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Abstract

We define an economic network as a linked set of entities,

where links are created by actual realizations of shared eco-

nomic outcomes between entities. Such networks are becom-

ing increasingly prevalent on the Internet, an example being

the copurchase netwok on Amazon where entities are books

and links designate which pairs were purchased simultane-

ously. Our dataset covers a diverse set of books spanning

over 400 categories over a period of three years with a to-

tal of over 70 million observations. To our knowledge, this is

the first large scale study showing that an economic network

contains useful predictive information that is distributed in

the network. We show that an economic network contains

predictive information. Specifically, we demonstrate that an

entity’s future demand is more accurately predicted by com-

bining its historical demand with that of its neighbors than

by considering its demand alone. In other words, if you want

to know what your state will be in the future, consider what

is happening to your neighbors now. This result could ap-

ply to other economic networks where outcomes of sets of

entities tend to be related.

1 Introduction

The increase in commercial and social interaction online
have made electronic networks of different kinds increas-
ingly prevalent. These networks may provide useful in-
formation that is not available if the elements of the
networks are considered in isolation. One such network
is a social network which describes relationships be-
tween individuals who are friends, colleagues, or trading
partners (facebook, LinkedIn, MySpace, just to name a
few). When people are “connected” to each other in
a social network chances are that the individuals share
some common interests or objectives and may respond
similarly to certain external stimuli or even influence
each other. In a recent book [3] even see happiness and
health related issues as collective network oriented phe-
nomena.

A different kind of network which has received less
attention in the literature and popular media thus far
but which we believe is central to graph-based predic-
tive modeling, is an economic network. In economic
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networks or graphs, the links of the network are cre-
ated by actual realizations of economic outcomes re-
lated to and relating the entities which are the nodes
of the netwok. One widely occurring example is a cop-
urchase network (i.e., a network that connects products
based on shared purchasing patterns) often presented
on electronic commerce sites. When items tend to be
purchased concurrently, chances are that something in
common affects their demand. This information can be
very useful especially if what is causing the correlation
is distinct from their observable characteristics like the
author of a book or the category of a product. Indeed,
collaborative filtering has been tremendously successful
for Amazon which is rumored to derive roughly 20%
of its sales through recommendations of products that
have been “copurchased” in the past.

There has been considerable interest recently in
data mining that is based on social networked data
[6], [5] with fraud detection, marketing, and counter-
terrorism being some of the popular applications. 1

While there has been a lot of recent attention directed
towards social networks, interactions between social en-
tities are often complex, involving many types of in-
teraction ranging from information sharing to recom-
mendations. In contrast, online economic networks are
relatively simple due to the “passive” nature of the in-
teraction among the entities. Moreover, these networks
may include valuable information that can be used to
improve outcome predictions, while also making it possi-
ble to identify and measure the influence of links. This
research asks whether economic networks contain any
predictive information, where changes in the state of
one entity result in subsequent changes in the state of
entities linked to it. In other words, is the collective
knowledge about the configuration or pattern of a set
of entities linked by economic outcomes greater in value
than the knowledge of each entity in isolation, or is there
a form of “gestalt” associated with the economic graphs
that will allow us to exploit their structure to build bet-
ter predictive models?

1A more comprehensive survey is beyond the scope of this pa-
per, although a bibliography of loosely related papers is available
at http://www.cs.purdue.edu/homes/neville/courses/icwsm09-
tutorial.html
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If economic networks do contain useful predictive
information, it is distributed among its entities and
links, driven by phenomena such as preferences of con-
sumers and similarities among products. A central ad-
vantage of using economic networks is that their exis-
tence eliminates the need to actually model these prefer-
ences and similarities explicitly, often a near-impossible
undertaking. Consider a simple example from electronic
commerce. Many large online retailers have tens of
millions of consumers. Each of these consumers has
a unique set of preferences and willingness-to-pay for
the (possibly) millions of products that are sold by the
retailer. In order to use data mining techniques for pre-
dicting optimal marketing choices, or for demand fore-
casting and planning, it is customary to create a coarse
partition of these consumers along a small set of read-
ily observable dimensions, such as gender, zip code, and
age, and other behavioral profiles. The data mining
task is to relate choices or actions to these dimensions
with the reasoning that consumers who share common
characteristics along these dimensions are likely to make
similar choices.

