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Abstract

I provide a closed-form solution to the optimal dynamic risk choice of a fund man-

ager who is compensated under a high-water mark contract. The manager’s optimal

risk choice varies with the distance between the fund’s asset value and its high-water

mark. Negative returns increase the manager’s effective risk aversion (‘de-leveraging’)

when the value of his outside option is low, termination is ‘strict’, or management fees

are high, and decrease his effective risk aversion (‘gambling’) otherwise. I show that

in the absence of limits on risk taking, it is never optimal for a manager to walk away.

When there are risk limits, walk-away can be optimal following losses.
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1 Introduction

High-water mark (HWM) contracts are the predominant performance-based incentive scheme

used to compensate managers in the hedge fund industry. The contract pays a fund manager

a fixed fraction of the fund’s return in excess of its historical maximum cumulative return–

the high-water mark. An important question is, what is the optimal risk choice of a manager

under this simple compensation mechanism? This question is particularly poignant in the

case of hedge funds since they are amongst the most unconstrained and sophisticated in-

vestors. Moreover, understanding how the HWM impacts hedge funds’ risk tolerance may be

important in understanding price dynamics in markets where they are an influential investor

or liquidity provider. HWM-style incentives are also implicit in other types of performance-

based compensation (e.g. executive compensation), so understanding the optimal risk taking

behavior they induce is relevant in settings beyond hedge funds.

Despite the great value in understanding the answer to this question, there are only a few

results in the literature on the optimal risk choice of a manager facing HWM incentives. In

this paper, I greatly expand the set of known results by providing a closed-form solution to

this problem. The solution shows that the manager’s optimal risk choice varies as a function

of the distance between the fund’s asset value and its high-water mark. Two main types

of risk-choice dynamics are possible: (i) ‘loss-driven de-leveraging’, whereby the manager

reduces fund leverage as the fund’s value falls further below the HWM,1 and (ii) ‘gambling

for resurrection’, where the manager instead increases risk-taking as the fund’s value falls

further below the HWM. I show how the specific dynamic that arises is determined jointly

by several key characteristics of the manager’s environment: the value of his outside option,

the ‘termination policy’ or distance the fund can drop below the HWM before triggering the

manager’s termination, and the discounted value of management fees (the manager’s ‘inside

payoff’). I further solve for the manager’s optimal walk-away policy. I show that walk-away

is never optimal in the absence of limits on the manager’s risk-taking and why risk limits

can make walk-away optimal following negative returns.

The main antecedent to this paper is Panageas and Westerfield (2009) (henceforth PW),

who are the first to provide closed-form results for the HWM risk-choice problem. Similar

to PW, I solve for the risk-choice of an indefinitely-tenured, risk-neutral manager facing a

HWM. PW show that such a manager optimally acts like a CRRA investor with a (fixed)

1In the model the manager controls risk-choice by changing the weight of the risky and riskless asset in
the fund’s portfolio, i.e. by changing fund leverage.
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risk-aversion of less than one. As they emphasize, this result shows that despite the (call)

option-like nature of the HWM payout, even a risk-neutral manager does not put unbounded

weight on risky assets. Their result provides an important underpinning for the results in

this paper. However, the framework in PW does not incorporate a number of important

considerations that fundamentally impact the nature of the manager’s optimal risk-taking

behavior. Incorporating these considerations reveals a rich class of possible risk-taking dy-

namics on the part of the manager. The constant risk choice found by PW then appears

as a unique special case of the general solution. While incorporating these factors into the

manager’s problem raises substantially the complexity of the problem, I am still able to

find closed-form solutions that illustrate how the different factors impact the manager’s risk

choice policy.

Two important considerations that I incorporate into the manager’s problem are: (1)

the manager can be terminated when bad performance reduces the fund value to a given

percentage of the HWM, and (2) the manager receives an outside payoff (i.e., has an outside

opportunity) in case of termination or walk-away.2 This outside payoff is proportional to

the scale of the fund, so the manager of a larger fund will have a larger outside payoff.

Both considerations are highly relevant to managers in practice. For hedge fund managers

in particular, a common view is that the outside option has an important influence on risk-

taking. As this paper shows, the nature of the manager’s optimal risk choice depends greatly

on both considerations. In contrast, in PW the manager is never terminated–he continues to

run the fund so long as fund assets are non-zero. Moreover, his outside payoff is implicitly

fixed at zero.

The risk of termination enters prominently into the manager’s dynamic risk choice. When

losses drop the fund value below the HWM, bringing it closer to the termination boundary,

the manager must weigh two offsetting considerations. On the one hand, the greater distance

from the HWM means the manager must wait longer until he receives any more performance

fees. This pushes him in the direction of taking more risk in order to reduce the expected

discounted time to payment. On the other hand, the closer proximity to the termination

point reduces the manager’s margin for error. This makes the manager effectively more

‘risk-averse’, and pushes him towards reducing risk.3 As I show, the solution weighs these

2The outside payoff is the value to the manager in utils or equivalently dollars (since he is risk neutral),
of his opportunity cost. I do not take a stand on the specific source of this, but a natural candidate is the
value of starting a new fund or the value to the manager of his leisure.

3As stated above, the manager is assumed to be risk-neutral. However, as shown, his indirect utility
function has curvature, so he behaves as if he is risk-averse.
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two competing considerations against each other. Which consideration dominates depends

on the termination policy, the manager’s outside payoff, and the discounted value of non-

performance payouts, such as management fees, received by the manager while he is inside

the fund (the ‘inside payoff’).

If the outside payoff is not much higher than the inside payoff, or the termination point is

relatively close to the HWM, then avoiding termination dominates the desire to reduce the

time to the HWM. In this case, the manager will reduce risk as the fund falls further below

the HWM. Indeed, the solution to the manager’s problem shows that the manager’s effective

‘risk-aversion’ increases sharply as a function of the distance below the HWM, causing him

to drastically reduce fund leverage. Both the overall level of risk taken by the manager and

the rate of deleveraging are determined jointly by the outside payoff, termination point, and

inside payoff. Unlike the result in PW, the set of potential (endogenous) manager ‘risk-

aversions’ expands to include all positive values, as opposed to just values less than one.

An additional finding is that the (endogenous) functional form for the manager’s effective

risk-aversion that arises here bears a very close analytical resemblance to the (exogenously

specified) external habits preferences of Campbell and Cochrane (1999), with the surplus

ratio corresponding to the distance between the fund’s wealth and the high-water mark.

However, in contrast with external habits, variation in the manager’s effective risk aversion

is driven directly by realized returns rather than by changes in consumption.

If the outside payoff is high relative to the inside payoff, or the termination point is

far below the HWM, then the desire to reduce the time to the HWM will dominate. In

this case, the manager’s effective risk-aversion decreases and he takes more risk as the fund

falls below the HWM. The dynamic is again nonlinear, with risk-taking rising increasingly

rapidly as termination is approached. This increased risk-taking can be viewed as a form of

‘gambling for resurrection’ by the manager, since it is triggered by losses. However, unlike

‘pure’ gambling, the manager’s position in the risky asset remains finite and well-defined.

I further extend the manager’s problem to incorporate the impact of a continuous rate

of fund withdrawals by investors and to include a management fee. A higher rate of fund

withdrawal makes the fund manager effectively less risk-averse, causing him to take more

risk. This reflects the fact that in the face of a greater rate of withdrawal, it becomes

more important to quickly increase the fund’s value (and reach the HWM). This results in

the manager discounting his continuation value more strongly and therefore decreases the

level of risk aversion induced by the HWM. In contrast, a higher management fee decreases
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risk taking by raising the inside payoff to the manager. This is because the value of the

perpetuity represented by the management fees makes managing the fund more attractive

for the manager relative to his outside payoff, which increases the importance of avoiding

termination.

I then consider the manager’s optimal walk-away decision. If the manager’s outside

payoff is positive, then the manager may consider voluntarily walking away from the fund,

and this walk-away option may have an important influence on the manager’s risk choices.

I therefore allow for walk-away and solve jointly for the manager’s risk choice and optimal

walk-away decision. Remarkably, the solution shows that it is actually never optimal for

the manager to exercise his walk-away option. Only when the fund value is zero will the

manager trivially ‘walk away’. To understand this, consider a fund manager who walks away

when the fund value drops to some fraction of the HWM. This fund manager is better off

pushing down this walk-away point and simultaneously raising his risk-taking globally, as this

combination results in a greater expected payout for him at any level of fund wealth. This

suggests, however, that manager walk-away may be optimal if the manager is constrained

in his ability to increase risk/leverage. This constraint might arise in the form of margin

constraints, position limits, or it may be exogenously imposed by investors. To investigate

this intuition, I solve the manager’s problem with position limits. I find that when the

position constraint binds, then it can be optimal for the manager to exercise his walk-away

option. Moreover, the manager will exercise his walk-away option earlier when his outside

payoff is bigger and when the position limit is lower, and thus binds more tightly.

Finally, I consider an extension of the model where the rate of investors’ withdrawals

depends on the fund’s performance. I assume that if fund assets falls below some percentage

of the HWM then this triggers an increase in the rate of investor withdrawals, reflecting some

loss of faith in the manager by investors. In response, the manager locally increases risk-

taking despite the increased distance from the HWM and the closer proximity to termination.

This response is consistent with the idea of ‘gambling for resurrection’; increased losses by

the fund manager actually induce him to become more aggressive in his risk taking. A

corresponding global effect is that the manager becomes more cautious in the region close

to the HWM, when the rate of withdrawals is still low, since he takes into account the risk

of greater future withdrawals in the solution to his dynamic problem.

