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This paper proposes a holistic view of a network organization’s computing environment to examine 

computer virus propagation patterns. We empirically examine a large-scale organizational network 

consisting of both social network and technological network. By applying information retrieval techniques, 

we map nodes in the social network to nodes in the technological network to construct the composite 

network of the organization. We apply social network analysis to study the topologies of social and 

technological networks in this organization. We statistically test the impact of the interplay between social 

and technological network on computer virus propagation using a susceptible-infective-recovered epidemic 
process. We find that computer viruses propagate faster but reach lower level of infection through 

technological network than through social network, and viruses propagate the fastest and reach the highest 

level of infection through the composite network. Overlooking the interplay of social network and 

technological network underestimates the virus propagation speed and the scale of infection. 
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1.  Introduction 

Network organizations rely on various interconnected networks to achieve higher operational 

efficiency and more flexible management (Sproull and Kiesler 1991, Van Alstyne 1997). 

Business partners including different manufacturers, suppliers, and distributors form a supply 

chain network in order to reach their customers. Business communications as well as personal 

contacts among employees inside and outside their departments constitute an information 

distribution network. Even individuals from decentralized geographical locations can cooperate 

with each other through virtual teams creating a virtual collaboration network. These are 

examples of social networks inherently embedded within an organization. As the computational 

foundation of these business processes, technological networks consisting of interconnected 

computers, routers, and other network devices enable the data transmissions to perform required 

organizational tasks. 

Social networks and technological networks coexist in an organization. One salient 

difference between social networks and technological networks is their structural topologies. In 

particular, empirical evidence shows that social networks usually demonstrate non-trivial 

clustering and positive degree correlation (also called assortative mixing) while most 

technological networks reveal lower level of clustering and negative degree correlation 

(Newman and Park 2003). These diversified structural features of social networks, technological 

networks, and the composite organizational networks have significant influences on the 

organizations’ operational processes. 

While the emerging networked organizational structure increases operational efficiency 

tremendously, it also serves as a more vulnerable channel for malware propagation. Malware, 

malicious software written to cause damage to infected computers, has evolved dramatically 
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since the first personal computer virus “Brain” surfaced in early 1986. Brain, a boot sector virus 

spreading through infected floppy disks, didn’t spread quickly. Nor did it cause much harm. 

However, by showing how destructive self-replicating programs could do, Brain heralded a new 

era of more devastating computer viruses. Computer viruses pose a critical threat to computer 

users and organizations causing massive expenses in damages. It is estimated by Computer 

Economics that the total worldwide financial losses from malware are on average $12.18 billion 

per year in the period from 1999 to 2006 (Computer Economics 2007). With the ubiquitous 

presence of Internet, computer viruses develop into thousands of variants which differ in their 

infection mechanism, propagation mechanism, destructive payload and other features. 

From the propagation mechanism point of view, viruses can propagate through one of 

several different vectors including emails, instant messaging systems, P2P networks, social 

networking websites, LANs, WANs, etc. Some more sophisticated viruses can even propagate 

through multiple vectors. These vectors can be classified into the two categories of social and 

technological networks as discussed above. Hence, computer viruses can be classified into three 

categories based on their propagation vectors – social network (SN) based, technological 

network (TN) based, and composite network (CN) based. For example, MyDoom is primarily 

transmitted via email and P2P network and therefore is a SN-based virus. Unsuspecting 

computer users expose more personal information and are more vulnerable to SN-based viruses. 