The following economic analogy provides some in-
sight into our conjecture that links created by economic
outcomes have information of predictive value. Equilib-
rium prices are “determined” for a variety of products
every day, and equilibrium demand levels are realized at
posted prices, for example, at a variety of retail stores.
While it is not possible to “reverse engineer” the ac-
tual preferences of decision makers or characteristics of
products from these observed prices or demand levels, it
is widely accepted that such prices contain aggregated
summaries of these preferences. If one can relate these
products to one another based on similarities in such
economic outcomes and if there is sufficient gestalt as-
sociated with the network, the observed outcomes today
for the neighborhood of a product may be good predic-
tors of future outcomes for the product itself.

We investigate this possible relationship using
a massive copurchase dataset gathered from Ama-
zon.com. The data cover over 700,000 books over three
years resulting in a total of over 70 million daily observa-
tions. In the past, [7] used a similar dataset to quantify
the increased sales of books due to the visibility of this
network. They found that the visible presence of links
between complementary products triples, on average,
the measured demand complementarity. In other words,
during the period in which two products are linked, for
an increase in the demand of one of them, the demand
for the other increases three times more than it would if
it were a simple complementary product with no visible
online network link.

This prior result highlights the importance of links

that are created or altered between two entities based
on them sharing an economic outcome. Our current
question which relates to outcome based links can thus
be operationalized in the context of these network links
which are created by a high fraction of copurchases.
The interconnection between economic objects (agents,
products) is not on account of their explicitly sharing
one or more observable features or characteristics such
as author, topic or genre. Such features are part of
what we term a product’s “intrinsic features”, and
are typically used as a basis for prediction in data
mining. Our interest here is in demonstrating that
an entity’s future demand is more accurately predicted
by combining its historical demand with that of its
neighbors than by considering its demand alone, and
this kind of improvement can be obtained even when
using a relatively simple autoregressive model.

To summarize, we examine the predictive power of
these copurchase links, asking whether the network data
provided by the copurchase links helps predict changes
in demand for books better than is achievable without
consideration of the network. Our baseline model is a
simple auto-regressive (AR) model [8] where demand
in the next period is a linear combination of demands
in previous periods. We also specify an AR model
that includes information about the network as specified
below. We vary each type of model by including
different amounts of history in making the prediction.
By comparing the results of the predictions between the
two types of models we can assess whether information
about the network has consistent predictive value.

2 Data

We use a large time series data set of recommendation
networks for over 700,000 books sold on Amazon.com.
Each product on Amazon.com has an associated web-
page. These pages each have a set of copurchase links
which are hyperlinks to the set of products that were
copurchased most frequently with this product on Ama-
zon.com. This set is listed under the title “Customers
who bought this also bought:”. An example of copur-
chase links is illustrated in Figure 1.

The copurchase network is a directed graph in which
nodes correspond to products, and edges to directed
copurchase links. We collect data about this graph
using a Java-based crawler, which starts from a popular
book and follows the copurchase links using a depth-
first algorithm. At each page, the crawler gathers and
records information for the book whose webpage it is
on, as well as the copurchase links on that page, and
terminates when the entire connected component of the
graph is collected. This is repeated daily. A sample
part of the graph is illustrated in Figure 2 and the



Figure 1: An Example of Copurchase Links

corresponding larger segment of a copurchase network
is shown in Figure3. The algorithm used for data
gathering is provided in the Appendix A.1

We have chosen to focus on books because they are
in the product category with by far the largest number
of individual titles, whose product set is relatively stable
(compared to electronics, for instance), and the network
data are observable.

The data collection began in August 2005 and is
currently ongoing. The graph is traversed every day.
The following data is available for each book on the
copurchase graph, for each day:

• ASIN: a unique serial number given to each book
by Amazon.com. Different editions and different
versions have different ASIN numbers.

• List Price: The publisher’s suggested price.

• Sale Price: The price on the Amazon.com website
that day.

• Copurchases: ASINs of the books that appear as
its copurchases.

• SalesRank: The sales rank is a number associated
with each product on Amazon.com, which measures
its demand of relative to other products. The lower
the number is, the higher the sales of that particular
product.

