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Abstract

We revisit the relation between stock market volatility and macroeconomic activity using a new
class of component models that distinguish short run from secular movements. We combine
insights from Engle and Rangel (2007) and the recent work on mixed data sampling (MIDAS),
as in e.g. Ghysels, Santa-Clara, and Valkanov (2005). The new class of models is called
GARCH-MIDAS, since it uses a mean reverting unit daily GARCH process, similar to Engle
and Rangel (2007), and a MIDAS polynomial which applies to monthly, quarterly, or bi-annual

macroeconomic or financial variables. We study long historical data series of aggregate stock
market volatility, starting in the 19th century, as in Schwert (1989). We formulate models with
the long term component driven by inflation and industrial production growth that are at par in
terms of out-of-sample prediction for horizons of one quarter and out-perform more traditional
time series volatility models at longer horizons. Hence, imputing economic fundamentals into
volatility models pays off in terms of long horizon forecasting. We also find that at a daily

level, inflation and industrial production growth, account for between 10 % and 35 % of one-
day ahead volatility prediction. Hence, macroeconomic fundamentals play a significant role
even at short horizons. Unfortunately, all the models - purely time series ones as well as those
driven by economic variables - feature structural breaks over the entire sample spanning roughly
a century and a half of daily data. Consequently, our analysis also focuses on subsamples -
pre-WWI, the Great Depression era, and post-WWII (also split to examine the so called Great
Moderation). Our main findings remain valid across subsamples.
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1 Introduction

We have made substantial progress on modelling the time variation of volatility.

Unfortunately, progress has been uneven. We have a better understanding of forecasting

volatility over relatively short horizons, ranging from one day ahead to several weeks. A key

ingredient is volatility clustering, a feature and its wide-range implications, first explored in

the seminal paper on ARCH models by Engle (1982). We also bridged the gap between

discrete time models, such as the class of ARCH models, and continuous time models,

such as the class of Stochastic Volatility (SV) models with close links to the option pricing

literature.1 As a by-product we moved ahead on linking discrete time volatility prediction

and option pricing. As a matter of fact, we are now much more comfortable with the notions

of objective and risk neutral probability measures and know how to empirically implement

them compared to, say fifteen years ago.2

Despite the impressive list of areas where we made measurable and lasting progress, we are

still struggling with some basic issues. For example, Schwert (1989) wrote a paper with

the pointed title, Why Does Stock Market Volatility Change Over Time? Schwert tried

to address the relation between stock volatility and (1) real and nominal macroeconomic

volatility, (2) the level of economic activity, as well as (3) financial leverage.3 Roughly

around the same time Fama and French (1989) and Ferson and Harvey (1991), documented

the empirical regularity that risk-premia are counter cyclical. This finding prompted research

on asset pricing models which provide rational explanations for counter cyclical stock market

volatility and risk premia.4

1For surveys of the ARCH literature, see e.g. Bollerslev, Engle, and Nelson (1994). For a survey of SV
models see e.g. Ghysels, Harvey, and Renault (1996) and Shephard (2005).

2On the topic of discrete time ARCH and continuous time diffusions, see e.g. Nelson (1990), Foster and
Nelson (1996) and Drost and Werker (1996), among others. The subject of option pricing and volatility
prediction is covered in many papers, two survey papers are worth mentioning, namely Bates (1996) and
Garcia, Ghysels, and Renault (2003).

3Before Schwert, Officer (1972) related changes to volatility to macroeconomic variables, whereas many
authors have documented that macroeconomic volatility is related to interest rates.

4 Examples include the time-varying risk aversion model of Campbell and Cochrane (1999) with external
habit formation, the prospect theory approach of Barberis, Huang, and Santos (2001) generates similar
counter cyclical variations in risk-premia. Counter cyclical stock market volatility also relates to the so-
called feedback effect - the effect by which asset returns and volatility are negatively correlated (see e.g.
Campbell and Hentschel (1992) among others). Along different lines, Bansal and Yaron (2004) and Tauchen
(2005) argue that investors with a preference for early resolution of uncertainty require compensation, thereby
inducing negative co-movements between ex-post returns and volatility. Some of the models on limited stock
market participation such as Basak and Cuoco (1998) are also able to generate asymmetric stock market
volatility movements. These theories are important for they highlight the main mechanisms linking stock
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In this paper we revisit modelling the economic sources of volatility. The progress of the last

fifteen years allows us to approach this question with various new insights, matured during

the last two decades of research on volatility. We start from the observation that volatility

is not just volatility, as we have come to understand that there are different components

to volatility and that there are gains to modelling these components separately. It is this

insight that enables us also to shed new light on the link between stock market volatility and

economic activity. In recent years, various authors have advocated the use of component

models for volatility. Engle and Lee (1999) introduced a GARCH model with a long and

short run component. Several others have proposed related two-factor volatility models, see

e.g. Ding and Granger (1996), Gallant, Hsu, and Tauchen (1999), Alizadeh, Brandt, and

Diebold (2002), Chernov, Gallant, Ghysels, and Tauchen (2003) and Adrian and Rosenberg

(2004) among many others. The latter examine quite an exhaustive set of diffusion models for

the stock price dynamics and conclude quite convincingly that at least two components are

necessary to adequately capture the dynamics of volatility. While the principle of multiple

components is widely accepted, there is no clear consensus how to specify the dynamics of

each of the components. The purpose of this paper is to suggest several new component

model specifications with direct links to economic activity.

Practically speaking, the research pursued in this paper is inspired by two recent

contributions. The first is Engle and Rangel (2007) who introduce a Spline-GARCH model

where the daily equity volatility is a product of a slowly varying deterministic component and

a mean reverting unit GARCH. Unlike conventional GARCH or stochastic volatility models,

this model permits “unconditional” volatility to change over time. Engle and Rangel (2007)

use an exponential spline as a convenient non-negative parameterization. A second goal

of their paper is also to explain why this “unconditional” volatility changes over time and

differs across financial markets. The model is applied to equity markets for 50 countries

for up to 50 years of daily data and the macroeconomic determinants of volatility are

investigated. Engle and Rangel (2007) find that volatility in macroeconomic factors such

as GDP growth, inflation and short term interest rate are important explanatory variables

that increase volatility. There is evidence that high inflation and slow growth of output

are also positive determinants. This analysis draws upon the cross-sectional behavior of the

spline component across 50 countries.

