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Spread Too Thin: Uncertainty Shocks and

Diseconomies of Scope

Gabriel Natividad Olav Sorenson

New York University Yale University

Abstract

Although many streams of literature have recognized that firms with broader scope

often underperform those with greater focus, relatively little research has examined the

mechanisms that might account for these diseconomies of scope. One potential mechanism

is that uncertainty shocks — events or short-term periods that upset the normal course of

business — place unusual demands on the limited attention of managers. When managers of

larger, more diverse firms allocate their time and organizational resources to address these

events, they necessarily divert attention and resources away from other businesses, thereby

converting these uncertainty shocks in one part of the organization to performance shocks

in other parts of it. An empirical examination of the relationship between the distribution

of films in theaters and videos for sale demonstrates that uncertainty shocks in theatrical

distribution become performance shocks in the video market and that the magnitude of these

effects increases for larger, more diversified firms.

JEL: C23, D81, L25, L82. Preliminary and incomplete. Please do not quote or cite without permission.
Natividad thanks the NET Institute (www.NETinst.org) for financial support.



1 Introduction

Organizations have been found to suffer from being too broad across a range of levels of

granularity. Those operating across multiple countries have been found to generate lower

returns on their assets than those operating in only one country (Christophe 1997, Denis,

Denis, and Yost 2002). Organizations engaged in a variety of industries similarly appear

to perform worse than those that compete in only one (Montgomery 1994, Berger and

Ofek 1995). And even within industries, firms with more focused product lines appear

to outperform those offering the greatest product variety (Fisher and Ittner 1999, Sorenson,

McEvily, Ren, and Roy 2006).

Despite the ubiquity of this relationship between scope and performance, less research

attention has been allocated to understanding the mechanisms that might account for

it. One recent line of research does suggest that, in part, this relationship may stem

from the perceptions of audiences, such as consumers, analysts and investors (e.g.,

Zuckerman 1999, Hsu, Hannan, and Koçak 2009). In these accounts, audiences rely

on categories — such as nationalities, industries and product types — to help them to

understand the world and to choose among competing offerings. When organizations do

not fit neatly within a single category, they can cause confusion. Consumers, for example,

might eschew the offerings of a producer with broad scope assuming that they are less well-

matched to their needs (Hsu, Hannan, and Koçak 2009).

But the negative relationship between scope and performance might also emerge from

the internal operations of organizations. To some extent, such a suggestion might seem

surprising. After all, as organizations expand, they also build resources and capacity and

they develop routines for coordinating activities across the firm. These resources and routines

likely serve firms well on a day-to-day basis. What happens, however, when organizations

face unexpected conditions? During such situations, organizations cannot simply rely on

established routines, they must rather assess and respond to the changing conditions, an
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activity that usually requires a great deal of managerial attention often at the highest levels

of the organization. As managers focus on responding to these conditions, they divert their

attention, and possibly resources, away from other parts of the organization. Shoring up one

competitive front, they leave others vulnerable.

While the attention mechanism is well known in theory (e.g., Van Zandt 1999),

investigating the extent to which limited managerial attention might produce diseconomies

of scope nevertheless poses an empirical challenge on a number of dimensions. First, it

requires a setting in which firms experience unexpected events frequently enough to provide

some statistical power. Second, and more rare, to separate the effects of these events on

the internal operations of the firm from the consequences of the changing environmental

conditions demands a setting in which some firms, but not others within the same industry,

are exposed to these unexpected conditions.

To address these issues, we examine a somewhat unusual setting: the sales of movies

both in the theatrical market and in video stores. Unexpected conditions, that we call

“uncertainty shocks” occur on a semi-regular basis in the theatrical market, usually when

some newly-released film turns out to have unusual and unexpectedly broad appeal. Because

even the largest distributors only release a couple of dozen movies each year and because

these shocks primarily affect other distributors releasing movies in the theatrical market at

the time of the shock, each shock affects some distributors but not others. We then examine

the effects of being exposed to these uncertainty shocks on the sales of films being released

in the recorded video market. Our empirical design allows us to control for any common

factors influencing all recorded video sales.

We find that exposure to an uncertainty shock in the theatrical market dramatically

reduces the first month of sales of films being released at the same time in the recorded

video market. Distributors with larger scope, measured in terms of larger aggregate screens

or film budgets, experience larger declines in sales of recorded video, as do those carrying
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bigger-budget films or a larger variety of movies. These effects are all consistent with the

idea that the allocation of limited managerial attention to uncertainty shocks leads firms to

convert these uncertainty shocks into performance shocks in other parts of the business.