Relation to the Literature

This paper is relate to the literatures on incentives frictions in delegated asset man-
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agement, option-based compensation, and the impact of financial intermediation on asset

prices. As indicated above, this paper builds on results in Panageas and Westerfield (2009).

PW itself is closely related to Goetzmann, Ingersoll and Ross (2003) (henceforth GIR). GIR

provide closed-form solutions for the present value of the hedge fund manager’s fees and

investors’ claim under a high-water mark contract when the risk-choice of the manager is

exogenously fixed at a constant level. The framework in their paper is quite general and

incorporates important considerations such as termination, which is triggered when fund

wealth falls to a given percentage of the HWM, investor withdrawals, and management fees.

This paper follows that framework in incorporating these features. Moreover, the solution

for the manager’s value function in this paper is equivalent to the discounted expected value

of the manager’s payoffs. In contrast to GIR, however, this paper solves for the manager’s

optimal risk-choice, which is in general very different from the fixed level assumed in their

paper. Indeed, understanding the manager’s optimal dynamic risk-taking is the central ob-

jective of this paper. This also accounts for why aspects of the manager’s problem, such as

his outside payoff and walk-away option, are very important to this paper but do not appear

in GIR. On the technical side, this paper also has similarities to Browne (1997, 2000), who

solves a set of control problems where the goal is to maximize an expected discounted reward

from attaining a goal.

Carpenter (2000) solves for the risk choice of a risk-averse manager facing a finite horizon,

who is compensated with a single call option. The HWM contract is akin to compensation

with a series of call options, where an option that is exercised is replaced with one with a

higher strike price (the new HWM). Moreover, with a HWM the horizon is indefinite. This

leads to important differences in the predicted risk choice of the manager. In Carpenter’s

model, the risk choice of the manager goes to infinity as the asset value decreases to zero,

while in Panageas and Westerfield (2009), the risk choice of the manager remains constant.

Panageas and Westerfield (2009) show that the difference between the finite horizon in

Carpenter (2000) and the indefinite horizon of the HWM model is a key to this difference

since with an indefinite horizon the continuation value of the manager has an important

role in attenuating risk taking. This papers shows that with a HWM and an indefinite

horizon, it is in fact possible for risk taking to decrease or increase as losses increase the

distance between fund wealth and the HWM. PW is a special case that is right at the

boundary, where risk taking remains constant. In contemporaneous work, Lan, Wang, and

Yang (2011) solve numerically the problem of a HWM-compensated hedge-fund manager

whose alpha-generating strategy suffers from decreasing returns to scale.
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Although the high-water mark contract is closely associated with the hedge fund industry,

similar incentives arrangements are often implicit in other contexts. An example is a manager

of a corporation whose compensation is in part based on firm performance reaching new

highs (e.g., record earnings or stock price). This compensation sensitivity might result from

bonuses that are performance-sensitive, or from the granting over time of a series of executive

stock options. If increasing firm risk can improve measured performance, then the manager

faces a problem very similar to the one modeled here.

There is also a growing literature on the impact of financial intermediation and incentives-

related frictions on asset price dynamics. For instance, He and Krishnamurthy (2010) develop

a model where the risk-bearing capacity of a risk-tolerant financial intermediary sector is

a central driver of risk premiums and hence asset prices. In particular, the behavior of

intermediaries is potentially an important factor in explaining the dynamics of asset prices

during the recent financial crisis. By solving for the dynamic risk choices of a prominent

group of intermediaries (i.e. hedge funds), this paper helps to understand mechanisms that

may have contributed to the crisis’s dynamics. For example, an apparently important feature

of the financial crisis was the de-leveraging of the normally risk-tolerant hedge fund sector.

For hedge funds facing the problem modeled here, this paper demonstrates that losses would

induce de-leveraging. Moreover, the effect is non-linear so that large losses would induce an

increasingly sharp rate of de-leveraging. This means that a large macroeconomic shock that

leads to losses across many hedge funds simultaneously would cause a coordinated and sharp

de-leveraging in the hedge fund sector.4

Finally, there is an expanding empirical literature that focuses especially on hedge funds.

Early works include Fung and Hsieh (1997), Ackermann, McEnally, and Ravenscraft (1999),

Brown, Goetzmann, and Ibbotson (1999), and Brown, Goetzmann, and Park (2001). Recent

work includes Agrawal, Daniel, and Naik (2009), Fung, Hsieh, Naik, and Ramadorai (2008),

Aragon and Nanda (2010), Ang, Gorovyy, and van Inwegen (2011), and Ray (2011).

The paper proceeds as follows. Section 2 lays out the model describing the manager’s

optimal risk choice problem. Section 3 derives its solution, analyzes comparative statics, and

develops the intuition behind the solution’s functional forms. Section 4 analyzes the walk-

away decision and shows that voluntary walk-away is never optimal for an unconstrained

manager. It then extends the model to include risk limits, solves it, and shows that in this

case walk-away can be optimal. Section 5 considers an extension where losses trigger an

4Such an effect would naturally augment other potential drivers of de-leveraging, such as increases in
margin requirements.
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increase in the rate of investor withdrawals and demonstrates how this leads to a dynamic

increase in risk taking. Section 6 concludes. Proofs not appearing in the main text are left

to the Appendix.

2 Model

A risk-neutral manager allocates a portfolio between one risky asset and a money market

account. The price of the money market account evolves according to

dP0,t

P0,t

= rdt

where r is the fixed interest rate earned by the money market account. The manager can go

long or short the money market account.The price of the risky security evolves according to

dP1,t

P1,t

= µdt+ σdBt

where µ > r and σ > 0 are constant and Bt is a one-dimensional Brownian motion. Like PW,

I do not take a stand on the source of the risky investment’s expected return since I study

how the manager responds to this investment opportunity and not why it exists. The risky

asset expected return could just reflect an equilibrium risk premium or even the manager’s

subjective expectation of returns. However, a reasonable assumption is that µ represents

risk-adjusted excess return (‘alpha’) that the manager is able to generate through some

proprietary skill. Moreover, the manager may be benchmarked so that he is not compensated

for systematic risks and remains ‘market-neutral’. This is equivalent to considering risky-

asset dynamics that are risk-adjusted, i.e., taking the risky-asset dynamics above as being

given under the risk-neutral measure of the fund’s representative investor.

The manager chooses the fraction πt of fund wealth Wt to invest in the risky asset at

time t. The remaining 1 − πt then goes into the money market account. In the baseline

model there are no limits on the position that the manager can take in the stock or money

market account, except that the portfolio strategy is admissable (in L2) and the transversality

condition holds.

As in GIR and PW, I model the fund as being invested in by a group of investors with

the same HWM. This eliminates the need to keep track of a different high-water marks for

each investor. In practice, this will arise if all investors currently in the fund began investing
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in the fund at the same time, or if inflows into the fund only occur when it is at the HWM.

This assumption does not place any restriction on withdrawals, which I model as occurring

at a continuous rate φt. I do not model inflows. In the baseline model, φt is set constant,

whereas in an extension I consider a case where φt varies.

The HWM is denoted by Ht, which is the highest level that the net assets of the fund

have reached, subject to some adjustments. As in GIR, the HWM is adjusted down for

withdrawals and is adjusted up at a contractually stated rate, which I set equal to r. Ad-

justing the HWM upwards at r implies that the manager does not earn performance fees for

earning the risk-free rate on funds (it is a form of benchmarking). A final adjustment to the

HWM accounts for the management fee, which is denoted by m. As in GIR, and in practice,

the three adjustments to Ht (for φt, r, and m) are proportional; i.e., post-adjustment, the

ratio Wt/Ht remains unchanged. When Wt < Ht and the fund is not reaching a new high,

these are the only adjustments made to Ht. Hence, in the region Wt < Ht, Ht evolves

deterministically as follows

dHt = (r − φt −m)Htdt

The other region of importance is when the fund is at the high-water mark, Wt = Ht.

When the fund’s wealth increases from Wt = Ht to Wt = Ht + ε, a performance fee of kε is

paid, fund wealth is reduced by kε, and the HWM is reset to H + ε. It will be convenient

to have a notation for just these ‘ε’ increases. Therefore, let these increases be denoted by

dHε
t , so that dHt = dHε

t + (r − φt −m)Htdt.

Termination of the manager may occur in two ways. The first is if fund wealth drops to

some ‘low’ proportion C of the high-water mark, at which point investors lose confidence in

the manager. Following GIR and PW, I also allow for an exogenous random termination of

the fund that is assumed to be Poisson with intensity λ. This may represent, for example,

the possibility of a liquidity shock for investors that induces liquidation of the fund. Upon

termination, the manager receives an outside payoff that has value V t. One natural in-

trepretation of this is that it is the value to the manager of starting or managing a new fund.

With this in mind, I assume that the outside payoff of the manager is proportional to the

current magnitude of the fund. I capture magnitude by the current HWM.5 This assumption

is important for tractability, since it keeps the problem homogenous. Moreover, it is very

5Of course this also means that the outside payoff is proportional to the size of the fund at the termination
(lower) boundary, Wt = CHt, which is typically the point at which the outside payoff is realized.
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plausible; the manager of a large fund should have a more valuable outside opportunity than

the manager of a small fund. I therefore let V t = g0β1Ht. The constant chosen here is g0,

while β1 is a normalization factor that arises below. The value of g0 is freely specifiable,

subject to some economic restrictions derived below.