In the present paper we focus instead on long historical time series, similar to Schwert (1989).

market volatility to macroeconomic factors.
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While the spline specification could still be used, we explore a very different approach that

allows us to better handle the links between stock market data, observed on a daily basis, and

macroeconomic variables that are sampled monthly or quarterly. For example, in Schwert

(1989), daily data are aggregated to monthly realized volatilities, which are then used to

examine the link between stock market volatility and economic activity. If there are several

components to volatility, monthly realized volatility may not be a good measure to consider.

Rather, we would like to use the long term component. To do so, we adopt a framework that

is suited to combine data that are sampled at different frequencies. The new approach is

inspired by the recent work on mixed data sampling, or MIDAS. In the context of volatility,

Ghysels, Santa-Clara, and Valkanov (2005) studied the traditional risk-return trade-off and

used monthly data to proxy expected returns while the variance was estimated using daily

squared returns.

We use the MIDAS approach to link macroeconomic variables to the long term component.

Hence, the new class of models is called GARCH-MIDAS, since it uses a mean reverting unit

daily GARCH process, similar to Engle and Rangel (2007), and a MIDAS polynomial which

applies to monthly, quarterly, or bi-annual macroeconomic or financial variables. Having

introduced the GARCH-MIDAS model that allows us to extract two components of volatility,

one pertaining to short term fluctuations, the other pertaining to a secular component, we are

ready to revisit the relationship between stock market volatility and economic activity and

volatility. The first specification we consider uses exclusively financial series. The GARCH

component is based on daily (squared) returns, whereas the long term component is based

on realized volatilities computed over a monthly, quarterly or bi-annual basis. In some sense,

the original work of Schwert comes closest to this specification, as the long term component

is a filtered realized volatility process, whereas Schwert uses raw realized volatilities (on a

monthly basis). The GARCH-MIDAS model with a long run component based on realized

volatility will be a benchmark model, against which we can measure success of empirical

specifications involving macroeconomic variables. The GARCH-MIDAS model with a long

run component based on realized volatility will also be compared to existing component

models - including the Spline-GARCH.

The GARCH-MIDAS model also allows us to examine directly the macro-volatility links,

avoiding the two-step procedure used by Schwert. Indeed, we can estimate GARCH-MIDAS

models where macroeconomic variables enter directly the specification of the long term

component. The fact that the macroeconomic series are sampled at a different frequency is
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not an obstacle, again due to the advantages of the MIDAS scheme. Hence, compared to

the original work of Schwert, our approach has the following advantages: (1) we separate

short and long run components of volatility, (2) we use either a filtered realized variances

or a direct approach imputing macroeconomic time series to capture the economic sources

of stock market volatility. We focus on two key economic variables: (1) inflation and (2)

industrial production growth.

The main findings of the paper can be summarized as follows. In terms of forecasting, we find

that the new class of models driven by economic variables are roughly at par with time series

volatility models at the quarterly horizon and outperform them at the semi-annual horizon.

Hence, imputing economic fundamentals - inflation and industrial production growth - into

volatility models pays off in terms of long horizon forecasting. We also find that at a daily

level, industrial production and inflation account for between 10 % and 35 % of expected

one-day ahead volatility. Unfortunately, all the models - purely time series ones as well

as those driven by economic variables - feature structural breaks over the entire sample

spanning roughly a century and a half of daily data. This is not entirely unexpected as the

long span of data covers fundamental changes in the economy - although the Spline-GARCH

and GARCH-MIDAS models are designed to capture fundamental shifts. Our results suggest

they do not fully capture this. Consequently, our analysis also focuses on subsamples - pre-

WWI, the Great Depression era, and post-WWII (also split to examine the so called Great

Moderation). Our findings are robust across subsamples - except the pre-WWI one. The

latter is presumably plagued by poor measurement of inflation and industrial production.

Hence, macroeconomic fundamentals play a significant role even at short horizons.

A first section 2 describes the new class of component models for stock market volatility,

followed by section 3 and section 4 which cover the empirical implementation of the new

class and revisits the relationship between stock market volatility and macro variables.

Conclusions appear in section 5.

2 A New Class of Component Models for Stock Market

Volatility

Different news events may have different impacts on financial markets, depending on whether

they have consequences over short or long horizons. A conventional framework to analyze
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this is the familiar log linearization of Campbell (1991) and Campbell and Shiller (1988)

which states that:

ri,t − Ei−1,t(ri,t) = (Ei,t − Ei−1,t)
∞

∑

j=0

ρj∆dit+j − (Ei,t − Ei−1,t)
∞

∑

j=1

ρjrit+j (1)

where we deliberately write returns in terms of days of the month, namely ri,t is the log return

on day i during month t, di,t the log dividend on that same day and Ei,t() the conditional

expectation given information at the same time. Following Engle and Rangel (2007), the

left hand side of equation (1), or unexpected returns, can be rewritten as follows:

ri,t − Ei−1,t(ri,t) =
√

τt · gi,tεi,t (2)

where volatility has at least two components, namely gi,t which accounts for daily fluctuations

that are assumed short-lived, and a secular component τt.
5 The main idea of equation (2), is

that the same news, say better than expected dividends, may have a different effect depending

on the state of the economy. For example, unexpected poor earnings, should have an impact

during expansion different from that during recessions. The component gi,t is assumed to

relate to the day-to-day liquidity concerns and possibly other short-lived factors (see e.g.

recent work by Chordia, Roll, and Subrahmanyam (2002) documents quite extensively the

impact of liquidity on market fluctuations). In contrast, the component τt relates, first and

foremost, to the future expected cash flows and future discount rates, and macro economic

variables are assumed to tell us something about this source of stock market volatility.

