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Abstract

In this paper, we revisit the problem of demand propagation in a multi-stage supply chain

in which the retailer observes ARMA demand. In contrast to previous work, we show how each

player constructs the order based upon its best linear forecast of leadtime demand given its

available information. In order to characterize how demand propagates through the supply

chain we construct a new process which we call quasi-ARMA or QUARMA. QUARMA is

a generalization of the ARMA model. We show that the typical player observes QUARMA

demand and places orders that are also QUARMA. Thus, the demand propagation model is

QUARMA-in-QUARMA-out. We study the value of information sharing between adjacent

players in the supply chain. We demonstrate that under certain conditions information sharing

can have unbounded benefits. Our analysis hence reverses and sharpens several previous results

in the literature involving information sharing and also opens up many questions for future

research.
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1 Introduction

We study demand propagation in a multi-stage supply chain in which the retailer observes ARMA

demand with Gaussian white noise (shocks). Similar to previous research, we assume each supply

chain player constructs a linear forecast for the leadtime demand and uses it to determine the

order quantity via a periodic review myopic order-up-to policy. The new feature in our paper is

the derivation of the best linear forecast of leadtime demand for each supply chain player given the

particular information that is available to that player. This is important since under the assumption

of Gaussian white noise the best linear forecast is the best forecast. Therefore, in the absence of

the best linear forecast, the order quantity determined by a player would be sub-optimal, see for

example Johnson and Thompson (1975).

In order to construct its best linear forecast, we describe how a supply chain player must first,

via a traditional time-series methodology, characterize the information available to the player. We

assume that information sharing occurs only between contiguous players. We show that under

certain assumptions there arise only four mutually exclusive and exhaustive information sets when

contiguous players either share or do not share their information (shocks). This permits us to exactly

construct a recursive process that characterizes how demand propagates from player to player when

each player uses his or her best linear forecast. Under each of the four information sets, we show

that the demand propagation model is QUARMA-in-QUARMA-out where a QUARMA model is

defined in (3) and is a more general time series model than an ARMA model. This result generalizes

the ARMA-in-ARMA-out property proposed by Zhang (2004). Furthermore, we show that under

certain conditions information sharing can have tremendous benefits. Our analysis hence reverses

and sharpens several of the previous results in the literature involving information sharing and also

opens up many questions for future research.

Our paper is an extension of the work of Lee, So and Tang (2000) and Raghunathan (2001),

Zhang (2004) and Gaur, Giloni, and Seshadri (GGS, 2005), who study the value of information
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sharing in supply chains. Zhang and GGS extend the original work of Lee, So and Tang (2000)

and Raghunathan (2001) by studying the value of information sharing in supply chains where the

retailer serves an ARMA(p, q) demand as opposed to AR(1) demand. In each of these papers, the

retailer places orders with a supplier using a periodic review order-up-to policy. Both the supplier

and the retailer know the parameters of the demand process, however, the retailer may or may

not choose to share information about the actual realizations of demand with the supplier. Zhang

(2004) studies how the order process propagates upstream in a supply chain under the assumption

that ARMA demand to the retailer is invertible. Zhang does not consider the case when demand

becomes non-invertible at any stage of the chain, a phenomenon that GGS point out can happen

even though the retailer’s demand is invertible.

The concept of invertibility is central to an understanding of the value of information shar-

ing, and also to an understanding of how demand propagates through a supply chain. In any

ARMA(p, q) model for demand at a given stage of the supply chain, a linear combination of the

present observation and p past demand observations is set equal to a constant plus a linear combi-

nation of the present and q past values of a particular white noise (shock) series. The given player

in the supply chain does not directly observe the white noise series, but only the present and the

past values of his or her own demand. To facilitate the construction of the optimal forecast and

the evaluation of the corresponding mean squared forecast errors, it is useful to represent a given

demand series as a constant plus a (potentially infinite) linear combination of present and past

shocks. Zhang assumes that the current shock can be obtained from present and past demand

observations, and uses these shocks to construct forecasts for leadtime demand (equation (11) in

Zhang). Unfortunately, as pointed out by GGS, this is not always possible due to lack of invert-

ibility. Informally, invertibility of a demand series with respect to a particular shock series is the

property under which it is possible to obtain the current shock by linear operations on the present

and past demand observations. In Section 2, we provide a precise definition of invertibility, as well
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as the necessary and sufficient conditions for invertibility of an ARMA(p, q) model with respect to

the shocks in its defining equation, in terms of the q moving average parameters in that equation.

GGS show that the supplier’s demand may not be invertible with respect to the retailer’s shocks,

even when the retailer’s demand is invertible with respect to its own shocks. Therefore, in this case,

Zhang’s order process cannot be utilized since it would require information that is not available to

the supplier, while the order process proposed by GGS can be used. The GGS order process for this

case utilizes a sub-optimal forecast as opposed to the best linear forecast of leadtime demand, and

hence, results in larger inventory related costs compared to those under the best linear forecast.

In this paper, we provide an order process for the retailer as well as (under some restrictions)

for each upstream supply chain player based on its best linear forecast of leadtime demand where

its demand is non-invertible with respect to the retailer’s shocks, and information is not shared

between the retailer and the supplier. We also derive the resulting optimal mean squared forecast

error. In this case, the demand observed by the supplier is less informative than the retailer’s

demand, because the supplier can recover neither the retailer’s shocks nor the retailer’s demand

based on the supplier’s own demand. Here, there is a benefit to the supplier when the retailer

shares its demand information with the supplier, because then the supplier can base the forecast of

leadtime demand on the retailer’s shocks. We show that in some circumstances the improvement

from demand sharing can be unbounded, as measured by the ratio of the mean squared errors of

the resulting forecasts.

The implications of our research, both for two-stage and multi-stage supply chains, are in

contrast to the managerial implications suggested by both Zhang and GGS. For example, Zhang

concludes that information sharing is generally not beneficial to the supplier, nor to any other

upstream player, since he states that the player in question will be able to infer the previous player’s

demand and ultimately the retailer’s shocks. GGS concludes that under an additional condition,

once the supplier’s demand is not invertible with respect to the retailer’s shocks, information sharing
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would be required by all upstream players in order to construct their order processes.

In contrast to Zhang, we show that in some circumstances there can be great benefit from

information sharing to a supply chain player when the demand observed by the player is not

invertible with respect to the previous player’s full information shocks, see Definition 2. Informally,

a player’s full information shocks are those shocks that convey the full information that is available

to the player. This information is based upon either the player’s own current and historical demand

or a sharing arrangement with the previous player. Thus, even though a certain set of shocks might

be driving the order process of the previous player, the current player might not have access to those

shocks unless the previous player shares them. Furthermore, we show that when a supply chain

player is able to obtain the previous player’s full information shocks, its order process is similar to

that suggested by Zhang. If a supply chain player is not able to obtain or construct the previous

player’s full information shocks, we show that the forecast proposed by Zhang cannot be used.

For the majority of our paper, we assume the supply chain is such that at each individual stage,

either the equivalent of full information shocks are shared or there is no sharing. In contrast to

GGS, we show that under such assumptions, even if a supply chain player’s demand is not invertible

with respect to the previous player’s shocks and the previous player does not share information it

is possible to construct its best linear forecast of leadtime demand. In other words, information

sharing is never needed to determine a player’s order process and hence the propagation of demand

can be described precisely with or without information sharing at any stage of the chain.

Even though we allow only for the possible sharing of information between contiguous players

in the chain, the patterns of the effects of information sharing on mean squared forecasting error

can be quite complex. As we show in Section 6, there can be a difference between sharing of

demand and sharing of shocks between players k−1 and k when k ≥ 3. Until now, researchers have

studied demand sharing, whereas we show that shock sharing at times provides greater information.

Further, if one were to relax the assumption that information is shared only between contiguous
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players, there exists future work on how to characterize the information sets for each player in the

supply chain.

Our research is valuable to managers because it even pertains to the simple case where a retailer

observes AR(1) demand, since even in this case, the retailer’s order process can be a non-invertible

ARMA(1, 1) process with respect to the retailer’s shocks. As noted by other researchers, another

reason why our research is valuable to managers is that actual demand patterns often follow higher

order autoregressive processes due to the presence of seasonality and business cycles. For example,

the monthly demand for a seasonal item in its simplest form is approximately an AR(12) process.

More general ARMA(p, q) processes are found to fit demand for long life cycle goods such as fuel,

food products, machine tools, etc. as observed in Chopra and Meindl (2001) and Nahmias (1993).

Aviv (2003) proposes an adaptive inventory replenishment policy that utilizes the Kalman filter

technique in which the types of demand considered are ARMA models as well as more general

demand processes.