• Category Affiliation: Amazon.com uses a hierar-
chy of categories to classify its books. Thus, each
book is associated with one or more hierarchical
lists of categories, starting with the most general
category affiliation, and ending with the most spe-
cific one. For example: Subjects, Business & In-
vesting, Biographies & Primers, Company Profiles

• Author: The name of the book authors.

Figure 2: Small segment of a copurchase network

0 100 200 300 400
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Category id

N
u

m
b

er
 o

f 
b

o
o

ks
 in

 t
h

at
 c

at
eg

o
ry

Book category sizes distribution

Figure 4: Distribution of category sizes



Figure 3: Larger subset of the copurchase network

• Publisher: The name of the book publisher.

• Publication date: The date of publication of the
book (by that publisher).

An additional script collects the demand informa-
tion for all books on the graph every 3 hours for the
24-hour period following the collection of the graph.

The number of books per category varies consider-
ably as shown in Figure 4. For the purposes of this
study, however, we do not distinguish between cate-
gories, and attempt to build a general model that treats
them equivalently. We return to this issue in the Dis-
cussion section.

3 The sales rank prediction task

The dependent variable that we set up for our prediction
task is the salesrank of a book in the next period, since
demand data are not directly provided for us.

For starters, we consider only the non network fea-
tures, namely, those that are observable and specific to
the product, or what a typical predictive modeling exer-
cise might consider as the basis for its features. To build
a predictive model, one would typically construct and
select a number of features that have some correlation
to sales. These might be things like changes in average

daily SalesRank for a number of weeks, percentage of
days that the average daily SalesRank increased on a
daily basis during the last N days, list price of a book,
weekly average sale price in the last N days, and so on.
In addition, there could be seasonal variables, especially
for certain genres of books.

Recall that our objective in this paper is not to build
the best predictive model or even a good one. Rather,
it is to use a simple model that enables us to assess
whether the network contains any useful predictive
information. Accordingly, we limit our model structure
to a simple autoregressive AR(N) model and consider
only the past sales of the book upto some period in
the past as independent variables. We also consider
only those books that are “immediate neighbors” in the
copurchase network, namely, those that have an explicit
recommender link in Amazon.

4 The models

In order to present a reasonable predictive model for
salesrank, we first consider the properties of this ob-
served variable.

First, today’s salesrank of a particular item is highly
correlated with the item’s yesterday’s salesrank. For
the most part, most items have an established level
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of popularity that does not vary much in the short
term. This property is also reflected in the Figure
5, which shows the persistence of autocorrelation in
salesrank. Figure 5 shows the correlation between
today’s salesrank and the salesrank several days ago.
For example, the value 1 on the x-axis corresponds
to the estimated correlation between today’s salesrank
and yesterday’s salesrank, the value of 2 on the x axis
corresponds to correlation between today’s salesrank
and the day before yesterday’s salesrank and so on.

Second, we take into account that a drop in
salesrank from #1 to #20 is conceptually very different
from drop of salesrank from #1001 to #1020. In the
first case, the underlying demand is likely have changed
on a large scale, while in the second case, the change in
underlying item demand is likely to be very little if any.
Therefore, the change of +20 in raw salesrank only has
meaning depending on the level of salesrank.

Note that no such argument applies directly to log-
arithm of salesrank: a drop in demand that lies behind
the drop in salesrank from #1 to #20 is comparable
to drop in demand when salesrank drops from #100
to #2000. This intuition was indeed experimentally
confirmed in multiple studies of relationships between
salesrank and demand such as [4], [2]. We make use of
this relationship as explained later in this section.

Finally, Figure 6 shows that the changes in raw
salesrank values tend to exhibit a very non-symmetric
distribution, since the nature of salesrank variable is
such that if a single book rockets up in popularity, most
of other books get shifted down, by a little.

In contrast, the changes in logarithms of salesrank
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Figure 6: Changes in Salesrank

shown in Figure 7 exhibit more symmetric distribution.
For the reasons mentioned above, we considered that for
a salesrank predictive model it is more appropriate:

1. to use the log of salesrank as the dependent vari-
able, instead of raw salesrank value

2. to use AR-style model that exhibits similar auto-
correlation patterns [8] to the one shown in Figure
5.

