kI y yK I x xK I x yK I x xK I x y x K                     

This means that WTP of all paying customers in 1 1( , ]k k   is increasing under the candidate strategy. Thus the 

seller makes a higher profit using the candidate strategy. This contradicts the optimality of the original strategy. 

 

Figure 7.  The Market Segmentation of Optimal Strategy 

Given this property and (i), under the optimal strategy * * *( , , ), P the structure of the market can be visualized 

using Figure 8, where black intervals represent seeded customers in each segment. Denote the number of seeded 

customers in each segment as 0i   ( 1,2,...,i n ). 

Suppose segment 1 is the thk  to be opened in the optimal sequence, i.e., (1) k   and 1 k n  . We 

denote 1 2 3 1{ , , ,..., }kA j j j j  as the set of ( 1)k  segments opened prior to interval 1 that has a total joint mass of 

U paying customers with the lowest paying type as  .  Note that 1  .  

 

 

Figure 8.  The Market Segmentation of Optimal Strategy 

seeded customers

1k  k 1k 

1 2 1n 

seeded customers

1k 
c

k 1k 

2

0 1
......

1 3 n
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We denote the optimal price for each segment as ip . Note that at any moment along the adoption process, the 

current fraction of adopters from the intervals in A is no greater than .U  Hence 
1 1

1

( + )
i

k

j

i

p U K 


   and total profit 

of interval 1 satisfies 2

1 1 1 1

1

( + ) ( ) .
i

k

j

i

U K    


 
 

Denote the profit from interval i as i and the total seller profit 

as  . Now consider a candidate strategy:  

1

n
c

i i j

j i

  
 

   , 

1, 1

( ) ( ) 1,

( ),

c

i

i i i A

i otherwise

 






  



, 1

, 1

0,

n

jc
ji

i

otherwise


 




 




, and 

1

1

1

, 1

,

, .

n
c

j

j

c

i

i

i

K i

p

p K i A

p otherwise

 

 









 
  





 

Under the candidate strategy, customers in 
1

[0, ]
n

j

j




 are seeded. The number of paying customer in each 

segment remains the same. Figure 9 visualizes the market structure.  

 

Figure 9.  The Market Segmentation of Candidate Strategy 

Let us take a look at how profit changes for each interval under the candidate strategy. For each segment in A , 

at the time it is opened, the user base is increased by at least 1 and customers are replaced by higher type customers. 

Therefore, 
c

ip
 
is acceptable for all paying customers of intervals in .A  For each segment not in A or equal to 1, 

under the new segmentation, the paying customers assigned to each segment has a higher type, compared with the 

optimal strategy. Therefore the original price is still acceptable. Hence only the profit of interval 1 may decrease 

while the profit in all intervals in A increases. Denote the profit from interval i as 
c

i and the total profit as c . 

Similarly, 
c

i  is a function of , ,c c c

i i ip  and 
c

i . The improvement in profit is  

0
1

c 3

c 1

c

n 
1......

2

c

1

cp 2

cp
3

cp c

np
1

n

j

j
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1 1

A A
1

1 1

A

2 2 2

1 1 1 1 1 1 1

1 1

2 2 2

1 1 1 1 1 1 1 1 1

2 1 1

- + [ ] [ ]

- + [ ]

( ) ( + ) ( )

( ) ( ) ( ) ( )

0,

i

i

c c c c

i i i i

i i
i

c c

i i

i

n k
c

i j

i i

n n k

i i j

i i i

K U K U K
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which implies that the total profit under the candidate strategy is non-decreasing. Therefore under the optimal 

strategy, 0j  for 2, 3,...,j n  and all seeds go to interval 1. This completes the proof of (a).  

(b). We prove part (b) by induction.  

Step (i): From (a), we know that segment 1 is opened first, i.e., (1) 1  . 