The structure of our paper is as follows. In Section 2 we discuss the model setup with regard

to our assumptions on all supply chain players, define the concept of invertibility and continue

our discussion of its importance in supply chain management under ARMA demand. In Section

3 we discuss the retailer’s order process along with the mean square forecast error of aggregated

demand over the lead time. In Section 4, we demonstrate how a player observing demand that is

not invertible with respect to the previous player’s full information shocks can represent its demand

as an invertible ARMA process with respect to a new set of shocks. In Section 5, we show how

demand propagates upstream in a supply chain under the assumption that all players either shared

the equivalent of their full information shocks or did not share any information. We also discuss

the value of information sharing for the various scenarios discussed previously. In Section 6, we

demonstrate that the value to player k of receiving demand information shared by player k−1 may

be different than the value to player k of receiving shocks shared by player k − 1. In Section 7, we
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provide a summary of our results and include some suggestions for future research.

2 The Model; Invertibility

We consider a K-stage supply chain where at discrete equally-spaced time periods, the retailer

(assumed to be at stage 1) faces external demand {D1,t}, for a single item. Let {D1,t} follow a

covariance stationary ARMA (p, q1) process with p ≥ 0, q1 ≥ 0,

D1,t = d+φ1D1,t−1 +φ2D1,t−2 + · · ·+φpD1,t−p + ε1,t− θ1,1ε1,t−1− θ1,2ε1,t−2−· · ·− θ1,q1ε1,t−q1 , (1)

where {ε1,t} is a sequence of uncorrelated random variables with mean zero and variance σ2
1, and

φ1, . . . , φp and θ1,1, . . . , θ1,q1 are known constants such that φp 6= 0 and all roots of the polynomial

1 − φ1z − · · · − φpz
p are outside the unit circle. We also assume that all roots of the polynomial

1− θ1,1z − · · · − θ1,q1z
q1 are on or outside the unit circle. This ensures that the retailer’s demand

is invertible with respect to its full information shocks. (See the discussion below.) If θ1,1, . . . , θ1,q1

are all equal to zero, then {D1,t} is an AR(p) process. It is often useful to express (1) in terms of

the backshift operator, B, where Bs(ε1,t) = ε1,t−s. In order to do so, let φ(B) = 1− φ1B − φ2B
2−

· · · −φpB
p and θ1(B) = 1− θ1,1B− θ1,2B

2− · · · − θ1,q1B
q1 . Then {D1,t} in (1) can be expressed as

φ(B)D1,t = d + θ1(B)ε1,t. (2)

Since {D1,t} is covariance stationary, E[D1,t] exists and is constant for all t, V ar[D1,t] is a finite

constant, and the covariance between D1,t and D1,t+h depends on h but not on t.

Following Lee, So and Tang (2000) and Zhang (2004), we assume that the shocks {ε1,t} are

Gaussian white noise. We note that this implies that full information shocks (when they exist) at

all subsequent stages are also Gaussian due to the manner in which demand and full information

shocks propagate upstream a supply chain (see Theorem 1). Let the replenishment leadtime from

the retailer’s supplier to the retailer be `1 periods. Similarly, let the replenishment leadtime from

the player at stage k + 1 to stage k be `k periods. We assume that all supply chain players use a
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myopic order-up-to inventory policy where negative order quantities are allowed, and d is sufficiently

large so that the probability of negative demand or negative orders is negligible. In time period t,

after demand D1,t has been realized, the retailer observes the inventory position and places order

D2,t with its supplier. The retailer receives the shipment of this order at the beginning of period

t + `1, where `1 ≥ 1. The sequence of events at all supply chain players is similar. We assume that

the `k period lead time guarantee holds, i.e., if the player at stage k+1 does not have enough stock

to fill an order from the player at stage k, then the player at stage k+1 will meet the shortfall from

an alternative source, possibly by incurring an additional cost. See, for example, Lee So and Tang

or Chen (2003) for a discussion of this assumption. Excess demand at the retailer is backlogged.

With respect to the information structure, we assume, as did GGS and others, that the form

and parameters of the model generating player k − 1’s demand are known by player k, but player

k− 1’s demand realizations and/or full information shocks may be private knowledge. When there

is no information sharing, the retailer’s supplier receives an order of D2,t in time period t from

the retailer. On the other hand, when there is information sharing, the retailer’s supplier receives

the order D2,t as well as information about D1,t and/or ε1,t in time period t from the retailer.

As we show later in the paper, if the retailer’s supplier receives information about D1,t in time

period t from the retailer, he will be able to construct the shock series {ε1,t} as described in (1).

Unfortunately, as we show in Section 6, this is not necessarily the case for upstream player k who

receives information about Dk−1,t in time period t from player k−1 (that is, it might not be possible

for player k to construct the shock series {εk−1,t}). Therefore, the potential information sharing

arrangements between upstream supply chain players at contiguous stages can be quite complex.

Central to our study of information sharing and how demand {D1,t} propagates upstream in a

supply chain is the concept of invertibility, for which we provide a definition below. First, we define

the quasi-ARMA model. In Theorem 1, we show that under certain assumptions, ARMA demand

to the retailer propagates to quasi-ARMA or QUARMA demand for upstream players even when
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a given player’s demand is non-invertible with respect to the previous player’s shocks. Hence, the

QUARMA model is central to our study of the propagation of demand in a supply chain. One

manner in which a given player’s demand is non-invertible with respect to the previous player’s

shocks is when the given player’s demand, represented in terms of the previous player’s shocks, has

a coefficient of zero on the current shock. This case is important, as it is here that the potential

for the improvement from shock sharing is unbounded. In other words, when presented with such

demand, if the previous player shares its shocks, the given player may have a perfect forecast of

leadtime demand, whereas without information sharing the forecast will not be perfect.

Consider a demand series {Dt} expressed in terms of the shocks {εt},

Dt = d + φ1Dt−1 + φ2Dt−2 + · · ·+ φpDt−p + εt−J − θ1εt−J−1 − θ2εt−J−2 − · · · − θqεt−J−q, (3)

where J ≥ 0 entails a lagging of the shocks by J time units. We show that the scenario J > 0 in (3)

can arise at any stage beyond the retailer’s, even though the retailer’s demand has J = 0, without

loss of generality. We denote the model (3) with J ≥ 0 by QUARMA(p, q, J). By convention,

we say that a constant demand series (see Remark 1) is QUARMA with J = ∞. In terms of the

backshift operator, the QUARMA(p, q, J) model may be expressed as φ(B)Dt = d + BJθ(B)εt,

where θ(B) = 1 −∑q
j=1 θjB

j if J < ∞ and θ(B) = 0 if J = ∞. When J = 0, {Dt} is ARMA(p,

q) with respect to {εt}, so that the QUARMA(p, q, 0) model reduces to an ARMA(p, q) model.

The AR and MA polynomials of the QUARMA(p, q, J) model in (3) may have common roots. A

QUARMA(p, q, J) model in which the AR and MA polynomials do not share any common roots is

said to be in minimal form.

Definition 1 {Dt} is invertible with respect to shocks {εt} in (3) with J < ∞ if the current and

previous shocks can be recovered by a constant plus a linear combination of present and past values

of the demand process {Dt} or as a constant plus the limit of a sequence of linear combinations of

present and past values of the demand process {Dt}.
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Questions of invertibility are not relevant in (3) with J = ∞ (since {Dt} does not depend

on the shocks {εt}), nor are questions of information sharing since if a player observes constant

demand, there is no need for information sharing. Thus, henceforth when we discuss invertibility

or information sharing, we implicitly assume (unless stated otherwise) that the upstream player’s

demand is not constant. It is clear from the definition that if 0 < J < ∞, {Dt} cannot be invertible

with respect to {εt}. It is well-known that for the ARMA case J = 0 (see Brockwell and Davis

1991, pp. 127-129), {Dt} is invertible with respect to shocks {εt} in (3) if and only if all the roots

of the equation

1− θ1z − θ2z
2 − · · · − θqz

q = 0 (4)

lie outside or on the unit circle. It follows that for the QUARMA(p, q, J) model with any 0 ≤ J < ∞,

{Dt} is invertible with respect to the lagged shocks {BJεt} if and only if all roots of (4) lie on or

outside the unit circle.