Our results have at least three important implications. Most directly, they suggest

that distributors in the film industry may need to coordinate their theatrical and recorded

video releases to perform as well as possible. In fact, looking at the results, one might ask

why distributors do not simply time their recorded video releases on weeks in which they do

not also have theatrical releases.

But this response has limits. As distributors release more and more films, they

eventually reach the point where they are always involved in some new release. In

this respect, our results speak to the literature on organizational scope and performance,

suggesting that managerial attention may place a fundamental limit of the ability of firms

to expand. Though the development of routines can allow organizations with broad scope

to operate effectively on a day-to-day basis, they cannot guide the firm through poorly-

understood periods. In contrast to previous work suggesting that larger scope is associated

with lower uncertainty (e.g., Hund, Monk, and Tice 2010), the managerial attention

mechanism would instead turn these limits on scope to become most binding, especially

in rapidly changing industries and markets.

Finally, our results suggest another channel through which uncertainty shocks diffuse

through the economy. Bloom (2009) proposes that uncertainty shocks can ripple through the

economy as productivity shocks because firms temporarily postpone investments to assess

the situation; the transmission of uncertainty shocks is thus envisioned as an industry-

wide effect in which external forces affect investment decisions (e.g., Dunne and Mu 2010).

Our results point to a similar effect but with a different mechanism. In diversified firms,

uncertainty shocks in one part of the organization can also become productivity (or firm-level

performance) shocks in other parts of it because they divert scarce managerial attention.
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2 Data

We investigate the transmission of uncertainty shocks across two markets: feature film

theatrical exhibition and home video sales in the United States. To study the theatrical

market, we use weekly box office data on all films available from Variety / Nielsen. To study

the video market, we employ proprietary data from Nielsen VideoScan, a leading provider

of information on video sales. VideoScan covers a large sample of retail outlets except Wal-

Mart, detailing weekly unit sales of each video title on 166,037 video items based on feature

films, TV content and cable content between 1 January 2000 and 31 December 2009 in the

U.S. The sample observations for our study are all those on video releases after 1 January

2000 that are matched to feature films released in the U.S. theatrical market after 1 January

1985.

We hand-match distribution companies and titles across both markets, identifying

2,808 feature films that were newly released in the video market between 1 January 2000

and 31 December 2009.1 For our main tests, we focus only on the initial forty weeks of

sales of these videos. In this sample of 112,320 video-week observations distributed by 220

distribution companies, video units sales are transformed into log(1+units); this transformed

series has a median of 5.96, a mean of 5.63, a standard deviation of 3.06; and only 7,476

data points are equal to zero.

Figure 1 describes the life cycle of films in the theatrical and video markets for the

years 2000–2009. The samples are different because not all films released in the theatrical

market are released in the video market.

1When comparing our sample with that of Ho, Ho, and Mortimer (2010), we find that our data sources
include more years and more film released in video per year; however, the empirical settings are not wholly
comparable because we study video sales whereas Ho et al. (2010) study video rentals.
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3 Identifying and Testing for Uncertainty Shocks

Prior work has characterized the release of feature films in the theatrical market as a highly

uncertain process (Hayes and Bing 2004, De Vany and Walls 2004, Moretti 2011). We build

on this idea to assess the impact of shifts in the overall level of volatility. We thus depart

from previous studies that have looked at uncertainty from a cross-sectional standpoint to

look instead at shifts in this cross-sectional volatility that constitute second-moment shocks

over time, that is, spikes in the time series of market volatility.

A unique feature of our empirical setting is that volatility can be accurately observed

given the long (25-year) time series of box office revenues and their weekly frequency. Before

laying out the empirical design, it is important to show that the theatrical market can

be properly characterized as volatile (i.e., showing statistically significant second moment

shocks). To do this, we exploit detailed data on all films and all weeks in the U.S. theatrical

market.

Figure 2 plots the time series of cross-sectional standard deviations of weekly box office

revenues in constant millions of 2009 dollars. In other words, within each calendar week of

box office revenues of all films, we take the standard deviation of film revenues; with these

summary statistics, we build the time series shown in Figure 2. Two patterns stand out.

First, there are many spikes in the time series, suggesting that the theatrical market may pass

stringent tests of volatility jumps (as detailed below); second, some of this variation appears

to be seasonal, suggesting that the empirical design will need to control for seasonality in

order to make inferences about the impact of uncertainty shocks.