 Step (ii): Assume ( )i i  for any 1,2...,i T  where 1 1T n   . We shall prove that *( 1) 1T T    is 

optimal. Suppose in optimal sequence,
*( 1)T Q    and 1.Q T  For

* 1( ) ( )kj k  , we denote 

by 1 2 3 1{ , , ,..., }T T T QB j j j j   
 
the set consisting of all the intervals opened between interval T and interval 1T  . 

For all the intervals in B , we assume that paying customers account for a fraction of G  in total and the lowest type 

of paying customers in B is  .  Note that 
1T   . 

Given a sequence  , we denote the profit from interval i as ( )i  and the total profit as ( ) .   

* * * * *

1

1

( ) ( ) ( ) ( ) ( ).i i T i

i T i B i T
i B

        

   


      
 

For interval 1T  to start, it must be the case that 
*

1 1( )T T Tp G K    , which indicates the total profit of 

1T  is bounded by 1 +1( ) ( - ) .T T T TG K     Now let us consider a candidate strategy with sequence 
c and price 

c

ip   

*

*

, 1

( ) ( ) 1,

( ), ,

c

i i T

i i i B

i otherwise

 



 


  

       

1

*

1

*

, 1

( ) ,

, .

T T

c

i i T T

i

K i T

p p K i B

p otherwise

 

  





 


   

  

The number of seeds and the market segmentation remain the same as those in the old strategy. Under this 

candidate strategy, the size of installed base prior to the adoption in interval 1T  is T . Therefore, 1 1

c

T T Tp K  
 

which can be accepted by all the customers in interval 1T   because the WTP of customer x is 

1 1( )T T T Tx xK K      
 
for any 1( , ]T Tx    . Hence 2

1 1 1( ) ( )c

T T T T T K         . For customers in interval 
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i  with i B , the prices can be increased because the installed base is increased by
1( )T T K    . The total profit 

under the candidate strategy is  

1 1

( ) ( ) ( ) ( ).c c c c

i i i

i T i B i T
i B

      
    



       

Therefore 

* * *

1 1

* 2 2

1 +1 1 +1

* 2

1 +1

2 2

+1 1 +1

( ) ( ) [ ( ) ( )] ( ) ( )

[ ( ) ( )] ( - ) -( ) ( - )

[ ( ) ( )] ( - )

( - ) ( - )

0,

c c c

i i T T

i B

c

i i T T T T T T T T

i B

c

i i T T T

i B

T T T T T

K G K

G K

G K G K

         

           

      

     

 



 









     

   

  

 







  

which suggests that the profit can be improved under the candidate strategy. This contradicts the optimality of 

the original strategy. Given the induction hypothesis, we know interval 1T  can be fully covered by charging 

1 1

c

T T Tp K   . If any new interval is opened before the last customer
T adopts, 1

c

Tp   
cannot be increased because 

otherwise the adoption of interval 1T  will not start, therefore it only decreases the user base of the new interval. 

Hence opening a new interval before all customers in interval 1T   adopt is never profit-improving. This proves 

part (b) of Lemma 1. Q.E.D. 

Proof of Proposition 1.  

Given Lemma 1, we know that under the optimal strategy, everyone in interval i can afford the maximum price 

which can start the adoption of interval i . Therefore the seller’s problem becomes: 

1

1

1 1 1 1 1 1
, , 1,2,.., 1

2

max ( ) ( ) (1 )
i

ni

n

i i i i n n
i n

ip pp

K K K
 

        


   
 



         (3) 

1 2 1. . 0 ... 1.ns t        
 

First order condition yields the following system of equations: 

*

* 1

* *

* 2

1

* *

* 1 1

,
2

,
2

...

, 2,3,..., 1,
2

i i

i i n




 


 
  





 



 

  
  

which gives the relationship of 1
1

i i

i

i
  


. Then it immediately follows that  
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* 1
.

1
i

i

n





  

The optimal profit can be obtained by plugging this back to the objective function in (3). Q.E.D. 

