
 
 

NET Institute* 
 

www.NETinst.org
 
 
 

Working Paper #06-23 
 

October 2006 
 

Bandwidth Allocation in Peer-to-Peer 
File Sharing Networks 

 
Albert Creus Mir, Universitat Politecnica de Catalunya 
Ramon Casadesus-Masanell, Harvard Business School 

Andres Hervas-Drane, Universitat Autonoma de Barcelona 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
* The Networks, Electronic Commerce, and Telecommunications (“NET”) Institute, 
http://www.NETinst.org, is a non-profit institution devoted to research on network 
industries, electronic commerce, telecommunications, the Internet, “virtual networks” 
comprised of computers that share the same technical standard or operating system, and 
on network issues in general. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by New York University Faculty Digital Archive

https://core.ac.uk/display/43023457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.netinst.org/
http://www.netinst.org/


Bandwidth Allocation in Peer-to-Peer
File Sharing Networks∗

Albert Creus Mir† Ramon Casadesus-Masanell‡ Andres Hervas-Drane§

October 2, 2006

Abstract

We present a model of bandwidth allocation in a stylized peer-to-peer file sharing net-
work. Given an arbitrary population of peers composed of sharers and freeriders, where all
peers interconnect to maximize their allocated bandwidth, we derive the expected band-
width obtained by sharers and freeriders. We show that sharers are always better off than
freeriders and that the difference decreases as the size of the network grows. This paper con-
stitutes a first step towards providing a general analytical foundation for resource allocation
in peer-to-peer networks.

Keywords: Peer-to-Peer, Network formation, Resource allocation, Congestion

1 Introduction

Paired with the widespread adoption of peer-to-peer (p2p) networks, a growing academic
literature has emerged in recent years. Research has mainly focused on file sharing networks, the
most popular and disruptive application of peer-to-peer technology. The advent of file sharing
has not only had a strong impact on the content industry, forcing a change to new business
models, but also on the data networks of telecommunications operators worldwide. The copious
amount of data traffic generated by file sharing has shaped an increasing demand for bandwidth.
It is currently estimated that file sharing accounts for over 50 per cent of total Internet traffic.

Peer-to-peer applications configure overlay networks over the physical network layer. The
structure and bottlenecks of these overlay networks depend critically on the activity of par-
ticipating peers. Several empirical studies have examined their topology, employing different
techniques to gather information. Network crawlers are deployed in [5], [14] and [15]. While in
[10] and [16], p2p traffic is recovered from a trace performed at the physical network’s backbone.
Together, both approaches have helped characterize the main properties of these networks with
respect to peer availability and activity patterns, data traffic paths, and bandwidth bottlenecks.

A parallel literature has focused on constructing theoretical models of p2p file sharing. Con-
tributions to this literature have emerged from both computer science ([3], [8], [9]) and economics
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([1], [6], [13]). This work attempts to explain stylized properties of file sharing networks by study-
ing the incentives of peers to contribute resources. The literature has focussed on the effects of
freeriding: peers that participate in p2p networks to enjoy resources contributed by others with-
out contributing in return. Several papers have explored mechanisms to reduce freeriding and
drive higher resource contribution levels.

This theoretical literature, however, has so far failed to incorporate insights deriving from the
structure of the network. With just a few exceptions (see, for instance, [12]), the structure of p2p
networks is generally not modeled, resulting in resource allocation rules lacking a foundation.
In our view, p2p research can benefit from explicitly considering the properties emerging from
the underlying network structure. One main difficulty in pursuing this approach is the lack of
analytical tractability of network games. In this paper we present a simple approximation of
bandwidth allocation in file sharing networks which can be readily applied. While our model is
stylized, we believe that it captures the essential features of real p2p networks and provides a
foundation for theoretical models of file sharing.