The Blaster, as an example of TN-based viruses, starts from the local machine’s IP address or a 

completely random address and attempts to infect sequential IP addresses. Nimda, a well-known 

multi-vector virus, spreads itself by different propagation methods including IP probing, email, 

network shares, etc. and therefore is a CN-based virus.  
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Prior research on computer viruses shows that network topology is crucial for virus 

propagation. In a computer virus incident, the topology of the victim network is the determinant 

factor of the propagation speed and destructive consequences. Towards this direction, 

researchers examine network topology to enhance computer security. For example, some 

research uses local network measures to explain virus propagation. Kephart and White 

incorporate average node degree into traditional epidemic models (Kephart and White 1991, 

Kephart and White 1993). Other studies consider specific topologies such as small-world 

network (Moore and Newman 2000) and scale-free network (May and Lloyd 2001, Pastor-

Satorras and Vespignani 2001). Most extant work focuses on degree distributions and assumes 

certain distributions such as power-law distribution. However, most real world networks are not 

exactly scale-free (Balthrop et al. 2004). Few research incorporates network properties of 

individual nodes and examine network topology empirically. 

This paper empirically examines a large-scale organizational network which consists of both 

social network and technological network. We utilize a novel information retrieval technique to 

map nodes in the social network to nodes in the technological network to construct the composite 

network of the organization. We apply social network analysis to study the topologies of social, 

technological, and composite networks in an organization. We perform a comprehensive network 

analysis on these three networks and compare them both visually and quantitatively. Further, we 

statistically test the impact of the interplay of social and technological network on computer 

virus propagation using a susceptible-infective-recovered epidemic process. We find that 

computer viruses propagate faster but reach lower level of infection through technological 

network than through social network, and viruses propagate the fastest and reach the highest 
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level of infection through the composite network. Overlooking the interplay of social network 

and technological network underestimates the virus propagation speed and the scale of infection. 

This paper takes a social network analysis perspective to examine the computer virus 

propagation problem in a network organization consisting of intertwined social and technological 

networks. A network organization is viewed as a network where individuals and their computers 

in the organization are nodes in the network, logical information communications among 

individuals form edges in the social network and physical data transmission among individuals’ 

computers form edges in the technological network. Computer viruses start from certain nodes 

and propagate through the edges and the propagation process can be considered as a dynamic 

network flow built upon the underlying social network and technological network. 

This paper aims to address three research questions. First, what are the structural 

differences among social network, technological network and composite network? Second, how 

does computer virus propagate through social network, technological network, and composite 

network? What are the differences in their propagation patterns? Third, can network structural 

differences and the interplay of social network and technological network explain different virus 

propagation patterns? 

This work addresses some critical limitations of existing literature. Most extant research 

examines virus propagation either at the individual computer level or at the single network level, 

but not at the organizational level. Extant literature overlooks the impact of the differences and 

the interplay between social network and technological network on virus propagation. This paper 

proposes a holistic view of a network organization’s computing environment to examine 

computer virus propagation patterns. Since all computers in an organization are potential virus 

victims and all networks, including social networks and technological networks, are possible 
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virus vectors, we view an organization as a composite of both and examine its social network 

and technological network simultaneously. There are intrinsic differences between social 

network and technological network which affect virus propagation. However, previous research 

of virus propagation and defense either does not distinguish between social networks and 

technological networks or fails to consider the combined effect of the two. This paper performs a 

comprehensive network analysis of the three networks and compares their structural differences 

which serve as the rational of the differences in their virus diffusion behavior. 

The remainder of the paper is organized as follows. In Section 2, we discuss the research 

method and propose a multilevel structural determinants model for computer virus propagation. 

Various research questions and hypotheses are then proposed to examine the virus propagation in 

reference to the structural properties of the networks. The following section introduces our 

research sample by analyzing the structural properties of the sample organization’s social 

network, technological network, and composite network. In the section of computational 

analyses, we compare the virus propagation on the sample organization’s social network, 

technological network, and composite network and report the results. Finally, we conclude the 

paper and discuss possible extensions of this paper. 

 

2.  Research Model and Hypotheses 

2.1  Dynamics of Computer Viruses Propagation 

Most prior research in virus propagation focuses on the overall scale of computer epidemics 

measured by the number of total infected computers. However, this single measure only 

considers one static point in the whole virus propagation process. This simplification ignores 
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some important characteristics of virus propagation such as the propagation speed. In this study, 

we propose three additional measures to capture the dynamic features of a virus propagation 

process.  

