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Abstract  

Modern portfolio theory, developed in the expected utility paradigm, focuses on the relationship 

between risk and return, assuming away ambiguity, uncertainty over the probability space. In this 

paper, we assume that ambiguity affects asset prices and we test the relationship between risk, 

ambiguity and return based on a model developed by Izhakian (2011). Our contribution is 

twofold; we propose an ambiguity measure that is derived theoretically and computed from intra-

day stock market prices. Second, we use it in conjunction with risk measures to test the basic 

relationship between risk, ambiguity and return. We find that our ambiguity measure has a 

consistently negative effect on returns and that our risk measure has mostly a positive effect. The 

best evidence, judging by statistical significance, is obtained when we use the change in 

volatility alongside the measure of ambiguity. 
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ASSET PRICES AND AMBIGUITY 

1 Introduction 

The fundamental relationship between risk and return of the market portfolio in the 

mean-variance paradigm is given by the following equation 

    2E ,m f mr r     (1) 

where mr  is the return on the market portfolio, fr  is the risk free rate, 2
m  is the risk of the market 

portfolio and     is a measure of risk aversion of a representative agent (or, an aggregation of 

risk aversion coefficients of investors). This linear relationship has been subjected to several time 

series empirical tests. Merton (1980) and French, Schwert and Stambaugh (1987) are two classic 

examples of studies that conducted such tests. In general, the tests have low R2 and some of these 

tests result in negative coefficients of absolute risk aversion. 

We believe that a missing factor that determines the equity premium is ambiguity and the 

attitude towards it.1 Though there is an abundance of research on various aspects of ambiguity 

and ambiguity aversion, there is almost no empirical work providing a measure of ambiguity and 

incorporating such a measure in tests of the relationship between risk and return. 

In this paper we introduce a measure of ambiguity, which is an additional factor 

determining the equity premium. Equation (2) below is the expanded version of Equation (1) 

incorporating ambiguity. That is, 

      2E ,m f mr r        (2) 

where 2  measures the degree of ambiguity and     is a measure of investors’ attitude toward 

ambiguity. This measure is an outcome of the theoretical model developed by Izhakian (2011). 

The results are highly significant, challenging the conventional wisdom on investors’ attitudes 

towards ambiguity. To the best of our knowledge, our study is the first empirical study that uses 

market data to measure ambiguity based on a theoretically derived model that combines risk and 

ambiguity. 

                                                 
1 The economic literature has been using the word ambiguity to describe Knightian uncertainty. 
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Modern portfolio theory, until recently, has practically ignored the Knightian distinction 

between risk and uncertainty. There were some exceptions like the collection of papers in a book 

edited by Bawa, Brown and Klien (1979). These papers, however, focus on estimation risk, how 

to correct for it, and how to incorporate it in portfolio selection or how it may affect capital 

market equilibrium2. They did not deal with ambiguity and how it may affect asset prices and the 

relationship between ambiguity and return. Should ambiguity be priced? Can we separate risk 

and risk attitudes from ambiguity and attitudes toward ambiguity? How can we measure 

ambiguity? These are questions that, to the best of our knowledge, are still open and, in this 

paper, we try to deal with them. 

The paper by Izhakian (2011) provides the theoretical underpinning of our paper which 

focuses on issues of ambiguity measurement and tests of risk-ambiguity-return relationships. In 

his paper Izhakian (2011) introduced a novel model of ambiguity, called Shadow probability 

theory (henceforth Shadow Theory) and studied how it affects investors’ choices. The model 

provides a measure for the degree of ambiguity which is the center piece of the empirical tests 

that we employ in this paper. We focus on testing the effect of ambiguity on asset prices in a 

time series context while using the S&P500 index as the market portfolio. Our empirical results 

show that this measure has a significant effect on stock market returns. 

We assume a representative investor whose reference point is zero excess-return. Assets' 

excess-returns are classified as gains or losses. Excess returns lower than zero are considered a 

loss and returns equal or higher than zero are considered a gain. All assets' excess returns are 

assumed to be normally distributed. However, the parameters governing the distributions, i.e., 

mean and variance, are unknown and assumed to be random with a uniform distribution.3 

We show that, ambiguity and the return on the market portfolio are negatively correlated 

which implies that the degree of ambiguity is taken into account by investors when they price 

financial assets. It also implies that the representative investor, who holds the market portfolio 

exhibits ambiguity loving. 

                                                 
2 In recent years there is a surge in research that tries to incorporate Knightian uncertainty naming it ‘model risk’. For example, 

Uppal and Wang (2003), Epstein and Schneider (2008), Dreschsler (2010), Ju and Miao (2011) and Anderson Ghysels and 

Juergens (2009)). Some of them just do calibrations while others use proxies for ‘model risk’ like disagreement among analysts, 

etc. 
3 Since there is no information on the likelihood of any of the alternatives it is reasonable to assume equal probability.  
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What is the evidence regarding investor’s attitude toward ambiguity? It turns out that it 

depends on the states of nature that the investor faces. If he is faced with a high probability of 

losses he tends to embrace ambiguity, while if he faces a high probability of gains he may be 

ambiguity averse. 

Viscusi and Chesson (1999) found that people exhibit ‘fear’ effects of ambiguity for 

small probabilities of suffering a loss and ‘hope’ effects for large probabilities of loss. 4 

Considering investors in the stock market, where the probability of loss is relatively high (around 

50%), one would expect to observe ambiguity loving. Ivanov (2011) shows that more individuals 

exhibit ambiguity loving than ambiguity aversion. In particular, 32% are classified as ambiguity-

loving, compared to 22% who are classified as ambiguity averse, the remaining 46% are 

considered ambiguity neutral. Assuming risk neutrality, Maffioletti and Michele (2005) also 

found ambiguity seeking in individuals' trading behavior. Analyzing statistical information of 

probabilities about health insurance, Wakker, Timmerman and Machielse (2007) document that 

individuals are ambiguity seeking. In an experimental study of bidders' behavior Chen, Katušcák 

and Ozdenoren (2007) suggests that individuals are ambiguity seeking. In general, most 

behavioral studies find ambiguity loving behavior when there is relatively high probability of 

having a loss. 

Consistent with the above studies, our results show that investors are ambiguity lovers. In 

our study the average probability of loss is relatively high (almost 50%) and as found by Viscusi 

and Chesson (1999), in such cases, investors are ambiguity loving. These findings are consistent 

with our theoretical model. When returns are symmetrically distributed, an investor who 

maximizes expected return minimizes the probability of loss. Therefore, when the probability of 

loss is relatively high, given two assets with identical risk, he prefers the asset with the random 

probability over an asset with known probabilities. Such preferences imply ambiguity loving. 

The rest of the paper is organized as follow. Section 2 provides the theoretical 

framework. Section 3 discusses the data and the empirical methodology. Section 4 presents the 

empirical findings and Section 5 provides summary and conclusions. 

                                                 
4 Abdellaoui, Baillon, Placido and Wakker (2011) tie ambiguity loving to the source of ambiguity. 
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2 The theoretical model 

Recently, Izhakian (2011) introduced a novel model of ambiguity, called Shadow theory, 

which provides a measure of the degree of ambiguity. This measure is the center piece of the 

empirical tests that are conducted in this paper. Next we provide a detailed summary of the main 

principles of Shadow theory and how we used it in the empirical tests. 