One way to objectively determine whether the time series of theatrical market activity

is volatile is to conduct statistical tests for jumps. To do this, we implement Barndorff-

Nielsen and Shephard’s (2006) two tests of time-series jumps: their jump-linear test and the

adjusted jump-ratio test. We find that the data reject the null of no jumps at the 5.1% and

5.9% significance levels, respectively. In other words, the spikes in Figure 2 are sufficiently
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sudden and sharp as to reject the null that the series does not have volatility jumps. It

is therefore clear that the theatrical market has highly significant second-moment shocks,

thus providing a natural treatment variable for our empirical analysis. Specifically, in all

subsequent tests, a week whose standard deviation of box office revenue is greater than twice

the median of this time series is defined as an uncertainty shock week, as suggested by Bloom

(2009). Only distributors releasing new feature films in the theatrical market in uncertainty

shock weeks are considered as being treated; distributors that are not releasing films in those

weeks provide the control group for the empirical tests.

3.1 Description of Uncertainty Shocks

Table 1 provides descriptive statistics and tests of mean differences for uncertainty shock

weeks (n=155) and regular weeks (n=1,149) in the theatrical market. Shock weeks can be

largely characterized as those with more blockbuster films opening and better results for

winners than regular weeks. However, the ex ante uncertainty of which films may become

winners and what may be the fate of those competing against them is sufficient to complicate

the decision-making environment among those firms actively participating in the market

during shock weeks.

To see more directly how different market characteristics may relate to the level of

volatility in the theatrical market, Table 2 presents descriptive regressions using the variance

of box office returns as the dependent variable. Recall that uncertainty shock weeks are

defined as those with a very high (i.e., greater than twice the median) box office standard

deviation, so the analysis of this continuous variable underlying the definition of shocks is

informative. Several factors seem to be related to the volatility of the market in a given week.

Importantly, it is not the number of films being shown or being just released that seems to

carry most of the explanatory power. Instead, the size of opening films, measured in terms of

their mean production budget and release screens, appears to be positively associated with
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the overall volatility of box office revenues.

3.2 No Mechanical Volatility Links across Markets

Because we are interested in studying the impact of uncertainty shocks across markets, it

is important to determine whether the video market is as volatile as the theatrical market,

to inquire whether reverse causality is possible, or whether the connection we propose is

simply mechanical. To do this, we replicate the volatility jump tests in the video market.

Figure 3 details two different samples on the video market employed for these tests: one

including all weeks of the life cycle of videos, and one restricted to only their first 40 weeks.

In both cases, the null hypothesis of “no jumps” cannot be rejected, suggesting that the video

market is much less volatile than the theatrical market and should not pose an unobserved

video-volatility mechanism in the empirical design.

Moreover, it is important to rule out a mechanical connection between the volatility of

these different markets. Figure 4 jointly plots the time series of volatility of the theatrical

market and the video market. There is no clear pattern of relation between these series, and

their correlation is 0%. Therefore, no mechanical connection of volatilities across markets

should be expected.

4 Empirical Design

We seek to understand the impact of uncertainty shocks on performance through a

managerial channel. To do this, we extend the specification of Hendricks and Sorensen

(2009) and introduce uncertainty shocks from the theatrical market into the analysis of the

weekly sales dynamics of the video market.

Consider each new video release, i, in each of its life-cycle weeks t in the video market,

where t goes from 1 to 40. Video i was released by distributor d in the theatrical market.
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This distributor may also be distributing films in the video market. We are interested

in measuring what happens when distributor d goes through an uncertainty shock in the

theatrical market at a simultaneous time s when d is also distributing feature films in the

video market. Specifically, treatment is defined as a dummy (Isd) answering the question: Is

d going through an uncertainty shock at concurrent week s? The baseline specification is:

yit = α0 +
40∑
t=1

λt ∗ 1(week = t) +
40∑
t=1

βt ∗ Isd ∗ 1(week = t) + γ ∗ Isd + αi + θw + ηy + εit (1)

This baseline specification is particularly robust for two reasons. First, it includes film

fixed effects αi, so that unobserved heterogeneity that is invariant at the level of each of

the 2,808 distinct films in the sample is effectively accounted for. Second, specification (1)

includes week-of-year dummies that account for seasonality, year dummies that account for

the secular trend in video sales, and video-life-cycle dummies that flexibly vary the level of

sales depending on how long each video has been on the market.