Therefore, we used the following 3 functional forms
of the AR model as the predictive models to be com-
pared:

1. Model 1. Naive model. This model predicts
the salesrank today with yesterday’s salesrank as
follows:

log(SR0) = log(SR1) + ε, E[ε] = 0, Var[ε] = σ2

where SR0 is unobserved salesrank today, SR1 is
observed salesrank yesterday and ε is an unob-
served error term with unknown variance σ2

2. Model 2. The baseline autoregressive (AR) model.
This model predicts the salesrank for an item today
from the observations of salesrank for that item for
N previous days as follows:

log(SR0) = α0 +
N∑

i=1

αi log(SRi) + ε

where SR0 is unobserved salesrank today, SRi is
observed salesrank i days ago and ε is an unob-
served error term as described above.
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3. Model 3. Network effects autoregressive model.
This model augments the baseline AR-model de-
scribed above with the data of salesrank for net-
work neighbors for the past M days:

log(SR0) = α0+
N∑

i=1

αi log(SRi)+
M∑

j=1

βj log(Nj)+ε

where all SRi and ε are as described above and Nj

is the “averaged” salesrank for network neighbors j
days ago. This calculation of the average salesrank
for network neighbors is described in detail in
Appendix A.2.

As is usually the case in AR models, we assume that
the noise term ε is stationary and does not change its
properties over time.

In this study, we also assume that each item
salesrank follows the same underlying AR-process and
therefore, the model coefficients αi, βj are the same for
each book and each time period. While it is possible
to have the coefficients be book specific, such a model
would require large amounts of data for each book to be
realistic. Assuming a general model limits the possibil-
ity of overfitting and keeps the evaluation simple.

4.1 Model estimation We estimate the coefficients
{αi} and {βj} of the models 2 and 3 using ordinary
least squares estimator. This approach is standard and
well-known for AR models. Below we demonstrate it for
model 3 only, but exactly same logic applies for model
2 as well.

Assume that log(SR0) is unobserved random vari-
able which we denote as y for notational conve-
nience. Assume also log(SR1), . . . , log(SRN ) and
log(N1), . . . , log(NM ) are observed values and we put
them into a column-vector x. Denote the vector of all
unknown coefficients (α1, . . . , αN , β1, . . . , βM ) as vector
γ. Then our model can be represented as

y = x′γ + ε, E[ε] = 0, Var[ε] = σ2

that is a standard linear regression model.
More specifically, assuming that all observed values

of y are stacked into the column vector Y and all the
corresponding observed values of x′ are stacked into the
matrix X, the unknown coefficient γ of such model can
be estimated consistently and efficiently with ordinary
least squares method [8] as follows

γ̂ = (X ′X)−1X ′Y

More detailed treatment of this approach can be ob-
tained from [8].

5 Results

We partitioned the data into a training and a test set
using a cutoff date method. We chose the cut-off date
of April 20, 2007 since it creates a training set of 80
percent and a test set of 20 percent. According to this
cut-off date procedure, every observation that is dated
before April 20, 2007 falls into the training set and every
observation that is dated after April 20, 2007 falls into
the test set.

This was a stringent test in that several books
appeared only in the test set and never appeared
in the training set. We acknowledge that there are
other methods for performing the in and out of sample
analysis, which we intend to conduct in subsequent
research that we consider in the Discussion section,
but our preliminary analysis on a couple of categories
suggests that the results are very stable across different
data splits.

The results of the regression are summarized in
Figure 8. The y axis in the figure is the performance
variable, namely the mean squared error. The x axis is
the number of days N and M of history included into
the model2.

The results are interesting in several ways. First
of all, the improvement in error is consistent, roughly
around ≈ 0.5 % for the most complex models. The net-
work provides a higher percentage improvement when
a shorter history is used. How significant an improve-
ment is the improvement of 0.5 percent? It is well known

2Here we use N = M .
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that for problems with a lot of noise, most models, and
especially AR models, tend to produce forecasts that
are very close to the mean. In other words, given the
noise in the problem, it is very difficult for a forecasting
model to predict large values for the dependent vari-
able since these often turn out to be wrong whereas the
model minimizes error by predicting values very close
to the mean. Accordingly, the majority of the error
is contributed by the large actual values of the depen-
dent variable, so “improvements” in overall error tend
to be very small. In this respect, an error reduction of
0.5 % across the entire dataset of more than 70 million
observations could be a very significant improvement.
Indeed, the standard errors for the estimates are very
small, of the order of 10−5.