We consider an arbitrary p2p file sharing network. We take the number of sharers and
freeriders as given. We assume that peers have homogeneous bandwidth capacities, that content
offered by sharers is equally valuable, and that peers derive positive utility from bandwidth.
Thus, the only reason why peers enjoy different utility levels in our model is heterogeneous
access to bandwidth contributed to the network.1

Our stylized model of p2p assumes that:

1. Each sharer provides one unit of upload bandwidth;

2. All peers have at least one unit of download bandwidth capacity;

3. Every peer connects to one sharer only;

4. A sharer may not connect to herself;

5. Bandwidth obtained from a sharer is allocated equably amongst all peers connected to her.

We refer to a set of links connecting peers to sharers as an allocation. A stable allocation is
one where no peer can be made strictly better off by connecting to a different sharer. Otherwise,
if given the choice, at least one peer would prefer to update her link and connect to a different
sharer. We assume all stable allocations arise in the network with equal probability. In any
stable allocation, every sharer will have approximately the same number of peers connected to
her. By ‘approximately’ we refer to the cases in which the number of peers is not divisible by the
number of sharers; the number of peers connected to each sharer will then differ by one peer. If
the total bandwidth provision in the network could be aggregated and then shared by all peers,
then each peer would obtain the exact same bandwidth (#sharers/#peers). However, because
bandwidth has to be allocated discretely (sharer-by-sharer), when the number of peers is not
divisible by the number of sharers there are two possible amounts of bandwidth that each peer
may end up obtaining in a stable allocation.

1We do not explicitly model the impact of overhead traffic originated by the p2p protocol and lower level
communication protocols. Thus, we implicitly assume that these protocols have and equivalent impact across the
population of peers. See [7] for a technical discussion on this issue. Although sharing in the network certainly
generates more overhead traffic than freeriding, the magnitude of this overhead is generally small in relation to
the volume of data traffic.
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We derive an exact formula for the expected bandwidth obtained by sharers and freeriders,
where expectations are taken across all stable allocations. We show that, somewhat counter-
intuitively, the expected bandwidth obtained by sharers is always larger than that available to
freeriders. Sharers can be allocated to fewer sources as they face the constraint of not connecting
to themselves. The constraint captures the fact that sharers in file sharing networks obtain no
additional utility from accessing the content they share (their bandwidth) as they already own
it.2 Freeriders, on the other hand, have access to more sources as they can connect to every
sharer. As it turns out, the constraint faced by sharers ends up favoring them (in expected
terms).3

Furthermore, we show that #sharers/#peers is a good approximation to the expected band-
width obtained by both sharers and freeriders. Sharers (freeriders) always obtain expected band-
width larger than (smaller than) #sharers/#peers. And as the size of the network grows, the
difference between expected bandwidth and #sharers/#peers quickly decreases. Already in a
network of size 10, the expected bandwidth obtained by sharers and freeriders differs from #shar-
ers/#peers by, at most, 10−4. And when network size is 100, the difference is always less than
10−6.

Because the approximation has an exceedingly simple form, it provides a foundation for ap-
plied theoretical work on p2p. The exact formula, on the other hand, is discouragingly complex
and it is unusable for all practical purposes. Casadesus-Masanell and Hervas-Drane [4], for exam-
ple, use the approximation to construct a model of a p2p file sharing network with endogenous
sharing that competes against a for-profit firm that offers content on a client-server architec-
ture at positive prices. By incorporating the costs associated with file sharing together with the
foundation for bandwidth allocation presented here, the authors show that such a model can
explain important stylized facts identified in the literature. While the present paper is devoted
to the study of bandwidth allocation in p2p file sharing networks, we believe our approach is
quite general and the results can be extended to other scarce rival resources in p2p networks.

The remainder of the paper is organized as follows. Section 2 states the problem formally.
In Section 3 we introduce two reductions and proceed to count all the stable allocations. We
present the formula in Section 4 and discuss some properties. Section 5 provides graphical
representations. We present intuition and discuss limitations in Section 6.

2 Setup

Let N , S, and F , be the set of all peers, the set of sharers (peers that contribute bandwidth),
and the set of freeriders (peers that do not contribute) respectively. Let n, s, and f , be the
cardinalities of these sets. Every peer is either a sharer or a freerider. That is, F = N\S and
f = n− s.