Various component models for volatility have been considered, see e.g. Engle and Lee (1999),

Ding and Granger (1996), Gallant, Hsu, and Tauchen (1999), Alizadeh, Brandt, and Diebold

(2002), Chernov, Gallant, Ghysels, and Tauchen (2003) and Adrian and Rosenberg (2004),

among many others. The contributions of our work pertain to modelling τt and are inspired

by the recent work on mixed data sampling, or MIDAS, discussed in a context similar to the

one used here - namely volatility filtering - by Ghysels, Santa-Clara, and Valkanov (2005).

Generically, we will call the new class of models GARCH-MIDAS component models. The

distinct feature of the new class is that the mixed data sampling allows us to link volatility

directly to economic activity (i.e. data that is typically sampled at the different frequency

5Note that the specification in equation (2) is slightly different from that in Engle and Rangel (2007) in
that the τ component in equation (2) is assumed constant throughout the month, quarter or half-year, an
assumption made here for convenience. Later, we will also introduce a specification where this restriction is
removed and the τ component varies daily.
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than daily returns). Practically speaking, there will be two cases which will be studied in this

paper. They are: (1) the component τt does not change for a fixed time span and involves

low frequency financial or macroeconomic data, and (2) the component τt changes daily and

involves rolling windows of financial data.

The easiest case is the fixed window case, and it is therefore the first we will cover in

subsection 2.1. We also cover the rolling window specification in the same subsection. Next,

in subsection 2.2 we cover alternative specifications involving macro variables directly.

2.1 Models with Realized Volatility

We start again with equation (2) but consider the return for day i of any arbitrary period

t - which may be a month, quarter, etc., and has Nt days - which may vary with t. Since

the time scale is not important for the exposition of the model we will treat t as a month,

so that ri,t is day i of month t. It will matter empirically which frequency to select and one

of the advantages of our approach is that t will be a choice variable that will be selected as

part of the model specification. For the moment we do not discuss this yet, and therefore

let t be fixed at the monthly frequency, but the reader can keep in mind that t is a fixed

window which will be determined via empirical model selection criteria. The return on day

i in month t is written as (assuming for notational convenience it is not the first day of the

period):

ri,t = µ +
√

τt · gi,tεi,t, ∀i = 1, . . . , Nt (3)

where εi,t | Φi−1,t ∼ N(0, 1) with Φi−1,t is the information set up to day (i − 1) of period t.

Following Engle and Rangel (2007), we assume the volatility dynamics of the component gi,t

is a (daily) GARCH(1,1) process, namely:

gi,t = (1 − α − β) + α
(ri−1,t − µ)2

τt

+ βgi−1,t (4)

The first specification of the τ component for GARCH-MIDAS builds on a long tradition

going back to Merton (1980), Schwert (1989) and others, of measuring long run volatility

by realized volatility over a monthly or quarterly horizon. In particular, consider monthly

realized volatility, denoted RVt. Unlike the previous work, however, we do not view the

realized volatility of a single quarter or month as the measure of interest. Instead, we specify
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the τt component by smoothing realized volatility in the spirit of MIDAS regression and

MIDAS filtering:

τt = m + θ
K

∑

k=1

ϕk(ω1, ω2)RVt−k (5)

RVt =

Nt
∑

i=1

r2
i,t (6)

Note also that the τ component is predetermined, namely:

Et−1

[

(ri,t − µ)2
]

= τtEt−1(gi,t) = τt (7)

assuming the beginning of period expectation of the short term component, Et−1(gi,t), to be

equal to its unconditional expectation, namely Et−1(gi,t) = 1. To complete the model we

need to specify the weighting scheme for equation (6), namely:

ϕk(ω) =



















(

k/K
)ω1−1(

1−k/K
)ω2−1

∑K
j=1

(

j/K
)ω1−1(

1−j/K
)ω2−1 Beta

ωk/(
∑K

j=1 ωj) Exp. Weighted

(8)

where the weights in the above equation sum up to one. The weighting function or smoothing

function in equation (8) is either the “Beta” lag structure discussed further in Ghysels, Sinko,

and Valkanov (2006) or the commonly used “Exponentially weighting”. The Beta lag, based

on the beta function, is very flexible to accommodate various lag structures. It can represent

monotonically increasing or decreasing weighting scheme. It can also represent a hump-

shaped weighting scheme although it is limited to unimodal shapes.6

Equations (3)-(6) and (8) form a GARCH-MIDAS model for time-varying conditional

variance with fixed time span RV’s and parameter space Θ = {µ, α, β, m, θ, ω1, ω2}. This

first model has a few nice features. First, the number of parameters are fixed and it is

parsimonious relative to the existing component volatility models which typically are not

parsimonious. Second, since the number of parameters are fixed, we can compare various

GARCH-MIDAS models with different time spans. Indeed, as noted before t can be a

6See Ghysels, Sinko, and Valkanov (2006) for further details regarding the various patterns one can obtain
with Beta lags.
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month, quarter or semester. Therefore, we can vary t and profile the log likelihood function

to maximize with respect to the time span covered by RV. Moreover, the number of lags

in MIDAS can vary as well, again while keeping the parameter space fixed. This is a nice

feature that will be exploited at the stage of empirical model selection. Note that we can

take, say a monthly RV, and take 12 lags, or a quarterly RV with 4 lags. Both involve

the same daily squared returns, yet the application of the weighting scheme in equation (8)

implies different weights across the year.

Another interpretation of our approach is to view the GARCH-MIDAS model as a filter. We

know from recent work by Barndorff-Nielsen and Shephard (2002) and Jacod (1994) that the

monthly realized volatilities are a very noisy measure of volatility. One answer to improve

precision is to use high frequency data. However, we only have on record roughly 15 years

of such data. For longer data spans we need to rely on filtering, and in this respect we can

view equation (5) as a filter of RVt. The estimation procedure, to be discussed later, will

allow us to obtain appropriate weights for the volatility filter.