In addition to looking for improvement in error, we
considered it more relevant to compare errors of the
two models across different levels of model complexity.
This was the motivation for analyzing the errors by
considering varying histories of predictors. The results
here show that the network model consistently provides
a lower error rate than the one without the network.

6 Discussion and Future Work

In previous research reported in the literature by [7],
it was shown that the impacts of visible network links
could be econometrically identified and that their eco-
nomic impact was significant. In this study, we set out
to answer a different question, namely, whether changes
in demand can be predicted more accurately using net-
work information than without it. The results show
this is in fact the case. To the best of our knowledge,

we provide the first evidence using a large scale study
on the existence of predictive information contained in
the structure of economic networks.

As a first study that uses economic networks for
predictive modeling, we restricted our attention to
the simplest possible “neighborhood” of a product, its
immediate in-neighbors. Our current research aims
to extend this neighborhood to include more distant
neighbors in constructing the network related features.
A useful summary of the level of influence that a graph
has on each of its nodes is embodied in the PageRank
measure of centrality [1]. We are constructing a similar
measure of centrality that additionally, weights nodes
in a neighborhood by their demand. We also believe
that large changes in an appropriately defined measure
of graph centrality will be good lagging indicators of
demand shifts. Such changes are likely to be associated
with a large shift of the product within the graph,
which in turn would create a new neighborhood and new
demand influences for the product whose measurable
impact may take time to manifest. Testing the latter
conjecture remains a promising line of future inquiry.

While our intuition at the outset of the project was
that the economic network contains useful predictive
information about sets of linked entities, it was not
obvious that these would manifest as lagged effects. In
contrast, if for example, new information is reflected
instantly in related entities, we would expect changes
in the state of entities to be concurrent. The result
suggests that this is not the case, and that additional
useful information is distributed in the neighborhood
of a product. Furthermore, such information can be
aggregated for predictive purposes. A natural next step
in this direction would be to associate varying levels
of lag influence with nodes that are different distances
from the product in question. For example, one might
expect the influence of a distant neighbor to take longer
to measurably affect the economic outcomes we observe.

Having validated our initial central conjecture,
namely that economic network contains predictive infor-
mation, it seems natural for future research to consider
the use of machine learning methods as an alternative
the AR model to build more accurate predictive mod-
els. Machine learning methods can deal with problems
with high levels of noise by discovering “local” mod-
els that can be applied to different partitioning of the
data. These localized models can make more aggressive
forecasts for specific books in contrast to the AR model
that is very conservative in its predictions, with small
deviations from the mean. It is also worth consider-
ing additional ways to validate the results. One method
would be to hold the last few observations of every book
for testing. In this way, the model would be built and



tested using time series data on every book. We would
expect that the results with this partitioning to be bet-
ter compared to the method we used where many books
don’t even appear in the training sample.

We expect that there will be numerous new eco-
nomic networks that become observable to firms and
researchers over the next years. The tight association
of the links in these networks with economic outcomes
of interest makes them especially attractive as a basis
for predictive modeling. These networks are the natu-
ral place to start when looking for ways to expand be-
yond product-centric features. This is because they do
not just have some subset of the vast amount of more
“global” information that a predictive modeler would
like to know to attain better accuracy but also auto-
matically end up zeroing in on and containing the small
fraction of such information that is actually useful, on
account of having links generated by events associated
with the very outcomes one is interested in predicting.
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A Appendix

A.1 Algorithm for Data Collection We use two
programs for the collection of my data. The first
collects graph information and the second collects sales
rank information. Both use the Amazon.com’s XML

data service. This service is part of the Amazon Web
Services, which provides developers with direct access
to Amazon’s platform and databases.

Graph Collection: The program which collects
the graph starts at a popular book. It then traverses
the copurchase network using a depth-first search. In-
tuitively, in a depth-first search one starts at the root (in
our case, the one popular book chosen) and traverses the
graph as far as possible along each branch before back-
tracking. At each page, the crawler gathers and records
information for the book whose webpage it is on, as well
as the copurchase links on that page. The ASINs of the
copurchase links are entered to a LIFO stack. If the
algorithm finds it is on a page of a product that it has
visited already, it backtracks and returns to the most
recent product it hadn’t finished exploring. The pro-
gram terminates when the entire connected component
of the graph is collected.