2This effect is similar to the contribution of other rival resources in p2p applications beside file sharing, such
as storage space or computational power. As any rival resources contributed cannot be put to an alternative use,
they are of no direct utility to the sharer.

3The difference that we obtain is small. Nevertheless, the result may have implications for dynamic systems
with unstable equilibria where initial, small differences may be amplified over time. The result may also be
exploited in the design of networks if our assumptions can be artificially implemented in the system.
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Figure 1. We can represent an allocation
graphically in terms of urns and balls. Every
urn represents a sharer, every ball is a peer.

Urns and balls are numbered, but the order of
balls in urns is unimportant.

Recall that a stable allocation is one where no peer can be made strictly better off by re-
allocating her to another sharer. The figure illustrates such an allocation. Obviously, given N
and S there are multiple stable allocations. And whenever the number of peers is not divisible
by the number of sharers, the bandwidth obtained from the network will differ across peers.
Let b := s − (n mod s), and a := n div s. In every stable allocation we must have a peers
allocated to b sharers and the rest (a + 1) allocated to the remaining s − b sharers. Therefore,
n = ba + (s− b)(a + 1). The following figure illustrates these zones.

Figure 2. Relevant zones.

To compute the expected bandwidth obtained by freeriders and sharers, we begin by com-
puting the bandwidth obtained by each peer in every stable allocation. Let x be a peer, and let
G(x) be the bandwidth obtained by the peer in any given allocation. G(x) is a random variable
that can take two values only, 1/(a + 1) and 1/a. For any given stable allocation, we define
the set B of ‘fortunate’ peers as B = {x|G(x) = 1/a} and the set of ‘unfortunate’ peers as
S − B = {x|G(x) = 1/(a + 1)}. Notice that the specific peers in B and S − B depend on the
particular allocation under consideration.

The expected bandwidth obtained across all peers, both sharers and freeriders, is E :=
E(G(x)) = s/n. Obviously, 1/(a + 1) < s/n ≤ 1/a. We may also consider the conditional
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expectations ES := E(G(x)|x ∈ S) and EF := E(G(x)|x ∈ F ) (these are the expected band-
widths obtained by sharers and freeriders, respectively). If sharers were to connect to themselves
the calculation would be trivial. In this case, symmetry implies that ES = EF = E = s/n.

In peer-to-peer networks, however, sharers do not connect to themselves. In this case, the
conditional expectations ES and EF turn out to be different. Nevertheless, the total bandwidth
available in the network, s, must still be equal to the number of sharers times ES plus the number
of freeriders times EF . That is, s/n · ES + (n− s)/n · EF = s/n. Therefore, if we compute ES,
we can immediately obtain EF .

Because every stable allocation is assumed to be equiprobable, to compute ES we need to
count all of them and compute the average of G(x)x∈S for each. Let H be the total number of
stable allocations. Let hi be the number of these allocations with i sharers in B. Notice that for
all these allocations, the average of G(x)x∈S is exactly the same. Therefore, we can consider hi

as the histogram of this value. Then,

ES =
s∑

i=0

(
1

a

i

s
+

1

a + 1

s− i

s

)
hi

H

or

ES =
a +

∑s
i=0

i
s

hi

H

a(a + 1)
.

3 Count

In this section we compute hi. That is, we orderly enumerate and count all the stable
allocations that have i sharers in B. Due to the magnitude of this task, we reduce and decompose
the problem as much as possible.

3.1 First reduction

Given n and s, consider the set of all stable allocations. We can divide this set into subsets
depending on which sharers support B (having only a peers allocated to them). These subsets are
disjoint, and they add up to the entire set of stable allocations, so they are classes. Specifically,
there are

(
s
b

)
classes.

Each of these classes has the same number of allocations. To see this, notice that there are
bijections between the classes, obtained by changing the names of the elements. Consider class r
and let hr

i be the number of allocations with i sharers in B for class r. Notice that for all r, the
value of hr

i (for every i) is the same. Therefore, by studying one single allocation we can obtain
the total hi =

(
s
b

)
hr

i . Thus, to simplify the analysis we, will study the class in which the sharers
supporting B are the first ones. The next figure illustrates the approach.