Insert Figure 1 about here 

Let 
tN  be the cumulative number of infections detected at time ,  1, ,t t T  , where T is 

the maximum number of time epochs. Two groups of measures based on 
tN  are critical to 

evaluate a virus incidence – infection time and infection number. In particular, we are interested 

in two critical infection times – time to takeoff ( dT ), and time to equilibrium ( eqmT ), and the 

corresponding infection numbers. As shown in Figure 1, the cumulative infection number 

typically follows an S-shaped curve (Kephart and White 1991, Kephart and White 1993). 

Accordingly, the process of virus propagation has three stages – incubation, proliferation and 

equilibrium. The two infection times – time to takeoff ( dT ) and time to equilibrium ( eqmT ) – are 

the two cutoff points between these stages. These infection times and their corresponding 

infection numbers capture the fundamental characteristics of a virus propagation process and 

thus should be adopted as key control variables in information security management. A better 

understanding of when computer virus epidemics take off, when it reaches its equilibrium, and 

the scales in its propagation help information security managers make more informed responses 

as well as design improved security policies. Therefore we use these four measures as dependent 

variables in our models that follow. More formally, Table 1 gives both conceptual and 

operational definitions of these variables. 

Insert Table 1 about here 



9 

 

2.2  Computer Viruses Propagation Through the Three Networks 

For each starting node, we use one-way repeated measures analysis of variance (ANOVA) to 

examine how the propagation patterns of computer viruses differ in various network contexts 

such as social networks, technological networks, and composite networks. The following model 

is developed to discern whether the three network types have significantly different virus 

diffusion dynamics in terms of four key measures of infection time and infection number. 

Specifically, let 

ij j i ji ijY s s        , 

where j  denotes network type which can be SN, TN, or CN; i  denotes starting node; 'Y s  are 

dependent variables which can be ,d eqmT T  and ,d eqmN N ;   denotes the overall mean; 
j  

denotes the main effect of network type; is  denotes the effect of starting node; jis  represents 

the mean influence of starting node i  and network j ; and ij  is random error. 

We pose the following research questions and propose hypotheses in below regarding key 

measures of infection time and infection number for the three networks. 

Research Question 1: What are the differences of SN, TN, CN in terms of the key measures of infection 

time? 

Since the density of TN is much higher than that of SN, and CN has the highest density, 

we hypothesize that computer virus propagates the fastest in CN and then TN and SN. 

RESEARCH HYPOTHESIS 1A: , , ,d SN d TN d CNT T T   

RESEARCH HYPOTHESIS 1B: , , ,eqm SN eqm TN eqm CNT T T   
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Research Question 2: What are the differences of SN, TN, CN in terms of the key measures of infection 

number?
 

Since the mean node-to-node distance of SN is shorter than that of TN, and CN has the 

shortest mean distance, we hypothesize that CN reaches the highest level of infection number 

and then SN and TN. 

RESEARCH HYPOTHESIS 2A: , , ,d CN d SN d TNN N N   

RESEARCH HYPOTHESIS 2B: 
, , ,eqm CN eqm SN eqm TNN N N   

 

2.3  The Interplay between Social Network and Technological Network 

Network topology has a hierarchical structure with individual nodes nested in subgroups. 

Hierarchical linear model (HLM) is thus used to capture the nested nature of the network 

topology data. In order to examine the impact of the interplay between social network and 

technological network on virus propagation, we consider a hierarchical linear model with two-

way cross classification which enables us to simultaneously assess the interactive effect of 

individual-level, group-level variables of all three networks. The individual nodes are contained 

within a two-way cross-classification of SN group and TN group. In the research model, we have 

individual nodes at Level 1 and SN group and TN group are cross-classified at level 2. As shown 

in Figure 2 and Figure 3, we propose a two-level hierarchical linear model with individual-level 

variables at the first level, group-level variables at the second level while individuals can be 

cross-classified based on SN and TN groups. 