2.1 Preliminaries 

The theory of financial assets prices is mainly based on the expected utility (von 

Neumann-Morgenstern (1944) and Savage (1961)) paradigm, which assumes that decision 

makers know, or act as if they know, the probabilities of all states of nature. A basic issue with 

these models is that in reality the investor does not know the precise probabilities of events (see 

Ellsberg (1961)), which means that individuals are exposed not only to risk but also to ambiguity 

(Knightian uncertainty). Using two main approaches, several models have been suggested to 

address decision making under uncertainty. Subjective nonadditive probabilities of Gilboa (1987) 

and the Choquet expected utility (CEU) of Schmeidler (1989) state that beliefs can be 

represented by a single, but nonadditive, prior. The multiple prior (MEU) approach of Gilboa 

and Schmeidler (1989) does not assume that the decision maker's belief can be represented by a 

single additive prior and instead assumes a multiple prior representation. The multiple prior 

approach was extended to the model misspecification approach (Hansen and Sargent (2001)) and 

non-reducible second-order probabilities approach (Segal (1987) and Klibanoff, Marinacci, and 

Mukerji (2005)).
5 While this literature made a considerable contribution to understanding the 

decision maker's preferences toward ambiguity, a complete separation between ambiguity and 

risk, which enables to measure ambiguity empirically, has not been derived. Such a measure is 

necessary in testing the effect of ambiguity on asset prices. 

Shadow Theory assumes that probabilities (capacities) of observable events and their 

outcomes, in an outcome-space, are random and are dominated by unobserved events in a latent 

directing-space, with a second-order probability. 6  In this framework a complete separation 

between risk and ambiguity and between preferences and beliefs is obtained. This allows us to 
                                                 
5 Other models that relax the reduction between first and second order probabilities include Klibanoff et al. (2009), Ju and Miao 

(2011), Hayashi and Miao (2011), Ergin and Gul (2009)[30], Nau (2006)[75], and Chew and Sagi (2008)[18]. 
6 Capacities refer to subjective probabilities which are not necessarily additive. 
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measure the degree of ambiguity. In this model, ambiguous probabilities are subjectively 

interpreted by decision makers in a nonlinear way, characterized by probabilistic sensitivity to 

ambiguity. Ambiguity aversion, thus, takes the form of sub-additive probabilities (i.e., the 

probabilities add up to number smaller than 1). In this context, when ambiguity is present, 

ambiguity loving implies a super-additive (subjective) probability measure (i.e., the probabilities 

add up to number greater than 1). 

The Shadow theory developed in Izhakian (2011) extends the Choquet expected utility of 

Schmeidler (1989) and Tversky and Kahneman's (1992) cumulative prospect theory.7 It adds 

reference-dependent beliefs and applies a two-sided Choquet expected utility for losses and for 

gains, separately. Shadow theory assumes that the financial decision maker (henceforth DM or 

investor) has a reference point that separates losses from gains. Outcomes are classified as a gain 

or a loss relative to the selected reference point. Outcomes that are lower than the subjective 

reference point are considered a loss and outcomes which are higher than the reference points are 

considered a gain. Unlike the original prospect theory, which assumes reference-dependent 

preferences and a DM who exhibits loss aversion, Izhakian (2011) assumes reference-dependent 

beliefs and a DM who does not exhibits loss aversion but exhibits ambiguity aversion. The 

reference point in Izhakian (2011) serves as the reference that separates the subjective 

probabilities of gains from the subjective probabilities of losses. The volatility of these 

probabilities is used in measuring the degree of ambiguity. Attitude toward ambiguity is formed 

with respect to this level of ambiguity. 

The implication of a sub-additive probability measure for asset prices is that there is an 

ambiguity premium in addition to the conventional risk premium. The conventional risk 

premium is the premium that a DM is willing to pay for replacing a risky bet by its expected 

outcome. The ambiguity premium is the premium that a DM is willing to pay for replacing an 

ambiguous bet by a risky, non ambiguous, bet with an identical expected outcome. The 

uncertainty premium is the total premium that a DM is willing to pay for replacing an ambiguous 

bet by its expected outcome, i.e., it contains both, a risk premium and an ambiguity premium. 

                                                 
7  Cumulative prospect theory, developed by Tversky and Kahneman (1992), generalizes the original prospect theory by 

Kahneman and Tversky (1979). It replaces risk by uncertainty and modifies the probability weights to allow a space with an 

infinite support and to deal with issues related to stochastic dominance. 
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The uncertainty premium is provided by 
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where kx  the reference outcome which distinguishes losses from gains. 

The expected outcome is  E x , where the expectation of the outcome is evaluated using 

the expected probabilities for each outcome. It combines two expectations; with respect to the 

random outcomes and with respect to the random probabilities. The parameter  

    4Var PLx   (6) 

is Izhakian's measure of ambiguity, which is four times the variance of the probability of loss or 

four times the variance of the probability of gain.8 It is important to note that,  0,1 , attains 

                                                 
8 This equality is obtained since the variance the probability of event is equals to the variance of the probability of its complement 

event. 
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its minimum value, 0, when all probabilities are known, and its maximum value, 1, only in the 

extreme case of binomial distribution with a random probability for each event that can have 

probabilities of 0 or 1 with equal chances. The Arrow-Pratt coefficient of absolute risk aversion 

is 
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. The coefficient of absolute ambiguity aversion is 
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Equation (3) defines the premiums required by investors for bearing the risk and the 

ambiguity associate with holding the asset. 

2.2 Intuition 

To provide some intuition with regard to the measure of ambiguity,    4Var PLx  , 

suggested by Izhakian (2011), lets consider the following binomial example. Assume an asset 

with the following two possible future returns 10%d    and 20%u  . Consider the case where 

the probabilities of d  and u  are known, say    P P 0.5d u  . The expected return is, thus, 

5%. Taking the standard deviation of outcomes, in terms of return, as a proxy for the degree of 

risk, is 15%. Obviously, since the probabilities are precisely known, ambiguity is not present and 

the investors face only risk. 

Assume now that the probabilities of d  and u  can be either  P 0.4d   and  P 0.6u   

or alternatively  P 0.6d   and  P 0.4u  , where the two possible distributions are equally 

likely. This means that the investors are now facing not only risk but also ambiguity. The main 

idea of the measure of ambiguity,   , is that, similar to measuring the degree of risk by the 

variance of outcomes, we can measure the degree of ambiguity by the variance of probabilities. 

However, concerning the variance of probabilities, the question is; to the probability of which 

event is the variance applied. The natural choice would be the probability of the cumulative 

event of gain or the probability of the cumulative event of loss, for which the variance is 

identical since the event of loss is the complement of the event of gain and the objective 

probabilities are additive. Computing the variance of the probability of loss yields 

 Var P 0.01L   which in turn indicates a degree of ambiguity of 0.2 . Notice that the degree 
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of risk has not changed since the variance is computed using the expected probabilities 

   P P 0.5d u  . 