Figure 3. The first reduction is to rename
sharers to get a clearer view.
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3.2 Second reduction

Given n and s, consider the set of all stable allocations where B is supported by the first
sharers. We now compute how many ways we can assign the n peers between the two zones B
and S −B.

3.2.1 Counting reduction 2

In general, there are
(

n
ba

)
possibilities. There are three exceptions:

1. When b = s there is 1 possibility.

2. When b = 1 there are
(

n−1
ba

)
possibilities.

3. When b = s− 1 there are
(

n−1
ba−1

)
possibilities.

These three cases will always be exceptions to the general formula we derive. They are
illustrated in the following figure. The last two cases are special because they require that a
given sharer be assigned to ‘the other’ zone.

Figure 4. The three exceptions.

In the general case, 1 < b < s− 1, there are
(

n−s
ba−i

)(
s
i

)
possibilities that have exactly i sharers

in B. Using known formulae, adding up we obtain
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(
n

ba

)
=

min{s,ba}∑

i=max{0,s+ba−n}

(
n− s

ba− i

)(
s

i

)
,

where the limits come from observing the problem and ensuring the combinatorial numbers
are well defined.

Figure 5. In zone B, freeriders are plotted in
white, easy sharers in grey and complicated

sharers in black.

As illustrated in the figure above, j sharers out of i may be ‘complicated.’ A complicated
sharer is one that supports B and happens to be in B. We have to take this into account in
order to not assign a complicated sharer to herself. An allocation that has a sharer assigned
to herself is called a ‘coincidence.’ There are

(
n−s
ba−i

)(
s−b
i−j

)(
b
j

)
possibilities that contain exactly j

‘complicated’ sharers. Again using known formulae, we add up and obtain

(
n

ba

)
=

min{s,ba}∑

i=max{0,s+ba−n}

(
n− s

ba− i

) min{b,i}∑

i=max{0,b+i−s}

(
s− b

i− j

)(
b

j

)
.

3.2.2 Relationship with the original problem

For every possibility of the reduced problem, we now count how many possibilities exist in
the original problem. We proceed by assigning the peers in B to the b sharers that support them.

If there were no ‘complicated’ sharers, this would be a simple multinomial problem with
formula (ab)!

(a!)b . However, because there are j complicated sharers, we perform the same count but
need to subtract all those possibilities with coincidences. For example, if j = 1,

(ab)!

(a!)b
− (ab− 1)!

(a− 1)!(a!)b−1
=

(ab)!

(a!)b
− a

ab

(ab)!

(a!)b

=
(ab)!

(a!)b

(
1− a

ab

)
.

If j = 2, we subtract twice the cases with one coincidence, but add once the cases with two
coincidences,
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(ab)!

(a!)b
− 2

(ab− 1)!

(a− 1)1!(a!)b−1
+ 1

(ab− 2)!

(a− 1)!2(a!)b−2
=

(ab)!

(a!)b

(
1− 2

a1

(ab)
+ 1

a2

(ab)(ab− 1)

)

=
(ab)!

(a!)b

(
2

0

)
a0(ab− 0)!

(ab)!
− (ab)!

(a!)b

(
2

1

)
a1(ab− 1)!

(ab)!
+

(ab)!

(a!)b

(
2

2

)
a2(ab− 2)!

(ab)!
.

In this process, we are applying the principle of inclusion-exclusion. The problem is similar
to a derangement. By analogy, we define the Multinomial Derangement number,

MD(b, a) =
(ab)!

(a!)b

b∑

k=0

(
b

k

)
(−1)kak (ab− k)!

(ab)!
,

and the Generalized Multinomial Derangement number,

GMD(b, a, j) =
(ab)!

(a!)b

j∑

k=0

(
j

k

)
(−1)kak (ab− k)!

(ab)!
.

Notice that MD(b, a) = GMD(b, a, b), and MD(b, 1) = Derangements(b) =!b.
As we have to take into account both zones, B and S−B, for each possibility of the reduced

problem there are GMD(b, a, j)GMD(s − b, a + 1, (s − b) − (i − j)) possibilities of the original
problem.