In all of the QUARMA representations of demand {Dt} with respect to shocks {εt} considered

in this paper, the AR polynomial of upstream players is the same as the AR polynomial of the

retailer. Since it was assumed that the retailer’s AR polynomial has all of its roots outside the unit

circle, this is also the case for upstream players. Although it is further assumed that the retailer’s

demand is in minimal form, it is possible for an upstream player to observe QUARMA demand

whose AR and MA polynomials share at least one common root. Such a common root must lie

outside the unit circle since all the roots of the AR polynomials in this paper are outside the unit

circle. Therefore, in the event that {Dt} is QUARMA(p, q, J) with respect to {εt} where φ(z) and

θ(z) share at least one common root, consider the associated QUARMA representation of {Dt}

with respect to {εt} in minimal form with AR polynomial φm(z) and MA polynomial θm(z). Based

upon our assumptions on φ(B), it follows that {Dt} is invertible with respect to {εt} if and only

if all roots of the original MA polynomial θ(z) lie on or outside the unit circle. This is because

although invertibility is based upon the roots of θm(z), the roots of θm(z) lie on or outside the unit
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circle if and only if the roots of the original MA polynomial θ(z) lie on or outside the unit circle.

Under our definition of invertibility, the demand series is invertible with respect to shocks {εt}

if and only if the present and past demand observations generate the same linear space (up to an

additive constant) as the present and past shocks, so that from the point of view of linear operations

the shock series contains no more information than the demand series. We note that our definition

of invertibility coincides with the extended definition considered by Brockwell and Davis (1991, p.

128). The extended definition includes the case where the shocks {εt} can only be recovered as

a constant plus the limit of a sequence of linear combinations of present and past values of the

demand process {Dt} as opposed to a constant plus a linear combination of present and past values

of {Dt}. This corresponds to the case where at least one root of (4) lies on the unit circle (see

Brockwell and Davis 1991, Problem 3.8, p. 111) and can result in the next player’s demand being

constant (see Remark 1).

As noted in the introduction, invertibility of player k’s demand with respect to {εk−1,t}, the full

information shocks of player k − 1, is central to our discussion of the value of information sharing

in a supply chain. If {Dk,t} is invertible with respect to {εk−1,t}, then player k can utilize present

and past values of {εk−1,t} in its forecast of its leadtime demand. On the other hand, if {Dk,t} is

not invertible with respect to {εk−1,t}, then player k can utilize εk−1,t in its forecast of its leadtime

demand if player k − 1 shares information equivalent to its full information shocks. If {Dk,t} has

a QUARMA representation with respect to {εk−1,t} where J > 0 then {Dk,t} is not invertible

with respect to {εk−1,t} since the current shock εk−1,t cannot be observed by player k. In the next

section, we discuss the retailer’s order process and thus provide a starting point for understanding

how demand propagates upstream in a supply chain.
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3 Determining the Retailer’s Order

As mentioned in the previous section, we assume that the retailer observes ARMA(p, q) demand as

given by (1). We assume that the ARMA(p, q) model of the retailer’s demand is in minimal form,

i.e., the values of p and q are such that there are no common roots of the AR and MA polynomials.

We further assume, as in Lee, So, and Tang, Raghunathan, Zhang, and GGS, that the retailer

utilizes a periodic review system. Let S1,t be the order up to level that minimizes the retailer’s

total expected holding and shortage costs in period t + `1. Let MD1
t = sp{1, D1,t, D1,t−1, . . .},

i.e., the Hilbert space generated by {1, D1,t, D1,t−1, . . .} with inner product given by the covari-

ance. We refer to MD1
t as the linear past of {D1,t}. Similarly, let Mε1

t = sp{1, ε1,t, ε1,t−1, . . .}.

For the linear past of two time series, for example, {D1,t} and {D2,t}, we write MD1,D2
t =

sp{1, D1,t, D2,t, D1,t−1, D2,t−1, . . .}.

In this paper, we only consider linear forecasting since it follows from our assumptions that all

random variables appearing in the paper are Gaussian, in which case the best possible forecast is a

linear one. In this context, a given player’s information set can always be represented as the linear

past of some collection of one or more time series. We denote the full information set available

to player 1 as M1
t . We assumed in Section 2 that the retailer’s demand {D1,t} is invertible with

respect to the shocks {ε1,t}. This entails no loss of generality, since the only shocks observable

to the retailer are those obtained from an invertible ARMA(p, q) representation of its demand.

Therefore, M1
t = MD1

t = Mε1
t . This is the retailer’s information set available at time t after

D1,t has been observed. We refer to {ε1,t} as the retailer’s full information shocks. Let σ1 be the

standard deviation of ε1,t.

Therefore, the retailer’s order-up-to level at time t is given by S1,t = m1,t + kσ1
√

v1 where

m1,t is the best linear forecast of
∑`1

i=1 D1,t+i in the space M1
t and v1 is the associated mean

squared forecast error. Thus, the retailer’s order to its supplier is D2,t = D1,t + S1,t − S1,t−1 =

D1,t + m1,t −m1,t−1.
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Since it is assumed that {D1,t} is invertible with respect to {ε1,t}, we have ε1,t ∈M1
t . It follows

that ε1,t is observable to the retailer, as are ε1,t−1, ε1,t−2, . . .. Furthermore, since {D1,t} is ARMA

with respect to {ε1,t} with all roots of φ(z) outside the unit circle, it has a one-sided MA(∞)

representation with respect to these shocks.

Proposition 1 (Zhang, 2004). The retailer’s demand and its best linear forecast of lead-time

demand can be represented as MA(∞) processes with respect to the retailer’s full information shocks

{ε1,t}. Its order {D2,t} to its supplier is given by (5) with respect to the retailer’s full information

shocks {ε1,t}. In particular with µd = d/(1 − φ1 − · · · − φp), the retailer’s demand is D1,t =
∑∞

i=0 ψ1,iε1,t−i + µd, where the {ψ1,i} are given in (19). Furthermore, the retailer’s order is

D2,t = (
`1∑

j=0

ψ1,j)ε1,t +
∞∑

i=1

ψ1,i+`1ε1,t−i + µd. (5)

See the Appendix for a version of the proof that lays the groundwork for our development.

Equation (5) provides a representation of the retailer’s order as a constant plus a linear combi-

nation of present and past values of {ε1,t}, that are in the retailer’s information set. Although the

retailer’s order is equivalent to its supplier’s demand, {D2,t} can be expressed in terms of various

sets of shocks. As will be shown in Theorem 1, {D2,t} has a QUARMA representation with respect

to {ε1,t}. However, it is possible that {ε1,t} may not be in the supplier’s information set in the

absence of information sharing. This occurs when {D2,t} is not invertible with respect to {ε1,t} and

hence the supplier will not be able to obtain the retailer’s current shock from the supplier’s present

and past demand observations.

Thus, in order to study how ARMA demand propagates upstream in a supply chain, it is

necessary for us to understand the potential information sets faced by a given supply chain player.

In the above case of the retailer, its information set is straightforward. However, the information

set that is available to supply chain player k with k ≥ 2 can be quite complex. We discuss some of

these information sets in Section 5. But, before doing so, we first describe how a player observing

demand that is not invertible with respect to the previous player’s full information shocks can

represent its demand as an invertible ARMA process with respect to a new set of shocks.
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Remark 1 It is possible that {D2,t} in (5) reduces to a constant, D2,t = µd for all t. This case

arises when 1 +
∑`1

j=1 ψ1,j = 0 and ψ1,i+`1 = 0 for i ≥ 1. It can be easily seen that these conditions

are satisfied when {D1,t} is an MA(q1) process with respect to {ε1,t} with q1 ≤ `1 and the MA

polynomial has a root at 1. In Theorem 1, we provide conditions when {Dk,t} reduces to a constant

when player k − 1’s demand is QUARMA with respect to {εk−1,t}.

4 Representation of Noninvertible ARMA Demand

Consider an ARMA(p, q) model for a demand series {Dt} with respect to a shock series {εt}, that

is, φ(B)Dt = d + θ(B)εt where θ(B) = 1− θ1B − · · · − θqB
q. As discussed in Section 2, the series

{Dt} is non-invertible with respect to {εt} if and only if at least one root of θ(z) lies inside the

unit circle, where z is a complex variable. This situation may be faced by a given supply chain

player with respect to the previous player’s full information shocks. If the previous player (k − 1)

does not share any information with the given player (k), then in order to forecast its leadtime

demand, under the assumptions in Section 5 along with the assumption that player k’s demand

is not constant, player k first represents its demand as ARMA(p, q) with respect to a new set of

shocks that are observable in the sense that they generate the same linear past as the given player’s

demand series, such that the new ARMA(p, q) model yields the same variance and autocorrelations

as the original one. We now explain how this is done for the ARMA series {Dt} originally expressed

with respect to {εt}.