2.3 The risk-ambiguity model 

Assume an economy in which the returns on all assets are normally distributed. The 

return on the market portfolio, mr , is, therefore also normally distributed. The representative 

investor in this economy uses the risk free rate, fr , as the reference point relative to which he 

classifies outcomes as a loss or a gain. That is, any return on the market portfolio lower than fr  

is considered a loss and any return higher than fr  is considered a gain. Formally, the probability 

of loss takes the form 
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where     stands for the standard normal cumulative probability distribution. Recall, that in 

Shadow theory when ambiguity is present the variable PL  is random since the normal probability 

distribution is governed by the random parameters   and  . We assume that these two 

parameters,   and  , are uniformly distributed and that   is relatively close to fr , which leads 

us to conclude that    E P E PL G . To allow tractability, and without loss of generality, the 

representative investor in our economy exhibits constant absolute risk attitude (CARA) and 

constant absolute ambiguity attitude (CAAA)9. The uncertainty premium, defined by Equation 

(3), is thus simplified to  

                                                 
9 Though we assume CRRA for risk, we assume CAAA for ambiguity. The literature usually documents CRRA for investors, see 

for example Kachelmeier, and Shehata.(1992), Chetty (2006), Schechter (2007) and Cohen and Einav (2007). CRAA means 

that the impact of the attitude toward ambiguity on the subjective probabilities of an event is decreasing with its expected 

probability. That is, the subjective probabilities of highly likely events are less affected by individuals' attitude toward ambiguity. 

Whereas, CAAA means that the impact of the attitude toward ambiguity on the subjective probabilities of an event is independent 

of its expected probability. We find that CAAA is more reasonable. Technically, the subjective probability of event j  takes the 

form 
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j  is the degree of ambiguity of event j  measured by the variance of the probability, see Izhakian 
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  is the coefficient of the investor's risk aversion and   is the coefficient of ambiguity aversion. 

A positive (negative)   implies risk aversion (risk seeking), while a positive (negative)   

implies ambiguity aversion (ambiguity seeking). The expected return on the market portfolio, mr , 

less the risk free rate, also called excess return, thus takes the form  
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E Var ,
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where the risk premium is  1
Var

2 mR r  and the ambiguity premium is  1

4 mA r  . The 

effect of uncertainty on the return is now represented by two terms; a risk term and an ambiguity 

term. Each is measured separately and has a different effect on the excess return. In the next 

section we present the empirical tests of this model. We first provide the methodology that we 

use to measure the variables, especially the ambiguity measure, and then we apply the model to 

empirical tests. 

3 Data and Methodology 

3.1 Data 

The main body of data used in the empirical research is intraday trading data (prices and 

volumes) on the exchange-traded fund SPDR (Ticker: SPY) taken from the TAQ database.10 The 

Standard & Poor's Depositary Receipts (SPDR) is comprised of all the stocks in the Standard & 

Poor's 500 Index. The stocks in the SPDR have the same weights as in the index and it is 
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10 The Trade And Quotes (TAQ) database; Wharton Research Data Services (WRDS). 
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designed to track the index, before expenses. The expense ratio is about 7-8 basis points and the 

bid-ask spread is 1-2 basis points. The quarterly dividends are added to the index every 3 

months. It can be sold short like any other stock and short interest is sometimes as high as 50 

percent. A typical volume for the SPDR is between 200- 300 million shares per day, which is the 

highest of any US stocks traded on any exchange. 

We use the SPDR as a proxy for the market portfolio and not the S&P index itself since 

the SPDR trades continuously, while the index contains illiquid stocks and so its values are stale. 

The data covers the period from February 1993 to December 2010.11 Monthly returns adjusted 

for dividends obtained from the CRSP database.12 VIX values were obtained from the CBOE 

site, and the risk free rate from Ibbotson Associates.13 

3.2 Methodology 

The first step in designing the empirical tests is to compute the time series values of the 

variables that will be used in the tests. We first compute the degree of ambiguity derived by 

Izhakian (2011, Equation (9)) for each period of one month.14 We sample the prices of SPY 

every 15 minutes starting from 9:30 until 16:00 each day: 27 prices in total for each day.15,16 In 

case there was no trade at a specific sampling time, we took the volume weighted average value 

of the closest trading prices. Using these prices we compute 15 minute returns, 26 returns for 

each day.17 ,18 

                                                 
11 Under the ticker symbol, SPY, SPDRs began trading on the American Stock Exchange (AMEX) on January 29, 1993. 
12 Since dividends are added to SPDR every three months, we adjust the return on SPDR, the explanatory variable, to monthly 

dividend yields, using the dividend yields on the S&P-500 index, taken from the CRSP database. 
13 The risk free rate is one-month Treasury bill rate of return (from Ibbotson Associates). 
14 For simplicity we concentrate on one month intervals, however the same procedure can be applied for periods of less than one 

month, 10 trading days for example. 
15 We also test our model using a 10 minutes interval; the results were essentially the same. 
16 To check for robustness, while eliminating the impact of the trading noise caused by opening and closing daily positions during 

first and the last half-hour of the stock trading, we also performed our tests using only the prices from 10:00 to 15:30. The results 

were essentially the same. 
17 We have not included returns between closing prices and opening prices of the following day. We eliminated the impact of 

overnight price changes and dividend distributions. 
18 While omitting the first and last half an hour of the trading our results remain almost similar. 



12 

For each day we used its 26 observations to compute the mean and the variance of return. 

Depending on the number of trading days in the month, we have, for each month, between 440 

and 572 observations.19 Using Equation (7) we compute for each day the probability to suffer a 

loss, PL . For each month, there is a vector which consists of 20 to 22 different loss-probabilities. 

Using this vector of loss-probabilities we compute its variance to obtain the degree of 

ambiguity, 2 , for that month. Using the variances of each day over the month, we also calculate 

the mean of the variance, MVAR, and the variance of variance VVAR for that month. As controls, 

for each day we also compute the skewness and the kurtosis, and for each month the average 

skewness (MSKW) and the average kurtosis (MKRT). Using these variables, we next test the risk 

and ambiguity effect on returns, i.e., Equation (10) is subjected to regression tests presented in 

the next section. 

3.3 Descriptive Statistics 

The dependent variable is the monthly return on SPY, which serves as a proxy for the 

return on the market portfolio, mr , minus the risk free rate,
 fr  ,which is the 1 month T-bill rate. 

The market return, mr , is computed using the opening price on the first trading day of the month 

and the closing price on the last trading day of that month. 

The other variables that we use in the empirical tests are as follows: 

MVAR – mean of daily variance. The daily variance is computed every day using 15 minutes 

rates of return (ROR) and multiplied by 26 (the number of 15 minutes intervals). It is averaged 

over the number of trading days in a month. 

VVAR – variance of daily variance. The variance is computed by using the daily variances during 

the month.  

MSKW – mean of daily skewness. The daily skewness is computed every day using 15 minute 

ROR, multiplied by 3 226  and averaged over the month. 

MKRT – mean of daily kurtosis. The daily kurtosis is calculated every day using 15 minute ROR 

multiplied by 226  and averaged over the month. 

                                                 
19 To check for robustness, we formed randomly (without repetition) groups of 26 observations and computed a mean and a 

variance for each group. Since the results of this method were not significantly different from the first method, we conducted our 

tests using the first method. 
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MVIX2 – mean of all daily squared VIX observation during the month. 

VVIX2 – variance of all daily squared VIX observation during the month. 

CVAR – variance of 15 minutes return of the last day in the month (converted to daily). 

CVIX2 – closing squared VIX on the last day of the month (converted to daily). 

DVAR – the change in variance from the last day in month t-1 to last day in month t. 

DVIX2 – the change in squared VIX from the last day in month t-1 to last day in month t. 

 

Table I panel A provides summary statistics of the variables that are used in the empirical 

tests. All variables are adjusted to daily terms. During the 1993-2010 period, the daily mean 

return on SPY, mr , is 0.025%, about 9.2 percent on an annual basis. The variance of mr  is about 

3.0E-06. The risk free rate, fr , is 0.009%, about 3.33 percent annually. The excess return, 

m fr r , is 0.016%, 5.84 percent annually. The distribution of m fr r  is somewhat negatively 

skewed. Most values, however, are to the right of the mean. The positive kurtosis, 0.995, is an 

indication of fat tails. 