Proof for Lemma 2. 

The constraint in Lemma 2 provides the condition for p to be sufficiently low in order for the entire market to 

be covered. By a similar argument as in the proof of (a) in Lemma 1, under the optimal strategy, seeds should be 

given away to the low type customers in the beginning and all the other customers will pay for the product.  

Suppose that under the optimal strategy * *( , )p , the customers in *[0, ]  are seeded and all customers in 

*( ,1] would pay for the product. For any customer *( ,1]x  , at the moment of adoption, the current size of the 

installed base is *( 1 )x K   . Hence the WTP of customer x is *( 1 ) ( ) .x w x K    Since everyone x must 

eventually purchase, the following inequality must hold 

*

1

( 1 ) ( ) .min
x

p x w x K



 

    

Proof of Proposition 2.  

(a). If ( )w x is concave, our imposed boundary conditions imply that ( )w x x for (0,1).x  After seeding the 

customers in [0, ] , for any paying customer ( ,1]x  , her WTP function at the adoption time is ( 1 ) ( )x w x K    

which can be shown to be concave and reaches minimum at 1.x   Hence WTP of customer ( ,1]x 
 
is no smaller 

than . Therefore 
1

( 1 ) ( )min
x

x w x


 
 

   . The maximization problem becomes 

,
max (1 )

p
p K




 

. . .s t p 
 

Since the objective function is increasing in p , the constraint is binding. The maximization problem becomes 

2max (1 ) .K


   Solving the seller’s optimization problem results in 
* 1

2
  .  

(b). If ( )w x is convex, with the imposed boundary conditions, we have ( )w x x  for (0,1)x . After seeding the 

customers on [0, ] , for any customer x in [ ,1] , the WTP function is ( 1 ) ( )x w x K   . The value of this function at 

 is equal to ( )w  . The convexity implies that 
( ) ( )w x w

x




 under our setting. When 1 0x    , 

( ) , ( )w w x x    , we have 

( ) ( ) ( ) ( ) ( )
[ ( ) ( )] ( )( ),

w x w w x w w x
x w x w w x x

x x x
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therefore, we have ( ) ( ) [ ( ) ( )] ( )( )w x w x w x w w x x       since 1x  . Therefore we have 

( 1 ) ( ) ( )x w x w    . This ensures that the constraint in Lemma 2 is always binding at ( ) .p w K  The seller’s 

problem reduces to   

2max ( )(1 ) .w K


 
 

Note that (0)(1 0) (1)(1 1) 0,w w    the objective function is positive inside the interval. Further, the object 

function is continuous and bounded. Therefore the optimal 
* must satisfy the first order 

condition,
* * *'( )(1 ) ( ).w w     

 

Figure 10.  The Optimal Seeding Ratio 

In Figure 10, *  is the optimal seeding ratio, suggesting that all the customers on *[0, ] are seeded. We have 

shown that *  must satisfy 
* * *'( )(1 ) ( ).w w   

 
Hence in Figure 10, we have *

1 2 1 .l l     Since 1 2 1l l  , 

we have *2(1 ) 1  which is equivalent to 
* 1

.
2

   

We now show that the existence of solution to above equation. Define ( ) '( )(1 ) ( ).w w        Since ( )   

is continuous, (0) '(0) 0,w   (1) (1) 1 0.w       There must exists an 
* such that *( ) 0.    

When 
'( ) 1

''( ) 2

w x x

w x


 , the objective function is concave in  , which leads to a unique interior solution. Q.E.D.  

Proof of Proposition 3. 

We first show that Lemma 1 holds for the additive form of network effects.  

It is straightforward to show that in each segment, the seller should complete seeding before start selling and 

the market is fully covered under optimality. Next we show that in each segment, seeding the low end is optimal. 