Next we consider a rolling window specification for the MIDAS filter. Namely, we remove

the restriction that τt is fixed for month t, which makes τ and g both change at the daily

frequency. We will do this by introducing the ‘rolling window RV’ as opposed to the ‘fixed

span RV’ specification. A GARCH-MIDAS model with rolling window RV can be defined as

follows:

RV
(rw)
i =

N ′

∑

j=1

r2
i−j,. (9)

where we use the notation ri−j,. to indicate that we roll back the days across various periods t

without keep track of it. When N ′ = 22, we call it monthly rolling window RV, while N ′ = 65

and N ′ = 125, amount to respectively, quarterly rolling and biannual rolling window RV.

Furthermore, the τ process can be redefined accordingly,

τ
(rw)
i = m(rw) + θ(rw)

K
∑

k=1

ϕk(ω1, ω2)RV
(rw)
i−k (10)

Finally, we drop ‘t’ from equations (3) and (4) (since everything is of daily frequency now)

and, together with equations (8)-(10), they form the class of GARCH-MIDAS models with

rolling window RV. Note that, it still maintains all the nice features from GARCH-MIDAS

with fixed span RV that were previously mentioned.
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To conclude we will also consider a log version of the GARCH-MIDAS, namely for the fixed

time span case we replace equation (5) by:

log τt = m + θ

K
∑

k=1

ϕk(ω1, ω2)RVt−k (11)

and its rolling sample counterpart is defined similarly. We consider a log version as it matches

the class of models involving macroeconomic variables introduced next.

2.2 Incorporating Macroeconomic Information Directly

We now turn to volatility models that directly incorporate macroeconomic time series. The

class of GARCH-MIDAS models, so far involving realized volatility, allows us to do this.

The GARCH-MIDAS models discussed so far, were based on one-sided MIDAS filters, and

therefore yielding prediction models. In this section we present GARCH-MIDAS models

with one-sided filters, involving past macroeconomic variables. Also, for comparison, at the

end of the section we introduce two-sided filters involving macroeconomic variables.

We will consider various specifications going from specific to general. Moreover, we consider

fixed span specifications and take a quarterly frequency:

log τt = ml + θl

Kl
∑

k=1

ϕk(ω1,l, ω2,l)X
mv
l,t−k (12)

where Xmv
l,t−k is the level (hence the subscripts l) and of a macro variable ′mv′. The

macroeconomic variables of interest are industrial production growth rate (IP), and producer

price index inflation rate (PPI). As explained later, when we provide the details of the data

configurations, by level we mean inflation and IP growth. Hence, we are dealing with two

models with a single series explaining the long run component.

Both series also feature volatility, i.e. inflation and IP growth volatility, which will be

measured similar to Schwert (1989), using innovations from autoregressive models. This

yields the next two GARCH-MIDAS models featuring macroeconomic volatility:

log τt = mv + θv

Kv
∑

k=1

ϕk(ω1,v, ω2,v)X
mv
v,t−k (13)
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where Xmv
v,t−k represents the volatility which will be characterized later. Note that we use

different weighting schemes for levels and volatility - hence the superscripts l and v to the

weighting scheme parameters.

We also consider a model which combines the level and volatility of each series, namely:

log τt = mlv + θl

Kl
∑

k=1

ϕk(ω1,l, ω2,l)X
mv
l,t+k

+θv

Kv
∑

k=1

ϕk(ω1,v, ω2,v)X
mv
v,t+k (14)

Hence, we have now two models, one for IP growth and one for PPI, representing the long

run impact on stock market volatility of their level and volatility. We also estimated a

general model specification that combines all four series. Such a model involves a lot more

parameters, since the weighting schemes for both volatility and the level of IP and PPI differ

and therefore double the parameter space. More specifically, the τ component in this case

involves 13 parameters compared to the single variable models in equation (12) which involve

4 parameters (in both cases not counting the GARCH parameters). The results are available

upon request but not reported here.

In a sense one can think of equations (12) through (14) in the context of regression models

with a latent regressand, which we are able to estimate through the maximization of the

likelihood function. In particular, if we denote in equation (3) the conditional variance σ2
it

= τt · gi,t, then we can write in the general case (combining all the series):

log σ2
it = mlv2 +

∑

mv=IP,PPI

θl,mv

Kmv
l

∑

k=1

ϕk(ω1,mv,l, ω2,mv,l)X
mv
l,t+k

+
∑

mv=IP,PPI

θv,mv

Kmv
v

∑

k=1

ϕk(ω1,mv,v, ω2,mv,v)X
mv
v,t+k + log git

where the “residual” is log git, i.e. the GARCH(1,1) component. The comparison with

regression models is not entirely accurate, however, since we do not impose orthogonality of

the regressors with the residuals, i.e. the orthogonality between g and τ. Nevertheless, it is

useful to think of these models as having explanatory variables.

To conclude we present GARCH-MIDAS models with two-sided filters - where the latter
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involve both past and future macroeconomic variables. This provides us with a tool to

assess how much market volatility dynamics relate to both past and future macroeconomic

activity. The specification we consider (taking again a quarterly frequency and a fixed span)

for a single series - levels and volatility - is:

log τt = m2 +

K
(l)
f

∑

k=−K
(l)
l

ϕk(ω1, ω2)θ
(k)
l Xmv

l,t+k

+

K
(v)
f

∑

k=−K
(v)
l

ϕk(ω3, ω4)θ
(k)
v Xmv

v,t+k (15)

where we allow for different slope coefficients for leads and lags, namely:

θ
(k)
l/v =

{

θf
l/v ∀ k, k ≥ 0

θb
l/v ∀ k, k < 0

(16)

hence the impact on volatility of past as opposed to expected future realizations of

macroeconomic variables is allowed to differ.7

It should also be noted that the two-sided model specification in (15) is in the spirit of

causality tests proposed by Sims (1972). Being able to examine potential causal forward-

looking behavior of volatility is particularly important since stock market volatility - being

counter cyclical - tends to lead economic activity.8

In the remainder of the paper we will not use the two-sided filters for the evaluation of

forecasts - as this would not entail a fair forecasting exercise - but instead use them for the

purpose of appraising the impact of anticipated economic movements on the stock market.