The average daily variance (across all 215 months), MVAR, is about a half of the average 

daily VIX2 (0.00012 vs. 0.0002), while the variance is about the same (4.14E-08 vs. 4.00E-08). 

The average daily standard deviation is 0.885 percent while the average daily VIX is about 1.3 

percent (or 14 percent vs. 21 percent on an annual basis). In the same vain, the average variance 

of the daily variance, VVAR, is about 8.11E-06 percent while the average variance of the daily 

VIX is only about 4.65E-09. Thus, VIX is on the average larger than the realized volatility by 

about 6-7 percent, but it moves in a narrower range.20 MSKW is the mean of the daily skewness, 

which is negative but not significant. MKRT is the mean of the daily kurtosis, which is 

significantly different from zero, indicating fat tails as observed earlier. 

Panel B in Table I provides summary statistics of the ambiguity parameters. The average 

expected daily probability of loss,  E LP , is 49.7 percent.  E LP  is computed using Equation(4). 

The distribution of these probabilities is positively skewed, 0.054, and has thin tails (the kurtosis 

is -0.596). 

                                                 
20 The variance of MVAR is the variance of the monthly average variance calculated for each day separately. The variance of the 

parameter VVAR is the variance of the monthly variance base on the intraday variance. 
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The measure of ambiguity, , given in Equation (9), is on the average 0.025, where the 

minimum and maximum observed values are 0.0088 and 0.0532 respectively.   (the square root 

of the measure  ) the daily ambiguity level measured in percentage points, is 15.6. Figure 3 

depicts the distribution of  in the period 1993 to 2010. The distribution of   is almost 

symmetric around its mean of 16%. 

Since our model predicts that the excess return should be affected by the ambiguity 

measure   in a linear manner, we use  , rather than  , in our tests. Table I, panel B, shows 

that   is positively skewed, with coefficient 0.6832, which is highly significant. Recall that the 

ambiguity measure takes on only positive values in the range between 0 and 1. The positive 

skewness thus indicates that the ambiguity level is usually concentrated around the mean with a 

long tail, where in some months we observe a relatively high level of ambiguity. The kurtosis of 

  is slightly positive, 0.2437.21 

It is important to note that the level of ambiguity can take on values between 0 and 1. It 

will be zero when the probability distribution is perfectly known. The level of ambiguity will be 

one, when we are faced with a lottery with two states of nature with the equally likely possible 

probabilities 0 and 1. In this case the probability of loss attains its maximum variation, which 

results in the highest possible volatility of probability, which in turn implies the highest possible 

degree of ambiguity. To get a more intuitive feel for the measure of ambiguity we can look at   

(not  ). During the period 1993 to 2010, the mean level of ambiguity,  , is about 15.6 percent, 

while its standard deviation is about 2.5%. The lowest recorded level of ambiguity is 9.3% and 

the highest is 23.1% (December 2002, when the US decided to invade Iraq). 

In Panel C, of table I, we provide summary statistics of CVAR, CVIX2, DVAR, DVIX2. 

CVIX2, the value of VIX2 on the last day of the month is practically the same as MVIX2 but the 

variance is lower since CVIX2 does not include some extremely large observations. The same is 

true for CVAR and MVAR.  

                                                 
21 Since we also test the case of constant relative ambiguity aversion (CRAA), the summary statistics of the normalized, relative 

ambiguity measure,  E
L

P  are also presented in Table I. One can see the relative ambiguity is positively skewed, 12.5951, 

but with negative kurtosis, -0.4084, which indicates thin tails. 
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Table II provides the first 6 autocorrelation coefficients, of all the variables that we use in 

our tests. The variables that have large and significant autocorrelations are those who use VIX in 

their various forms, except for DVIX2. For example, MVIX2 has a 1st order autocorrelation of 0.85 

and it decays slowly to 0.29 at the 6th order. A similar pattern is observed for VVIX2 and CVIX2. 

The main concern is how it may affect the OLS estimator in our regression tests. We therefore 

conducted first the tests proposed by Amihud and Hurvich (2004) and then used the regression 

test. 

Figure 1 describes the average daily excess returns on the SPDR (SPY) over the years 

1993 to 2010. Over this period we observe only a couple of months that contain big downward 

moves in the market. The two obvious ones, are September of 1998, the Russian default and the 

LTCM debacle, and September 2008, the recent financial crisis. In Figure 2 we present the 

monthly ambiguity on a daily basis. It seems that during the 1990s ambiguity levels were not 

very high, but they have increased by at least 50% after 2000. It can be observed that relatively 

low returns are accompanied by relatively high levels of ambiguity in the previous month. For 

example, on August 1998 the excess return dropped to -0.7% and a month before, July 1998, the 

ambiguity level, 2 , jumped to 0.0348. Or in August 2002, the return on SPY dropped to -0.52% 

while the level of ambiguity in the month before jumped up to 0.045. On September 2008 the 

return on SPY dropped to the low -0.8%, where in the months before ambiguity jumped to a 

level higher than 0.09. 

 

[[ INSERT FIGURE 1 ]] 

 

[[ INSERT FIGURE 2 ]] 

 

Figure 3 describes the distribution of the degree of ambiguity,  , in the period between 

February 1993 to December 2010. The degree of ambiguity is provided on the x-axes in 

percentages. The y-axes describes the frequency of the degree of ambiguity. Most of the 

observations are centered between 12% and 20% ambiguity. There are a few cases where the 

degree of ambiguity is higher than 20% or lower than 10%, which is very rare. 
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[[ INSERT FIGURE 3 ]] 

 

Table III provides the cross correlations of all variables used in this study. It provides us 

with a first look at the relationships between all possible pairs of variables. In particular, the 

relationship of the excess return,
m f

r r , and the ambiguity measure  . It is negatively correlated 

and significant, which indicates that the coefficient of ambiguity is possibly negative. Or, in 

other words, that investors love ambiguity. Also, the ambiguity measure exhibits a low 

correlation with the other variables (though some are significant on the order of about 0.30). This 

basically rules out the possibility that ambiguity is a proxy for volatility or kurthosis. The various 

measures of volatility exhibit some correlation but those are not large enough to affect our main 

tests. 

4 Empirical Results: Testing the Effect of Ambiguity and Risk on Excess 

Returns 

Theoretically, the effect of ambiguity and risk on the expected excess returns, presented 

in Equation (10), assumes that investor exhibit constant relative risk attitude (CRRA) and 

constant absolute ambiguity attitude (CAAA). 22  In table IV we present the results of the 

regression tests where the dependent variable is the excess return and ambiguity and risk are the 

independent variable. We assume that the observed excess return is the best estimate of the 

expected excess return and so it is for the other variables like the expected risk measured by the 

daily variance. We have also introduced some variables, like volatility of volatility, as control 

variables. 