For example, in the graph on Figure 9, the nodes are
numbered in the order in which the crawler with traverse
the graph. In this case, the collection starts at node 1.
Its copurchase links are nodes 2, 6, 7. Therefore, those
numbers are added to a LIFO stack. The script will
then proceed to node 2, whose copurchases are nodes 3,
4, 5 and thus, those numbers will be added to the LIFO
stack, which will now include: 3, 4, 5, 6, 7. The script
will continue to node 3. Since there are no copurchase
links to that node, it will move to node 4. In the same
way, the script will collect data about node 5, node 6
and node 7.

Since node 7 has copurchase links – nodes 8 and 9,
they will be added to the stack. After visiting nodes
8, 9 and 10, the data collection will terminate. As
can be seen, the script only stops once it has collected
information about the entire connected component.

The collection of the entire connected component
on Amazon.com takes between four and five hours. The
script is run each day at midnight.

Sales Rank Collection: A second program col-
lects the demand information for all books on the graph
every 3 hours for the 24-hour period following the collec-
tion of the graph. This script collects the Sale Rank of
all the books which ever appeared on the graph. There-
fore, it follows the sales of books that are no longer on
the graph as well.

A.2 Converting Sales Ranks to Demand
SalesRank is a number associated with each product
on Amazon.com, which measures its demand relative to
the other products sold on Amazon.com. The lower the
number is, the higher the sales of that particular prod-
uct. The sales rank of a book is updated each hour to
reflect recent and historical sales of every item sold on



Figure 9: Node traversal

Amazon.com.
A formula to convert SalesRank information into

demand information was first introduced by [4]. Their
goal was to estimate demand elasticity. Their approach
was based on making an assumption about the proba-
bility distribution of book sales, and then fitting some
demand data to this distribution. They choose the stan-
dard distributional assumption for this type of rank
data, which is the Pareto distribution (i.e., a power law).
In the Pareto distribution, the probability that an obser-
vation’s value, exceeds some level, S, is an exponential
function

Pr(s > S) =
(

k

S

)θ

,(A.1)

where k and θ are the parameters of the distribu-
tion. The more important parameter is θ, the shape
parameter that indicates the relative frequency of large
observations. If θ is 2, for example, the probability of
an observation decreases in the square of the size of the
observation. With a value of 1, it decreases linearly.

For a given book, the number of books that have
sales greater than that book is just one less than the
books’ rank. Therefore, the fraction of all books that
have sales greater than a particular book is just

[SalesRank− 1]/TotalNumberOfBooks

If there are a sufficient number of books to eliminate
the approximation introduced by discreteness, then one
can replace the equation above with:

[SalesRank− 1]
TotalNumberOfBooks

=
(

k

Demand(j)

)θ

(A.2)

Taking logs, and substituting θ with −1/b, this
translate ranks into sales according to

log[Demand(j)] = a + b log[SalesRank(j)](A.3)

The parameters a and b were estimated by Gools-
bee and Chevalier using a couple of parallel methods:
using data from the Wall Street Journal book sales in-
dex, which gives the actual quantity sold; using sales
information given by a publisher, who sells on Ama-
zon.com; conducting an experiment, buying copies of
books with a steady salesrank.

In a later study, [2], used data provided by a
publisher selling on Amazon.com to conduct a more
robust estimation of the parameters of the formula.
They estimate the parameters as: a = 10.526, b =
−0.871.

To avoid hour-of-the-day effect, we use average daily
salesrank in our model estimations. Since our crawler
collects salesrank every 3 hours, we required averaging
over the day. However, there is no straightforward
meaningful way of averaging salesranks. Therefore,
we employed the following procedure to compute the
“averaged” salesrank:

1. We used the above mentioned conversion equation
to transform the hourly salesrank data into 3-
hourly demand data.

2. We then averaged these 3-hourly demand into a
daily average demand

3. We converted the average daily demand back into
an artificial “average salesrank” using the above
conversion formula.

This computational formula makes more sense than
simple averaging of salesranks, since the underlying vari-
able for averaging in this formula is demand and aver-
aging 3-hourly demand has a meaningful interpretation
of being an average demand for the item throughout
the day. Therefore, the generated artificial “average
salesrank” has a meaning of being the salesrank of an
item that would have had this average demand observed
constantly throughout the day.