Insert Figure 2 and Figure 3 about here 
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Individual Level (Level-1): 

0 1 2
OutDegree InDegreeijk ijkijk jk jk jk ijk

eY        

where 

ijkY ’s denote four measures of computer virus propagation dynamics, 

pjk  with 1,2p   are level-1 coefficients, 

ijke  denote level-1 random effect. 

Outdegee and indegree are two most widely used centrality measures for individual 

nodes. Outdegree is defined ase the number of outgoing links from the focal node and indegree is 

defined as the number of incoming links to the focal node. We note that these two variables only 

depend on the focal node and its direct neighbors and are independent of the rest of the network. 

Therefore, both outdegree and indegree are local structural properties. In our model, we specify 

OutDegree and InDegree to be the individual-level independent variables. 

Each of the level-1 coefficients pjk  can be further expressed as an outcome variable in 

the group-level model as follows: 

Group Level (Level-2): 

   0 0 01 0 01

0 00 00 00

0
SNGroupSize TNGroupSize

SNGroupSize *TNGroupSize
j k k j

jk k j j k jk

jk
b c

b c d

  



     

   
 

   1 1 11 1 11

1 10 10 10

1
SNGroupSize TNGroupSize

SNGroupSize TNGroupSize
j k k j

jk k j j k jk

jk
b c

b c d

  



     

    
 

   2 2 21 2 21

2 20 20 20

2
SNGroupSize TNGroupSize

SNGroupSize TNGroupSize
j k k j

jk k j j k jk

jk
b c

b c d

  



     

    
 



12 

 

where 

0  is the model intercept or the grand mean, 

p  with 1,2p   is the group mean, 

m  with 0,1,2m   are the fixed effects of the column-specific predictor, i.e., SNGroupSize, 

1m jb  with 0,1,2m   are the random effects of the column-specific predictor SNGroupSize which 

vary across rows, i.e, different TN groups, 

m  with 0,1,2m   are the fixed effects of the row-specific predictor, i.e., TNGroupSize, 

1m kc  with 0,1,2m   are the random effects of the row-specific predictor TNGroupSize which 

vary across columns, i.e, different SN groups, 

mjk  with 0,1,2m   are the fixed effect of the cell-specific predictor 

SNGroupSize TNGroupSize, i.e., the cross-classification effect, 

0m jb  is the SN-specific error, 

0m kc  is the TN-specific error, and 

0m jkd  is the cell-specific error. 

Hence, we pose the following research questions and associated hypotheses. 

Research Question 3: Does the size of social network and technological network affect the key measures 

of the infection time associated with these networks?
 

RESEARCH HYPOTHESIS 3A: For dT , 0, 0,, 0
d dT T    
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RESEARCH HYPOTHESIS 3B: FOR 
eqmT , 

0, 0,, 0
eqm eqmT T    

Research Question 4: Does the size of social network and technological network affect the key measures 

of the infection number associated with these networks?
 

RESEARCH HYPOTHESIS 4A: FOR 
dN , 

0, 0,, 0
d dN N    

RESEARCH HYPOTHESIS 4B: FOR 
eqmN , 0, 0,, 0

eqm eqmN N    

 

3.  Research Sample 

We collected empirical data of a large-scale organization’s social network, technological 

network, and constructed the composite network accordingly. The sample organization is one of 

the largest research universities in the U.S. with a total enrollment of more than 50,000 students. 

We first gathered all member data on MySpace, the largest social networking website on the 

Internet, with affiliation to this university. Mining the detailed friend listing data of each 

MySpace member enabled us to construct the social network. We obtained the core technological 

network of this university, and then mapped the social network to the technological network to 

derive a composite network according to each subject’s physical location on the technological 

network. The following subsections give detailed descriptions of our research sample. 