We can now formally represent the manager’s objective. Define τ to be a stopping time

that is equal to the termination time of the manager, or ∞ if he is never terminated. Since

the manager is risk-neutral, his objective is to maximize the expected discounted value of

the fees he receives up until termination, plus the discounted value of the outside payoff,

which is received upon termination,

Vt = max
πs

E

[∫ τ

t

e−ρ(s−t)(mWsds+ kdHε
s ) + e−ρ(τ−t)V τ

]
(1)

where ρ is the manager’s time-discount factor. Note that since µ − r > 0 is adjusted for

systematic risk (i.e., it is pure ‘alpha’), this objective is unchanged if the expectation is taken

under the representative investor’s risk-neutral measure.6,7

3 Solution

I start by deriving the Hamilton-Jacobi-Bellman (HJB) equation satisfied by the solution to

the manager’s problem. I then demonstrate a solution that satisfies these equations and also

look at some special cases of the solution that help to understand its dependence on parts

of the model.

Since the manager’s problem is homogenous in Ht, it will be beneficial to use as state

6If the manager is not risk-neutral, then his personal pricing measure will in general depend on his outside
wealth, income stream, and the size of the fund relative to these. If fund payouts are an important source
of consumption for the manager, then in general this will induce the manager to be more cautious in his
portfolio choice in order to decrease the volatility of the fund’s performance and his income/consumption
stream. I conjecture, however, that the results derived here will not change qualitatively, but leave the
solution of this problem to future work.

7In PW it is futher assumed that the manager is excluded from trading in private accounts, rendering
the market incomplete from his vantage point. Their motivation for this requirement is that in a complete
market equilibrium there is no risk-adjusted excess return on the risky asset. This implies (by their solution)
that the manager will take unbounded positions. This assumption is not necessary here because µ − r is
assumed to be a (positive) risk-adjusted return. Moreover, assuming no-arbitrage, it is implicit that the
market is incomplete, otherwise the positive-alpha asset would be an arbitrage.
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variables both Ht and a new variable

Xt =
Wt

Ht

that measures the proportional distance of current fund wealth from the HWM. Taking

differentials gives dXt = dWt

Ht
− Wt

H2
t
dHt. Substituting in the dynamics of Wt and Ht then

shows that in the region {C < Xt < 1} the dynamics of Xt are given by:

dXt =Xtπt(µ− r)dt+XtπtσdBt (2)

On the boundary {Xt = 1} there is the payout of the performance fee and the reset of the

HWM: (i) dHt = dHε
t , (ii) dWt = −kdHε

t , so that dXt = −(1 + k)dHε
t /Ht.

Now let V = V (Xt, Ht) denote the value function of the manager, given by the solution

to (1). Then, for t < τ , the process
∫ t
0
e−ρs(mWsds+ kdHε

s ) + e−ρτV τ is a martingale under

the maximizing choice of π, and satisfies the following HJB equation:

0 = −(ρ+ λ)V +mWt + λV t + sup
π
{VXXπ(µ− r) +

1

2
VXXX

2π2σ2} (3)

+ VHH(r − φt −m) + kdHε − VX(1 + k)
dHε

H
+ VHdH

ε

where the last three terms are non-zero only at the boundary {Xt = 1}.

3.1 Model Solution

For the baseline model, I make two changes to (3) before solving it. First, I assume that φt is

a constant φ. In an extension I relax this assumption and allow φ to take on a low and high

value depending on the fund’s performance. The second change relates to the management

fee payout and is necessary for analytical tractability. While I continue to assume that

funds are withdrawn from fund wealth at the rate m, and Ht continues to be appropriately

adjusted (downwards) at this rate, I assume that the payout received by the manager is a

constant proportion of Ht, given by mHHt. This serves as an approximation. For much of

the analysis, I set management fees to zero (m = mH = 0) so this has no effect. Where

management fees are non-zero, a natural choice is to set mH to be a fraction of m in order

to get a similar average level of payout.8 It is possible to relax the assumption of constant

8A ‘conservative’ choice is mH = Cm since then mHH < mWt.
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mH , and get closer to a constant proportion of Wt, by having mH decrease piecewise with

the value of Wt. However, the given assumption provides a high degree of tractability and

will allow much clarity regarding how the management fee impacts the solution and manager

behavior.

Assuming that VX ≥ 0 and VXX < 0,9 we can use the first-order condition to find the

optimizing value of π in (3),

π∗ =
−(µ− r)

σ2

VX
XVXX

(4)

Substituting π∗, the expression for V t, and mtWt = mHHt into (3) and simplifying the

resulting expression gives

0 = −(ρ+ λ)V +mHHt + λg0β1Ht − ω
V 2
X

VXX
+ VHH(r − φt −m) (5)

+kdHε − VX(1 + k)
dHε

H
+ VHdH

ε

where ω is defined as

ω =
1

2
SR2 =

1

2

(µ− rf )2

σ2

Conjecture that

V (Xt, Ht) = β1HtG(Xt) . (6)

The homogeneity of V in Ht is a consequence of the scale invariance of the problem. The

coefficient β1, which was introduced earlier, is a normalization constant whose value is chosen

in order that G(1) = 1.

The first line of (5) holds throughout, while the second line applies only at X = 1 and

thus serves as the boundary condition on V . The solution for V must therefore satisfy the

two parts separately. Consider first the second line. Substituting in the conjecture shows

that the following condition must hold at X = 1 for the three terms in the second line to

sum to zero

k − β1GX(1)(1 + k) + β1G(1) = 0 .

Solving for β1 and applying the normalization G(1) = 1 gives

β1 =
k

GX(1)(1 + k)− 1
. (7)

9This assumption is verified by the solution, as shown below.
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The solution for the ordinary differential equation (ODE) represented by the top line of (5)

is given by

G(Xt) =

(
Xt −D0

D1

)η
+D2 (8)

Substituting this back into the ODE gives four equations that must be jointly satisfied by

η, D0, D1 and D2. The solution for D2 is

D2 =
mHβ

−1
1 + λg0

ρ+ λ− r + φ+m

I assume that the denominator in D2, which as I explain below has a natural interpretation

as a present-value factor for a perpetuity, is positive, i.e., ρ+λ−r+φ+m > 0. The solution

for η is given by

η =
ρ+ λ− r + φ+m

ω + ρ+ λ− r + φ+m
(9)

It is important to note that since µ − r > 0 (i.e., positive ‘alpha’) then ω > 0 and hence

0 < η < 1. This means that VXX < 0, and hence V is concave, consistent with the assumption

made in deriving π∗ in (4). D0 and D1 depend on the boundary conditions for G(Xt), which

follow directly from the boundary conditions for V (Xt, Ht). They are: G(C) = g0 and

G(1) = 1. Solving for D0 and D1 gives

D0 = C − 1− C
(1−D2)1/η − (g0 −D2)1/η

(g0 −D2)
1/η

D1 =
(1− C)

(1−D2)1/η − (g0 −D2)1/η

3.1.1 The ‘Inside Payoff’

Consider the quantity represented by D2. The term β1HtD2 is the value of an indefinite-

horizon payout stream that is discounted at the rate ρ+λ− r+φ+m. The rate of payout is

Ht times mH +λg0β1, which captures the management fee (mHHt) and the expected outside

payoff from stochastic termination (λg0β1Ht). The ‘discount rate’ captures four factors that

discount or reduce the value of these future payments: the manager’s time-discount factor

ρ, the stochastic termination intensity (λ), the rate of outflows (φ), and the management

fee itself (m), plus one factor, the contractual growth rate of the HWM (r), which increases

future payments.
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Note that the discounted expected value of the payout stream captured by D2 does not

include the expected value of performance fees. It also does not include the expected value

of the outside payoff realized at the termination point C. It therefore captures the expected

value of payouts, excluding performance fees, earned by the manager while he is managing

‘inside’ the fund. I therefore refer to the value of these payouts as the ‘inside ex-performance

payout’, or more concisely, as the ‘inside payout’. Note that the inside payout does not

depend on Xt and therefore represents a lower-bound on the expected discounted payout

(i.e. value function) of the manager. Therefore, V (Xt, Ht) ≥ β1HtD2. This then implies

that the manager’s value function at the termination point must be greater than or equal

to the value of the inside payout: V (C,Ht) ≥ β1HtD2. This shows that we need a different

boundary condition in the case that the outside option is less than the inside option, i.e., in

case g0 < D2. In this case, we replace the condition G(C) = g0 with

π∗t (C) = 0 .

That is, when the inside option is greater than the outside option, the manager avoids

termination by optimally reducing risk taking to zero as Xt approaches the termination

point C. As will be clear below from the expression for π∗, this condition implies that

D0 = C

D1 =
(1− C)

(1−D2)1/η

It follows immediately that the condition π∗t (C) = 0 is equivalent to G(C) = D2.
10 In other

words, the manager’s value function at the termination boundary is in general equal to the

maximum of the outside and inside payoffs.

3.1.2 Parameter Restrictions

An important restriction is that the manager’s value function at the HWM should be greater

than his outside payoff. Otherwise, the manager’s problem is vacuous–he should immediately

leave the fund to obtain the outside payoff. This consideration gives the restriction g0 < 1.

An additional restriction on the solution, which also appears in Panageas and Westerfield

(2009), is that β1 > 0. Intuitively, β1 is a multiplier of Ht that captures the accumulated

10Note that the expressions for D0 and D1 in this case can be obtained by substituting in g0 = D2 in their
counterparts above.
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value of future increases of Ht on the manager’s value function. The requirement β1 > 0

ensures that the discounted sum of expected future payments, given by the manager’s value

function, is finite. From (7), this condition is equivalent to GX(1)(1 + k) > 1.

When these parameter restrictions hold, a standard martingale verification argument

confirms that value function Vt is indeed given by (6) and (8) and the optimal value of πt by

(4) (see e.g., Browne (1997), Oksendal (2003), and Panageas and Westerfield (2009)).