In table IV the independent variables are measured contemporaneously with the excess 

return. So the return in month t is explained by the ambiguity in month t, by the variance in 

month t, etc. The values of the Durbin-Watson (DW) test indicate that we don’t have a serial 

correlation issue. We first used only ambiguity to explain the excess return and found that the 

ambiguity effect is negative and highly significant. We then included MVAR and VVAR. Though 

the R2 has increased from 5% to 18%, we were puzzled by the sign and significance of the MVAR 

                                                 
22 We also tested our model for the case of constant relative ambiguity attitude (CRAA). The results were not significantly 

different than the results for the CAAA case.  
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coefficient, which was negative. We have expected MVAR to be positive. Since these realized 

values may be poor proxies for expected variance and variance of variance, we then used MVIX2 

and VVIX2 as our estimates of the expected risk measures. We now observe that MVIX2 is not 

significant but VVIX2 is negative and significant. We also included a measure of Kurtosis, 

denoted MKRT, to see whether the measure of ambiguity is possibly a proxy for Kurtosis, which 

turns out to be non significant and does not affect the significance of ambiguity.23 

The results in table IV show that ambiguity is an important variable in explaining excess 

returns and is not a proxy for other possible factors. However, we did not find our measures of 

risk to have the effect dictated by our fundamental paradigm that implies a positive relationship 

between risk and return. In general, past empirical studies have not provided conclusive 

evidence, especially the time-series tests. French, Schwert and Stambough (1987) is possibly the 

best known time series study that provides results that could be interpreted as supporting the 

basic theory, though they also come up with some mixed results. Since they only had a long time 

series of monthly data, we thought that the use of daily data (constructed from intraday data) 

may provide us with more promising results. In fact, our contribution is twofold. First, we argue 

that there is a missing variable, namely ambiguity. Second, we use data that are more fine-tuned 

to test the basic relationship between risk and return. In our tests we also argue that the measure 

of risk is orthogonal to the measure of ambiguity, which we observe in the low correlation of 

these two measures. 

The results in table IV which use ex post measures of risk (and ambiguity), are consistent 

with the tests and results in other studies on the relationship between risk and return (e.g. French, 

Schwert and Satmbaough (1987)). In table V we use the measures of risk at t-1, coinciding with 

the market price at t-1. We argue that the level of risk and ambiguity at t-1 affect the price at t-1 

instantaneously and consequently the return from t-1 to t. The t-1 measures of risk and ambiguity 

could be considered ex ante (expected) estimates which should affect the return in time t. Since 

the explanatory variables are measured at t-1, it is likely that we obtain biased coefficients and T-

statistics due to a serial correlation. To deal with this issue, we subjected the regressions to the 

                                                 
23  We conducted the same test for skweness. We included a measure of skewness, denoted MSKW, to see whether the 

significance of the measure of ambiguity is affected by skewness. It turns out that skewness is not significant and does not affect 

the significance of ambiguity. 
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Amihud and Hurvitch (2004) test and all the regressions have “passed” the test, so no 

adjustments were necessary.24  

The results in table V are encouraging. In all the regressions ambiguity is highly 

significant, while the risk measures have positive coefficients, though most of them are not 

significant. To measure risk in t-1 we have used MVAR, the mean daily variance and MVIX2, the 

mean daily VIX2. To better align the measure of risk with the price at t-1, we have also used 

CVAR, the estimate of the variance on the last day of the month, adjacent to the opening price 

used for the return from t-1 to t. Similarly, the last regression on table V uses the closing VIX2, 

just before the opening price the next day. The best result is obtained when we include VVIX2, 

the volatility of VIX2, in the regression. Ambiguity is not affected; it is negative and as 

significant as in the other regressions. Expected volatility, estimated by MVIX2, is positive with a 

coefficient of 2.6 and highly significant. VVIX2 has contributed to the results in two ways; it has 

increased the significance of the risk measure and has doubled the R2, from about 6 percent to 12 

percent. What role does VVIX2, the volatility of volatility play? Frankly, this is a puzzling 

outcome. One possible explanation is that volatility of volatility is a proxy for liquidity where 

higher VVIX2 means higher liquidity. Thus, higher prices and lower returns. 

Our next set of tests, provided in table VI, further support the findings in table V. As 

suggested by French, Schwert and Stambough (1987), we have used the unexpected change in 

risk to explain the excess return, m fr r . We measure this change in two ways; DVARt, the 

change in the daily variance, from t-1 to t, using the variance on the last trading day of the 

month. 2
tDVIX , the change in daily VIX2, from t-1 to t, using VIX2 on the last trading day of the 

month. The results in this table are our strongest results. We use the ambiguity measure,  , in t-

1 to be consistent with the risk measures and can be considered an ex ante measure. As seen in 

the earlier tests, it is negative and highly significant. Both of the risk measures are also negative 

and highly significant as hypothesized. The regression which uses ambiguity and DVIX2 provides 

                                                 
24 The Amihud and Hurvitch (2004) test is applied when the explanatory variable is a lagged variable. The residual from the OLS 

regression (the main model) is regressed against the residual from the autoregressive regression of the explanatory variable. 

According to this test, the estimated statistics are biased only if both of the following two conditions are satisfied. (i) the 

explanatory variables are highly autocorrelated. (ii) there is a statistically significant correlation between the residuals of the 

autoregressive regression of the explanatory variable and the residuals of the main regression, explaining m fr r  in our case. 

These two conditions have not been satisfied together in any of the regressions we tested. 
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even stronger result, the R2 is about 46 percent. The ambiguity measure turns out to be 

significantly negative in any specification of the determinants of excess return. As stated in the 

introduction, previous evidences regarding the attitudes of ambiguity are mixed at best. Our 

results are consistent with the studies that show ambiguity loving. The effect of risk, measured 

by the unexpected change in volatility, can be interpreted as “indirect evidence of a positive ex 

ante relation” (see French, Schwert and Stambough (1987, p. 4)). 

Examining the results in table V we see, for example, that in the regression with 2
1tMVIX   

and 2
1tVVIX  , the coefficient of ambiguity 2

1t , 1  equals -0.0492 and the coefficient of risk 

( 2MVIX ), 4  equals 2.62. These results imply that the investor's coefficient of constant relative 

risk aversion is 5.24.25 Though this number is in the range of estimates obtained in other studies 

(e.g. Brown and Gibbons (1985), French, Schwert and Stambough (1987)), it is on the high end 

indicating strong aversion to risk. The investors' coefficient of constant absolute ambiguity 

attitude, however, indicates that investors are typically ambiguity lovers characterized by 

coefficient of ambiguity loving equals to -0.2. To the best of our knowledge, this is the first 

empirical study which provides an estimate of the degree of the attitude towards ambiguity. 

At first it seems puzzling that investors exhibit risk aversion and ambiguity loving at the 

same time. To explain this let’s assume two assets with identical expected return, but the first 

asset has a random probability of loss/gain and the second asset's probability of loss/gain is equal 

to the expected probability of loss/gain of the first asset. By definition, an ambiguity lover 

prefers the first asset over the second asset. In our setting, returns are normally distributed, yet 

with random mean and random variance, such that if 

    
      E

E P | , E P | E ,E
E

f fr r
L L

 
   

 
     

                
, (11) 

then the investors prefers the first asset with the random probabilities over the second asset with 

the constant probabilities. Since the returns on assets are assumed to be symmetrically 

distributed, a rational investor who maximizes expected return also minimizes the probability of 

                                                 
25 For completeness, we tested the impact of investors' loss aversion by controlling for different levels of risk aversion after 

facing a loss compared with the level of risk aversion after facing a gain. The results did not indicate a significantly different 

level of risk aversion for losses than for gains. That is, no evidences for loss-aversion preference were found. 
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loss. Thus, if inequality (11) holds a rational investor prefers the asset with the random 

probability. In other words, he must exhibit ambiguity loving. 