4 Formula

Consider the original problem described in Section 2. Let n be the number of peers, s the
number of sharers, a = n div s and b = s− (n mod s).

0) For b = s, we have that ES = 1/a = s/n. Otherwise, if H :=
∑

i hi,

ES =
a +

∑s
i=0

i
s

hi

H

a(a + 1)
.

1) For b = 1, i ∈ [max{0, s + ba− n}, min{s− 1, ba}].
2) For b = s− 1, i ∈ [max{1, s + ba− n}, min{s, ba}].
3) Otherwise, 1 < b < s− 1, i ∈ [max{0, s + ba− n}, min{s, ba}].

Where

hi =

(
n− s

ba− i

) min{b,i}∑

j=max{0,b+i−s}

(
s− b

i− j

)(
b

j

)
GMD(b, a, j) ·GMD(s− b, a + 1, (s− b)− (i− j)),

and

GMD(b, a, j) =
(ab)!

(a!)b

j∑

k=0

(
j

k

)
(−1)kak (ab− k)!

(ab)!
.
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4.1 Properties

If sharers can connect to themselves we obtain ES = s/n. To see this, notice that in this case
the GDM() factors disappear and

∑
i

i

s

hi

H
=

∑
i

i
s

(
n−s
ba−i

)(
s
i

)
(

n
ba

) =

∑
i

(
(n−1)−(s−1)
(ba−1)−(i−1)

)(
(s−1)
(i−1)

)
(

n
ba

) =

(
n−1
ba−1

)
(

n
ba

) =
ab

n
.

Therefore, the difference is given by the GMD() factors.
Also note that (ab)!/(a!)b is not relevant within GDM(). Because this expression does not

depend on i or j, it also appears in H :=
∑

i hi. Therefore it cancels out.
Two efficient ways to compute GMD() recursively are as follows. Let

dk :=

(
j

k

)
(−1)kak (ab− k)!

(ab)!

= {(j − 0)(j − 1)...(j − k + 1)

12...k
}{(−1)(−1)...(−1)}{aa...a}{ 11...1

(ba− 0)(ba− 1)...(ba− k + 1)
},

fk :=
(−1)(j − k + 1)(a)

(k)(ba− k + 1)
, f0 := 1,

dk := fkdk−1, d0 = 1,

and

gk := fj−k(1 + gk−1), g0 := fj.

Then,

GMD(b, a, j) =
(ab)!

(a!)b

j∑

k=0

dk =
(ab)!

(a!)b
gj.

5 Plots

In this section we present a few plots to illustrate the properties of ES, the expected bandwidth
obtained by sharers. We initially fix the number of peers to n = 100, increase the number of
sharers from s = 2 to 100, and plot ES. The plot reveals that ES ≥ s/n (the diagonal line). ES

is a curve with several peaks always above s/n. Of course, ES > s/n implies that EF < s/n.
This follows from the fact that s/n ·ES + (n− s)/n ·EF = s/n. The difference between ES and
s/n is small. In the following plot we have augmented 10,000 times the difference to make it
visible.
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Plot 1. ES ≥ s/n

We now plot the absolute difference, ade = ES − s/n. We should note that, in order to
generate a statistical plot of ade by the Montecarlo method, one needs to be especially careful
not to end up with a biased generator. A full 3D plot is included in the appendix. Although a
plot of the relative difference in percentage terms between ES and s/n could be more informative,
such a curve has peaks that vary wildly in size and cannot be drawn well.

Plot 2. A reference plot of ade.

As we increase n, the differences between ES and s/n maintains a similar pattern, only the
magnitudes differ. The next plot shows ade for different values of n (n = 60, n = 120, and
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n = 240), normalized in order for the largest peak to reach 1. We have also stretched the
horizontal axis. For example, the plot for n = 60 has its horizontal axis stretched 4 times. And
the plot for n = 120 has its horizontal axis stretched twice. The similarity between the three
plots is remarkable.