3.2 Optimal Risk-Choice

Substituting the solution for the manager’s value function (equations (6) and (8)) into (4)

and simplifying, we obtain the following expression for the manager’s optimal risk-choice,

i.e., his investment in the risky asset,

π∗t =
1

(1− η)( Xt
Xt−D0

)

µ− r
σ2

(10)

As the solution shows, unless D0 = 0, the risk-choice of the manager depends dynamically

on Xt. In fact, the proportion invested in the risky asset by the manager is the same as

would be chosen by a risk-averse investor whose relative risk aversion equals (1 − η) Xt
Xt−D0

.

This expression reveals that there are three cases to consider for the relationship between

Xt and the manager’s effective risk-aversion/risk-choice : (i) D0 > 0, (ii) D0 < 0, and (iii)

D0 = 0.

Consider first the case where D0 > 0. Note what happens to the effective ‘risk-aversion’

of the manager as Xt decreases from the maximum value of 1 (when the fund is at the

HWM). In this case, the effective ‘risk-aversion’ of the manager increases and he becomes

more cautious. He therefore chooses to de-lever the fund (reduce π∗t ). Figure 1 illustrates

this relationship between the distance of the fund from the HWM (captured by Xt), the

manager’s effective risk-aversion, and the manager’s risk-choice. Note that the impact of

losses on leverage and risk-aversion can be strongly non-linear. Indeed, a simple calculation

shows that the elasticity of the manager’s effective risk-aversion with respect to Xt is given

by −D0

Xt(Xt−D0)
. Hence, when D0 > 0, risk-aversion increases and leverage decreases more

quickly as losses push the manager further below the HWM. Furthermore, the maximum

effective risk-aversion in this case, occurring at Xt = C, is unbounded (corresponding to the

case D0 = C). Thus, the range of possible effective risk-aversions in this case includes the

whole positive interval. It is also quite interesting to note that the dynamics of ’risk-aversion’
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in this case strongly resemble an external habits process. In the external habit process of

Campbell and Cochrane (1999), the local coefficient of risk-aversion is (in their notation)

γ Ct
Ct−Ht . Hence, variation in Ct acts like variation in Xt in driving the changes in risk-

aversion. However, unlike the habits model, here the effective risk-aversion and its variation

arise endogenously from the risk-neutral manager’s problem rather than being assumed into

the manager’s preferences. Another important difference is that returns themselves rather

than consumption shocks are the source of variation driving risk-aversion variation. Still,

the two processes have very similar nonlinear dynamics that are both ‘counter-cyclical’ in

the sense that negative shocks raise risk-aversion.

When D0 < 0, the risk-choice of the manager actually increases as he falls further below

the HWM. This is illustrated in Figure 2, which plots a comparison of π∗t for the three

cases of D0. Note how the dash-dot line, which illustrates the case of D0 < 0, rises as Xt

falls, while the opposite holds for the case of D0 > 0, illustrated by the dashed line. What

explains this difference and the dependence on D0. As discussed above, and detailed in the

next section, D0 captures the joint impact on the manager’s risk-choice of factors such as

the outside payoff of the manager g0, and the termination point, C. For example, a higher

outside payoff corresponds to a lower value of D0. Hence, an important factor contributing

to D0 < 0 is a sufficiently ‘high’ outside payoff. Now consider how this interacts with the

manager’s distance from the HWM. As the manager drops further below the HWM, two

considerations influencing the manager’s risk-choice are: (1) the expected time until he is

paid any further performance fees increases and (2) the likelihood increases that he will be

terminated. For a manager with a sufficiently high outside payoff, as captured by D0 < 0,

risk-choice will depend more strongly on the first consideration. Such a manager will increase

risk-choice because he puts more weight on shortening the time until payment than on the

increased likelihood of termination that will result from this policy. On the other hand, a

manager with outside payoff sufficiently low, so D0 > 0, is more concerned about the second

consideration. Hence, he decreases risk taking to reduce the probability of fund wealth falling

to the point of termination. Finally, for the case of D0 = 0, the manager has a constant

effective risk-aversion and risk-choice that does not vary with Xt. This is shown as the solid

line in Figure 2. This case includes the result in PW as a special case, as discussed below.
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3.2.1 Comparative Statics

I assume throughout this section that m = mH = 0, which allows simple analytical character-

izations of all of the comparative statics. In a subsequent section I analyze m > 0, mH > 0.

The forces at work in the solution are the same with m > 0, mH > 0 but in that case finding

the value of D2 requires solving a non-linear equation (see the Appendix) that does not have

an explicit solution and does not lend itself to such simple analytical expressions.11

Lemma 1. Let m = mH = 0. The following obtain:

1.
d π∗t
dC

< 0

2.
d π∗t
dg0

> 0

3. lim
ω→0

π∗t →∞ and lim
ω→∞

π∗t →∞

Moreover,
d π∗t
dω

< 0 if ω < ρ+ λ+ φ− r

4.
d π∗t
dφ

> 0

As equation (10) shows, π∗t depends on two endogenously-determined constants, D0 and

η. D0 captures the impact on the manager’s optimal risk-choice of his termination point and

the excess of his outside payoff over his inside payoff. A higher value for C increases D0 and

from (10) it is clear that this reduces π∗t at all values of Xt, including when the fund is at

the HWM. Hence, a ‘stricter’ termination policy induces the manager to be globally more

risk-averse. A decrease in the value of the outside payoff g0 also increases D0, and therefore

increases the manager’s effective ‘risk-aversion’ and reduces his risk-choice. It is interesting

to note that, for a fixed value of C, the maximum value of D0 is C, corresponding to the

case g0 = D2. That is, manager risk-aversion is maximized when the outside payoff has

no excess value over the inside payout. In this case, it is clear from (10) that as Xt → C,

risk-aversion goes to infinite and π∗t → 0. It is also interesting to take a look at the shape of

the manager’s expected discounted payoff (i.e. value function) as a function of Xt and of g0.

This is illustrated in Figure 3 , which plots V (Xt) corresponding to three cases of g0. The

solid line corresponds to the largest value of g0, while the dash-dot line, which has the most

curvature, corresponds to g0 = D2 = 0.

11This arises because the value of D2 depends on β1 which itself depends on D2 via D0 and D1.
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The impact of ω, the (squared) Sharpe Ratio of the risky asset (and hence also of the

manager’s portfolio), is non-monotonic. Varying ω changes two quantities in (10): the

quantity (µ− r)/σ2, and the endogenously determined constant η. The interaction of these

two changes produces the non-monotonicity. As the Appendix shows, π∗t can be rewritten

as

π∗t =

√
2

σ

(√
ω +

ρ+ λ− r + φ√
ω

)
Xt −D0

Xt

which shows that π∗t gets large for both large and small ω. The result that π∗t gets large

for large omega is consistent with the intuition that an improved investment opportunity

increases investment in the risky-asset. The surprising result that π∗t also gets larger for

smaller ω was also shown in PW and continues to hold true here. As they point out,

effective ‘risk aversion’ is endogenously determined and depends on the importance of the

manager’s continuation value. When ω is sufficiently small, the decrease in effective ‘risk-

aversion’ dominates the decreased attractiveness of the investment opportunity, so that π∗t

actually decreases.

By decreasing the rate of fund growth and the future size of the fund, an increase in

the withdrawal rate φ diminishes the importance of the future or continuation value in the

manager’s problem. Since this continuation value acts to attenuate the manager’s incentive

for risk taking, its decrease implies greater risk taking by the manager. Figure 4 illustrates

a comparison of π∗(Xt) for three values of φ, with the solid line representing the lowest rate

of outflow and the dash-dot line the highest.

Finally, I examine the impact of the incentive fee, k, on the value function of the manager,

maintaining the assumption m = mH = 0. In PW, increasing k for the risk-neutral manager

unambiguously decreases his value function because the resulting decrease in the growth rate

of fund assets outweighs the benefit of the immediate payout to manager. Interestingly, it

turns out that this result no longer holds here in general. Differentiating V with respect to

k gives

Vk(Xt, Ht) =
GX(1)− 1

[GX(1)(1 + k)− 1]2
HtG(Xt)

Hence, the sign of the derivative depends on GX(1) ≷ 1. GX(1) acts like a discount factor

with a value that is closely tied to the level of the manager’s effective ‘risk-aversion’. Hence,

when the manager’s overall level of ‘risk-aversion’ is high, increases in k increase his value

function. In this case, the value of immediate payout is now greater than the loss in fund

growth rate, and the manager is better off. For example, this happens when C is high or g0
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is low. On the other hand, when ‘risk-aversion’ is low, the opposite is true, as in the special

case in PW.

3.3 Special Cases

In order to gain more intuition about the general solution, I look at some special cases.