Consider the same example as in Figure 7. For any customer x  in 1( , ]k k  , at the time  of adoption, the size of the 

*( )w 

* *'( )(1 )w  

* 1

2l

1l
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installed base is 
1kI x   , the WTP of customer x is 

1( )kx K I x     . After mapping one-on-one each 

customer 
1( , ]k kx    to a customer y in 

1( , ],c

k k  
 the WTP of customer y is 

1 1 1( ) ( )k k k ky K I y y K I x                . 

Hence   

1 1( ) ( ) 0k ky K I x x K I x y x              ， 

which implies that the seller can charge a higher price if the seeds go to the low end of each interval. Thus the 

structure of market under the optimal strategy can be shown as in Figure 8. With the same setting in proof of Lemma 

1, we discuss three cases:  ( ) 1;  ( ) 1, and ( ) 1.i K ii K iii K      

case (i): 1.K   In  interval 1, the customer with the smallest WTP is customer  type 
1.  Hence the optimal 

price for interval 1 must satisfy  1 1 1 1

1

( ).
i

k

j

i

p K U    


     The total profit of interval 1 must satisfy  

 1 1 1 1 1 1 1 1

1

.( )
i

k

j

i

p KK U        


 
       

 


 

Now let us consider the following candidate strategy 

1

n
a

i i j

j i

  
 

   , 

1, 1

( ) ( ) 1,

( ),

a

i

i i i A

i otherwise

 






  



, 1

, 1

0,

n

ja
ji

i

otherwise


 




 




, and 

1 1

1 1

1

( ), 1

, .

n n

j j

j j

a

i

i

i

K i

p

p K i A

p otherwise

    

 

 


   




 
  



 

 

Under this candidate strategy, customers in 
1

[0, ]
n

j

j




 are seeded. The number of paying customer in each 

segment remains the same. The market structure under this candidate strategy is the same as illustrated in Figure 9. 

Denote the profit from interval i as 
a

i and the total profit as a . Similarly, 
a

i is a function of , ,a a a

i i ip 
, 

and 
a

i . 

The improvement in profit is  

 

1 1

A A
1

1 1

A

1 1 1 1 11 1 1 1 1
1 1 1

2

1 1 1

1

- + [ ] [ ]

- + [ ]

( ) ( ) ( )

( )( )

0,

i

a a a a

i i i i

i i
i

a a

i i

i

n n k

j j j
j j i

n

j

j

K K K U K KK U

KU K U K

     

   

              

    

 




  



     

 

   
            

  

   



 



  



which implies that the total profit under the candidate strategy is non-decreasing but all seeds go to interval 1.  
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case (ii): 1.K   In  interval 1, the WTP is a constant. Hence the optimal price for interval 1 must satisfy 

1 1

1

.
i

k

j

i

p U 


   The total profit of interval 1 must satisfy   1 1 1 1

1

.
i

k

j

i

KU    


 
    
 


 

Now let us consider 

the following candidate strategy 

1

n
a

i i j

j i

  
 

   , 

1, 1

( ) ( ) 1,

( ),

a

i

i i i A

i otherwise

 






  



, 1

, 1

0,

n

ja
ji

i

otherwise


 




 




, and 

1

1 2

1

, 1

, .

n n

j j

j j

a

i

i

i

i

p

p i A

p otherwise

  



 


  




 
  



 

 

This candidate strategy results in the same market structure as illustrated in Figure 9. The improvement in 

profit is equal to  

   

1 1

A A
1

1 1

A

1 11 1 1 1 1
1 2 1

1 1 1

2

- + [ ] [ ]

- + [ ]

( )( )

0,

i

a a a a

i i i i

i i
i

a a

i i

i

n n k

j j j
j j i

n

j

j

K K U KU

U K U K

     

   

        

   

 




  



     

 

   
         

  

   



 



  



 

which implies that the total profit under this candidate strategy is non-decreasing but all seeds go to interval 1.  