Plot 3. The ade curve has almost the same shape everywere.

As n changes, the most pronounced differences in the shape of ade occur at the values of s
where ade approaches zero (n/2, n/3, n/4,...). If n is divisible by s, then ade is equal to zero.
Otherwise, ade > 0. The following plot shows ade for n = 60 and n = 61. 60 is divisible by 2,
3, 4, 5, 6, 10, 12, 15, 20, and 30. At all these points ade is zero. 61, however, is prime. In this
case, ade never reaches zero.
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Plot 4. The biggest differences are on the zeros.

The fact that ade is similar for all n allows us to tabulate ade for a given n and then
extrapolate its value for other n. In this way, we can obtain approximate values of ade without
costly calculations.

It is of interest to evaluate how ade varies as we increase n; or how the bandwidth difference
between sharers and freeriders evolves as the size of the network increases. We next plot the
values of ade at the last peak as we increase both n and s, thus maintaining the proportion of
sharers present.

Plot 5. The ade curve’s last peak decreases at an exponential rate of -2 as both new
sharers and freeriders arrive.
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The plot shows that ade decreases at a quadratic rate. This suggests a quick method to
approximate the value of ade given s and n: look up s100 = s/n100 in the second plot, and apply
the formula ade = ade100(100/n)2.

It is also interesting to see how ade evolves for a given s as n increases. In the following plot,
we set s = 20 and let n vary from 20 to 120.

Plot 6. The ade curve when only freeriders arrive.

The next plot shows the value of ade at the last peak for this case. The decrease rate is also
exponential, but even larger with a -3 exponent.

Plot 7. The ade curve’s last peak decreases at an exponential rate of -3 as new freeriders
arrive.
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These results suggest that ade quickly converges to 0 as n increases.

6 Discussion

6.1 Connectivity constraints

As we have just shown, the difference in expectations ES and EF is due to the constraint
that a sharer cannot connect to herself. Furthermore, not only ES 6= EF , but ES ≥ EF . The
constraint ‘helps’ sharers; they end up better off (in expected terms). Counterintuitively, peers
with more options available (freeriders) are worse off than those with less options (sharers).
Technically, the result suggests that if freeriders could commit not to be allocated to a given
sharer, they would do so.

Going into this problem, we expected that individuals who had less options available (shar-
ers) would end up worse off than those with more options available (freeriders). To gain some
intuition, consider the following heuristic argument. Suppose that there are s sharers and f
freeriders. Let E0

S and E0
F be the expected amount of good allocated to sharers and freeriders,

respectively, when no sharer can be allocated to his own good. (This has been the assumption
in most of the paper. In fact, E0

S ≡ ES and E0
F ≡ EF .) Suppose now that one of the sharers can

be allocated to his own good. Let E1
F be the expected amount of good allocated to freeriders in

this new situation. Clearly, E1
F = (1 − α) · E0

F + α · EN
F , where EN

F is the expected amount of
good allocated to freeriders in the ‘new’ equilibria (all those equilibria where the ‘special’ sharer
is allocated to his own good) and α is the proportion of ‘new’ equilibria to all equilibria. It is
easy to see that EN

F > E0
F . The reason is that having a sharer allocated to himself (the new

equilibria) means that (on average) there is less competition for all the goods offered by the other
sharers, although there is slightly more competition for the one good contributed by the ‘special’
sharer. As a consequence, we must have E1

F > E0
F . Applying this argument s times we see that

Es
F > Es−1

F > Es−2
F > . . . > E1

F > E0
F . Notice finally that when every sharer can be allocated to

its own good, sharers and freeriders are symmetric and Es
F = Es

S = s/n. Of course, this implies
that EF ≡ E0

F < s/n and ES > s/n.
Consider the following modified model where each sharer can only be connected to herself.

Notice that the constraint is now stronger than before; sharers have only one feasible link and
connections to other sharers are no longer available. The analysis is immediate,

ES =
1

s
(b

1

a
+ (s− b)

1

a + 1
) =

1

s

sa + b

a(a + 1)
.