Insert Figure 4 and Figure 5 about here 

 

3.1  Social Network 

Using Perl and RegEx, we collected data about members of MySpace who are current students of 

the sample organization. The number of current student members of MySpace in February 2006 

is 14,933, which accounts for more than 30% of all enrolled students of the sample university. 
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Another motivation for us to choose this dataset is that college students are considered the high 

risk group in terms of virus infection and propagation. The relationship from one research 

sample on MySpace to another is uncovered by mining the detailed friend listing data published 

in each member’s online space, resulting in the social network of our research sample 

represented by a directed graph as shown in Figure 4(a). 

 

3.2  Technological Network 

Organizations adopt different heterogeneous computing environments which involve different 

technological networks, the most popular being LAN. These technological networks use 

different types of topologies.  The three most common topologies are the star, ring, and bus. 

Ethernet with bus topology dominates the LAN technology application. The sample university’s 

technological network has a typical bus topology for its local area networks which are then 

linked to the core network forming a tree topology as shown in Figure 4(b). Since 2267 members 

out of the total 14,933 members do not reveal their subject of studying online, the resulting 

technological network consists of 12,666 individual nodes. Combined with 15 core nodes of the 

campus network and 168 subject nodes, the technological network has a combination of 12,849 

total nodes. A square in Figure 4(b) represents a subject node in a building connected to the core 

network where the local networks (LANs) in each building naturally follow the bus topology. 

The 168 LANs are completely connected networks which represent a worst case scenario for the 

exploration of computer virus epidemics. 

 

3.3  Composite Network 
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We were able to map each individual node in the social network (SN) to the technological 

network (TN) by locating each individual’s physical presence in the technological network. The 

general structure of the composite network (CN) is shown in Figure 4(c). The CN is a directed 

graph which has the same number of nodes as TN and two different sets of edges – edges from 

SN and edges from TN. One salient and intuitive feature of CN is that edges from SN serve as 

bridges to connect LANs directly. 

The sample social and technological networks are also visualized in Figure 5(a) and 5(b). 

Figure 5(a) is drawn using LaNet-vi (Alvarez-Hamelin et al. 2005). LaNet-vi is a k-core 

decomposition-based visualization tool designed for large complex networks. Figure 5(b) is 

drawn using Ucinet (Borgatti et al. 2002). 

 

4.  Structural and Computational Analyses 

Network structure is the focus of social network analysis. Social network analysis views social 

entities as nodes and relationships as edges. Nodes and edges are the two fundamental elements 

in a network. A rich set of concepts and methods have been developed to analyze network 

structures. Wassermann and Faust (1994), a popular text, provides a good review for social 

network analysis. Social network analysis is widely used in sociology, organizational studies and 

other fields. For example, it is used to analyze customer networks, inter-firm alliances, and 

information flow networks. In this section, we utilize social network analysis tools to examine 

three different network context for the computer virus propagation problem. Specifically we 

examine three important structural properties – cohesion, degree distribution and subgroup 

structure of social network, technological network, and composite network. 
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4.1  Cohesion 

Common cohesion measures include density, reciprocity rate, node-to-node distance, diameter, 

and reachability. We report these structural properties of SN, TN, and CN in Table 2. The SN of 

the sample organization has a density of 0.0006 which is much sparser than TN (with density 

0.179) and CN (with density 0.184). Dyad-based reciprocity rate is very high for SN (0.9943), 

implying that the friendship between users are mutual. Although the diameter of social network 

is greater than that of technological network, the mean node-to-node distance of social network 

(4.406) is much shorter. Among the three networks, CN has the smallest diameter and the 

shortest mean distance among the nodes. 

Insert Table 2 about here 

 

4.2  Degree Distribution 

The out-degree and in-degree measure how many outgoing or incoming edges a node has in a 

network. The degree distribution describes the variability of the nodal degrees in a network. The 

most commonly seen degree distribution is power-law distribution. As shown in Figure 6, the 

social network approximately follows a power-law distribution while the technological network 

has a more discrete distribution. 