Case (iii): 1.K   In  interval 1, the customer with the smallest WTP is 1.  Hence the optimal price for 

interval 1 must satisfy  1 1

1

.
i

k

j

i

p K U  


 
   

 
 The total profit of interval 1 must satisfy  

 1 1 1 1

1

.
i

k

j

i

K KU     


  
     

  
 Now let us consider the following candidate strategy 

1

n
a

i i j

j i

  
 

   , 

1, 1

( ) ( ) 1,

( ),

a

i

i i i A

i otherwise

 






  



, 1

, 1

0,

n

ja
ji

i

otherwise


 




 




, and 

1

2 1

1

, 1

, .

n n

j j

j j

a

i

i

i

K i

p

p K i A

p otherwise

   

 

 


  




 
  



 

 

This candidate strategy results in the same market structure as illustrated in Figure 7.  The improvement in 

profit is equal to  
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1 1

A A
1

1 1

A

1 1 11 1 1 1
2 1 1

2

1 1 1

2

- + [ ] [ ]

- + [ ]

( )( )

0,

i

a a a a

i i i i

i i
i

a a

i i

i

n n k

j j j
j j i

n

j

j

K K K K U K KU

KU K U K

     

   

           

    

 




  



     

 

    
          

    

   



 



  



 

which implies that the total profit under this candidate strategy is non-decreasing but all seeds go to interval 1.  

Next we will show that (b) of Lemma 1 holds for the additive form of network effects.  We consider three  

cases: 

Case (i): 1.K    It must be the case that 
*

1 1( ).T T Tp K G      The profit of interval 1T   is bounded 

by   1 1 .( )T T T TK G         Consider the following candidate strategy  

*

*

, 1

( ) ( ) 1,

( ), ,

a

i i T

i i i B

i otherwise

 



 


  



  and    

1

*

1

*

, 1

( ),

, .

T T

a

i i T T

i

K i T

p p K i B

p otherwise

  

  





  


   



 

Under this candidate pricing strategy, it can be verified that all customers can still afford to buy.  

   

* * *

1 1

*

+1 +11 1

* 2

+1

2 2

+1 +1

( ) ( ) [ ( ) ( )] ( ) ( )

[ ( ) ( )] ( - ) - ( - )( )

[ ( ) ( )] ( - )

( - ) ( - )

0,

a a a

i i T T

i B

a

i i T T T TT T T T

i B

a

i i T T

i B

T T T T

K KK K G

G K

G K G K

         

            

      

     

 



 





     

     

  

 







  

which suggests that the profit can be improved under this candidate strategy. This contradicts to the optimality 

of the original strategy. Hence ( 1) 1.T T     

Case (ii): 1.K    It must be the case that 
*

1 1.T T Tp G     The profit of interval 1T   is bounded 

by   1 1 .T T T TG        Consider the following candidate strategy  

*

*

, 1

( ) ( ) 1,

( ), ,

a

i i T

i i i B

i otherwise

 



 


  

      

1

*

1

*

, 1

,

, .

T T

a

i i T T

i

i T

p p i B

p otherwise
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Under this candidate pricing strategy, it can be verified that all customers can still afford to buy. 

   

* * *

1 1

*

+1 +11 1

*

+1

+1 +1

( ) ( ) [ ( ) ( )] ( ) ( )

[ ( ) ( )] ( - ) - ( - )

[ ( ) ( )] ( - )

( - ) ( - )

0,

a a a

i i T T

i B

a

i i T T T TT T T T

i B

a

i i T T

i B

T T T T

K KG

G K

G K G K

         

          

     

   

 



 





     

     

  

 









 

which suggests that the profit can be improved under this candidate strategy. This contradicts to the optimality 

of the original strategy. Hence ( 1) 1.T T     

Case (iii): 1.K    It must be the case that 
*

1 1 ( ).T T Tp K G      The profit of interval 1T   is bounded 

by   1 1 .( )T T T TK G         Consider the following candidate strategy  

*

*

, 1

( ) ( ) 1,

( ), ,

a

i i T

i i i B

i otherwise

 



 


  



  and    

1

*

1

*

, 1

( ),

, .