The following plot illustrates the behavior of ade in the modified model.

14



Plot 8. The ade curve when sharers can only connect to themselves.

As shown by the graph, ade > 0. And in fact, the difference between ES and s/n is now even
larger. This example shows that the more constrained peers are, the better off they end up.

6.2 Equiprobability

We have assumed throughout that stable allocations are equiprobable. We next motivate this
assumption in the context of a model where peers decide with whom to connect to. The nature
of p2p applications suggests one-sided link formation, where peers can decide which sharer to
connect to without the consent of the sharer.4 In this setting, a simultaneous one-shot game
yields a set of equilibria that coincides by definition with our set of stable allocations. Clearly,
this is the set of allocations that are of interest for the analysis.5

A one-shot game, however, provides no insight on the relative probability of each outcome.
To construct a probability distribution over this set we need to consider a sequential game, where
peers decide orderly with whom to connect to. To model such a game, consider a randomized
connecting order with myopic peers. That is, peers take the current allocation as given when
choosing their connection; no forward induction takes place (which is unfeasible given the size
and complexity of p2p networks). In the model described, however, the probability distribution
over the set of stable allocations depends on the fine details of the connection process.

Consider the following example. There are six peers, three sharers (S1, S2 and S3) and three
freeriders (F1, F2 and F3). The random ordering of peers is S3, S2, F1, F2, F3, and S1. S3

4See Jackson [11] for a survey of models of networks in Economics and a discussion of different models of link
formation.

5We should note that in our model no tradeoff exists between stability and efficiency. An allocation is Pareto
efficient if and only if the upload bandwidth provided by all sharers is being utilized in the network. That is,
if the whole bandwidth provision in the network is enjoyed by peers. Clearly, if an allocation does not satisfy
this condition, a peer reassigned to a free sharer can be made better off without worsening the remaining peers.
Hence stable allocations are a subset of Pareto allocations.
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connects to S2; S2 connects to S3; F1 connects to S1; F2 connects to S2; and F3 connects to S3.
At this point, S1 can only connect to S2 or S3. But neither constitutes a stable allocation.

Figure 6. Sequential connecting orderings
with myopic peers may yield unstable

allocations.

It turns out that constraining sharers not to connect to themselves while demanding equiprob-
ability is somewhat equivalent to allocating them first, or at least, not last. This provides further
intuition as to why the more constrained they are, the better off they end up.

And as shown by the example, further assumptions are required concerning the mechanism by
which peers may update their links if unstable allocations arise. Different mechanisms may favor
either sharers or freeriders compared to the equiprobability benchmark. Due to the dependence
of the solution on the fine details of the modeling choice, we assume equiprobability.

6.3 Applicability and limitations

We end with a few observations regarding the limitations of the model. First, in real networks
peers hold multiple links. However, peers cannot connect to all sharers simultaneously; connec-
tivity is generally limited. Our single link assumption attempts to capture this fact. We have
considered a generalization of the model with more links per peer, but it increases substantially
the complexity of the formula. Similarly, in real networks the upload bandwidth capacity differs
between sharers. To consider heterogeneity in sharer capacities implies that certain sharers are
able to provide higher utility to the peers that connect to them. As a result, in stable allocations
more peers are connected to sharers with higher bandwidth capacity than to those without. In
both cases, if the number of freeriders and sharers is large with respect to either the number of
links or the asymmetries between sharers, we expect the advantage of sharers (ES ≥ EF ) and
the approximation σ/n to hold, where σ is the total upload bandwidth offered by sharers.

We have not considered heterogeneity in the number of links, in the download capacity of
peers, or the value of the content offered by sharers. Moreover, our model is static, it does
not consider how stable allocations are reached nor the evolution of the network over time. In
real networks, peers enter and leave. Even with these limitations, we hope to have provided
a benchmark on which to construct these (and other) extensions. A clear understanding of
congestion in p2p file sharing networks is a necessary first step towards providing a theory of
incentives to contribute resources to p2p.6

6For a recent application using the s/n approximation result, see [4].
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A Appendix

A three dimensional plot of ade.
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