Insert Figure 6 about here 

 

4.3  Subgroup Structure 

There are cohesive subgroups embedded in networks. Subgroup structure of a network refers to a 

partition of the network into subgroups where there are far more links within subgroups than 

between subgroups. In other words, ties among the individual nodes are concentrated inside the 
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subgroups rather than outside the subgroups. Subgroup structure is a common structural property 

for networks including both social networks and technological networks (Newman and Girvan 

2004). Traditional subgroup analysis techniques include component analysis, clique analysis, 

core analysis, hierarchical clustering and so on. Among them, k-core decomposition has two 

salient advantages – easy to compute and the resulting subgroups usually demonstrate a 

hierarchical structure (Alvarez-Hamelin, Dall’Asta, Barrat and Vespignani 2005). Therefore we 

apply k-core decomposition to analyze the subgroup structures of SN and TN, resulting in 38 SN 

subgroups and 168 TN subgroups. The discovered SN groups and TN groups constitute the 

group-level (level-2) factor in our two-way cross-classified HLM model. Following the 

convention that the factor with more units becoming the row factor while the factor with less 

units becoming the column factor, we specify TN group as the row factor and SN group as the 

column factor in our model. As a result, the individual-level (level-1) data are contained in cells 

cross-classified by the row factor (TN group) and column factor (SN group). 

The size of the group is the sole level-2 variable defined for each group (either SN group 

or TN group), denoted by SNGroupSize and TNGroupSize. Figure 7 shows the distribution of 

group size of both social network and technological network. 

Insert Figure 7 about here 

 

4.4  Computer Virus Propagation Analyses 

Computer virus propagation has been widely researched using epidemiology models. Among 

these epidemiology models, SIR (Susceptible–Infected–Recovered) model is most commonly 

used. Researchers conduct computer simulations to analyze the virus propagation process. 

Following the SIR model, we developed computer algorithms to simulate the virus propagation 
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in the social network, technological network, and composite network. There are three states for 

each node in the network. The node can be susceptible, infected, or recovered. A susceptible 

node is not infected but susceptible to virus and can be infected by its neighbors. An infected 

node i  can infect its neighbor j  according to j ’s infection probability 
j . After trying to infect 

its neighbors, the infected node i  may be recovered according to its recovery probability 
i . If 

the infected node i  is recovered, then it becomes immune to future infections. In practice, we 

consider an infected node as recovered when the virus is eliminated from the computer by the 

user through security patching. Every infected node can try to infect its neighbors at all times 

before it is recovered. 

We applied the discrete-time simulation method to analyze the computer virus 

propagation process. Beginning at time 0, a single randomly chosen node becomes infected and 

this node starts the virus propagation process. We randomly selected 3000 starting nodes. The 

propagation process stops either when the virus stops spreading, i.e., when the number of 

currently infectious nodes reduces to 0, or when the process runs long enough and reaches the 

maximum iteration number of time epoch 100T  . We assume a power-law distribution of the 

simulation parameters i  (the probability that node i  gets infected in each infection attempt) and 

i  (the probability that node i  gets recovered at time 1t   given that node i  is infected at time 

t ). The power-law distribution captures the asymmetric nature of user behaviors. Most of the 

users have high infection rate and recovery rate while only few of them have low infection rate 

and recovery rate. We set the parameter of the exponential in the power-law distribution to 2.690 

and 2.286 for infection rate and recovery rate respectively. The parameters are chosen such that 

the mean value of the infection rate and recovery rate are consistent with the empirical findings 

in the literature. Chen and Carley (Chen and Carley 2004) find the ratio of infection rate to 
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recovery rate is between 0.01 and 0.2 with a mean of 0.05. For each starting node, we ran the 

simulation 20 times. Then we calculated the mean value for the number of infections and used it 

as the dependent variable. We ran each simulation 20 times and used the average values for the 

dependent variables – 
dT , 

eqmT and 
dN , 

eqmN . 