Since {Dt} is ARMA(p, q) with respect to shocks εt,

p∏

s=1

(1− a−1
s B)Dt = d +

q∏

s=1

(1− b−1
s B)εt, (6)

where as, 1 ≤ s ≤ p are the roots of the polynomial equation

1− φ1z − φ2z
2 − · · · − φpz

p,

bs, 1 ≤ s ≤ q are the roots of the polynomial equation

1− θ1z − θ2z
2 − · · · − θqz

q.
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Since {Dt} is not invertible with respect to shocks {εt}, there exists at least one 1 ≤ r ≤ q

such that |br| < 1. Without restriction of generality, we assume that |bs| > 1, 1 ≤ s ≤ h, and

|bs| < 1, h < s ≤ q. It follows (see for example Brockwell and Davis (1991, pp. 125-127)) that

{Dt} can be represented as an invertible ARMA(p, q) with respect to a new set of shocks {γt} with

variance σ2
γ = (

∏
h<s≤q |bs|)−2)σ2

ε . Since |bs| < 1, for h < s ≤ q,
∏q

s=h+1 |bs|−2 > 1 and hence

σ2
γ > σ2

ε . This invertible representation has form

p∏

s=1

(1− a−1
s B)Dt = d +

h∏

s=1

(1− b−1
s B)

q∏

s=h+1

(1− b̄sB)γt, (7)

where b̄s is the complex conjugate of bs. Thus

φ(B)Dt = d + θ(B)εt = d + θ†(B)γt (8)

where

θ†(B) =
h∏

s=1

(1− b−1
s B)

q∏

s=h+1

(1− b̄sB) (9)

has all of its roots outside the unit circle. Thus, the ARMA(p,q) representation of {Dt} in (8) is

invertible with respect to {γt} and hence γt, γt−1, . . . are observable to the player observing demand

{Dt}, i.e., Mγ
t = MD

t . Furthermore, in such a case, {γt} is the only set of shocks with the following

properties: (i) {Dt} is invertible with respect to {γt}, (ii) the roots of φ(B) are all outside the unit

circle, and (iii) the coefficient in front of γt is one in the ARMA representation of {Dt}.

The above methodology is widely available in the time series literature, but to the best of our

knowledge has not been noted in the OM literature. This methodology is central to our paper as it

demonstrates how a supply chain player can construct shocks that include as much information as is

available to the player without information sharing. In contrast, GGS did not use this methodology

when considering a supplier’s demand that is not invertible with respect to the retailer’s shocks

and hence its proposed forecast is sub-optimal from the supplier’s perspective. Furthermore, the

fact that σ2
γ > σ2

ε provides the potential for value of information sharing.
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5 The Propagation of Demand Under a Restriction on Informa-

tion Sharing

Player k must forecast its leadtime demand, using all information available to it. A variety of

information sets can arise here, depending on sharing arrangements and on considerations of in-

vertibility. We denote the full information set available to player k as Mk
t . This entails MDk

t

possibly together with information obtained through sharing with player k − 1 when k ≥ 2.

Definition 2 We say that {εk,t} are player k’s full information shocks if there exists a white noise

sequence, {εk,t}, such that Mk
t = Mεk

t .

In this section, we show how demand propagates upstream (and how player k can construct its

full information shocks) in a supply chain under the assumption that all players either shared the

equivalent of their full information shocks or did not share any information. In order to accomplish

this task, we need to understand the various information sets that a supply chain player may face.

In Theorem 1 below, we show that there are four such sets, which are mutually exclusive and

exhaustive. The theorem thus needs to establish the existence and construction of each player’s full

information shocks which itself is contingent upon demonstrating those information sets that are

available to a supply chain player. Furthermore, it is only possible to determine which information

sets are available to a supply chain player when one models how demand propagates upstream the

supply chain. Hence, Theorem 1 necessarily includes these three parts along with a fourth that

although appears to only be a special case would result in the theorem being incomplete if left out.

In other words, in order to determine its order to player k, player k − 1 must first represent

its demand, and then its best linear forecast of its leadtime demand, each as a constant plus a

linear combination of its present and past full information shocks, {εk−1,t}. Finally, using the

order-up-to-policy, player k − 1 constructs its order {Dk,t} to player k again as a constant plus a

linear combination of its present and past full information shocks, {εk−1,t}. The forecasting and
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order construction is performed using these representations. Theorem 1 establishes the existence

of such representations by constructing player k’s full information shocks based on its information

set. There are several properties which propagate from one stage to the next, as described in the

theorem. These are proved by induction. One of these properties is the QUARMA structure of

the demand at each stage (with respect to both the given player’s and the previous player’s full

information shocks), leading to a QUARMA-in-QUARMA-out property. This structure is used to

determine whether or not a given demand series is invertible with respect to its own full information

shocks, the previous player’s full information shocks, or to lagged versions of either set of shocks.

The QUARMA structure also allows a given player to represent its observed demand as a constant

plus a linear combination of its own present and past full information shocks.

The four information sets that supply chain player k may face are the following, with ⊂ denoting

strict subspace here and throughout the paper.

(i)Mk
t = Mk−1

t and MDk
t 6= R

(ii)Mk
t = MDk

t = Mεk−1

t−J where 1 ≤ J < ∞, and MDk
t 6= R

(iii)Mk
t = MDk

t where MDk
t ⊂Mk−1

t and MDk
t 6= Mεk−1

t−J , for J ≥ 0, andMDk
t 6= R

(iv)MDk
t = R. (10)

In case (i), player k has access to the full information shocks of player k − 1. This can occur

either because it is possible to represent {Dk,t} as an invertible ARMA process with respect to

{εk−1,t} or becase {Dk,t} is not invertible with respect to {εk−1,t} but player k − 1 shared the

equivalent of its full information shocks with player k.

In case (ii), player k’s information set is equivalent to the linear past of its demand which in

turn is equivalent to the linear past of a lagged set of player k − 1’s full information shocks. This

occurs when βk−1 = 0 in Equation (12) below, player k − 1 has not shared its full information

shocks with player k, but player k’s demand is invertible with respect to the lagged set of player
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k − 1’s shocks.

In case (iii), player k’s information set is equivalent to the linear past of its demand which in

turn is a strict subset of player k − 1’s information set. This occurs when player k’s demand is

not invertible with respect to player k − 1’s full information shocks nor with respect to any lagged

version of player k − 1’s full information shocks. The forecasting in this case is not done based on

the original shocks. Instead a more general methodology as described in Section 4 must be used.

In case (iv), player k’s demand is constant.

Some thought reveals that intuitively these four sets are mutually exclusive and collectively

exhaustive for the information sharing assumptions made in this section. This is proven in Theorem

1 below, our main result on the propagation of demand. To initialize this propagation, we think

of the player previous to the retailer as the retailer itself. That is, we define {D0,t} = {D1,t},

{ε0,t} = {ε1,t}, and `0 = `1. We also note that if {Dk−1,t} is QUARMA(p, qk−1, Jk−1) with respect to

{εk−1,t} with Jk−1 < ∞ and MA parameters θk−1,1, · · · , θk−1,qk−1
, then {Dk−1,t} can be represented

as a constant plus a linear combination of its present and past full information shocks, i.e., Dk−1,t =

µd +
∑∞

i=0 ψk−1,iεk−1,t−i where

ψk−1,i =





0 i < Jk−1

1 i = Jk−1

∑p
j=1 φjψk−1,i−j − θk−1,i−Jk−1

i > Jk−1

(11)

and θk−1,i = 0 if i > qk−1 + Jk−1. If {Dk−1,t} is QUARMA(p, 0,∞) with respect to {εk−1,t}, then

ψk−1,i = 0 for all i and {Dk−1,t} reduces to a constant. From (11), it can be seen that Jk−1 is an

integer equal to the index of the first ψk−i,i that is nonzero. J̃k and Jk have similar interpretations

where J̃k refers to the QUARMA representation of {Dk,t} with respect to εk−1,t and Jk refers to the

QUARMA representation of {Dk,t} with respect to εk,t. An important quantity for the computation

of player k − 1’s order to player k, as well as the values of J̃k and Jk is
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βk−1 =
`k−1∑

i=0

ψk−1,i. (12)

Theorem 1 Let k ≥ 1. Assume that player k − 1 shares with player k either nothing or the

equivalent of player k− 1’s full information shocks, and that similar arrangements hold between all

previous players. In the case where a player’s demand is constant, information sharing to or from

the player is irrelevant. Then

(I) Player k − 1’s order to player k with respect to player k − 1’s full information shocks: {Dk,t}
has a QUARMA(p, qk, J̃k) representation with respect to {λk,J̃k

εk−1,t} of form φ(B)Dk,t = d +

BJ̃k θ̃k(B)λk,J̃k
εk−1,t, where {λk,i} are defined in (32) and (33), J̃0 = J̃1 = 0, J̃k ≥ 0 is formally

defined in (31) and qk = max{max(p, qk−1 − `k−1 + Jk−1) − J̃k, 0}. If J̃k < ∞, then θ̃k(B) is a

polynomial in B of order qk with leading coefficient 1 and θ̃k,j = −λk,J̃k+j

λk,J̃k

, j = 1, · · · , qk. If J̃k = ∞,

then θ̃k(B) = 0.