Consider first the model in PW. Since PW do not explicitly consider an outside payoff in

their paper, they are implicitly setting g0 = 0. In addition, there is no termination, so

implicitly, C = 0. Finally, D2 = 0. Substituting these values in gives D0 = 0, D1 = 1, and

G(Xt) = Xη
t π∗t =

1

1− η
µ− r
σ2

β1 =
k

η(1 + k)− 1

which are the same as in PW. In this case, ‘risk-aversion’ is just 1 − η, which has a value

less than one, and is independent of Xt. Hence, the manager behaves exactly as would

a CRRA investor. Note that we can actually attain the same value function and optimal

risk-choice for the manager when C > 0, by simultaneously increasing the outside payoff

to g0 = Cη. As Lemma 1 shows, decreasing (increasing) the outside payoff from this value

decreases (increases) the manager’s risk-choice. When g0 is decreased to 0, then D0 = C,

D1 = 1− C, and

G(Xt) =

(
Xt − C
1− C

)η
π∗t =

1

(1− η)( Xt
Xt−C )

µ− rf
σ2

β1 =
k

η(1− C)−1(1 + k)− 1

Notice that in this case effective risk-aversion increases without bound and π∗t → 0 as

Xt → C. The manager is least ‘risk-averse’ at the HWM, where his effective risk-aversion is

(1− η) 1
1−C . This adjustment by (1− C)−1, which reflects the rise in ‘risk-aversion’ relative

to PW, also appears in the coefficient β1. Indeed, for the same value of k and all other

parameters, it increases the discounting inherent in β1 and therefore helps to ensure that

the restriction β1 > 0 holds. We can further see from this term how the result in PW that

Vk < 0 can cease to hold. In particular, GX(1) = η(1 − C)−1 and hence, GX(1) > 1 when

C > 1− η. Thus, if termination is sufficiently strict then Vk ≥ 0. If not, then Vk < 0, which

is the case for PW , where it is implicit that C = 0.
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3.4 Management Fee

An increase in the management fee has two conflicting effects on the manager’s problem.

The first, call it the “withdrawal effect”, is that, like a rate of withdrawal, the management

fee reduces the growth rate of the fund. This effect is captured in the expression for η and

in the denominator of D2, where the impact of m is the same as the impact of φ. Like an

increase in φ, an increase in m discounts more strongly the continuation value of the fund in

the manager’s problem and therefore leads to an increase in risk-choice. Taken in isolation,

this effect also reduces the value function of the manager. Of course, unlike a withdrawal,

the management fee is paid to the manager. Hence, the second effect, call it the “payout

effect”, is that an increase in mH increases the stream of payments to the manager. This

effect is captured by mH in the numerator for D2, which increases the value function of the

manager. Since an increase in D2 reduces the manager’s risk-choice, this payout effect pulls

the manager’s risk choice in the opposite direction from the withdrawal effect.

We can investigate this analytically by considering a dm increase in both m and mH at

the point m = mH = 0. First, it is clear by inspection that d η
dm

> 0, which implies greater

risk taking by the manager. Second, differentiating D2 gives

dD2

dm
∣∣
m = mH = 0

=
β−11 (ρ+ λ− r + φ)− λg0

(ρ+ λ− r + φ)2
.

This shows that the sign of dD2

dm
at m = mH = 0 depends on the sign of the numerator, which

determines whether the payout or withdrawal effect dominates on D2. If the numerator is

negative, then the withdrawal effect dominates and D2 is reduced, which reinforces the

increase in risk-choice coming from η. In this case the impact of an increase in management

fee is unambiguously to increase risk-choice. On the other hand, if the numerator is positive,

then the payout effect dominates, D2 increases, and this acts to reduce the manager’s risk

taking. There are then two opposite forces on risk-choice.

The net effect of these two forces depends on the specific parameter values and may

further depend on the value of Xt. That is, an increase in m and mH may increase risk-

choice for a region of values of Xt but decrease risk-choice over another region. Figure 5

plots an example of this. The top panel shows the manager’s expected discounted payoff

(value function) and the bottom panel his risk-choice, for m = mH = 0, m = mH = 0.02

and m = mH = 0.04. The top panel shows that for this parametrization, the increase in

management fee increases the manager’s expected payoff for all Xt. The impact on risk-
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choice is non-monotonic, as the bottom panel shows. For high values of Xt, the higher

management fee is associated with a higher risk-choice. In this region the withdrawal effect

dominates. However, as Xt approaches the termination point, the risk-choices converge and

then reverse ordering. For Xt close to the termination point, the payout effect dominates

and risk-choice is lower for the higher management fee.

The impact on risk-choice of increasing C, g0, or φ when m > 0, mH > 0 are qualitatively

similar to when m = mH = 0. If β1 were held constant, then analyzing the comparative

statics would remain analytically simple. However, β1 does vary with these parameters if

mH > 0, which complicates the analytical expressions. For C and g0, the change in β1

reinforces the forces which drive the comparative static under m = mH = 0. For example, as

shown for m = mH = 0, an increase in C or decrease in g0 reduces risk-choice and decreases

the value function of the manager. This implies a decrease in β1, which further increases

D2 when mH > 0. This increase in D2 reflects the increased relative importance in these

cases of the inside payout. Since this makes the manager more ‘risk-averse’, it reinforces the

decrease in risk-choice. Figure 6 plots a comparative static for C with mH = 2%. The plot

shows how risk-choice decreases globally as the value of C is increased. For φ, the decrease

in β1 actually counteracts the increase in risk-choice induced by an increase in φ, so the net

effect is more complicated. Figure 7 plots a comparative static for φ with m = mH = 2%.

For the given parameterization, the plot shows that an increase in φ increases risk taking.

However, the difference in risk taking across φ values narrows and becomes negligible as Xt

decreases towards the termination point.

4 Optimal Walk-Away and Position Limits

I now consider, in addition to termination, the potential that the manager voluntarily leaves

the fund (‘walk-away’) to receive his outside payoff. Naturally, this walk-away decision

depends on the value of Xt. Let Cw be the value of Xt at which the manager walks away

from the fund. Suppose that Cw ≤ C. Then walk-away has no impact on the manager’s

problem because termination will always come into effect before the manager walks away.

The manager’s problem is then unaffected. On the other hand, if Cw > C, then the manager

will always walk away before he reaches the deterministic termination point. Note that in

this case, his problem simply becomes equivalent to one where C = Cw. The form of the

solution remains the same, except C is replaced with Cw. However, since Cw is a choice

of the manager, we can consider the manager’s optimal choice of Cw. This is given by the
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following proposition.

Proposition 1. The manager will always choose Cw to be less than or equal to C. In other

words, it is never optimal for the manager to walk away.

To prove this, I solve for the optimal walk-away point by requiring that the smooth-pasting

condition must hold at C∗w,

VX(Xt, Ht)|Xt=Cw = β1Htη
1

D1

(
Cw −D0

D1

)η−1
= 0 (11)

This condition must hold if C∗w is an internal optimum (see e.g, Dixit and Pindyck (1994)).

However, it is straightforward to see that this condition cannot hold, because D1 > 0 and

0 < η imply that VX |X=Cw
> 0. Another way to see this is to note that since VXX < 0,

VX |X=Cw
= 0 implies VX |X>Cw < 0, contradicting VX ≥ 0. Furthermore, VX |X=Cw

> 0 implies

that V is decreasing in Cw.12 Hence, the manager is always better off pushing his walk-away

point towads zero. In other words, it is never optimal for him to walk-away.

The Appendix provides another proof of Proposition 1. It shows that VC(Xt, Ht) < 0 for

all Xt. Therefore, reducing C increases V everywhere. It is therefore optimal to set Cw to

the lowest possible value, i.e., walk-away is never optimal for the manager. Figure 8 provides

a useful graphical view of this result by plotting G(Xt) (which is a bit more illustrative than

plotting V (Xt) due to the inherent normalization) for different values of Cw. As the top

panel in the Figure shows, decreasing Cw raises G everywhere, making it more elongated

and decreasing its curvature.

When a fund incurs large losses and is pulled far away from the HWM, it may take a lot

longer for it to reach the HWM again and for the manager to once again be paid performance

fees. It may seem quite counterintuitive then that it is never optimal for the manager to

walk away from the fund. Why is this the case? To understand this, it will be useful to

consider the manager’s optimal risk-choice as a function of Cw (when Cw > C and there is

walk-away). By Lemma 1, π∗t increases globally as Cw is decreased. This is plotted in the

bottom panel of Figure 8. With a decrease in the walk-away point, the manager becomes

in effect less ‘risk-averse’ and takes on more risk for all values of Xt. Hence, rather than

walk away when Xt = C1
w, a manager can do better for himself by walking away only when

Xt = C2
w < C1

w and increasing his risk-choice everywhere. The optimal risk-choice increases

12This follows from the argument in Dixit and Pindyck (1994) on the necessity of the smooth-pasting
condition.
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the rate at which he will reach the HWM from any value of Xt, so that he can extract a

higher payoff and is better off than choosing to walk away at C1
w.

Another useful, if more technical, way to understand this is as follows. Consider the

value function of the manager given by the dash-dot curve in Figure 8 at the walk-away

point, given by the intersection of the curve with the x-axis. It might appear that, since

the value function is downward sloping (VX < 0), it would be better for the manager to

just walk away at this point, maintaining a flat value function for lower values of Xt, then

to continue running the fund. This corresponds to the common intuition alluded to above

that the manager may walk away from the fund when fund wealth has dropped sufficiently.

This would be true if the manager were required to hold to the same risk-choice policy.

However, this is not the case, as can be seen from the bottom panel of Figure 8. When

the walk-away point is moved down, the manager responds to this by changing his policy

function to increase risk-choice everywhere, which improves his expected discounted payoff

everywhere.

To further understand this result and the value of the option to walk away, I consider

a manager who faces a constraint on the weight invested in the risky asset. I then solve

his problem, including the optimal walk-away decision. The solution shows that when the

constraint is binding, walk-away can be optimal for the manager in some scenarios.

4.1 With Binding Position Limits

To constrain the risk taking of the manager, I add the following position-limit to the man-

ager’s problem

πt ≤ π . (12)

Such a limit could naturally occur for a number of reasons. For example, it may be exoge-

nously imposed by investors who want to constrain the risk taking of the manager. Alter-

natively, it may arise simply from margin constraints. Finally, the manager may self-impose

this limit because he believes that crossing some risk threshold raises a red flag for current

or future investors, perhaps because it signals he is ‘gambling’.