2.3 Spline-GARCH Component Volatility Model

There are other two component GARCH models besides the ones proposed in this paper.

The direct antecedent of GARCH-MIDAS is the Spline-GARCH model of Engle and Rangel

7Note that the filter weights are constructed via one single Beta polynomial for each series across leads
and lags. While this puts a lot of smoothness conditions it has the advantage that the two-sided scheme
remains parsimonious.

8See Sheppard (2003) for recent evidence regarding equity (co)variation and economic activity.
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(2007) which shares features with the models we discussed in the previous subsections.

Many other component models have been suggested - as noted before. We stay within

the class of multiplicative models, however, which means we focus exclusively on the Spline-

GARCH. Both the Spline-GARCH and our models provide a multiplicative decomposition

of conditional variance and both specify the short run component as an unit GARCH(1,1)

process.9 In fact, the specification shares equation (3) and (4). The only difference comes

from the τ specification, which is as follows:

τt = cexp
(

w0t +
K

∑

k=1

wk((t − tk−1)+)2
)

(17)

where {t0 = 0, t1, t2, . . . , tK = T} denotes a partition of the time horizon T in (K+1) equally-

spaced intervals with the number of knots selected via the BIC criterion.10 We will estimate

and compare the performance of both types of models.

3 Estimation Results

This is a first of two empirical sections. In this section we cover the estimation of GARCH-

MIDAS volatility models. In a first subsection we cover models with realized volatility. A

second subsection covers those involving macroeconomic variables.

3.1 Model Selection and Estimation of GARCH-MIDAS models

with Realized Volatility

We take the conventional approach to estimate GARCH-type models, namely QMLE. From

Schwert’s website, we obtained daily U.S. stock returns over the period from 1885/2/16 to

1962/7/2.11 We also used CRSP daily returns to complete the daily return series up to

2004/12/31.

We have quite a long series of data for both daily stock returns (1885-2004) and various

9One could possibly consider an additive GARCH-MIDAS class of models as well - but this is beyond the
scope of the current paper - see however Ghysels and Wang (2003).

10See Engle and Rangel (2007) for further details.
11For detailed information about this return series, see Schwert (1990).
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macroeconomic variables (1884-2004).12 Due to the concern of potential structural breaks,

we will consider various sub-samples and also formally test for breaks. The choice of sub-

samples follows Schwert (1989), except for the most recent sub-sample. Namely, we consider

a split in 1984 to address the so called “Great Moderation,”pertaining to the recent decline

in macro volatility. Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Blanchard

and Simon (2001) and Stock and Watson (2002), find evidence of a regime shift to lower

volatility of real macroeconomic activity. Stock and Watson (2002) find the break occurred

around 1984 and they conclude that the decline in volatility has occurred in employment

growth, consumption growth, inflation and sectoral output growth, as well as in GDP growth

in domestic and international data.

As was mentioned in the previous section, there are two variations of GARCH-MIDAS models

with RV; GARCH-MIDAS with (1) fixed span and (2) rolling window RV. Furthermore, for

each variation, we can consider a large class of models by varying two features. One is the

number of years, which we will, henceforth, call ‘MIDAS lag years,’ spanned in each MIDAS

polynomial specification for τt.
13 The other is how to compute RV, weighted by the MIDAS

polynomial. In case of fixed span RV, ‘t’ in equation (6) can be a month, or a quarter, or a

half year. As ‘t’ varies, the time span that τt is fixed also changes. On the other hand, for

the rolling window RV, we can change N ′ in equation (9). Finally, in each case we have a

level and a log specification for τ.

We start with the Beta lag structure for the weights in equation (8) and the case where we

model τ. The log-likelihood function can be written as:

LLF = −1

2

T
∑

t=1

[log gt(Φ)τt(Φ) − (rt − µ)2

gt(Φ)τt(Φ)
] (18)

Figure 1 displays the estimated lag weights of GARCH-MIDAS with fixed span RV for 3 to

5 MIDAS lag years. The figure shows that optimal weights decay to zero around 30 months

12The data for macroeconomic level variables starts from the third quarter of 1884 and that for estimates
of macroeconomic volatility starts from the third quarter of 1885.

13Note that this is not the number of lags (K) in equation (5) or (10). For example, in case of GARCH-
MIDAS with quarterly fixed span RV (i.e. ‘t’ is a quarter), τt is fixed for each quarters and 2 MIDAS lag
years for this model refers to 8 quarters spanned by 8 lagged quarterly RV’s in the MIDAS filter (i.e. K = 8).
On the other hand, GARCH-MIDAS model with quarterly rolling window RV has τ component that varies
on daily basis with a window length of a quarter (i.e. 65 trading days) for the rolling window of RV’s. For
this model, 2 MIDAS lag years refer to 500 trading days spanned by 500 lagged quarterly rolling window
RV’s in the MIDAS filter (i.e. K = 500).
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of lags regardless of the choice of ‘t’ and length of MIDAS lag year. Similarly, for both fixed

span RV and rolling window RV, the optimal value of the log likelihood reaches its plateau

for the same MIDAS lag years. Hence, it is enough to take 4 MIDAS lag years to capture

reasonable dynamics of τt for both GARCH-MIDAS with fixed span RV and rolling window

RV. Also, for both the quarterly time span appears to dominate others at most MIDAS

lag years. Consequently, we choose “quarterly” time spans and 4 MIDAS lag years for the

GARCH-MIDAS model over the full sample period. Another noteworthy feature is that the

fixed span RV and rolling window RV models level off at roughly the same value for the

log likelihood function. This indicates that holding τ constant for some short periods (i.e.

quarterly) or let it vary every day does not make much of a difference in terms of likelihood

behavior. The fact that we are able to compare these two different specifications is again

an attractive feature of our specification. Figures 2 and 3 show the volatility components

of GARCH-MIDAS with fixed span RV and rolling window RV respectively. Since the τ

component is of quarterly frequency in Figure 2 and of daily frequency in Figure 3, the

latter obviously looks more smooth.