(II) The four information sets: The four sets in (10) are the mutually exclusive and exhaustive

possibilities for player k’s information set. These determine player k’s full information shocks

{εk,t} as follows: In case (i), εk,t = λk,J̃k
εk−1,t; in case (ii), εk,t = λk,J̃k

εk−1,t−J̃k
; in case (iii),

εk,t = λk,J̃k
(θ̃†k)

−1
(B)[φ(B)Dk,t − d]; in case (iv), εk,t = 0.

(III) Player k’s demand with respect to its full information shcks: {Dk,t} has a QUARMA(p, qk, Jk)

representation with respect to {εk,t} of form φ(B)Dk,t = d + BJkθk(B)εk,t. If J̃k < ∞, θk(B) is a

polynomial in B of order qk with leading coefficient 1. In case (i), θk(B) = θ̃k(B), Jk = J̃k < ∞;

in case (ii), θk(B) = θ̃k(B), Jk = 0 and 0 < J̃k < ∞; in case (iii), θk(B) = θ̃†k(B), Jk = 0 and

0 ≤ J̃k < ∞; in case (iv), θk(B) = θ̃kB = 0 and Jk = J̃k = ∞.

(IV) Constant demand: For k ≥ 2, if {Dk−1,t} is QUARMA(0, qm
k−1, Jk−1) in minimal form with

respect to {εk−1,t} with an MA polynomial that has a root at 1 and `k−1 ≥ Jk−1+qm
k−1, then J̃k = ∞

and {Dk,t} is constant.

The full information shocks in part (II) of Theorem 1 have a specific multiplicative constant,

chosen in order to ensure that the coefficient of the first shock with a nonzero coefficient (if there

exists such a shock) in the QUARMA representation in Part (III) of the theorem is one. This value

of λk,J̃k
in (32) and (33), and the variance σ2

k of player k’s full information shocks εk,t, depends upon

sharing arrangements between player k − 1 and player k as well as considerations of invertibility

18



of player k’s demand with respect to player k − 1’s full information shocks. Each distinct scenario

(except for the case of constant demand) corresponds to a particular subcase of (10) as described

in Corollary 1 below, which follows from the proof of Theorem 1 and from Lemma 2.

The QUARMA models in parts (I) and (III) of theorem 1 can have MA and AR polynomials

with common roots even though this is not the case at the retailer. This is important because in

such a case a QUARMA representation of {Dk−1,t} with respect to {εk−1,t} in minimal form will

have pm
k−1 < p. Furthermore, the existence of common roots may result in pm

k−1 = 0 which together

with the other conditions in part (IV) of Theorem 1 will result in {Dk,t} being constant.

In order to interpret the theorem and ease the discussion of the value of information sharing,

Corollary 1 is included as it maps the results of Theorem 1 to the possible situations that a supply

chain player may face. Once a player’s full information shocks and their variance are determined, we

show below in Section 5.1 how a player’s best linear forecast and hence MSFE can be constructed.

Finally, the MSFE of the no information sharing case can be compared to that of the information

sharing case in order to determine the value of information sharing which we show below in Section

5.2.

Corollary 1 Under the conditions of Theorem 1,

• if {Dk,t} is invertible with respect to {εk−1,t}, then case (i) holds, βk−1 6= 0, λk,J̃k
= βk−1 and

σ2
k = β2

k−1σ
2
k−1;

• if {Dk,t} is not invertible with respect to {εk−1,t}, βk−1 6= 0, and player k − 1 shared the

equivalent of its full information shocks with player k, then case (i) holds, λk,J̃k
= βk−1 and

σ2
k = β2

k−1σ
2
k−1;

• if {Dk,t} is not invertible with respect to {εk−1,t}, βk−1 = 0, and player k − 1 shared the

equivalent of its shocks with player k, then case (i) holds, λk,J̃k
= ψk−1,`k−1+J̃k

and σ2
k =

ψ2
k−1,`k−1+J̃k

σ2
k−1;

• if {Dk,t} is not invertible with respect to {εk−1,t}, βk−1 = 0, player k − 1 did not share

with player k, and θ̃k(B) has all roots outside the unit circle, then case (ii) holds, λk,J̃k
=
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ψk−1,`k−1+J̃k
and σ2

k = ψ2
k−1,`k−1+J̃k

σ2
k−1;

• if {Dk,t} is not invertible with respect to {εk−1,t}, βk−1 6= 0, and player k − 1 did not share

with player k, then case (iii) holds, λk,J̃k
= βk−1 and σ2

k = β2
k−1(

∏
h<s≤qk

|bs|)−2)σ2
k−1;

• if {Dk,t} is not invertible with respect to {εk−1,t}, βk−1 = 0, player k − 1 did not share with

player k, and θ̃k(B) has at least one root inside the unit circle, then λk,J̃k
= ψk−1,`k−1+J̃k

and

σ2
k = ψ2

k−1,`k−1+J̃k
(
∏

h<s≤qk
|bs|)−2)σ2

k−1;

5.1 The Best Linear Forecast

We now turn to a discussion of forecasting leadtime demand from the point of view of player k, and

its associated mean squared forecast error. We state a lemma on forecasting of a general demand

series {Dt} that can be represented as a constant plus a linear combination of present and past

values of a white noise sequence {εt} with Mε
t assumed known. This lemma and its proof were

utilized in the proof of Theorem 1.

Lemma 1 If demand {Dt} can be represented as a constant plus a linear combination of present

and past values of a white noise series {εt} with Mε
t known of form Dt = µd +

∑∞
j=0 ψjεt−j,

the best linear forecast of `-step leadtime demand (the projection into Mε
t), is given by mt =

∑∞
i=0 ωi+`εt−i + `µd and the associated mean squared forecast error is given by σ2

ε

∑`−1
i=0 ω2

i , where

ωi are defined in (24) and σ2
ε = var(εt).

We now discuss how to use this lemma in conjunction with Corollary 1. First, in all situations

considered in this section, player k− 1’s order to player k, {Dk,t}, can be represented as a constant

plus a linear combination of present and past {εk−1,t}. However, player k will only be able to

use this representation to forecast its leadtime demand if Mk
t = Mεk−1

t , that is, in case (i) of

(10). Zhang (2004) implicitly assumes that present and past shocks εk−1,t , εk−1,t−1, · · · are always

observable to player k. Unfortunately, this assumption does not hold in cases (ii) and (iii) of (10).

Second, by Theorem 1 part (III), player k has a QUARMA representation of its demand with

respect to its full information shocks {εk,t}. However, player k’s full information shocks and hence
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its QUARMA representation will differ depending upon which scenario listed in Corollary 1 player

k may face. The scenario faced by player k depends upon invertibility of {Dk,t} with respect to

{εk−1,t} and whether or not there exists a sharing arrangement between player k − 1 and player

k. Lemma 1 provides player k’s mean squared error of its forecast of leadtime demand in terms of

the variance of its full information shocks, σ2
k = var(εk,t). Specifically, we let ωk,i = 0 for i < 0,

ωk,0 = ψk,0, ωk,i = ωk,i−1 + ψk,i for 0 < i < `k and ωk,i = ωk,i−1 + ψk,i − ψk,i−`k
for i ≥ `k, where

ψk,i follows from (11) with k− 1 replaced by k. Player k’s best linear forecast of leadtime demand

and associated mean squared forecast error are given by mk,t and σ2
k

∑`k−1
i=0 ω2

k,i respectively, where

mk,t =
∞∑

i=0

ωk,i+`k
εk,t−i + `kµd. (13)

At this stage, we show how it is possible to recursively construct the propagation of demand

through the supply chain. Player k − 1 places an order to player k that is QUARMA with respect

to its full information shocks as per part (I) of Theorem 1. Next, one needs to determine if player

k’s demand is invertible with respect to {εk−1,t}. In the event that player k’s demand is not

invertible with respect to {εk−1,t}, one needs to consider if there is a sharing arrangement between

player k − 1 and player k. Based upon these two determinations, one can construct player k’s

full information shocks and can determine which specific case of Corollary 1 player k faces. Then,

player k’s QUARMA representation of its demand can be determined as in part (III) of Theorem

1 along with its best linear forecast of leadtime demand as in (13). Player k’s order to player k + 1

follows the myopic order-up-to policy and the propagation of demand continues upstream similarly.

5.2 The Value of Information Sharing

Whether or not there is an information sharing agreement between players k−1 and k, and whether

or not player k’s demand is invertible with respect to player k− 1’s full information shocks, player

k is able to use Theorem 1 in conjunction with Corollary 1 as well as the proof of Lemma 2 to

construct its best linear forecast of leadtime demand given the information available to it. Below, we
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determine the value of information sharing, by comparing the mean square forecast error of each no

information sharing scenario to the associated information sharing scenario. In other words, player

k’s mean squared forecast error depends on the variance of its full information shocks as well as

on the values of ωk,i. However, both of these quantities depend on which scenario from Corollary

1 player k faces.