Consider first the case where the unconstrained manager has D0 ≥ 0. Since π∗(Xt) is

increasing in Xt in this case, a reasonable conjecture in the presence of the constraint is

that the solution will have π∗(Xt) increasing and unconstrained on a region [C,X], and then

hitting the constraint on (X, 1] (this includes the potential that the constraint never actually
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binds, i.e., X = 1). The solution below verifies this conjecture. From the proof of Proposition

1, it follows that it will never be optimal for the manager to walk away if Cw is in an interval

of X where the manager is unconstrained. Thus, in this case there can only be optimal

walk-away if the manager is constrained on the whole interval [Cw, 1]. I first solve this case

and then consider the other possible outcomes arising from the general problem.

Proposition 2. Walk-away can be optimal for the manager at Cw, when the position-limit

(12) binds on all of [Cw, 1] and Cw solves the equation

γ2C
−γ1
w − γ1C−γ2w

γ2 − γ1
=

1

g0
(13)

where γ1, γ2 are the solutions to the following quadratic equation

1

2
γ2i σ

2π2 + γi

(
−1

2
σ2π2 + π (µ− r)

)
− (ρ− r + φ) = 0

For simplicity and to reduce notational clutter, the proposition is stated with m = mH =

0 and λ = 0. However, with adjustment to the equations, Proposition 2 would also hold

more generally if these were non-zero.

Assuming (12) binds on all of [Cw, 1], we can proceed from the HJB equation (3) by

substituting in π for π as the maximizing risky-asset weight. Once we solve for V , we can

go back to check that the assumption of a binding constraint holds. The conjecture for the

solution to the HJB equation remains the same as (6), as does (7). However, because the

solution π∗t = π is not an internal optimum, the equation satisfied by G(X) is given by

0 = −(ρ− r + φ)G+GxXπ(µ− r) +
1

2
GXXσ

2π2X2 .

The solution to this equation is

G(Xt) = A1X
γ1 + A2X

γ2 (14)

where γ1, γ2 solve the quadratic equation given in Proposition 2. I let γ1 be the negative

root and γ2 the positive root. The boundary conditions, G(1) = 1 and G(Cw) = g0, imply

the following solutions for the Ai:

A1 =
Cγ2
w − g0

Cγ2
w − Cγ1

w
A2 = 1− A1
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It remains to determine Cw such that walk-away is indeed optimal. An optimal Cw must

satisfy the smooth-pasting condition

GX(Cw) = 0 (15)

Straightforward but tedious substitution of G and the A coefficients into this condition gives

equation (13) that determines the unique optimal Cw. If also Cw ≥ C (since termination is

still permitted), then indeed walk-away is optimal. If it is instead the case that Cw < C,

then the manager would be terminated prior to his walk-away and this does not represent

the solution. We are then in one of the different cases of the general solution, which are

solved below.

The following lemma follows from the result of Proposition 2.

Lemma 2. The optimal walk-away point is increasing in the outside payoff,

dCw
d g0

> 0.

This is proved by showing that the left-hand term in (13) is decreasing in Cw. This

follows by taking the derivative of this left-hand term in Cw and showing that it is negative

using the fact that γ1 < 0, γ2 > 0 and Cw < 1. Since the right-hand term is decreasing in

g0, it follows that dCw
d g0

> 0.

The intuition behind this result is that a greater outside payoff makes it less worthwhile

for the manager to continue managing the fund at low Xt since his ability to generate value

is limited by the constraint on risk. As the constraint is loosened, the manager can generate

more value by increasing risk so the benefit of leaving decreases and the optimal walk-away

point decreases.

We can now also verify that (12) does indeed bind on [Cw, 1]. We can check this by

verifying that the Lagrange multiplier on the constraint is positive in the maximization of

the manager’s objective. Denote this Lagrange multiplier by ψ. It is given by

ψ = VXX(µ− r) + πX2σ2VXX

The top panel of Figure 9 plots V (Xt) for examples of an unconstrained, constrained,

and occasionally constrained (derived below) manager. It is also helpful to compare the

corresponding G(Xt), and these are plotted in the bottom panel. Note that the constrained
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manager’s value function need not be concave, in contrast to the unconstrained manager’s

value function. Moreover, when there is optimal walk-away (i.e., the optimal Cw is greater

than C), then the manager’s value function must be convex at the walk-away point. To see

this, note that ψ > 0 and VX(Cw) = 0 implies that VXX(Cw) > 0.

If it is instead the case that Cw < C, then walk-away is not optimal. There are then two

other cases to consider. The first is that the constraint remains globally binding even though

walk-away is not optimal. The solution to this takes the same form as (14), but now the

boundary condition is G(C) = g0 and (15) is no longer imposed. Using the resulting solution

for G, we must then check that the constraint does indeed bind everywhere, consistent with

our assumption. If this is the case, then this is the solution for the value function. Otherwise,

the constraint only binds occasionally or the manager is unconstrained. The case of an

occasionally binding constraint is solved below.

Now consider the case where the unconstrained manager has D0 < 0. Since the un-

constrained π(Xt)
∗ is decreasing in Xt, in the presence of the constraint the solution to

the problem will have π∗(Xt) constrained on a region [C,X] and unconstrained on (X, 1].

If X = 1, then the manager is constrained on the whole interval [C, 1] ([Cw, 1] if there is

optimal walk-away) and this is the case discussed above. On the other hand, if X < 1, then

this is the case of an occasionally binding constraint, which is solved below.

Finally, for completeness, note that the expression for β1 remains (7). It is clearly the

case that the constrained V (Xt, Ht) will be less than its unconstrained counterpart and that

when the unconstrained V is finite, the constrained V will be as well. Since β1 is just the

value function evaluated at Xt = 1 and Ht = 1, this further implies that the constrained β1

value will be less than the unconstrained β1.

4.2 Occasionally Binding Limits

If the constraint does not bind everywhere, then there are two cases, corresponding to

whether D0 ≥ 0 or D0 ≤ 0 for the unconstrained manager. If D0 ≥ 0, then the constraint

binds on (X, 1] where C < X < 1, or the manager is unconstrained. Assume that C < X < 1,

so that the manager is constrained some of the time. Since the manager is unconstrained on

the lower region, walk-away is not optimal, as shown above. The form of V remains the same

as in (6) but now the solution for G is split into two regions. Let G(Xt) be the solution on

the region [C,X] and G(Xt) be the solution on (X, 1]. Then G(Xt) has the form (8) since the

HJB equation on this region corresponds to an unconstrained manager. Correspondingly,
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G(Xt) takes the form (14) as the HJB equation on this region corresponds to a constrained

manager. In addition to G(C) = g0 and G(1) = 1, there are now three other boundary

conditions,

1. G(X) = G(X)

2. GX(X) = GX(X)

3. 0 = VXX(µ− r) + πX2σ2VXX

The first two conditions match the value and first derivative of the two parts of G across

the change of regions. The third condition says that at the point X, where the constraint

begins to bind, π∗t equals π. This means the risk-choice of the manager is continuous. The

five boundary conditions jointly pin down the values of the five constants, D0, D1, A1, A2,

and X. It then remains to check that (i) C < X < 1 and (ii) the constraint (12) does indeed

bind on (X, 1].

Figure 9 plots V (Xt) (top panel) and G(Xt) (bottom panel) for a comparison of an

occasionally constrained manager alongside the corresponding completely constrained (with

and without walk-away) and unconstrained counterparts. To produce the plot, π is increased

starting from a low value, where the manager is globally constrained and there is walk-away.

As π is increased, it becomes no longer optimal to walk-away. As π is increased further, the

manager becomes only occasionally constrained and X increases from a low value. When π

has increased sufficiently that X increases to 1, the manager becomes unconstrained. The

top plot shows how V (Xt) increases as the risk-limit π is raised, while the bottom plot

shows how G(Xt) becomes increasingly concave. It is clear in the bottom plot how the

slope of G is zero at the walk-away point in the unconstrained case with walk-away (solid

line), while it is positive in the other cases. Figure 10 plots π∗(Xt) corresponding to the

cases in Figure 9. It is interesting to note that for low Xt, the risk-choice of the globally

constrained manager (dashed line) is actually greater than than for the unconstrained and

occasionally-constrained manager.

It remains to take care of the case corresponding to D0 ≤ 0. In this case the constraint

binds on [C,X], with C < X < 1. Again, the form of V remains (6) and the solution for G

is split into two regions. Let G(Xt) be the solution on the region [C,X] and G(Xt) be the

solution on (X, 1]. Now, it is G(Xt) that has the form (14), since the manager is constrained

on the lower region, while G(Xt) takes the form (8) since the manager is unconstrained on

the upper region. The boundary conditions include the same five as above: G(C) = g0,
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G(1) = 1, G(X) = G(X), GX(X) = GX(X), and 0 = VXX(µ − r) + πX2σ2VXX . However,

because the constraint binds on the lower region, it is now possible that there will be optimal

walk-away, Cw > C. If this is the case, C is replaced with Cw above, and Cw satisfies the

smooth-pasting condition, GX(Cw) = 0. This possibility for optimal walk-away corresponds

to the common intuition that a fund manager who experiences negative performance may

want to walk-away. In this case, the manager also appears to be ‘gambling for resurrection’

prior to walking away, since he increases risk taking in reaction to the negative performance.

If he incurs continued negative returns andXt declines further, then eventually the walk-away

decision is taken.