The parameter estimates for these models are shown in the first two rows of Table 2. The

results in the table show that almost all parameters are significant. Most of all, θ is strongly

significant. Another interesting feature of the GARCH-MIDAS model appearing in the table

is that sums of α and β are 0.96721 and 0.96085 for the fixed span RV and rolling window

RV cases for the full sample, respectively. These numbers are noticeably less than 1, while in

standard GARCH model the sum is typically 1. The same finding is also reported in Engle

and Rangel (2007).

As noted earlier, studying long historical samples invariably raises the question about

structural breaks. While we will conduct tests for structural breaks, we will also study

various sub-samples, assumed to be homogeneous. When we later look into the relationship

between stock market volatility and macroeconomic variables, we will also look at sub-

samples as well as the full sample. Of course, one could argue that the GARCH-MIDAS

models accommodate structural breaks via the movements in τ. One can indeed view this

as an alternative to segmentation of the sample either via eras, as in Schwert’s analysis, or

via testing for structural breaks.14 We will turn to the issue of testing for breaks after we

report estimates of the various models.

14For evidence on breaks in (1) volatility see e.g. Lamoureux and Lastrapes (1990), Andreou and Ghysels
(2002), Horvath, Kokoszka, and Zhang (2006), (2) the shape of the option smile see e.g. Bates (2000) and
(3) the equity premium see e.g. Pastor and Stambaugh (2001), Chang-Jin, Morley, and Nelson (2005).
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Table 2 provides parameter estimates for GARCH-MIDAS with quarterly fixed span RV and

quarterly rolling window RV. Although we do not report them in the table, we also explored

both GARCH-MIDAS specifications with monthly and biannual RV. In some sub-samples,

the model with monthly RV or biannually RV offers the best fit, but the quarterly RV case

always follows the best model quite closely. Therefore, to keep consistency and comparability

with the full sample case, we will choose models with quarterly RV throughout our analysis.

All models for sub-samples appearing in Table 2 share the same features as the full sample

case: θ is strongly significant all across specifications in sub-samples and the sums of α and

β are noticeably smaller than one.

We should also mention that exponential weights instead of the Beta weights in equation (8)

yield for all practical purposes the same τ dynamics. We refrain therefore from reporting

all the results with both weighting schemes. It is reassuring, however, that the empirical

findings are robust to the choice of MIDAS weights. Since both of our parameterizations

involve a single parameter, one can select either one.15

To conclude we briefly turn our attention to the log τ specification which is reported in Table

3. Overall the results are similar to the previous specification, except that we typically find

lower levels of likelihoods, although the BIC criteria are extremely close.

3.2 Estimation of GARCH-MIDAS model with macroeconomic

variables

How much does volatility relate to the macro economy and in particular how much does

volatility anticipate the future? This is an important question we try to answer. The

macroeconomic series we use are drawn from a long historical data set constructed by

Schwert (1989) which we augmented with recent data. The series we use are monthly PPI

(Producer Price Index) inflation rate and IP (Industrial Production) growth rate. They are

the same series used in Schwert (1989) to see the link between stock market volatility and

macroeconomic volatility. Compared to Schwert (1989) we do not include the monetary

base - since the models we estimated with it yielded results very similar to the models with

15Note that the original specification for Beta lag structure shown in equation (8) involves two parameters.
However, for both of GARCH-MIDAS models with RV, optimal ω1 is always 1 such that the weights are
monotonically decreasing over the lags. Hence, for the GARCH-MIDAS models with RV, we set ω1 = 1,
which makes the resulting Beta lag structure involve a single parameter.
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inflation. We also did not use interest data as we wanted to use exclusively ’real economy’

as opposed to ’financial’ series.

Schwert (1989) investigates the relationship between monthly stock market volatility and

monthly macroeconomic variables. We decided to stay with a quarterly frequency since

the log likelihood profile of GARCH-MIDAS models with fixed span RV suggested that

the quarterly frequency offers both good fit and stability. Hence, we construct quarterly

macroeconomic series from the monthly data using a geometric mean of the monthly growth

rates. Table 1 provides the summary statistics of the quarterly macroeconomic series.

In addition to the levels of quarterly macroeconomic data, we are also interested in linking

stock market volatility to volatility of these quarterly macroeconomic series. In order to

estimate volatility of quarterly macroeconomic series, we follow the approach taken by

Schwert (1989).16 We fit the following autoregressive model with four quarterly dummy

variables Djt to estimate quarterly macroeconomic volatility. In particular, (ε̂t)
2 from the

following regression is used to estimate quarterly macroeconomic volatility (for any macro

variable X):

Xt =

4
∑

j=1

αjDjt +

4
∑

i=1

βiXt−i + εt (19)

To appreciate the time series pattern of the series which enter our model specification,

we provide plots of the macroeconomic series in Figures 4 and 5. The former shows

macroeconomic level variables whereas the latter shows macroeconomic volatility variables

used in the GARCH-MIDAS specification. We mentioned a few times the issue of structural

breaks. Figures 4 and 5 clearly reveal why this is a concern. As far as the levels goes,

we note remarkable changes across time, something already noted for instance by Romer

(1986). The latter also points out that these changes are in part due to data quality.

Macroeconomic series were not very well measured in the early parts of our sample. In

a sense, our paper is dealing with noisiness of volatility measures, but does not deal with

noisiness in macroeconomic series - an issue much harder to deal with as it largely relates

to data collection. In Figure 5 we turn our attention to the volatility of the macroeconomic

series, as computed via the above equation (19). Recall that we mentioned the recent work

on the “Great Moderation.”Clearly we see that the volatility of IP has dramatically been

reduced as part of the Great Moderation. The choice of our sub-samples will partly deal

16We also used a GARCH(1,1) specification to model quarterly volatility of macroeconomic variables and
found similar results. Details are available upon request.
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with the issue of breaks that are clearly present in the macroeconomic series. In the next

section, we will also look more explicitly at testing for structural breaks.