We propose to measure the value of information sharing by the ratio of player k’s mean square

forecast error where player k−1 did not share its shocks to where player k−1 did share its shocks.

In other words, V = MSFENS
k

MSFES
k

. It is clear that V ≥ 1 and when V = 1 there is no value to

information sharing. Below, we discuss the value of information sharing by considering those cases

from Corollary 1.

If {Dk,t} is invertible with respect to {εk−1,t}, then there is no value of information sharing

between player k−1 and player k since the information available to player k from the linear past of

its demand is equivalent to player k−1’s full information set, i.e., V = 1. If {Dk,t} is not invertible

with respect to {εk−1,t}, then there generally is value of information sharing between player k − 1

and player k. See Proposition 2 below showing the possibility of unbounded gain from information

sharing. We note that in those cases where MDk
t ⊂ Mk−1

t , it is possible that there may be no

value to information sharing (see Pierce, 1975). Typically, though, if MDk
t ⊂Mk−1

t , then if player

k − 1 does not share its full information shocks with player k, there is information loss and player

k’s MSFE of its aggregated demand over the lead time is larger than if full information shocks had

been shared.

We numerically demonstrate the value of information sharing and the potential for a simple

AR(1) demand to result in benefit of information sharing for an upstream player. In all figures in

this section, we assume that the retailer observes ARMA(1,1) demand with leadtime `1 = 1. In

Figure 1, the enclosed region shows those values of φ and θ1 of the retailer’s demand model such that

the supplier’s demand will not be invertible with respect to the retailer’s shocks. We point out that
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the enclosed region consists of one quarter of all possible ARMA(1,1) demand configurations for the

retailer if the leadtime is 1. In Figure 2, we study the same situation as mentioned above except here

we measure the value of information sharing for the supplier in terms of ln(V ) where V = MSFENS

MSFES

and we assume that the retailer observes ARMA(1,1) demand with φ = −.7. As θ1 approaches

.3, the value of information sharing approaches infinity since β1 = 1 + φ − θ1 approaches 0 (See

Proposition 2). From Figure 1, it can be seen that even when the retailer observes AR(1) demand,

i.e,. when θ1 = 0, the supplier’s demand will not be invertible with respect to the retailer’s shocks

if φ < −.5. Hence our paper is crucial to understanding how a simple AR(1) demand propagates

along a supply chain and the value of information sharing within it. For example, if φ = −.6 and

θ1 = 0, if `1 = 1, the retailer’s order to the supplier is given by D2,t = .6D2,t−1 +d+ ε1,t−1.5ε1,t−1.

Hence {D2,t} is not invertible with respect to {ε1,t}. In the event the retailer does not share with the

supplier and `2 = 1, then the supplier’s MSFE is .36σ2
1 whereas if the supplier would sub-optimally

use the GGS forecast, the MSFE would be .52σ2
1, i.e. MSFEGGS

MSFE = 13
9 .

Proposition 2 If `k ≤ J̃k, then there exists unbounded gain to player k from player k− 1 sharing

its full information shocks.

Proof. Since `k ≤ J̃k, it follows that if player k − 1 shares its full information shocks with player

k, then ωk,i = 0 for 0 ≤ i ≤ `k − 1 and hence the mean square forecast error of leadtime demand,

σ2
k

∑`k−1
i=0 ω2

k,i, under information sharing is 0. On the other hand, if player k − 1 does not share

with player k, then by Theorem 1 (III) , Jk = 0, ωk,0 = 1 and hence MSFENS
k ≥ σ2

k > 0.

2

Remark 2 Proposition 2 demonstrates where there exists unbounded gain to player k from player

k−1 sharing its full information shocks. However, as can be seen from Figure 2, there can be great

value to information sharing even in a neighborhood around such a configuration where there exists

unbounded value of information sharing.

In the next section, we relax the assumption that every supply chain player shares either its
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full information shocks or shares nothing. There, we demonstrate that it is possible for player k’s

demand not to be invertible with respect to player k−1’s shocks and yet there is no value to player

k for player k − 1 to share its demand. Besides being mathematically interesting, this also is in

contrast to results of GGS.

6 Shock Sharing versus Demand Sharing

In this section, we assume that the retailer through player k − 2 shared either nothing or the

equivalent of their full information shocks. We show that under these assumptions the value to

player k of receiving demand information shared by player k− 1 may be different than the value to

player k of receiving shocks shared by player k − 1. However, we leave the study of the structure

of the propagation of demand when sharing of demand information occurs as well as research on

the related topic of sharing between non-contiguous players to future work.

Here, we discuss specific scenarios where {Dk,t} is not invertible with respect to {εk−1,t} under

which there are various possible relationships among MDk−1

t , MDk
t , MDk−1,Dk

t , and Mεk−1

t . We

show that the value to player k of receiving demand information shared by player k − 1 may be :

nonexistent; positive, but less than that obtained from player k − 1 sharing its shocks {εk−1,t}; or

positive and equivalent to that obtained from player k − 1 sharing its shocks {εk−1,t}.

The first scenario we consider is where k = 2 and {D2,t} is not invertible with respect to {ε1,t}.

Here, it is equivalent for the retailer to share its demand or its full information shocks with the

supplier since {D1,t} is always invertible with respect to {ε1,t} and hence MD2
t ⊂MD1

t = Mε1
t .

For the rest of this section, we consider the scenario where k = 3 and {D2,t} is not invertible

with respect to {ε1,t} but the retailer shared the equivalent of its full information shocks with

the supplier (player 2). We further assume that {D3,t} is not invertible with respect to {ε2,t},

J̃2 = J̃3 = 0 and both θ̃2(B) as well as θ̃3(B) have no roots on the unit circle. Since the retailer
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shared its shocks with the supplier, ε2,t = β1ε1,t,

φ(B)D2,t = d + θ̃2(B)(β1ε1,t)

φ(B)D3,t = d + θ̃3(B)(β1β2ε1,t). (14)

Since {D2,t} is not invertible with respect to {ε1,t} and J̃2 = 0, at least one root of θ̃2(z) lies within

the unit circle, but not at 0. Similarly, at least one root of θ̃3(z) lies within the unit circle, but not

at 0. From these facts along with (14),

ε1,t =
(φ(B)D2,t − d)θ̃−1

2 (B)
β1

=
(φ(B)D3,t − d)θ̃−1

3 (B))
β1β2

. (15)

Multiplying both sides of (15) by θ̃2(B)θ̃3(B)φ−1(B), we obtain

β2θ̃3(B)D2,t = θ̃2(B)D3,t +
d

φ(1)

[
β2θ̃3(1)− θ̃2(1)

]
. (16)

It is possible that θ̃3(z) and θ̃2(z) have common roots. Denote θ̃m
3 (z) and θ̃m

2 (z) as the polynomials

associated with (16) after the cancelation of common factors. After canceling common factors, it

follows from (16) that

β2θ̃
m
3 (B)D2,t = θ̃m

2 (B)D3,t +
d

φ(1)

[
β2θ̃

m
3 (1)− θ̃m

2 (1)
]
. (17)

Therefore, {D2,t} can be represented as a constant plus a linear combination of only present

and past values of {D3,t} if and only if θ̃m
3 (z) has all of its roots outside the unit circle. Similarly,

{D3,t} can be represented as a constant plus a linear combination of only present and past values of

{D2,t} if and only if θ̃m
2 (z) has all of its roots outside the unit circle. There are thus four potential

cases regarding the relationship among MD2
t , MD3

t and MD2,D3
t . In each of the four cases below, if

the supplier shared its shocks or nothing with player 3, then player 3 can determine its best linear

forecast of leadtime demand as described in Section 5. We now focus on the potential benefit to

player 3 of receiving demand shared by the supplier.
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• Case 1. Both θ̃m
3 (z) and θ̃m

2 (z) have all roots outside the unit circle. Here, MD2
t = MD3

t =

MD2,D3
t ⊂Mε2

t and there is no value to player 3 receiving the supplier’s demand information,

but there may be value to player 3 receiving the supplier’s shocks.