T T

a

i i T T

i

K i T

p p K i B

p otherwise

  

  





  


   



 

Under this candidate pricing strategy, it can be verified that all customers can still afford to buy. 

   

* * *

1 1

*

+1 +11 1

* 2

+1

2 2

+1 +1

( ) ( ) [ ( ) ( )] ( ) ( )

[ ( ) ( )] ( - ) - ( - )( )

[ ( ) ( )] ( - )

( - ) ( - )

0,

a a a

i i T T

i B

a

i i T T T TT T T T

i B

a

i i T T

i B

T T T T

K KK K G

G K

G K G K

         

            

      

     

 



 





     

     

  

 







  

which suggests that the profit can be improved under this candidate strategy. This contradicts to the optimality 

of the original strategy. Hence ( 1) 1.T T     

In all three cases above, given the candidate pricing strategy, interval 1T  can be fully covered. Hence it is not 

optimal if any new interval is opened before the last customer 
T  adopts. This verifies (b) of Lemma 1 under the 

additive form of network effects. The optimal market structure remains the same, as illustrated in Figure 4.  

Given the optimal market structure, next we now solve the seller's problem in each of the three cases.  

Case (i): 1.K    
*

1 .i i ip K     The seller's problem is 
 

1

1

1 1 1 1 1 1
, , 1,2,.., 1

2

max ( )( ) ( )( ) ( ) (1 )
i

i n

n

i i i i n n
i n

i
p p p

K K K K K K
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1 2 1. . 0 ... 1.ns t        
 

Analogues to the solution approach of Proposition 1, we obtain: 

 * * *
(1 )(1 )1 1 (1 )

, , .
1 (1 ) 1 (1 ) 1 (1 )

i i

K Ki K KK K i K
p

K K n K K n K K n

   
 

     

    
  

        
 

Case (ii): 1.K    
*

1 .i i ip     The seller's problem is 
 

1

1

1 1 1 1 1 1
, , 1,2,.., 1

2

max ( )( ) ( )( ) ( 1) (1 )
i

i n

n

i i i i n n
i n

i
p p p

K K K
 

         


   
 



         

1 2 1. . 0 ... 1.ns t        
 

Solving, gives us 

* * * (2 1)
0, , .

2
i i

i i K
p

n n
 


    

Case (iii): 1.K    
*

1.i i ip K      The seller's problem is 
 

1

1

1 1 1 1 1 1
, , 1,2,.., 1

2

max ( )( ) ( )( ) (1 ) (1 )
i

i n

n

i i i i n n
i n

i
p p p

K K K K K K
 

            


   
 



         

1 2 1. . 0 ... 1.ns t        
 

Solving, gives us 

 * * *
(1 )(1 ) 11 1 (1 )

, , .
1 (1 ) 1 (1 ) 1 (1 )

i i

K Ki KK K i K
p

K K n K K n K K n

  
 

     

    
  

        
 Q.E.D. 

Derivation of the Optimal Strategy in the Worst Seeding Case.  

The seller’s optimization problem is 

2

,
max(1 )(1 )

. . (1 ) (1 )
1 0

, (0,1).

K

s t
 

   

   
 
 

  

  
  



 

The first constraint is 
(i).

(1 ) (1 ) (ii). 1
(iii). 1 .

if
if

 
       

   


      

  

 

Case (ii) is dropped since we need 1 0    because of the second constraint. For any , since the objective 

function is always decreasing in  , we need the minimum value of  , which is   under both (i) or (iii) cases. 

Note that any    satisfying case (iii) will be smaller than
1

2
. Thus, the maximization problem becomes  

2(1 2 )(1 ) ,max K
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which gives * 3 3

6



 . 