We start with the specifications involving the single series, PPI and IP, for either the level or

variance. We focus first on the one-sided filters. The parameter estimates appear in Table 4

for PPI and Table 5 for IP. In each case we took 4 years of lags, or 16 lags.

The most interesting parameter are the slope parameters θl/v for level/volatility (l/v)

specifications of the MIDAS filter. Consider first the parameter estimates of θl for the

PPI series. They range from 0.2443 in the pre-1919 sample to 1.0962 for the 1953-1984

sample. Hence, in all cases the parameters are positive - and in all but one case they are

statistically significant. This means that more inflation leads to high stock market volatility.

For the full sample the parameter estimate is 0.2809 with a t-statistic of 2.56. Since the

weighting function with ω1 = 15.65 and ω2 = 3.37 puts 0.1375 on the first lag and 0.2755

(which is the maximum weights) on the second lag of PPI level, we find that a one percent

increase of inflation at the current quarter would increase the next quarter market volatility

by e0.28·0.1375 − 1 ≈ 0.04 or 4%. If last quarter’s inflation increased by 1%, we would see

e0.28·0.2755 − 1 ≈ 0.08 or 8% increase in market volatility next quarter. For the 1953-1984

sample, the optimal weighting function is characterized by ω1 = 7.40 and ω2 = 2.67 and puts

0.0640 on the first lag and 0.1726 (the maximum weight) on the fourth lag. In this case, a

one percent increase in current quarter inflation would lead to e1.10·0.0640 − 1 ≈ 0.07 or 7%

increase in market volatility next quarter. With the similar computations, we would see 21%

increase in market volatility at the current quarter when there was 1% increase in inflation

a year ago. This sample, of course, covers the Volcker and Greenspan years with very little

inflation. Turning to the lower panel of 4 reports the impact of inflation uncertainty on

stock market volatility. For the full sample the impact is insignificant and looking at the

sub-samples we observe that this appears to be mainly due to the Great Depression era. We

note again the large parameter estimates for the 1953-1984 sample. It is interesting to note

that in terms of economic magnitude - the impact of inflation uncertainty is about the same

as the impact of the actual inflation level.

Next we turn to Table 5, which covers IP. The parameter estimates of θl range from −1.1870

to −0.0966. Hence, increases in industrial production decrease volatility - the well known

counter cyclical pattern notably reported in Officer (1972) and Schwert (1989). The effect

is statistically significant - although the 1985-2004 is only marginal. We find out from the

lower panel of Table 5 that IP volatility has a significant positive impact on stock market
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volatility - i.e. business cycle uncertainty matters particularly for the Great Depression and

for the 1985-2004 samples.

The parameter estimates of the model which combines the level and volatility of each series,

namely models described by equation (14) appears in Table 6. In all cases we observe that

the point estimates are quite similar to those obtained with each single series. Yet, the

standard errors have increased and most of the measured impacts are no longer statistically

significant. This suggests that there is either evidence of co-linearity among the series, or

that the volatility models are over-parameterized and difficult to identify.17

To conclude we also cover the two-sided specifications described by equation (15). The

parameter estimates appear in Table 7. The top panel pertains to PPI inflation.18 Only with

some minor exceptions we find that more inflation - past and future - and more inflation

volatility - again past and future - increase stock market volatility. This effect appears

significant in the first sub-sample where θb
l/v is significant, after WWII where anticipated

future inflation and past/future inflation volatility enter significantly. The strongest evidence

appears for the pre-1984 sample - which included the high inflation period of the 70’s. In

the sub-sample pertaining to the post-1984 period we find the wrong sign for the effect of

inflation on volatility, namely we find a negative sign for θb
l . This sub-sample contains the

stock market crash of 1987 and it is also a relatively small sample. Moreover, as will be

discussed shortly - the crash of 1987 does not seem to be related to fundamental economic

variables. The two combined, i.e. the crash unrelated to fundamentals and a short sample

indeed produces anomalous results. We therefore report sample estimates that exclude the

crash of 1987, and indeed we find the right positive sign for θb
l , although it is not significant.

Note, however, that when we turn our attention to θf
l with the two-sided filters, we note

that in some cases those parameter estimates take on very large values. This result emerges

because the forward looking part of the two-sided filter weighting scheme is very small in all

such cases. Hence the product of θf
l and the sum of the filter weights is actually small. This is

unfortunately more than a numerical issue. Indeed, it is also an econometric estimation and

testing issue that strictly speaking leads to non-standard asymptotics. Technically speaking,

if the forward-looking weights of the two-sided filter really add up to zero, then the parameter

17There appears to be another undesirable estimation problem. Namely, we put an upper bound on the
MIDAS Beta polynomial parameters which is equal to 300 - as values above that tend to create numerical
instability. We note from Table (14) that the MIDAS polynomial parameters for the models which combines
the level and volatility of each series often hit this constraint.

18Due to the leads and lags the sample sizes are no longer the same, since those filters involve four years
of leads and lags.
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θf
l is actually not identified. Having unidentified parameters under the null of zero weights

poses econometric problems that are discussed in the context of MIDAS in Ghysels, Sinko,

and Valkanov (2006). Only in a handful of cases, mostly occurring with the PPI series, we

find such large point estimates. We will for the sake of simplicity ignore the econometric

issues that emerge in this context as the large majority of our parameter estimates are not

affected. Obviously, the issue is not only econometric - it also means that future values do

not have a significant impact in a few cases.

The second panel of Table 7 confirms - with two-sided filters - the counter cyclical nature of

stock market volatility, as parameter estimates of θb
l are negative. They are significant for

the inter-WW period and pre-1984. Future (anticipated) IP has a more ambiguous sign -

but when it is significant it is clearly negative as well. In contrast, Table 7 also shows that

IP volatility increases stock market volatility.