Given their granular nature, there are many ways in which weekly video sales may

be correlated, altering the standard errors of the coefficients of interest. Specifically, sales

of the same video item in different weeks cannot be assumed to be independent; and sales

of different videos of the same distributor cannot be assumed to be independent over time

or simultaneously. Hence, to be conservative, equation (1) is estimated clustering standard

errors at the level of each distribution company.

While specification (1) allows for the estimation of the causal impact of uncertainty

shocks over the life-cycle of video sales (i.e., coefficients βt), it is silent about the mechanisms

leading to such effect. We therefore extend this baseline specification to allow for a differential

effect for those distributor-week observations that are above a median benchmark:

yit = α0+
40∑
t=1

λt∗1(week = t)+
40∑
t=1

βbaset ∗Is,based ∗1(week = t)+
40∑
t=1

βlarget ∗Is,larged ∗1(week = t)+. . .

8



· · · + γ ∗ Is,based + δ ∗ Is,larged + αi + θw + ηy + εit (2)

The median benchmark for ‘large’ is defined in several alternative ways but always using only

weeks of uncertainty shocks; therefore, the mechanism coefficients are not a triple interaction

but a differential coefficient for those distributor-week observations that are ‘large’ or above

the median cases of uncertainty shocks.

5 Results

The diagnostic results reported in Section 3 reveal that the theatrical market undergoes a

large number of uncertainty shocks, and that these shocks are not mechanically related to

the volatility of the video market. We now investigate the impact of these volatility shocks

affecting one part of the firm on performance, focusing on the potential mechanisms leading

to different outcomes.

5.1 Uncertainty shocks and performance

Figure 5 reports the full set of coefficients βt of specification (1), that is, the effect of

uncertainty shocks from the theatrical market on video sales performance over each of the

first 40 weeks of a video’s life cycle. The picture is quite clear: distributors undergoing an

uncertainty shock in the feature film theatrical market have significantly lower sales of videos

they are just releasing. By contrast, the sales of videos with more than four or five weeks

on the market are not lower for distributors affected by the theatrical uncertainty shock,

suggesting that new releases are most vulnerable.

These baseline results are alternatively presented in a regression format in the first

column of Table 3. The inclusion of fixed effects for each film, each year, and each week

of the year helps to control for the unobserved influence of these common factors on sales.
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Moreover, the video life week fixed effects take into account that recently-released films may

have different performance expectations than films with a longer history on the market. The

insignificant direct effect of an uncertainty shock on weekly video sales, shown as insignificant,

suggests that it is the life-cycle of a product on the market that determines its vulnerability

to an uncertainty shock.

One story for the sub-par performance of newly released products is that industry-

level factors in the video market may be driving the results. Because this channel has little

to do with the uncertainty shocks of the theatrical market, it is important to probe the

robustness of the baseline estimates. The second column of Table 3 introduces market-week

controls accounting for the intensity of competition through more products being released

and more variability in their initial week performance. After the inclusion of these controls,

the basic results remain unchanged, suggesting that an internal firm channel is a more likely

explanation for the drop in performance.

It is also important to assess the impact on performance at a more aggregate level, as

the negative performance effect uncovered so far at a weekly frequency may wash through a

subsequent recovery in posterior weeks. The third column of Table 3 details that uncertainty

shocks negatively impact the cumulative sales of films during their first weeks of market

participation, suggesting that the results are robust to this alternative measurement of

performance.

5.2 Mechanisms for the negative performance effects

Having found a substantial short-term decline in performance for distribution companies

undergoing an uncertainty shock, we now turn to investigate what kinds of firms may be

more severely affected by this disruption.

Specifically, we implement specification (2) using several alternative definitions to

establish a median firm in a given week, thus calculating the differential effect of firms larger
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than this benchmark over a given dimension. Three dimensions are of particular interest:

the size of a firm’s slate of films in the theatrical market, the size of a the firm’s newly

released films in the theatrical market, and the dispersion of film size within a firm’s new

release slate. Each of these sources of heterogeneity is captured using the production budget

of films on a slate, as well as the number of screens where these films are exhibited. Finding

that the effects of uncertainty shocks are more pronounced for firms defined as ‘large’ would

lend credence to the argument that there exist diseconomies of size and scope in this setting.

Figure 6 details the full set of coefficients βlarget of specification (2), that is, the

differential effect of uncertainty shocks on distribution companies with a large slate size

(top charts), large new-slate size (middle charts), and high level of dispersion of films within

the new-release slate of the firm (bottom charts). The interpretation of these mechanisms is

slightly different in each case but overall story is quite consistent: much of the performance

disadvantage noted in the previous subsection may be attributable to firms with a larger,

more diverse scope.