Figure 4 provides a graphical representation of inequality (11). This figure assumes two 

possible normal probability distributions characterized by  1 1,   and  2 2,  . The y-axes 

depicts the probability of loss and the x-axes depicts the adjusted reference point (adjusted to the 

standard normal distribution). Given the random probabilities of loss, the expected probability of 

loss is  E P | ,L     . Assume now a second asset with constant mean,   1 2E
2i

   
   

and constant standard deviation,   1 2E
2i

   
  . The probability of loss of this asset is 

    P | E ,EL   . Figure 4 shows a case where the expected probability of loss is smaller than 

the probability of loss conditional on the expected mean and the expected variance, i.e., 

      E P | , P | E ,EL L      . 

 

 [[ INSERT FIGURE 4 ]] 

 

To check empirically that inequality (11) holds, for each month we compute monthly (i) 

the expected probability of loss assuming that the mean and variance governing the probability 

of loss are random and (ii) the probability of loss using the expected mean and expected variance 

in that month. The average expected probability of loss using (i) is 49.74%, while using (ii) the 

probability of loss is 50.17%. The difference between (i) and (ii) is negative (-0.43%) and 

significant (t = -2.06). This result proves that the expected probability of loss when the 

parameters of the distribution are random, is lower than a constant probability of loss, using the 

expected parameters. A rational investor, who minimizes the expected probability of loss, prefers 

(i) over (ii) and therefore by definition he is an ambiguity lover. 

Behavioral studies of decision making under ambiguity document that sometimes 

decision makers exhibit different attitudes toward ambiguity after facing a loss compared with 

the case where they face a gain (see for example, Bier and Connell (1994), and Chakravarty and 

Roy (2009a, 2009b)). Different attitudes toward ambiguity can be either different levels of 

ambiguity aversion/seeking or a change in attitude from ambiguity aversion to ambiguity 
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seeking. We also tested this hypothesis and found no evidences for different attitudes toward 

ambiguity. Ambiguity loving was observed for gains and for losses and the degree of ambiguity 

loving after facing a loss was not significantly different than the degree of ambiguity loving after 

facing a gain. 

 

5 Conclusions 

The basic tenet in asset pricing is the relationship between risk and return, which has 

been tested a multitude of times using a variety of models and factors. While this relationship 

could be tested on the market as a whole using time series data, most of these tests were cross-

sectional. The results of these tests are mixed at best. In several studies the factor that measures 

the risk of the asset has a negative coefficient or is non significant while other factors (e.g. 

liquidity or liquidity risk) turn out to have the desired sign and are significant, which is a puzzle. 

One possibility is that the missing variable is ambiguity. In this study we introduce for the first 

time a measure of ambiguity, developed in Izhakian (2011). We use it in conjunction with 

measures of risk in time series tests. We claim that excess return on the market as a whole, 

known as the equity premium, is determined by two orthogonal factors; ambiguity and risk. We 

measure risk in a variety of ways, e.g., using rate of return variance and implied volatility. Our 

principle hypothesis is that both of the factors affect the excess return. While, consistent with our 

asset pricing paradigm of risk aversion, we expect, that the measures of risk will be positively 

related to the excess return, we have no a-priori view of the effect of ambiguity. The results that 

we obtain are rather encouraging. The effect of ambiguity is negative and highly significant in all 

the tests that we employ. This is consistent with several recent studies that show that financial 

decision makers tend to be ambiguity loving. The effect of risk is generally positive, which is 

consistent with risk aversion but its significance depends on the risk measure that we use. The 

best result that we obtain is when we use the unexpected change in volatility as the explanatory 

variable. Though this is an indirect test of the effect of risk on return, it provides the strongest 

evidence and is consistent with the results obtained by French, Schwert and Stambaghu (1987). 
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Figure 1: Market excess return for the period 1993-2010 
This figure describes the daily adjusted to dividend excess return on the SPDR between February 1993 and 
December 2010. The values are the average daily excess return in each month. 
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Figure 2: The measure of absolute ambiguity level for the period 1993-2010.  
This figure describes the daily level of ambiguity, measured by  , for each month between February 1993 and 
December 2010.   is computed using 15 minutes rates of return during the month. For each day the probability of 
loss is computed using the mean and the variance of that day. For each month there are 20-22 probabilities of loss 
over which the standard deviation is computed to provide the squared degree of ambiguity,  . 

 



26 

 

 

 

0

5

10

15

20

25

30

35

40

45

0.0707 0.0821 0.0935 0.105 0.1164 0.1279 0.1393 0.1507 0.1622 0.1736 0.185 0.1965 0.2079 0.2193

Figure 3: The distribution of ambiguity level. 
This figure describes the distribution of the daily level of ambiguity measured by,  , for the months between 
February 1993 and December 2010.   is computed using 15 minutes rates of return during the month. For each 
day the probability of loss is computed using the mean and the variance of that day. For each month there are 20-22 
probabilities of loss over which the standard deviation is computed to provide the squared degree of ambiguity,  . 
Each column depicts the number of observations observed in the range describes on the x-axes.  
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Figure 4: Ambiguity Loving 
This figure describes the probability of loss as a function of the threshold differentiating gains form losses, when 
to probability distribution is normal. The y-axes depicts the probability of loss and the x-axes depicts the value 
differentiating gains from losses. It assumes two possible normal probability distributions characterized by 

 1 1,   and  2 2,  . The expected portability of loss is  E P | ,L     . The probability of loss, when the 

mean and the variance,     E , E   are the expected mean and the expected variance, respectively, of 

 1 1,   and  2 2,   is     P | E ,EL   . 
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Table I 

Summary Statistics of Regression Variables for the Period 1993-2010 

Panel A reports summary statistics for the entire sample between February 1993 and December 2010. All 

parameters are normalized to one day. 
m

r  is the daily adjusted to dividend return on the SPDR. 
f

r  is the daily 

return on the risk-free asset. MVAR  is mean of daily variance. The variance is calculated every day using 15 
minutes rates of return (ror) and multiplied by 26 (number of 15 minutes intervals). It is averaged over the number 
of trading days in a month. VVAR  is variance of daily variance. The variance is calculated by using the daily 
variances during the month. MSKW  is mean of daily skweness. The skweness is calculated every day using 15 
minute ror, multiplied by 26 and averaged over the month. MKRT  is the mean of daily kurtosis. The kurtosis is 

calculated every day using 15 minute ror multiplied by 26 and averaged over the month. 2MVIX  is the mean of all 

daily VIX observation during the month. 2VVIX  is the variance of all daily VIX observation during the month. 

Panel B reports summery statistics for the measure of ambiguity.  is the daily ambiguity level during the 

month,  E
L

P  is the daily expected probability of loss and  E
L

P - is the normalized measure of ambiguity. 

Panel C reports summery statistics for the volatility indicators. CVAR is the daily variance of the last trading day 

of the month. 2CVIX  is the VIX observed in the last trading day of the month. 2DVIX  is the difference of the 
observed VIX in the last trading day of the current month and the last trading day of the previous month. 