• Case 2. θ̃m
3 (z) has at least one root inside the unit circle but θ̃m

2 (z) has all roots outside the unit

circle. Here, by similar arguments as those mentioned in Section 2,MD3
t ⊂MD2

t = MD2,D3
t ⊂

Mε2
t and there may be value to player 3 of receiving the supplier’s demand information but

more value to player 3 of receiving the supplier’s shocks. If the supplier shared its demand

information with player 3, player 3 can determine shocks γ2,t = β1θ̃
†−1

2 (B)[φ(B)D2,t−d] from

the knowledge of {D2,t}. Substituting D2,t = (d + θ̃†2(B)γ2,t)φ−1(B) in the left hand side

of (17), then multiplying both sides by φ(B), and using the fact that θ̃m
2 (z) has all of its

roots outside the unit circle, we find that {D3,t} is QUARMA with respect to full information

shocks ε3,t = β2γ2,t. Thus, {D3,t} can be represented as a one-sided MA(∞) with respect

to full information shocks ε3,t which can then be used by player 3 to forecast its leadtime

demand.

• Case 3. θ̃m
2 (z) has at least one root inside the unit circle but θ̃m

3 (z) has all roots outside

the unit circle. Here, MD2
t ⊂ MD3

t = MD2,D3
t ⊂ Mε2

t and there is no value to player 3 of

receiving the supplier’s demand information, but there may be value to player 3 receiving the

supplier’s shocks.

• Case 4. Both θ̃m
3 (z) and θ̃m

2 (z) have at least one root inside the unit circle. Here, MD2
t *

MD3
t (so there may be value to player 3 of receiving the supplier’s demand information),

MD3
t * MD2

t , and MD2,D3
t ⊆ Mε2

t . If the supplier shared its demand information with

player 3, player 3 can determine its best linear forecast of leadtime demand by applying the

procedure proposed by Brockwell and Dahlhaus (2004), the application of which we leave to

future research.
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We leave the details of the framework discussed in the above mentioned cases for future research.

Nevertheless, we provide numerical examples that demonstrate that the value of demand sharing

can be less than the value of full information shock sharing. Although we enumerated four cases

above, we have not yet found specific configurations where either case 2 or case 3 could occur.

On the other hand, we were able to easily find many examples of both Case 1 and Case 4. The

coefficients were found through optimization and are reported here to four significant figures.

An example of a Case 1 situation is D1,t = d−0.7373D1,t−1+ε1,t−.11ε1,t−1+.06ε1,t−2−.22ε1,t−3

where `1 = 1, `2 = 2, and `3 = 1. It follows that if the retailer shares its shocks with the supplier,

D2,t = d − 0.7373D2,t−1 + ε2,t + 5.2207ε2,t−1 − 1.4406ε2,t−2. If the supplier shares its shocks with

player 3, then D3,t = d−0.7373D3,t−1 +ε3,t +5.4834ε3,t−1 and MSFES = 0.01268σ2
1. We note that

−0.1824 is a root of the polynomial θ2(z) as well as θ3(z). On the other hand, if either the supplier

shares its demand or nothing with player 3, then MSFENS = 0.3812σ2
1. The fact that Case 1

examples can occur is important since it is such situations where the value of demand sharing is

nonexistent but there is value to shock sharing.

In all of the case 4 examples that we found, the value of demand sharing was equal to the value

of shock sharing up to rounding errors since the MSFE in case 4 was calculated numerically via

the framework suggested by Brockwell and Dahlhaus (2004). For example, consider D1,t = d −

.75D1,t−1 +ε1,t where `1 = 1, `2 = 2, and `3 = 1. It follows that if the retailer shares its shocks with

the supplier, D2,t = d− .75D2,t−1+ε2,t+3ε2,t−1 where ε2,t = .25ε1,t. If the supplier shares its shocks

with player 3, then D3,t = d−.75D3,t−1+ε3,t+1.56ε3,t−1 and MSFES = [(.25)(1.5625)σ1]2. On the

other hand, if the supplier shares nothing with player 3, then D3,t = d− .75D3,t−1 + ε3,t + 1
1.56ε3,t−1

and MSFENS = [(.25)(1.5625)(1.56)σ1]2. The MSFE when the supplier shares its demand with

player 3 was calculated to be the same as in the shock sharing case.

We have not yet managed to construct any examples where the value of demand sharing is

positive but less than the value of shock sharing. If indeed, it is impossible for the value of
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demand sharing to be between the two extremes (for all possible configurations with respect to

sharing arrangements between players and invertibility), then it would follow that Theorem 1 holds

regardless of whether supply chain players share nothing, their demand, or their shocks. We leave

further analysis on this issue for future research.

7 Directions For Future Research

In this paper, we showed that in a supply chain where the retailer observes ARMA demand and

where each supply chain player either shares its full information shocks or shares nothing, the prop-

agation of demand follows a QUARMA-in-QUARMA-out property. Under the same conditions,

we provided a methodology where a supply chain player can forecast its leadtime demand via the

best linear forecast given its available information and we characterized where there may be value

to information sharing.

This paper may facilitate research on several related problems. First is the continuation of the

study as to whether the value of demand sharing can be restricted to comparison of no sharing

and shock sharing. Second is the somewhat related issue of sharing between non-contiguous supply

chain players. Third, is the case where at some levels of the chain, there exist more than one player,

each of who observes QUARMA demand. Last is the generalization to the study of the propagation

of demand and the value of information sharing when the retailer observes demand that can be

expressed as an MA(∞) but is not ARMA such as in long-memory time series models.
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Appendix

Proof of Proposition 1:

Let d1,t = D1,t − µd where µd = d
1−φ1−φ2−···−φp

. Since the roots of the polynomial 1 − φ1z −

· · · − φpz
p are all outside the unit circle, {d1,t} has the one-sided MA(∞) representation,

d1,t =
∞∑

i=0

ψ1,iε1,t−i, (18)

where {ψ1,i} is a square-summable sequence. Following standard time series methodology (c.f.

Brockwell and Davis, 1991, pp. 91-92),

ψ1,i =





0 i < 0,

1 i = 0,

∑p
j=1 φjψ1,i−j − θ1,i i ≥ 1

(19)

where by convention, θ1,i = 0 if i > q1. Thus by Lemma 1,

m1,t =
∞∑

i=`1

ω1,iε1,t+`1−i + `1µd =
∞∑

i=0

ω1,i+`1ε1,t−i + `1µd, (20)

and the mean square forecast error is

σ2
1

`1−1∑

i=0

ω2
1,i. (21)

Thus, from the fact that D1,t = µd+
∑∞

j=0 ψ1,jε1,t−j , (23), (24) and (25) with appropriate subscripts,

we observe that the retailer’s order to its supplier follows

D2,t = D1,t + m1,t −m1,t−1 =
∞∑

i=0

ψ1,iε1,t−i +
∞∑

i=0

ω1,i+`1ε1,t−i −
∞∑

i=0

ω1,i+`1ε1,t−1−i + µd

= (1 + ω1,`1)ε1,t +
∞∑

i=1

ψ1,i+`1ε1,t−i + µd

= (1 +
`1∑

j=1

ψ1,j)ε1,t +
∞∑

i=1

ψ1,i+`1ε1,t−i + µd. (22)

Proof of Lemma 1:
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Since Dt = µd+
∑∞

j=0 ψjεt−j and
∑`

i=1 D1,t = `µd+
∑`

n=1

∑∞
j=0 ψjεt+n−j , by rearranging terms,

it can be shown that
∑̀

i=1

Dt+i =
∞∑

i=0

ωiεt+`1−i + `µd, (23)

where

ωi =





0 i < 0

ψi i = 0

ωi−1 + ψi 0 < i < `

ωi−1 + ψi − ψi−` i ≥ `.

(24)

Hence, the best linear forecast of demand over the lead-time is

mt =
∞∑

i=`

ωiεt+`−i + `µd =
∞∑

i=0

ωi+`εt−i + `µd, (25)

where mt ∈Mε
t, the forecast error

`−1∑

i=0

ωiεt+`−i (26)

is in the orthogonal complement of Mε
t, and the mean square forecast error is

σ2
ε

`−1∑

i=0

ω2
i . (27)

Proof of Theorem 1:

This is a proof by induction. First, we show (I), (II), and (III), are satisfied by the retailer

(part (IV) of the theorem does not apply to the retailer). It is assumed that {D0,t} = {D1,t} and

{ε0,t} = {ε1,t}. This along with the fact that {D1,t} is invertible with respect to {ε1,t} implies that

{D1,t} has an invertible QUARMA(p, q1, 0) representation with respect to both {ε0,t} as well as

with respect to {ε1,t}. It follows that M1
t = MD1

t = M0
t . Hence, for the retailer, case (i) of the

four cases in (10) always holds. Thus, we have shown the theorem holds for the retailer.

Next, we show that (IV) is satisfied when k = 2. It was already assumed that the retailer’s

QUARMA demand with respect to {ε1,t} is in minimal form. The condition in part (IV) will occur
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if the retailer’s demand, {D1,t}, is QUARMA(0, q1, 0) with respect to {ε1,t}, q1 ≤ `1 and θ1(z) has

a root at 1. By the argument described in Remark 1, J̃2 = ∞ and D2,t is constant.