5 Withdrawals and Aggressive Risk Choice

Under the baseline model, the rate of withdrawal from the fund is constant and does not

respond to the fund’s performance. However, it is quite plausible that investors’ rate of

withdrawal would increase when the fund is sufficiently far below the HWM. Such a plausible

pattern of withdrawals could have an important effect on the manager’s incentives and the

dynamics of risk-choice. To that end, consider two rates of withdrawal, φ1, φ2, with φ1 < φ2,

and assume that investor’s rate of withdrawal is φ1 when Xt ∈ (X , 1] and increases to φ2

when Xt ∈ [C,X ]. For simplicity I restrict the problem to two rates of withdrawal, but

adding further rates is straightforward.

On each region, the HJB equation and value function are the same as in (5) and (6).

Let G1(Xt) and G2(Xt) denote the G function corresponding to φ1 and φ2 respectively, and

define analagously the coefficients ηi, D0,i and D1,i for each Gi function, i = 1, 2. Two of

the boundary conditions are G2(C) = g0 and G1(1) = 1. The two additional boundary

conditions are (i) G1(X ) = G2(X ) and (ii) dG1

dX
(X ) = dG2

dX
(X ), i.e., the values and first

derivatives match across the change of regions.

Equation (9) for η shows that φ1 < φ2 implies that η1 < η2. The impact of ηi on effective

‘risk-aversion’ in π∗t suggests that an increase in the outflow rate should in some way induce

greater risk taking by the manager. However, we must also incorporate the solutions for D0,i

and D1,i into the optimal risk-choice to see if such an effect indeed holds. It turns out that

this is indeed the case, as formalized by the following Proposition,

Proposition 3. Let the outflow rate be given by φ1 for Xt ∈ (X , 1] and by φ2 for Xt ∈ [C,X ],

27



with φ1 < φ2. Then
lim
Xt↓X

π∗t

lim
Xt↑X

π∗t
=

1− η2
η2

η1
1− η1

< 1

The Proposition shows that the increase in the rate of withdrawals induces a jump up in

the manager’s risk-choice. The extent of this increase depends on the relative magnitudes of

η1 and η2. An increase in outflows increases the rate at which the size of the fund erodes and

therefore diminishes the importance of the change in continuation value on the manager’s

problem. Since the continuation value serves to attenuate or ‘discipline’ the manager’s risk

taking, its decreased importance results in the increased risk taking.

To prove the proposition, use the boundary condition equating the first derivatives of G1

and G2 at X and substitute in the expression for Gi to get,

η1G1(X )
1

X −D0,1

= η2G2(X )
1

X −D0,2

By the value-matching boundary condition we have G1(X ) = G2(X ), so that

X −D0,1

X −D0,2

=
η1
η2

Substituting this result into the expression for π∗t gives the equation in the Proposition,

while the inequality follows by the observation that φ1 < φ2 implies η1 < η2. The Appendix

contains details on the full solution of the problem.

Figure 11 plots π∗(Xt) (top panel) and G(Xt) (bottom panel) for an example where

the withdrawal rate increases when Xt falls (solid line) compared to the case where the

withdrawal rate is constant at φ1 (dashed-line). For this example, D0,i > 0, so losses induce

the manager to reduce risk taking. Hence, within reach φi region, risk-choice monotonically

decreases as Xt decreases. However, as the top panel shows, for the case where the decrease

in Xt triggers an increase in the rate of withdrawal, there is a jump up in the manager’s risk

taking at the boundary between the regions. The top panel also shows that the manager

chooses a lower level of risk taking in the upper region relative to the constant withdrawal

case, even though the withdrawal rate at that point is the same. That is, the potential of a

future increase in the withdrawal rate makes him more ‘risk-averse’ even far away from the

actual switch in withdrawal rates as he seeks to lower the chance of entering the lower region.

The bottom panel shows that G(X) is lower everywhere for the manager facing the increase

in the withdrawal rate, including at the point (marked by the circle), where the switch in
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withdrawals takes place. The same relation holds true for the value function V (Xt).

This result on the implications of performance-based withdrawal rates provides another

structural mechanism consistent with the idea that a fund manager with HWM-based in-

centives may choose to ‘gamble for resurrection’. The mechanism here is different than the

one above since here D0 > 0 can be the case, and absent the loss-induced increase in the

withdrawal rate, the manager would reduce risk taking (as shown by the dashed line in

Figure 11). The result shows, however, that if losses induce an increase in withdrawals by

investors, then the manager may respond by becoming more aggressive and increasing risk

taking in an attempt to ‘resurrect’ the fund’s fortunes and stem the rate of withdrawals from

the fund.

6 Conclusion

Explicit high-water mark contracts are widespread in the money management industry, in

particular for hedge fund managers. Their main feature is also implicit in other kinds of

performance-based management compensation. This paper seeks to understand the optimal

dynamic risk taking of a manager who is compensated under a high-water mark contract. By

providing closed-form solutions to this problem, it extends greatly the set of known results.

This paper demonstrates that a manager operating under a higher-water mark contract

may display two general types of risk-taking dynamics. The particular dynamic that arises

depends jointly on several characteristics of the manager and his environment: his outside

payoff, the termination policy, and his ‘inside payoff’. In particular, the termination policy

and outside payoff of the manager combine to powerfully impact the risk-taking dynamics of

the manager. When the termination policy is strict or the manager’s outside payoff is low,

the risk-neutral manager’s effective ‘risk-aversion’ is high and negative fund returns induce

an increase in the manager’s effective risk-aversion. This causes the manager to de-lever the

fund at an increasingly rapid rate as the fund’s value drops further below the high-water

mark. On the other hand, if the termination policy is ‘loose’ and the manager’s outside

payoff is high, the manager’s effective ‘risk-aversion’ will be low and the impact of negative

returns on effective risk aversion and leverage will go in the opposite direction. The manager

will then appear to engage in ‘gambling’ by increasing risk taking as the fund’s value falls

further below the high-water mark. At the boundary of these two cases, the impact of the

termination policy and outside payoff offset and the manager’s effective risk aversion remains

29



constant in the distance of the fund’s value from the high-water.

This paper further examines the option of the fund manager to walk away from the fund.

A common intuition is that a fund manager who is far below the high-water mark will opt

to just walk away from the fund. This paper demonstrates that this is never optimal so long

as the manager faces no exogenous risk limits. Regardless of his outside payoff, the manager

will always prefer delaying walk-away and increasing his risk-taking globally over an earlier

walk-away. However, when there are risk limits, this is no longer generally true. When

risk limits bind following negative returns, then it may become optimal for the manager to

exercise his walk away option.

Finally, this paper shows that if losses trigger an increase in the rate of investor with-

drawals, the manager will increase risk taking at the point that this occurs. To guard against

the risk of future withdrawals, the manager will also reduce risk taking when the fund is closer

to the high-water mark. Hence, the impact of loss-triggered increases in investor withdrawals

on risk taking is non-monotonic, as is the induced optimal risk taking dynamic. Since the

manager in this situation may increase risk taking following losses, his behavior may also be

described as ‘gambling for resurrection’.

The results of this paper suggest that variation in financial intermediaries’ effective risk

aversion due to HWM-style incentives may be an important factor in these intermediaries’

impact on asset prices. Hedge funds in particular are an important subgroup of financial

intermediaries since they tend to be risk-tolerant and levered, and are often thought of as a

very sophisticated segment of investors. The results presented here suggest that a negative

return shock common to a broad swathe of hedge funds could cause an across-the-board

reduction in their risk tolerance and induce de-leveraging. Moreover, the nonlinear nature

of the de-leveraging implies that it should be particularly noticeable and significant when

the shock is large. An interesting direction for future research is to analyze the impact that

intermediaries facing high-water mark style incentives have on asset prices in equilibrium.

This may be particularly interesting for understanding price variation and even contagion

effects in ‘sophisticated’ market segments, such as derivatives markets, where hedge funds

are prominent players.
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Figure 1: Distance from the HWM, Risk-Choice, and Effective Risk-Aversion
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Figure 1 plots the manager’s effective risk-aversion (1− η) Xt
Xt−D0

(solid line, left
axis), and π∗t (Xt) (dashed line, right axis) against Xt (ratio of fund wealth to the
hwm). The parameters for the plot are: C = 0.6, g0 = 0.35, φ = 0.03, ρ = 0.03,
λ = 0, m = mH = 0, k = 0.2, µ = 0.07, r = 0.01, and σ = 0.16.

Figure 2: Outside Payoff and Risk-Choice
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Figure 2 plots π∗(Xt) for three cases that illustrate the possible relationships
between π∗t and Xt: (i) D0 = 0 (solid line), (ii) D0 > 0 (dashed line), and (iii)
D0 < 0 (dash-dot line).



Figure 3: Comparative Statics For Outside Payoff
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Figure 3 plots a comparison of V (Xt) for g0 = 0.35 (solid line), g0 = 0.25 (dashed
line), and g0 = 0 (dash-dot line). The remaining parameters are C = 0.6,
φ = 0.03, ρ = 0.03, λ = 0, m = mH = 0, k = 0.2, µ = 0.07, r = 0.01, and
σ = 0.16.

Figure 4: Comparative Statics For Withdrawal Rate
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Figure 4 plots a comparison of π∗(Xt) for φ = 0.03 (solid line), φ = 0.06 (dashed-
line), and φ = 0.12 (dash-dot line). The remaining parameters are C = 0.6,
g0 = 0.35, ρ = 0.03, λ = 0, m = mH = 0, k = 0.2, µ = 0.07, r = 0.01, σ = 0.16.