Table 4 details the influence of these mechanisms on performance following a regression

format. In contrast to the marginal influence coefficients βlarget that were also displayed

in Figure 6, the baseline coefficients βt that are common to both large and small firms

undergoing an uncertainty shock appear largely insignificant (or even positive, as in the case

of the third column of Table 4). These findings are consistent with strong diseconomies of

scale and scope driving the negative impact of uncertainty shocks on performance.

Several features of the empirical design suggest that the results could be explained by

limited managerial attention among large, diversified firms. First, the size and diversity of

firms exposed to the uncertainty shocks are measured at the weekly level, thus requiring

a relatively high frequency generative process that cannot be fully anticipated by decision

makers. We conjecture that this high frequency factor is managerial attention. Second,

the joint operation of firms in the theatrical market and the home video market is in
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itself a (vertical) scope decision that can be conceptualized as an equilibrium result; the

consequences of uncertainty shocks on the performance of this joint operation must somehow

disrupt a pre-existing organization on a temporal basis; we conjecture that this time-varying

dimension is the attention managers pay to their different projects. Subsequent versions of

this paper will report more work required to bolster the managerial attention mechanism.

6 Conclusion

In this paper, we examine the transmission of uncertainty shocks across markets through

decisions carried out by managers inside the firm. Specifically, we study the relationship

between product scope and performance in the presence of severe disruptions to the decision-

making environment. Employing granular data on the population of feature films released in

the theatrical market and the home video market between 2000 and 2009, we find a strongly

negative impact of uncertainty shocks on sales performance that is more pronounced for

larger, more diversified firms. The results point to a novel mechanism for diseconomies of

scope. Shifts in the level of market volatility place unusual demands on the limited attention

of managers, who necessarily divert attention and resources away from key businesses,

thereby converting these uncertainty shocks in one part of the organization to performance

shocks in other parts of it.
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Figure 1: Weekly Dynamics of Theatrical and Video Sales

The graphs are based on the first 40 weeks of theatrical release or video release of each feature film i released between 1 January
2000 and 31 December 2009. All forty weeks are included for each film regardless of whether they have sales. The charts report
coefficient estimates and standard errors on λt from film fixed effect regressions

Salesit = α0 + αi +

40X
t=1

λt ∗ 1(week = t) + εit

where the dependent variable is box office revenue in thousands of 2009 dollars logged (Panel A) or video unit sales logged
(Panel B). Standard errors are robust and clustered by film; 95% confidence intervals are displayed in dashed lines.
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Figure 2: Theatrical Market Volatility

The data are at the weekly level for all weeks between 1985 and 2009. The plot displays the time series of cross-sectional
standard deviations of weekly box office revenues in constant millions of 2009 dollars. This time series is the basis to implement
both the jump-linear test and the adjusted jump-ratio test proposed by Barndorff-Nielsen and Shephard (2006). The data reject
the null of no jumps at the 5.1% and 5.9% significance levels, respectively. Jump weeks will be considered uncertainty shock
weeks. In all subsequent tests, a week whose standard deviation of box office revenue is greater than twice the median of this
time series is defined as an uncertainty shock week.
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Figure 3: Video Market Volatility

This figure reports the data on the video market at the weekly level for the years 2000–2009.

Panel A uses observations on all feature film-based videos released after 1 January 2000 regardless of their life cycle. The
plot displays the time series of cross-sectional standard deviations of weekly video sales in units. The p-value of the jump-linear
test and the adjusted jump-ratio test proposed by Barndorff-Nielsen and Shephard (2006) is 47%, suggesting that the null of
no volatility jumps cannot be rejected.

Panel B uses observations on feature film-based videos released after 1 January 2000 but only including their initial 40 weeks of
life cycle. The p-values of the jump-linear test and the adjusted jump-ratio test proposed by Barndorff-Nielsen and Shephard
(2006) are 77% and 78%, respectively, indicating that the null of no volatility jumps cannot be rejected.
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Figure 4: Aggregate Connection between Theatrical and Video Market Volatility

This figure reports the theatrical market volatility (equivalent to that of Figure 2) and the video market volatility for the initial
40-week cycle of videos (equivalent to that of Panel B of Figure 3) for the period 1 January 2000 to 31 December 2009.