Panel A:  

 Mean Variance Skewness Kurtosis Min Max Median N 

m
r  0.000252 2.938E-06 -0.696084 1.018086 -0.005457 0.003368 0.000460 215 

fr  9.116E-05 2.870E-09 -0.314441 -1.264361 0.000000 0.000187 0.000103 215 

m f
r r  0.000160 2.147E-06 -0.671609 0.995231 -0.005484 0.003364 0.000328 215 

MVAR  0.000121 4.142E-08 5.777216 40.727858 1.660E-05 0.001787 6.925E-05 215 

VVAR  8.115E-06 8.973E-09 14.298609 207.352920 1.11E-09 0.001378 3.86E-08 215 

MSKW  -0.014659 0.0241834 0.124007 -0.487596 -0.365049 0.387104 -0.018444 215 

MKRT  0.961168 0.5630023 1.433304 2.859667 -0.059868 4.707871 0.762767 215 

2MVIX  0.000200 4.007E-08 3.900617 20.981768 4.658E-05 0.001582 0.000158 215 

2VVIX  4.654E-09 5.459E-16 8.935092 87.099827 8.42E-12 2.64E-07 4.25E-10 215 

Panel B: 

  0.024988 6.606E-05 0.675753 0.240998 0.008802 0.053262 0.023582 215 

 E
L

P  0.497510 0.0002281 0.050747 -0.587161 0.458340 0.538600 0.497787 215 

 E
L

P  0.050227 0.289621 13.316224 -0.410446 0.019203 0.098890 0.047374 215 

  0.156041 0.0006425 0.274433 -0.221245 0.093817 0.230787 0.153565 215 
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Panel C: 

CVAR  0.000111 3.680E-08 8.754059 101.518093 5.53E-06 0.002436 6.481E-05 215 

2CVIX  0.000198 3.319E-08 3.209620 14.729752 4.309E-05 0.001423 0.000154 215 

DVAR  -1.457E-07 5.926E-08 0.892633 61.464498 -0.002097 0.002284 -3.00E-06 214 

2DVIX  2.631E-07 1.232E-08 1.735123 19.411058 -0.000578 0.000808 -1.82E-06 214 
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Table II 

Autocorrelations  

This table reports the autocorrelations of all the different variables, explained and explanatory, which are 
used in the regressions. The autocorrelations are measured for the period between February 1993 and 

December 2010. All parameters are normalized to one day. 
m

r  is the daily adjusted to dividend return on 

the SPDR. MVAR  is mean of daily variance. The variance is calculated every day using 15 minutes rates 
of return (ror) and multiplied by 26 (number of 15 minutes intervals). It is averaged over the number of 
trading days in a month. VVAR  is variance of daily variance. The variance is calculated by using the daily 
variances during the month. MSKW  is mean of daily skweness. The skweness is calculated every day 
using 15 minute ror, multiplied by 26 and averaged over the month. MKRT  is the mean of daily kurtosis. 
The kurtosis is calculated every day using 15 minute ror multiplied by 26 and averaged over the month. 

2MVIX  is the mean of all daily VIX observation during the month. 2VVIX is the variance of all daily 

VIX observation during the month.   is the daily ambiguity level during the month, CVAR  is the daily 

variance of the last trading day of the month. 2CVIX is the VIX observed in the last trading day of the 

month. 2DVIX  is the difference of the observed VIX in the last trading day of the current month and the 
last trading day of the previous month. 

 1t   2t   3t   4t   5t   6t   

m f
r r  0.0965 -0.0363 0.1213 0.0419 0.0442 -0.0481 

  0.3836 0.3930 0.3777 0.2890 0.3499 0.3546 

MVAR  0.4399 0.2375 0.2034 0.1837 0.0896 0.0376 

VVAR  -0.0050 -0.0065 -0.0064 -0.0058 -0.0074 -0.0075 

2MVIX  0.8498 0.6424 0.5265 0.4601 0.3768 0.2859 

2VVIX  0.6542 0.3492 0.0998 0.0326 0.0226 -0.0117 

MSKW  0.0262 0.1692 0.0525 -0.0388 0.1217 0.0506 

MKRT  0.6299 0.5722 0.5702 0.5290 0.5338 0.5944 

CVAR  0.1977 0.0834 0.0834 0.0839 0.0840 0.0806 

2CVIX  0.8149 0.5253 0.5253 0.4821 0.4123 0.3192 

DVAR  -0.4326 -0.0033 -0.0033 0.0003 0.0021 0.0076 

2DVIX  0.0751 -0.0898 -0.0898 0.0725 0.0602 -0.1295 
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Table III 

Cross Correlations of Variables 

This table reports the cross-correlations between the different variables, explained and explanatory, which are used in the regressions. The cross-

correlations are measured for the period between February 1993 and December 2010. All parameters are normalized to one day. 
m

r  is the daily 

adjusted to dividend return on the SPDR. MVAR  is mean of daily variance. The variance is calculated every day using 15 minutes rates of return (ror) 
and multiplied by 26 (number of 15 minutes intervals). It is averaged over the number of trading days in a month. VVAR is variance of daily 
variance. The variance is calculated by using the daily variances during the month. MSKW  is mean of daily skweness. The skweness is calculated 
every day using 15 minute ror, multiplied by 26 and averaged over the month. MKRT  is the mean of daily kurtosis. The kurtosis is calculated every 

day using 15 minute ror multiplied by 26 and averaged over the month. 2MVIX  is the mean of all daily VIX observation during the month. 2VVIX is 

the variance of all daily VIX observation during the month.   is the daily ambiguity level during the month,  E
L

P is the daily expected probability 

of loss. CVAR  is the daily variance of the last trading day of the month. 2CVIX  is the VIX observed in the last trading day of the month. 2DVIX is 
the difference of the observed VIX in the last trading day of the current month and the last trading day of the previous month 

Panel A: 

 m f
r r     E

L
P  MV  VV  MSKW  MKRT  2MVIX  2VVIX  

1.0000 -0.2294 -0.7083 -0.3499 -0.0513 -0.0336 0.0770 -0.2853 -0.3093 
m f

r r  
_ (0.0007) (<.0001) (<.0001) (0.4541) (0.6239) (0.2611) (<.0001) (<.0001) 

-0.2294 1.0000 0.1885 0.2042 0.0412 0.0120 -0.3183 0.2778 0.1983 
  

(0.0007) _ (0.0055) (0.0026) (0.5478) (0.8612) (<.0001) (<.0001) (0.0035) 

-0.7083 0.1885 1.0000 0.1777 0.0314 0.0432 -0.1261 0.1719 0.1025  E
L

P  
(<.0001) (0.0055) _ (0.0090) (0.6476) (0.5287) (0.0651) (0.0116) (0.1340) 

-0.3499 0.2042 0.1777 1.0000 0.6132 0.1866 -0.0949 0.7339 0.6926 
MVAR  

(<.0001) (0.0026) (0.0090) _ (<.0001) (0.0061) (0.1656) (<.0001) (<.0001) 

-0.0513 0.0412 0.0314 0.6132 1.0000 0.1702 0.0983 0.0629 0.0269 
VVAR  

(0.4541) (0.5478) (0.6476) (<.0001) _ (0.0124) (0.1511) (0.3589) (0.6948) 

-0.0336 0.0120 0.0432 0.1866 0.1702 1.0000 0.0498 0.1017 0.0497 
MSKW  

(0.6239) (0.8612) (0.5287) (0.0061) (0.0124) _ (0.4672) (0.1374) (0.4682) 

MKRT  0.0770 -0.3183 -0.1261 -0.0949 0.0983 0.0498 1.0000 -0.2851 -0.0725 
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(0.2611) (<.0001) (0.0651) (0.1656) (0.1511) (0.4672) _ (<.0001) (0.2897) 

-0.2853 0.2778 0.1719 0.7339 0.0629 0.1017 -0.2851 1.0000 0.7978 
2MVIX  

(<.0001) (<.0001) (0.0116) (<.0001) (0.3589) (0.1374) (<.0001) _ (<.0001) 