Derivation of the Optimal Strategy in the Uniform Seeding Case.  

The constraint maximization problem is 

2

,
max(1 ) (1 )(1 )

. . (1 )
, (0,1).

K

s t
 

    

   
 

   

  


 

The constraint is equivalent to 
1+





 . Therefore, we have  

  2

,
max (1 )(1 )1 (1 )

. . .
1

K

s t

 
   






  




 

For any , the optimal for unconstrained problem is 
* 1 1

1 1 ,
2 1 1




  
    

 
which implies that the 

constraint is always binding. Therefore the maximization becomes 

2

2

(1 )
.max

(1 )

K



 






 

It can be shown that * 1

3
  . 

Proof of Proposition 4. 

Given r , the optimal price p  must satisfy  .rp K
 
For each customer  , at the time of adoption, the WTP 

is ( ( ) 1 )g K    which is a function of  . Hence we simplify the notation of WTP function ( , )u    to ( )u  .  

For customers in 
1

( ,1]
2

, the WTP function is  

1
( ) (1 ) , ( ,1]

2

ru K         

which is deterministic and satisfies  ( ) ru K 
 
for all 

1
( ,1]
2

  . This indicates that the last paying customer 

x  must be on the low-end half. Given any price p , we will have a last paying customer x and the number of paying 

customer is   .1 [ ( )]
r rN Kx g x     

The profit maximization problem becomes  

  2max 1 ( ) 1 ( ) r

x
x Kx g x x g x       

 

 . . 1 ( )
rs t x x g x    
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Given interval 
1

[0, ]
2

, the WTP function  ( ) 1 ( )u x x Kx g x   satisfies 

  0 . .1 2 ( ) '( )
du

K a ex g x g x x
dx

   
 

This suggests that the WTP function is non-decreasing (a.e.) on the low-end half. Since the WTP function is 

continuous, we know that there will be at least one 
1

[0, ]
2

x  satisfying ( ) ru x K . Now our task is equivalent to 

show that ( ) ( )y x   for all y x .  For any y x , there are two possible cases: 

Case (i): Customer y  is seeded. This is equal to say that '( ) 1g y  . Without loss of generality, we assume  

( )g y y c  . Therefore, the profit function near the neighborhood of y  is  

2 2(1 )(1 ) (1 )(1 )r ry y y c y y c K y c c K           
 

which is always increasing in y . This indicates that the neighborhood of marginal customer should not be 

seeded because the seller can always get higher profit by raising the price;  

Case (ii): y is not seeded. Let us assume in a small neighborhood [ , ]y y   , none customers are seeded. 

Therefore, the profit function is differentiable in this neighborhood. What we need to show is 
( )

0
d y

dy


   for .y x  

Without loss of generality, since y is not seeded, we can assume ( )g y s in this case. 

The profit function is 2( ) (1 )(1 ) .ry y y s y s K      
 
Hence we have  

22
( )

.3 2(2 2 ) (1 )(1 )r r
d y

Ky s y s s
dy


                 (4) 

The symmetry axis of this quadratic function is 
2 2 2 1

3 3 2

r rs    
  for 0.5r  . This indicates that all 

possible y  is to the left of symmetry axis. Since y x , our task is equivalent to show ( )
| 0.y x

d y

dy


   

Note that s is actually a function of .x  Therefore, s in the neighborhood of x is not always the same to s in the 

neighborhood of .y  Let us assume the profit function in the neighborhood of x   is 1  and that of neighborhood of 

y is 2 . Fixing y , we can see that the profit function 2(1 )(1 )ry y s y s K     is always increasing in s , 

therefore, 1 dominates 2 .  