The correlation between the two time series is 0.0018.
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Figure 5: The Transmission of Uncertainty Shocks over the Video Life Cycle

The plot displays the estimated coefficients on βt from equation (1) using the first column of Table 3 as the specification. 95%
confidence intervals are shown in dashed lines.

-1
.5

-1
-.

5
0

.5
lo

g 
(w

ee
kl

y 
vi

de
o 

sa
le

s)

0 5 10 15 20 25 30 35 40
Week since video release

Uncertainty shock by week of video life cycle

19



Figure 6: Mechanisms for the Transmission of Uncertainty Shocks

The plot displays the estimated coefficients on βlarge
t from equation (2), as well as their 95% confidence intervals (in dashed

lines). Each panel uses a different definition for Large but always refers to a median value calculated for the theatrical market
each week. The first panel uses the median sum of screens of distributors on the market; the second column uses the median
sum of production budgets of distributors; the third column uses the mean value of opening films screens, defining opening
screens as those of first- or second-week films at that moment; the four column uses is also for first- or second-week films, taking
their mean production budget to calculate the market median; the fifth column uses the standard deviation of opening screens
of first- or second-week films; the sixth column uses the standard deviation of the production budgets of first- or second-week
films.
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Table 1: Descriptive Statistics of the Theatrical Market

The unit of observation is a week, and the sub-samples are either no-uncertainty shock weeks (first column, n=1,149) or
uncertainty shock weeks (n=155). The data come from the population of theatrical films released in the U.S. between 1
January 1985 and 31 December 2009. An uncertainty shock is defined based on the time series of weekly cross-sectional
standard deviation of box office revenues of all films in each week, expressed in dollars of 2009; a week whose standard deviation
of box office revenue is greater than twice the median of this time series is defined as an uncertainty shock week. Most variable
definitions are self evident from the labels below. Herfindahl of opening films box office is a measure of how concentrated the
market is in terms of each film’s box office revenue. Film quality is obtained from IMDB user ratings, restricted to films with
more than 471 votes (i.e., the 25% percentile of number of votes per movie).

Sample weeks: Shock=0 Shock=1 For Shock=1 Weeks Only
Variable Mean Mean t-stat of diff Min Median Max SD

N. films on the market 91.821 102.768 -4.10 28.000 109.000 152.000 27.589

Sum B.O. all films 145.073 264.626 -28.86 119.184 259.491 494.781 57.450

Week above 99pc of historical weekly B.O. 0.000 0.090 -10.67 0.000 0.000 1.000

Week above 90pc of historical weekly B.O. 0.032 0.600 -28.02 0.000 1.000 1.000

N. opening films 7.359 7.084 0.90 0.000 7.000 21.000 3.853

N. films with max age 3 weeks 19.936 21.168 -1.90 3.000 21.000 46.000 7.399

Sum B.O. opening films 38.874 84.415 -15.28 0.000 92.629 259.567 64.345

Herfindahl of opening films B.O. 0.523 0.668 -7.64 0.182 0.649 1.000 0.236

Mean Prod.Budget of opening films 18.591 29.776 -10.85 0.026 26.426 95.600 18.141

N. films above 99pc of Prod.Budget 0.037 0.252 -9.94 0.000 0.000 2.000 0.478

N. films above 90pc of Prod.Budget 0.528 1.148 -8.44 0.000 1.000 4.000 1.098

Mean Op.Screens of opening films 0.629 0.741 -3.60 0.001 0.727 2.847 0.490

N. films above 99pc of op.screens 26.379 25.369 0.92 0.000 24.955 74.865 13.765

N. films above 90pc of op.screens 17.833 17.150 0.92 0.000 16.870 50.610 9.305

Mean quality of opening films 6.158 6.464 -5.88 4.800 6.580 7.725 0.565

N. films above 99pc of quality 0.070 0.071 -0.02 0.000 0.000 2.000 0.282

N. films above 90pc of quality 0.624 0.845 -2.87 0.000 1.000 5.000 0.927

Mean n. of principals in opening films 46.270 49.011 -2.70 16.667 47.896 85.250 12.676

Holiday 0.249 0.523 -7.25 0.000 1.000 1.000

N. of sequels released 0.680 0.716 -0.54 0.000 1.000 3.000 0.762
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Table 2: Weekly Volatility and Market Characteristics

The table reports regression models of weekly volatility for the theatrical market. The unit of observation is a week. The
dependent variable, Variance of box office revenues, is calculated cross-sectionally over the week’s box office revenues of all
films in that week. All explanatory variables are defined in Table 1. t-statistics based on heteroskedasticity robust standard
errors are reported.