-0.3093 0.1983 0.1025 0.6926 0.0269 0.0497 -0.0725 0.7978 1.0000 
2VVIX  

(<.0001) (0.0035) (0.1340) (<.0001) (0.6948) (0.4682) (0.2897) (<.0001) _ 

Panel B 

 m f
r r    1tCVAR   1tCVIX   DVAR  DVIX  

1.0000 -0.2294 0.0824 -0.0091 -0.3806 -0.6483 
m f

r r  
_ (0.0007) (0.2301) (0.8951) (<.0001) (<.0001) 

-0.2294 1.0000 0.0125 0.2141 0.0552 0.1007 
  

(0.0007) _ (0.8557) (0.0016) (0.4216) (0.1421) 

0.0824 0.0125 1.0000 0.5515 -0.6332 -0.1535 
1tCVAR   

(0.2301) (0.8557) _ (<.0001) (<.0001) (0.0248) 

-0.0091 0.2141 0.5515 1.0000 -0.2182 -0.3054 2
1tCVIX   

(0.8951) (0.0016) (<.0001) _ (0.0013) (<.0001) 

-0.3806 0.0552 -0.6332 -0.2182 1.0000 0.4796 
DVAR  

(<.0001) (0.4216) (<.0001) (0.0013) _ (<.0001) 

-0.6483 0.1007 -0.1535 -0.3054 0.4796 1.0000 2DVIX  
(<.0001) (0.1421) (0.0248) (<.0001) (<.0001) _ 
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Table IV 

Contemporaneous Regression Tests 

This table presents the contemporaneous regressions, i.e. explaining the market return at time t by the explanatory variables characterized in time t. The 

regressions use data for period between February 1993 and December 2010. All parameters are normalized to one day. The explained variable,
m

r is the 

daily adjusted to dividend return on the SPDR. MVAR is mean of daily variance. The variance is calculated every day using 15 minutes rates of return 

(ror) and multiplied by 26 (number of 15 minutes intervals). It is averaged over the number of trading days in a month. VVAR is variance of daily 

variance. The variance is calculated by using the daily variances during the month. MKRT  is the mean of daily kurtosis. The kurtosis is calculated 

every day using 15 minute ror multiplied by 26 and averaged over the month. 2MVIX  is the mean of all daily VIX observation during the month. 

2VVIX  is the variance of all daily VIX observation during the month.   is the daily ambiguity level during the month. 

2 2 2
1 2 3 4 5 6t t t t t t t tr MVAR VVAR MVIX VVIX MKRT                

  2
t  t

MVAR  
t

VVAR  2

t
MVIX  2

t
VVIX  tMKRT  2R  

2Adj R  DW  

0.0012 -0.0413      0.0525 0.0481 1.9875 

(3.7636) (-3.4285)         

0.0012 -0.0297 -2.2773     0.1484 0.1403 2.0892 

(3.9130) (-2.5404) (-4.8742)        

0.0012 -0.0259 -3.3785 3.7486    0.1846 0.1730 2.0546 

(4.0144) (-2.2439) (-5.7941) (3.0543)       

0.0012 -0.0294   -1.7589   0.1058 0.0973 2.0135 

(4.0325) (-2.4035)   (-3.5442)      

0.0011 -0.0304   -0.3703 -14769.4049  0.1259 0.1134 2.0903 

(3.3488) (-2.5095)   (-0.4625) (-2.1984)     

0.0012 -0.0411     0.0000 0.0526 0.0436 1.9867 

(2.9914) (-3.2258)     (0.0611)    
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0.0013 -0.0281 -3.4286 3.8875   -0.0001 0.1863 0.1708 2.0684 

(3.6004) (-2.3340) (-5.8327) (3.1216)   (-0.6385)    

0.0011 -0.0309   -0.4103 -14510.4128 0.0000 0.1261 0.1094 2.0913 

(2.6626) (-2.4615)   (-0.4828) (-2.0827) (-0.1423)    
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Table V 

Prediction Regression Tests 

This table presents the predictive regressions, i.e. explaining the market return at time t by the explanatory variables characterized in time t-1. The regressions 

use data for period between February 1993 and December 2010. All parameters are normalized to one day. 
m

r  is the daily adjusted to dividend return on the 

SPDR. MVAR is mean of daily variance. The variance is calculated every day using 15 minutes rates of return (ror) and multiplied by 26 (number of 15 
minutes intervals). It is averaged over the number of trading days in a month. VVAR is variance of daily variance. The variance is calculated by using the 
daily variances during the month. MSKW  is mean of daily skweness. The skweness is calculated every day using 15 minute ror, multiplied by 26 and 
averaged over the month. MKRT  is the mean of daily kurtosis. The kurtosis is calculated every day using 15 minute ror multiplied by 26 and averaged over 

the month. 2MVIX  is the mean of all daily VIX observation during the month. 2VVIX  is the variance of all daily VIX observation during the month.  is 

the daily ambiguity level during the month. CVAR  is the daily variance of the last trading day of the month. 2CVIX is the VIX observed in the last trading 
day of the month. 

2 2 2
1 1 2 1 3 1 4 1 5 1 6 1 7 1t t t t t t t t tr MVAR VVAR MVIX VVIX CVAR CVIX                        

  2

1t
  1t

MVAR


 
1t

VVAR


 2

1t
MVIX


 2

1t
VVIX


 1t

CVAR


 2

1t
CVIX


 2R  

2Adj R  DW  

0.0013 -0.0451       0.0625 0.0581 1.9385 

(4.0805) (-3.7589)          

0.0013 -0.0466 0.3022      0.0642 0.0553 1.9069 

(4.0798) (-3.8004) (0.6167)         

0.0013 -0.0455 -0.0396 1.1629     0.0677 0.0543 1.9068 

(4.0854) (-3.6806) (-0.0635) (0.8860)        

0.0013 -0.0475   0.3513    0.0646 0.0557 1.9256 

(4.0379) (-3.7991)   (0.6923)       

0.0010 -0.0492   2.6214 -24163.5678   0.1185 0.1059 2.0224 

(3.0691) (-4.0437)   (3.2638) (-3.5833)      

0.0012 -0.0466     0.7915  0.0731 0.0644 1.8958 

(3.9160) (-3.8864)     (1.5573)     

0.0013 -0.0483      0.5225 0.0664 0.0575 1.9109 

(3.9967) (-3.8708)      (0.9383)    
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Table VI 

Regression Tests Using Unexpected Changes 

This table presents the changes regressions, i.e. explaining the market return at time t by the changes in the explanatory 
variables between time t-2and time t-1. The regressions use data for period between February 1993 and December 2010. All 

parameters are normalized to one day. 
m

r  is the daily adjusted to dividend return on the SPDR.  is the daily ambiguity 

level during the month. DVAR  is the difference of the observed VAR in the last trading day of the current month and the last 

trading day of the previous month. 2DVIX  is the difference of the observed VIX in the last trading day of the current month 
and the last trading day of the previous month. 

2 2
, 1 1 2 3m t t t t tr DVAR DVIX         . 

  2
1t  t

DVAR  2

t
DVIX  2R  

2Adj R  DW  

0.0012 -0.0404 -2.1990  0.1947 0.1870 1.9517 

(3.9799) (-3.6142) (-5.8852)     

0.0011 -0.0379  -8.4014 0.4642 0.4591 1.8360 

(4.6313) (-4.1587)  (-12.5774)    

0.0002  -2.2957  0.1448 0.1408 1.8091 

(1.7097)  (-5.9918)     

0.0002   -8.5763 0.4203 0.4175 1.7145 

(2.1103)   (-12.3971)    

 

 