Figure 5: Management Fee Comparative Static

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

X

V(
X)

V(X) vs. X

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.5

1

1.5

2

2.5

X

π(
X)

π(X) vs. X

Figure 5 plots a comparison of V (Xt) (top panel) and π∗(Xt) (bottom panel) for
m = mH = 0 (solid line), m = mH = 0.02 (dashed line) and m = mH = 0.04
(dash-dot line). The remaining parameters are k = 0.20, C = 0.55, g0 = 0.35,
λ = 0, φ = 0.05, ρ = 0.03, r = 0.01, µ = 0.07, and σ = 0.16.



Figure 6: Termination Point Comparative Static With m = 2%
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Figure 6 plots π∗(Xt) for C = 0.5 (sold line), C = 0.55 (dashed line), and
C = 0.6 (dash-dot line) for m = mH = 0.02, k = 0.20, g0 = 0.35, λ = 0,
φ = 0.03, ρ = 0.03, r = 0.01, µ = 0.07, and σ = 0.16.

Figure 7: Withdrawal Rate Comparative Static With m = 2%
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Figure 7 plots π∗(Xt) for φ = 0.03 (sold line), φ = 0.07 (dashed line), and
φ = 0.1 (dash-dot line) for m = mH = 0.02, k = 0.20, g0 = 0.35, λ = 0, φ = 0.03,
ρ = 0.03, r = 0.01, µ = 0.07, and σ = 0.16.



Figure 8: Walk-Away is Not Optimal
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Figure 8 plots a comparison of G(Xt) (top panel) and π∗(Xt) (bottom panel)
for successively decreasing values of Cw (or equivalently C), with the solid line
corresponding to the highest value, and the dash-dot line the lowest value of Cw.
The panels show that decreasing Cw increases G(Xt) and π∗(Xt) everywhere.
The parameters are Cw = 0.6 (solid line), Cw = 0.55 (dashed-line), Cw = 0.50
(dash-dot line), and g0 = 0.35, ρ = 0.03, φ = 0.11, λ = 0, m = mH = 0, k = 0.2,
µ = 0.07, r = 0.01, and σ = 0.16.



Figure 9: Fully and Occasionally Binding Constraints
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Figure 9 plots V (Xt) (top panel) and G(Xt) bottom panel for a manager who
is (i) completely constrained with optimal walk-away (solid line, π = 0.50), (ii)
completely constrained with no walk-away (dashed line, π = 0.75), (ii) occasion-
ally binding constraint (dash-dot line, π = 2.0) and unconstrained (circles). The
(optimal) walk-away point in (i) is Cw = 0.5. The termination point is C = 0.40.
The values of the other parameters are φ = 0.11, ρ = 0.03, λ = 0, g0 = 0.35,
m = mH = 0, k = 0.2, µ = 0.07, r = 0.01, and σ = 0.16



Figure 10: Fully and Occasionally Binding Constraints
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Figure 10 plots π∗(Xt) corresponding to the four cases of fully and partially
binding constraints shown in Figure 9.



Figure 11: Outflows Increase When The Fund Falls Far Below the HWM
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Figure 11 plots π∗(Xt) (top panel) and G(Xt) (bottom panel) for a manager
facing outflow rates of φ1 on (X , 1] and φ2 on [C,X ]. The solid line represents
the case where φ1 = 0.02 < φ2 = 0.1, while for the dash-dot line φ1 = φ2 = 0.02.
The black circle indicates the point X = 0.80. The parameters are C = 0.6,
g0 = 0.1, ρ = 0.03, λ = 0, m = mH = 0, k = 0.2, µ = 0.07, r = 0.01, and
σ = 0.16.



Appendix

A Derivations and Proofs

A.1 Comparative Statics for Risk-Choice

I calculate comparative statics for π∗ of the parameters C, g0, ω and φ. Throughout I set

mH = 0.

Comparative Static for C. I show that
d π∗

t

dC
< 0. Since the sum of the terms that

multiply C in D0 is positive, it is clear that D0 is increasing in C. From the expression for

π∗t , it follows that an increase in D0 reduces π∗t for any value of Xt.

It is also useful to see that term

1− C
(1−D2)1/η − (g0 −D2)1/η

(g0 −D2)
1/η

that appears in D0 is positive because 0 < g0−D2 < 1−D2. Hence, D0 ≤ C and D0 equals

C when g0 = D2.

Comparative Static for g0. I show that
d π∗

t

d g0
> 0. To show this note that

g0 −D2 =
ρ− r + φ

ρ+ λ− r + φ
g0

The assumption g0 > D2 implies that ρ−r+φ > 0, so that g0−D2 is increasing in g0. Next,

note that
g0 −D2

1−D2

=
(ρ− r + φ)g0

ρ+ λ− r + φ− λg0
which is also increasing in g0. Taken together, these two observations show that the second

term in D0 is increasing in g0 and (since this term is subtracted) dD0

d g0
< 0. From the

expression for π∗t , it then follows that
d π∗

t

d g0
> 0.

Comparative Static for ω. A change in ω has both a direct effect on π∗t via the

term (µ − r)/σ and an indirect via a change in the value of η. To see the net effect, note

that
1

1− η
µ− r
σ2

=

√
2

σ

(√
ω +

ρ+ λ− r + φ√
ω

)
.



Hence,

π∗t =

√
2

σ

(√
ω +

ρ+ λ− r + φ√
ω

)
Xt −D0

Xt

(A.1.1)

Below it is shown that as ω is varied, the term (Xt−D0)/Xt is bounded from below and above

for C < Xt ≤ 1. On the other hand, it is clear that the first term becomes unboundedly

large as ω →∞ and as ω → 0. Therefore,

lim
ω→0

π∗t →∞

lim
ω→∞

π∗t →∞

Taking the derivative of this first term with respect to ω gives

− 1√
2σ

(
ρ+ λ+ φ− r − ω

ω3/2

)
=

 < 0 if ω < ρ+ λ+ φ− r

> 0 if ω > ρ+ λ+ φ− r

Next, note that
d

dω

(
Xt −D0

Xt

)
= − 1

Xt

dD0

d η

d η

d ω
and it is clear by inspection that

d η

d ω
< 0.

Moreover,

sgn

(
dD0

d η

)
= sgn

[
d

d η

(
1−D2

g0 −D2

) 1
η

]
< 0

since 1−D2 > g0 −D2 > 0. Therefore,

d

dω

(
Xt −D0

Xt

)
< 0

Therefore,
d π∗t
dω

< 0 for ‘small’ ω, including for all ω < ρ+ λ+ φ− r.

Comparative Static for φ The impact of φ on π∗t works through the change in η and

the change in D0,

d π∗t
d φ
∝ 1

(1− η)2
d η

d φ

(
Xt −D0

Xt

)
− 1

1− η
1

Xt

(
dD0

d η

d η

d φ
+
dD0

dD2

dD2

d φ

)

It is easy to see that
d η

d φ
> 0. Also, as shown above,

dD0

d η
< 0. Finally, a straightforward

differentiation shows that
dD0

dD2

> 0 and
dD2

d φ
< 0. Hence, all the terms complement each



other, so that
d π∗t
d φ

> 0.

A.2 Optimal Walk-Away

Assume m = 0 for simplicity. I show here that d V (Xt,Ht)
dC

< 0 for any Xt, Ht. This shows

that reducing C increases V everywhere. Since voluntarily walking away from the fund is

equivalent to the manager increasing C beyond the point at which investors terminate him,

this result demonstrates that walk-away is never optimal for the fund manager.

Recall that

V (Xt, Ht) = β1Ht

((
Xt −D0

D1

)η
+D2

)
β1, D0 and D1 are functions of C but η is not and when m = 0, neither is D2. Therefore, it

suffices to show that
d β1
dC

< 0 and
d

dC

(
X −D0

D1

)
< 0. The denominator of β1 is

η

(
1

1−D0

)(
1−D0

D1

)η
(1 + k)− 1

The boundary condition G(1) = 1 implies that
(

1−D0

D1

)η
= 1 − D2 and is therefore not a

function of C. Therefore,

sgn

(
d β1
dC

)
= −sgn

{
d

dC

(
1

1−D0

)}
= −sgn

(
dD0

dC

)
and dD0

dC
is positive by inspection of the expression for D0. Next, note that X−D0

D1
= X−1

D1
+

1−D0

D1
. Since 1−D0

D1
= (1−D2)

1/η, it is not a function of C. Hence,

sgn

{
d

dC

(
X − 1

D1

)}
= −sgn

(
dD−11

dC

)
= sgn

(
dD1

dC

)
which is negative by inspection.

A.3 Solution with Change in Withdrawal Rate

As explained in the main text, the solution for G(Xt) is divided into two pieces G1(Xt) and

G2(Xt) corresponding to the outflow rates φ1 and φ2, respectively. The solution for Gi(Xt)

maintains the same form as in (8). In addition we have the boundary conditions specified

in the main text. For simplicity, I solve here for the case where m = 0 and λ = 0, so that



D2,i = 0, but it is completely straightforward to incorporate D2,i > 0. The solutions for D0,i

and D1,i are as follows:

D0,1 =
X −G1(X )

1
η1

1−G1(X )
1
η1

D1,1 =
1−X

1−G1(X )
1
η1

D0,2 =
CG2(X )

1
η2 −X g

1
η2
0

G2(X )
1
η2 − g

1
η2
0

D1,2 =
X − C

G2(X )
1
η2 − g

1
η2
0

The value matching condition gives that G1(X )
1
η1 = G2(X )

1
η2 . Denote this common value

by G. Substituting the solution into the derivative-matching condition and using the value-

matching condition gives
X −D0,1

X −D0,2

=
η1
η2

Substituting in for the D0,i and rearranging gives the following equation which determines

the value G (
1
G

) 1
η1 − 1

1
X − 1

− η2
η1

1−
(
g0
G

) 1
η2

1− C
X

= 0 .