 

5.  Research Results 

5.1  Different Patterns of Computer Viruses Propagation 

Table 3 summarizes the results for the four hypotheses. Comparing computer virus propagations 

through the three networks, we find that viruses propagate fastest through CN and reach the 

highest level of infection number. Although viruses propagate faster through TN than SN, the 

equilibrium infection number is higher for SN than TN. 

Insert Table 3 about here 

A repeated measures one-way ANOVA reveals that there are significant differences in 

propagation patterns of computer viruses among social network, technological network and 

composite network, with F  ranging from 1399.925 to 17396.421, and .001p   for all four 

measures of virus diffusion dynamics. LSD comparisons revealed that all three means based on 

three network types were significantly different from each other. We find that although computer 

viruses spread slower in social network than technological network ( , ,d SN d TNT T ), the final scale 

of computer infections on social network is higher than that on technological network 

( , ,eqm SN eqm TNN N ). Compared with social network and technological network, computer viruses 
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spread the fastest and reach the highest infection number through composite network 

(
, , ,d SN d TN d CNT T T   and 

, , ,eqm CN eqm SN eqm TNN N N  ). 

 

5.2  Multilevel Structural Determinants of Computer Viruses Propagation 

As indicated in high reciprocity rate, we note that individual-level outdegree and indegree are 

highly correlated. Hence, we derive reduced models by eliminating indegree from the individual-

level model to correct the multicollinearity problem and report corresponding research findings. 

Table 4 presents the estimation results of our model of the multilevel structural determinants of 

computer viruses propagation. 

Insert Table 4 about here 

We find computer viruses spread faster and eventually infect more computers if the 

epidemic incidence starts from a node located in a larger technological group. The size of social 

groups, on the other hand, does not affect the speed or the scale of computer virus propagation 

directly. Instead, subgroup structure of social network affects the scale of computer epidemics 

indirectly through interaction with individual-level centrality measures such as outdegree. 

 

6.  Conclusions 

Extant literature on computer virus propagation unfortunately does not examine the problem 

from the perspective of an organization’s network structure and overlooks the interplay of social 

network and technological network embedded within the organization. To address this critical 

issue, we collected empirical social network (SN) data from MySpace, the largest social 

networking website, and mapped them to the technological network (TN) of a large organization 
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to construct the composite network (CN) that illustrates the effect of interplay of SN and TN. We 

then applied social network analysis techniques to compare and contrast the virus propagation in 

SN, TN, and CN. We further examine the impact of the interplay of social network and 

technological network on the computer virus propagation process. We find that viruses propagate 

faster but reach lower level of infection through technological network than through social 

network, and computer viruses propagate the fastest and reach the highest level of infection 

through the composite network. Overlooking the interplay of social network and technological 

network underestimates the virus propagation speed and the scale of infection. 
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Figures and Tables: 

 

 
Figure 1: Dynamics of Computer Virus Propagation 

 

 

  

 

 

Figure 2: Classification diagram 
 

 

 

 

Figure 3: Unit diagram where individual nodes lie within a cross-classification of SN, TN, 

and CN 
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(a) Social Network 

 
(b) Technological Network 

 
(c) Composite Network 

Figure 4: Topologies of Three Networks 

Notes: Circle represents individual node; Triangle represents core node in technological network; 

Square represents major node in technological network. 
 

 

 

 (a) Social Network (b) Technological Network 

Figure 5: Research Sample Networks 

Notes: In Figure 5(a), both color and size of the nodes denote nodal degree. Degree decreases 

when the node color changes from red to green, blue, and purple and when the node size 

becomes smaller. In Figure 5(b), circle represents individual node; triangle represents core node 

in technological network; square represents major node in technological network. 
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(a) Social Network (b) Technological Network 

Figure 6: Degree Distributions 

 

 

(a) Social Network (b) Technological Network 

Figure 7: Distribution of Group Sizes 
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Table 1: Definitions of Dependent Variables 
 

Dependent Variable Conceptual Definition Operational Definition 

T
ak

eo
ff

 

