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This document contains the technical proofs for the theoretical results included in the
manuscript “Efficiency and Consistency for Regularization Parameter Selection in Penalized

Regression: Asymptotics and Finite-Sample Corrections”.

Proofs of Theorems 1, 2, and 3

Before proving Theorems 1, 2, and 3, we start by establishing the following two lemmas.

Lemma 1. Assume that (A1)-(A4) hold and that d,/n — 0 as n — oo. Then

dn(ax)|o7(A) — 0|
sup =

p Y-

Proof. The technique used to prove this result is similar to the proof of Theorem 2 in Shibata



(1981). First consider
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Applying the Cauchy-Schwarz inequality, it follows that
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Li (1987) established that
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Combining these results with the Law of Large Numbers and the assumption that d,,/n — 0

as n — oo the right-hand side converges to 0 in probability. Hence
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as desired.

Lemma 2. Assume that (A1)-(A4) hold and that d,/n — 0 as n — co. Then
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Proof. Start by noting that for all A € |
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Now, from the proof of Lemma 1 we have that
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Under the assumption that d,/n — 0 as n — oo it follows that
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Combining these results with (1) and (2) it follows that
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Proof of Theorem 1. As in the proofs in Zhang et al. (2010), to prove that C,, is asymptot-

ically loss efficient, it is sufficient to show that
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Decomposing C),, it can be established that
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The proof of Theorem 2 in Zhang et al. (2010) established that
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Combining these results with (1)-(3) and Lemma 2, (4) follows as desired. O

Proof of Theorem 2. The proof is the same as that of Theorem 1 except that the estimated
variance is based on the candidate model rather than the full model and the result is estab-

lished by using Lemma 1 in place of Lemma 2. ]

Proof of Theorem 3. As in the efficiency proof for I',,()), it is sufficient to show that
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to establish that fn()\) is an asymptotically efficient selection procedure for the regularization



parameter, A. By the definition of I',(\) we have that,
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The last two terms converge to zero by (C1) and the efficiency proof for I',(\). From the

proof of Lemma 1 we further have that
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By (C1), (C2), and similar arguments as those used in the proof of Lemma 1 we have that

the right hand side converges to zero in probability. Therefore, it follows that
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Verifying the Conditions of Theorem 3

This following shows that AIC\, GCV), and AIC,, can be written in the form f‘n()\) and that
Conditions (C1) and (C2) of Theorem 3 are satisfied. This implies that the three methods

are efficient selectors of the regularization parameter. Shibata (1981) and Hurvich and Tsai



(1989) noted that AIC and AIC., respectively, can be shown to satisfy these conditions. We

present a detailed argument of these remarks below.

AIC, is Efficient

Minimizing AIC) is equivalent to minimizing
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we see that AIC), has the same asymptotic properties as
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Therefore, the efficiency of AIC) can be established by showing that (C1) and (C2) hold.
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Therefore, under the assumption that d,,/n — 0, (C1) is satisfied. Next consider
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Here the inequality on the second line follows from the fact that R(3%(ay)) > o%d,(ay)/n

and the final result follows from the assumption that d,,/n — 0. Therefore,
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o (C2) is satisfied.

GCV, is Efficient

Taylor expanding,
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Therefore, the efficiency of GC'V) can be established by showing that (C1) and (C2) hold.
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Therefore, under the assumption that d,,/n — 0, (C1) is satisfied. Next consider,
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which converges to zero uniformly over A under the assumption that d,/n — 0. Here,
again, the inequality on the second line follows from the fact that R(5:(c)) > o%dy () /n.

Therefore,
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so (C2) is satisfied.

AIC,, is Efficient

We define
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This can be equivalently defined as,
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Based on the second definition of AIC., we see that the information criterion has the same
asymptotic properties as,
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because they only differ by an additive constant (2/n). Therefore, AIC., will have the same

asymptotic behavior as
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which converges to zero uniformly over A under the assumption that d,/n — 0. Thus, (C1)

is satisfied. Next consider
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which converges to zero uniformly over A under the assumption that d,,/n — 0. Again, the
inequality on the third line follows from the fact that R(5*(ay)) > 02d,(cvy)/n. Therefore,
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Theorem 4

The following theorem demonstrates that, in classical regression, the probability that an

information criterion selects the full model over the true model depends on the form of the

11



criterion, the true number of predictors, the sample size, and the number of predictors that

are included in the full model.

Theorem 1. Assume the true model is the linear model described as,

Yo =XunB+e,

where ¢; S N(0,0?). Further assume that only dy entries of 3 are non-zero and that o is
the index of the true minimal model. Then, in classical regression, the probability that an

information criterion,
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selects the full model, &, over the correct model is computed as
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where F(v1,1v5) denotes an F random variable with vy and ve degrees of freedom.
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