Next, we assume that Theorem 1 holds for player k − 1, k ≥ 2. In particular, we assume that

φ(B)Dk−1,t = d + θk−1(B)εk−1,t−Jk−1
. (28)

where {εk−1,t} are player k− 1’s full information shocks. Furthermore, we assume that if {Dk−2,t}

is QUARMA(0, qm
k−2, J

m
k−2) in minimal form with an MA polynomial that has a root at 1, then

J̃k−1 = ∞ and {Dk−1,t} is constant. We show that these assumptions imply that (I), (II),(III) and

(IV) hold for player k.

From (28) and Lemma 2, it follows that {Dk,t} is QUARMA(p, qk, J̃k) with respect to shocks

λk,J̃k
{εk−1,t} where qk is defined in (34), J̃k is defined in (31), and λk,J̃k

is defined in (33).

To prove II and III, we now proceed from the point of view of player k, which has knowledge

of θ̃k(B). There are four mutually exclusive and exhaustive situations that player k may face, and

these correspond precisely to cases (i), (ii), (iii), and (iv) of (10). (See the discussion just below

(10).)

The first situation is where player k − 1 shares its full information shocks with player k or

the following two conditions hold: θ̃k(z) has all roots outside the unit circle and J̃k = 0. In this

situation, player k is in case (i). In such a case, its information set isMεk−1
t . Thus, εk,t = λk,J̃k

εk−1,t

and the QUARMA representation for {Dk,t} with respect to {εk,t} has the same parameters as the

QUARMA representation for {Dk,t} with respect to λk,J̃k
{εk−1,t}, that is, θk(B) = θ̃k(B), Jk = J̃k.

The second situation is where player k − 1 shares no information with player k, θ̃k(z) has all

roots outside the unit circle and 0 < J̃k < ∞. Then player k is in case (ii) and its information set

is Mεk−1

t−J̃k
. Thus, εk,t = λk,J̃k

εk−1,t−J̃k
, and the QUARMA representation for {Dk,t} with respect to

{εk−1,t} is the same as the QUARMA representation for {Dk,t} with respect to λk,J̃k
{εk−1,t} except

that the εk,t are not shifted, that is, θk(B) = θ̃k(B), Jk = 0.

The third situation is where player k − 1 shares no information with player k, and θ̃k(z) has
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at least one root inside the unit circle. Then player k is in case (iii). In such a case, its full

information shocks are those obtained from constructing an ARMA representation of {Dk,t} with

respect to the shocks {εk,t} such thatMεk
t = MDk

t . Following the methodology described in Section

4, starting from the fact that by (I), {Dk,t} has an ARMA(p, qk) representation with respect to a

white noise sequence with AR polynomial φ(B) and moving average polynomial θ̃k(B), we obtain

εk,t = λk,J̃k
(θ̃†k)

−1
(B)[φ(B)Dk,t − d]. Thus, we have θk(B) = θ̃†k(B), Jk = 0, so that {Dk,t} has a

stationary, invertible ARMA(p, qk) representation with respect to {εk,t}.

The fourth situation is where either player k − 1’s demand is constant or it is QUARMA with

respect to {εk−1,t} such that J̃k = ∞ as discussed in part (I) of the theorem. It follows that player

k’s demand is constant. In such a case, its full information shocks are {εk,t} = 0.

It follows from Lemma 2 and Lemma 3 that (IV) holds.

2

Lemma 2 If {Dk−1,t} is QUARMA(p, qk−1, Jk−1) with respect to {εk−1,t} of form φ(B)Dk−1,t =

d+BJk−1θk−1(B)εk−1,t, where θk−1(B) is a polynomial in B of order qk−1 with leading coefficient 1,

if 0 ≤ Jk−1 < ∞ and θ(B) = 0 if Jk−1 = ∞, then {Dk,t} has a QUARMA(p, qk, J̃k) representation

with respect to {λk,J̃k
εk−1,t} of form φ(B)Dk,t = d + BJ̃k θ̃k(B)λk,J̃k

εk−1,t, where {λk,J̃k
} is defined

in (33), θ̃k(B) is a polynomial in B of order qk with leading coefficient 1 if 0 ≤ J̃k < ∞, θ̃k(B) = 0

if J̃k = ∞ and qk = max{max(p, qk−1 − `k−1 + Jk−1)− J̃k, 0}.

Proof. Since by definition {εk−1,t} are player k−1’s full information shocks, it follows from Lemma

1 with ψi = ψk−1,i that

mk−1,t =
∞∑

i=0

ωk−1,i+`k−1
εk−1,t−i + `k−1µd, (29)

where ωk−1,i are given by (24) with ψk−1,i replacing ψi. Similar to the way in which the retailer

determined its order via the order-up-to policy, player k − 1’s order to player k follows Dk,t =

Dk−1,t +mk−1,t−mk−1,t−1. It follows from (22) with k− 1 replacing 1 and recognizing that due to
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the QUARMA demand for player k − 1, ψk−1,0 may be 0, that

Dk,t = βk−1εk−1,t +
∞∑

i=1

ψk−1,i+`k−1
εk−1,t−i + µd. (30)

Further, let

J̃k = I(βk−1 = 0) inf{i > 0|ψk−1,i+`k−1
6= 0}. (31)

Next, we write

Dk,t − φ1Dk,t−1 − · · · − φpDk,t−p = d +
∞∑

i=0

λk,iεk−1,t−i, (32)

where λk,i are constants to be determined. It follows from (30) and (32) that

λk,i =





βk−1 i = 0

ψk−1,`k−1+i − φiβk−1 i = 1

ψk−1,`k−1+i −
∑i−1

j=1 φjψk−1,`k−1+i−j − φiβk−1 1 < i ≤ p

ψk−1,`k−1+i −
∑p

j=1 φjψk−1,`k−1+i−j i > p

(33)

Note that if p > qk−1 − `k−1 + Jk−1, then from (33) along with (11), λk,i = 0 for all i > p.

Furthermore, if p ≤ qk−1 − `k−1 + Jk−1, then from (33) along with (11), λk,i = 0 for all i >

qk−1− `k−1 + Jk−1. From the definition of J̃k in (31), λk,i = 0 for i < J̃k. Thus λk,i can be nonzero

only for J̃k ≤ i ≤ max{p, qk−1 − `k−1 + Jk−1}. If J̃k > max{p, qk−1 − `k−1 + Jk−1}, then J̃k = ∞

and Dk,t is constant.

We define

qk = max{max{p, qk−1 − `k−1 + Jk−1} − J̃k, 0}. (34)

If J̃k < ∞, then let θ̃k,j = −λk,J̃k+j

λk,J̃k

for 1 ≤ j ≤ qk. Hence, if J̃k < ∞,

Dk,t−φ1Dk,t−1−· · ·−φpDk,t−p = d+λk,J̃k
εk−1,t−J̃k

−θ̃k,1λk,J̃k
εk−1,t−1−J̃k

−· · ·−θ̃k,qk
λk,J̃k

εk−1,t−qk−J̃k
.

(35)

If J̃k = ∞, then qk = 0, θ̃k(B) = 0 and Dk,t = µd.

2
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Lemma 3 For k ≥ 2, if {Dk−1,t} is QUARMA(0, qm
k−1, Jk−1) in minimal form with respect to

{εk−1,t} where θm
k−1(z) has a root at 1, and `k−1 ≥ Jk−1 + qm

k−1, then J̃k defined in (31) is equal to

∞.

Proof. Assume that for k ≥ 2, {Dk−1,t} is QUARMA(0, qm
k−1, Jk−1) in minimal form with respect

to {εk−1,t} where θm
k−1(z) has a root at 1, and `k−1 ≥ Jk−1 + qm

k−1. Since θm
k−1(z) has a root

at 1, 1 − ∑qm
k−1

i=1 θi = 0. Since {Dt} is QUARMA(0, qm
k−1, Jk−1), ψi = 0 for i < Jk−1, and for

i > Jk−1 + qm
k−1. Furthermore, ψj+Jk−1

= −θj for 0 ≤ j ≤ qm
k−1. Since `k−1 ≥ Jk−1 + qm

k−1,

βk−1 =
∑`k−1

j=0 ψk−1,j = 0. It follows that λk,i defined in (33) are equal to 0 for all i.

2
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Figure 1: In this figure, the retailer observes an ARMA(1,1) demand with φ given on the X axis

and θ given on the Y axis. The enclosed triangle represents those configurations of the retailer’s

demand where the supplier’s demand will not be invertible with respect to the retailer’s shocks.
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Figure 2: In this figure, the retailer observes an ARMA(1,1) demand with φ = −.7. The X axis

represents θ and the Y axis the natural logarithm of the value of information sharing.
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