Time to Takeoff 

(
dT ) 

The time epoch with the 

fastest growth (largest 

slope) in number of 

infections 

1argmax , {1,..., }t t
d

t

N N
T t T

N


 

  
 

 

Number of 

Infections at 

Takeoff (
dN ) 

The number of infections 

at time 
dT  dd t TN N   

E
q
u
il

ib
ri

u
m

 

Time to 

Equilibrium 

(
eqmT ) 

The first time epoch when 

the number of infections 

reaches equilibrium state 

 such that 5%,
min

1,...,10, {1,..., }

t k t

eqm t

N N
t

T N
k t T

  
 

  
   

 

Number of 

Infections at 

Equilibrium 

(
eqmN ) 

The number of infections 

at time eqmT  eqmeqm t TN N   

 

 

 

Table 2: Structural Properties of Three Networks 

 

Statistics 
Social 

Network 

Technological 

Network 

Composite 

Network 

Directed/Undirected Directed Undirected Directed 

Number of Nodes 12,666 12,849 12,849 

Number of Edges 105,528 2,970,324 3,066,068 

Mean Degree 8.332 231.172 238.623 

Mean Density 0.000658 0.0180 0.0186 

Reciprocity Rate 0.994 1.000 0.9998 

Mean Node-to-Node 

Distance 
4.406 5.839 2.824 

Diameter 12 8 7 

Reachability 0.617 1.000 1.000 
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Table 3: Comparison of Virus Propagation Differences on Three Networks 

 

Research 

Question 

SN 

Mean 

(SD) 

TN 

Mean 

(SD) 

CN 

Mean 

(SD) 

F p Results 

Infection 

Time 

dT  
1.435 

(.996) 

.164 

(.621) 

.139 

(.400) 
3738.125 .000 , , ,d SN d TN d CNT T T   

eqmT  
14.287 

(3.520) 

7.274 

(1.193) 

7.668 

(.293) 
10038.387 .000 , , ,eqm SN eqm CN eqm TNT T T   

Infection 

Number 

dN  
32.571 

(32.173) 

3.396 

(10.568) 

7.737 

(23.395) 
1399.925 .000 , , ,d SN d CN d TNN N N   

eqmN  
8161.265 

(2069.140) 

6101.055 

(1370.047) 

12798.652 

(1.352) 
17396.421 .000 , , ,eqm CN eqm SN eqm TNN N N   

 

Table 4: Hierarchical Linear Model Estimation 

 

 
Infection Time Infection Number 

dT  eqmT  
dN  eqmN  

Fixed  

Effect 

0 jk  

Intercept 

0  

Coefficient 1.00754 8.107 33.196 12798.615 

SE 0.0532 0.0314 2.847 0.143 

TN Group 

0  

Coefficient -0.00367 -0.00171 -0.111 0.000253 

SE 0.000346 0.000155 0.015 0.000205 

SN Group 

0  

Coefficient 0.000013 -0.00002 0.00157 0.000008 

SE 0.000019 0.000019 0.00161 0.000126 

1 jk  

Intercept 1  
Coefficient 0.000241 0.000620 0.031 0.0127 

SE 0.000726 0.000796 0.065 0.00519 

TN Group 

1  

Coefficient 0.000001 -0.000002 0.000064 -0.000033 

SE 0.000002 0.000002 0.000149 0.000012 

SN Group 

1  

Coefficient -0.000001 -0.000001 -0.000082 -0.000010 

SE 0.000001 0.000001 0.000070 0.000006 

Random 

Effect 

TN Group 00 jb  

Variance 0.222 0.0409 20.046 0.00183 

df  146 146 146 146 
2  29009.271 2357.267 3749.638 170.854 

SN Group 00kc  

Variance 0.00006 0.000 0.126 0.00008 

df  28 28 28 28 
2  32.846 34.319 27.00475 23.789 

Individual-level 

error ijk  Variance 0.031 0.0405 273.205 1.818 

 

 