Dependent Variable: Variance of Box Office Revenue

Indep. Variables (Squared)

N. films on the market 0.001∗∗∗ 0.001∗∗∗ 0.000
(4.39) (5.08) (1.49)

N. opening films −0.004
(−0.18)

Herfindahl of opening films B.O. 36.864∗∗∗ 35.374∗∗∗

(7.03) (6.76)
Mean Prod.Budget of opening films 0.013∗∗∗

(5.34)
Mean Op.Screens of opening films 9.939∗∗∗

(3.50)
Mean quality of opening films 1.120∗∗∗

(5.10)
Mean n. of principals in opening films −0.002

(−1.29)
Holiday 17.718∗∗∗

(5.86)
Number of sequels released 1.095∗∗

(2.56)
Constant 27.136∗∗∗ 36.395∗∗∗ 13.038∗∗∗ −37.237∗∗∗

(12.53) (18.64) (4.71) (−5.00)
R2 0.01 0.00 0.07 0.25
Sample size 1304 1304 1290 1274
***, **,* significant at the 1%, 5% and 10% level. t-statistics using robust standard errors are reported.

22



Table 3: Uncertainty Shocks and the Life Cycle of Sales in the Video Market

This table reports estimates of equation (1). Observations are at the video-week level for the first forty weeks of a video’s life
cycle. Only videos that are first releases of feature films in the video market after 1 January 2000 are included. The dependent
variable is either the weekly number of video units sold (in logs) or the cumulative sum of video units sold (in logs). Uncertainty
shock is defined as in Table 1. This variable is interacted with weekly dummies for each week in the video life cycle; the weekly
dummies are also included as separate regressors in the form of video life week fixed effects. Only interaction coefficients for
the initial five weeks are reported for brevity; all other coefficients are also obtained but not reported in this table. A graphical
display of all coefficients in levels and interactions is shown in Figure 5. t-statistics based on robust standard errors clustered
by distribution company are reported in parentheses.

Dependent Variable: Video Units Sold Cumulative Video
(in Logs) Units Sold (in Logs)

Uncertainty shock 0.057 0.042 0.088∗∗

(0.77) (0.58) (2.32)
Uncertainty shock × (Video life week = 1) −0.855∗∗∗ −0.823∗∗∗ −0.862∗∗∗

(−4.37) (−4.21) (−3.92)
Uncertainty shock × (Video life week = 2) −0.928∗∗∗ −0.913∗∗∗ −0.964∗∗∗

(−4.75) (−4.71) (−4.62)
Uncertainty shock × (Video life week = 3) −0.581∗∗∗ −0.576∗∗∗ −0.769∗∗∗

(−3.03) (−3.04) (−3.87)
Uncertainty shock × (Video life week = 4) −0.320∗ −0.305∗ −0.530∗∗∗

(−1.81) (−1.74) (−2.97)
Uncertainty shock × (Video life week = 5) −0.078 −0.067 −0.355∗

(−0.53) (−0.46) (−1.91)
Holiday week dummy −0.057∗∗∗ −0.038∗∗

(−3.05) (−2.51)
Number of videos released this week 0.238∗∗∗ 0.037∗∗∗

(9.00) (4.11)
Std.dev. of unit sales of videos released this week 0.024∗∗∗ 0.016∗∗∗

(6.00) (4.39)

Analogous U.shock × each video life week through 40 Y Y Y
Film fixed effects Y Y Y
Video life week fixed effects Y Y Y
Year fixed effects Y Y Y
Week of year fixed effects Y Y Y
R2 0.73 0.73 0.82
Sample size 112320 112320 112320
Number of clusters (distributors) 220 220 220

***, **,* significant at the 1%, 5% and 10% level. Standard errors are robust and clustered by distribution company.
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Table 4: Mechanisms for the Impact of Uncertainty Shocks