The solutions to the cubic function 2(1 )(1 ) 0ry y s y s K      include 0, 1 , 1ry y s y s      . This 

indicates that in interval
1

[0, ]
2

, the profit functions are unimodal. Since y x , as long as 
( )

| 0y x

d y

dy


  , we will 

have 1 2( ) ( )x y   (see Figure 11 below for illustration). It is possible that x is seeded. In that case, the WTP curve 
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at the neighborhood of x intersects with
1( )x at x and does not change the value at ,x  therefore we can skip that 

case.  

 

Figure 11. The profit functions at neighborhoods of y and x 

At x , we have  1 ( )
rx x g x   , therefore, 1 ( )

r

g x x
x


   , plug this back to (4)  

2( ) 1
( 1) (2 )

r
r x

x x


  

 

Our task is equivalent to show  

2(2 ) 1
(1 )

1 1
1

r x x
x

x

x




  




       (5) 

To ensure this always hold true for any ,x  we need to find the biggest possible value of the right hand side. 

Note that the right hand side is increasing in ,x  therefore, for each ,r  we need to show what is the maximum 

possible x . Since (1 ) rx x s    , we have 

21 (1 ) 4
,

2

rs s
x

   
  

which is decreasing in s . The smallest possible s only occurs in the case shown in Figure 12. The horizontal 

line presents the customers from 0 to 1. All customers in the dark interval are seeded. If all seeds go to the low end 

half, the seeding outcome shown in following figure gives the smallest number of ( )g x for any 
1

[0, ]
2

x  

 

Figure 12. The case where g( x ) is smallest for all 
1

[0, ]
2

x  

y x

1

2

1

2

1

2

r0
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In Figure 12, at the point 
1

2

r , the WTP is 21 1 1
( )( ) ( )
2 2 4

r r r      . We discuss two cases in turn.  

Case (i): if 
2 1

2

r


 , 21
( )

4

r r   , which means (max ) 0g x   and 
1 1 4

max
2

r

x
 

 . Plugging 

this back into (5) , we have  

21 1 4 2
( ) (1 ),

2 1 1 4

r
r

r






 
 

 
 

which is true for all 
2 1

.
2

r


   

Case (ii): if 
2 1

2

r


 , 
21

( )
4

r r   , the WTP function at this point is less than 
r , which means 

1
(max ) max

2

rg x x    , plug this back into (1 ( ))x x g x    , we have 
2

max .
1 2

r

r
x







Hence 

22
( ) (1 1 2 )
1 2

r
r r

r


 


  

  

which is equivalent to  

21 4 4( ) 0r r     

which requires
2 1

2

r


 . This only holds for 
2 1

.
2

r


  

Combine Case (i) and (ii), we have when 
2 1

2

r


 , so (5) always holds and 
( )

| 0y x

d y

dy


  . Q.E.D. 

Proof of Proposition 5.  

Under  random seeding with limited control, we have shown in the proof of Proposition 4 that all the customer 

in 
1

( ,1]
2

 will purchase if the price is set to .r K  Therefore the profit from the high-end half is 
2

2

r K
, which gives 

lower bound. Now we consider optimal seeding with an information acquisition cost .c  The optimal profit is 

2

4(1 )

K

c
. We discuss three cases in turn.  

Case (i): When 
1

1
2 r

c


  , it is equivalent to say the optimal profit is no greater than 
2

2

r K
. Hence we have 

(a) of Proposition 5. 
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Case (ii): When 
1

1
4 (1 )r r

c
 

 


,  the profit of optimal seeding with acquisition cost is no less than 

2(1 )r r K   which is equal to the profit under the best scenario of random seeding with r K seeds. Hence it is 

optimal for the seller to buy the information.  

Case (iii):
1 1

1,  1
4 (1 ) 2r r r

c
  

 
   

, The profit from optimal seeding with cost is 

2 2
2, (1 )

4(1 ) 2

r
r r

K K
K

c


 

 
    

. The profit from random seeding is smaller than 2(1 ) .r r K  Therefore, either 

could be the dominating strategy, which is subject to the realization of the random seeding. Q. E. D 
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