This table reports estimates of equation (2). Observations are at the video-week level for the first forty weeks of a video’s life
cycle. Only videos that are first releases of feature films in the video market after 1 January 2000 are included. The dependent
variable is the weekly number of video units sold (in logs). Uncertainty shocks are defined as in Table 1. Uncertainty shocks are
further refined as those happening to above-the-median (“large”) distributor-week combinations, using independent variables
labeled as Large distributor-week within shock weeks to create the Large indicator variable. The definition of Large varies for
each column in the table, but always refers to an above-the-median dummy calculated for the theatrical market each week.
The first column uses the median sum of screens of distributors on the market; the second column uses the median sum of
production budgets of distributors; the third column uses the mean value of opening films screens, considering only first- or
second-week films at that moment; the four column uses is also for first- or second-week films, taking their mean production
budget to calculate the market median; the fifth column uses the standard deviation of opening screens of first- or second-week
films; the sixth column uses the standard deviation of the production budgets of first- or second-week films. The uncertainty
shock variable and its Large refinement are interacted with weekly dummies for each week in the video life cycle; the weekly
dummies are also included as separate regressors in the form of video life week fixed effects. Only interaction coefficients for
the initial five weeks are reported for brevity; all other coefficients are also obtained but not reported in this table. A graphical
display of all coefficients in levels and interactions is shown in Figure 6. t-statistics based on robust standard errors clustered
by film are reported in parentheses. t-statistics based on robust standard errors clustered by distribution company are reported
in parentheses.

Dependent Variable: Video Units Sold (in Logs)

“Large”=Defined as above median of: Sum of Sum of Mean Mean SD of SD of
screens budget opening opening opening opening

screens budget screens budget

Uncertainty shock −0.161 −0.177 −0.201 −0.163 −0.073 −0.143
(−1.22) (−1.35) (−1.16) (−1.29) (−0.59) (−1.10)

Large distributor-week within shock weeks 0.140∗∗ 0.154 0.329∗∗∗ 0.388∗∗∗ 0.124 0.343∗∗∗

(2.06) (1.46) (3.63) (3.00) (1.53) (2.67)
Large × (Video life week = 1) −1.075∗∗∗ −1.034∗∗∗ −2.335∗∗∗ −1.511∗∗∗ −0.817∗∗ −0.871∗∗∗

(−3.10) (−2.98) (−6.45) (−5.94) (−2.43) (−3.50)
Large × (Video life week = 2) −1.129∗∗∗ −1.219∗∗∗ −2.664∗∗∗ −1.735∗∗∗ −1.191∗∗∗ −1.538∗∗∗

(−2.91) (−3.41) (−6.76) (−4.66) (−3.63) (−3.76)
Large × (Video life week = 3) −0.619 −0.575 −1.674∗∗∗ −0.868∗∗ −0.462 −0.419

(−1.42) (−1.53) (−3.70) (−2.10) (−0.94) (−0.92)
Large × (Video life week = 4) 0.069 0.152 −1.345∗∗∗ −0.290 0.128 −0.271

(0.17) (0.36) (−4.63) (−0.75) (0.32) (−0.53)
Large × (Video life week = 5) −0.687∗∗ −0.777∗∗ −0.960∗∗∗ −1.083∗∗∗ −0.472 −1.077∗∗∗

(−2.29) (−2.42) (−2.82) (−3.98) (−1.44) (−3.94)
Uncertainty shock × (Video life week = 1) −0.064 −0.080 0.804∗∗ −0.001 −0.298 −0.336

(−0.24) (−0.29) (2.29) (−0.00) (−1.29) (−1.37)
Uncertainty shock × (Video life week = 2) −0.122 −0.048 0.978∗∗∗ 0.040 −0.171 −0.045

(−0.41) (−0.15) (2.63) (0.14) (−0.61) (−0.14)
Uncertainty shock × (Video life week = 3) −0.077 −0.092 0.616∗ −0.094 −0.248 −0.339

(−0.23) (−0.37) (1.75) (−0.30) (−0.71) (−0.91)
Uncertainty shock × (Video life week = 4) −0.232 −0.264 0.666∗∗∗ −0.160 −0.343 −0.165

(−0.75) (−0.94) (2.62) (−0.52) (−1.18) (−0.45)
Uncertainty shock × (Video life week = 5) 0.481∗∗ 0.537∗∗ 0.650∗∗∗ 0.544∗∗ 0.263 0.571∗∗

(2.15) (2.41) (2.62) (2.43) (1.19) (2.38)

Analogous interactions through week 40 Y Y Y Y Y Y
Film fixed effects Y Y Y Y Y Y
Video life week fixed effects Y Y Y Y Y Y
Year fixed effects Y Y Y Y Y Y
Week of year fixed effects Y Y Y Y Y Y
R2 0.73 0.73 0.73 0.73 0.73 0.73
Sample size 112320 112320 112320 112320 112320 112320
Number of clusters (distributors) 220 220 220 220 220 220

***, **,* significant at the 1%, 5% and 10% level. Standard errors are robust and clustered by distribution company.
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