It is also worth examining some plots of sample paths. Figures 6 through 8 display the

two-sided IP GARCH-MIDAS models - full sample as well as the Great Depression and

Post-WWII sub-samples. The top panel contains the time series paths of τ and g ∗ τ. The

lower panel contains the lag-lead weights for level and volatility of IP in the τ component

according to equation (15). When we consider the models estimated over the respective sub-

samples we get a better closeup picture. Figure 7 covers the interwar period while Figure 8

covers the last sub-sample from 1985 onwards. In particular in the latter case we see that the

October 1987 crash was not driven by economic fundamentals. In all model specifications

the large spike in market volatility is picked up by the g component. In great contrast, the

Great Depression era was clearly a turbulent time with market volatility linked to economic

sources. The weighting schemes that are displayed in the lower panels are also interesting.

They show that a great deal of the weight is attributed to the future - which is expected as

it reflects the anticipation of economic fundamentals by the stock market.

To conclude we report the parameter estimates of the Spline-GARCH models. The parameter

estimates appear in Table 8. The drawback of the Spline-GARCH model selection approach

is that the likelihood tends to fluctuate as one increases the number of knots since the

position of the knots changes as the number increases. This issue appears to be particularly

critical in long time spans, as illustrated in Figure 9. The figure compares the long-run

components as measured by τ in Spline-GARCH model fitted over the full sample and each

of sub-samples. The optimal number of knots, with lowest BIC, for the full sample (1890-

2004) is seven while those of sub-samples are one (1890-1919), eight (1920-1952), and seven
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(1953-2004), respectively. It will be shown that this seriously affects the performance of the

Spline GARCH model.

4 Appraising the Models and Analyzing the Economic

Sources

In this section we analyze the economic content of volatility models using various new

approaches. The first subsection deals with correlation and structural breaks. In the second

subsection we study the forecasting performance of the models we estimated. Finally, we

measure the contribution of economic sources to expected volatility.

4.1 Structural Breaks and Correlations

In this subsection we cover two topics: (1) how do the models handle structural breaks,

and (2) how much are the component similar across models. As noted earlier, there is

considerable evidence suggesting that there are structural breaks in volatility dynamics, see

references in footnote 14.

So far we considered sub-samples to guard against possible breaks in the volatility models.

In this subsection we study whether in fact full sample models are immune to breaks. To

address the structural break question we compute a likelihood ratio statistic, comparing the

log-likelihood function for the full sample with those of the sub-samples. In particular:

−2[LLFfull −
∑

i=sub−samples

LLFi] ∼ χ2(df)

where df is the number of parameters times one minus than the number of sub-samples,

which corresponds to the number of restrictions. Since the number of parameters differ

across models we adjust the degrees of freedom accordingly. This analysis is confined to

GARCH-MIDAS models. It does not include Spline-GARCH since the latter involves a

different number of knots in the various sub-samples, and therefore these models are non-

nested.

The results are reported in Table 9. The results are easy to summarize, the full sample
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models are not immune to breaks. Hence, the class of models in this paper still leave room

for improvement as far as structural stability goes. It also explains why the empirical results

involving individual macroeconomic series differ so much across the various sub-samples.

Next, we study the correlations between the various components. Due to space limitations,

we do not report correlations in a table, but rather briefly describe their salient features -

focusing exclusively on the full sample. The highest correlations between RV and any of the

estimated macro variables long run components is achieved with the IP level/variance model

- which at .36 is slightly less than the Spline-GARCH. The long run component based on

inflation yields a somewhat odd negative value, albeit it very small. Likewise, the inflation

based long run component also correlates negatively with the IP one. In general, all the IP-

based component models feature the highest correlations with any of the RV-based models.

Given that the Great Depression is well captured by the IP-based models (recall Figure 7),

this result is not surprising.

The results in this section tell us that there is room for improvement. For example, we do

not have models that are stable for the full sample. While there is room for improvement, it

will be shown in the next subsections that the models we have so far already perform quite

well in comparison to existing models and we will also show that the long run component

constitutes an important part of volatility forecasts.

4.2 Forecast comparisons

Table 10 displays the comparison of forecasting performance over a month, quarter and

semester horizon of the two component volatility models discussed so far - using full sample

QMLE parameter estimates. The measure of forecasting performance is the mean squared

error (henceforth MSE) of conditional variance forecasts compared to realized variance.

All cases cover pseudo-out-of-sample forecasts - and pertain to non-overlapping samples

of forecasts, either monthly, quarterly or biannual. The results are reported in Table 10. For

the purpose of comparison, the GARCH-MIDAS model with rolling window RV is chosen

as a benchmark. All forecasts are reported as ratios relative to the latter model’s MSE

and a ratio below one means an improvement upon the rolling window RV model. For

the GARCH-MIDAS with fixed span RV, the Spline-GARCH models and the GARCH-

MIDAS with macroeconomic variables we keep the τ component fixed at the level of the

last observation prior to prediction. For the GARCH-MIDAS with rolling window RV we
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can easily make a day-forward forecast using g and predetermined τ, yielding gτ, which can

be substituted into the MIDAS filter. This process can be iterated forward over the entire

prediction horizon. The comparison in Table 10 between GARCH-MIDAS with fixed span

RV and rolling window RV reveals that the former is very imprecise - relatively speaking - at

short horizons (i.e. monthly horizons), but the disadvantage disappears at longer horizons

and ultimately is typically at par or even below par with the latter in terms of MSE’s over

biannual forecast horizons.

Let us focus first on the full sample forecasting evaluation results - ignoring for the moment

the evidence of structural break tests. Moreover, we will also focus mostly on the log RV

version as this is directly comparable with the models driven by macroeconomic variables.

For the full sample, it is clear that GARCH-MIDAS with rolling log RV is the most attractive

two-component model for one month ahead forecasts. Moreover, the fixed span models

performs poorly in comparison (again at the one month horizon).

When we increase the forecast horizons, we observe that other models start to improve

upon the rolling RV specification. First, it is interesting to note that the fixed sample

specification does better than the rolling RV one. At the six month horizon the best model

is the GARCH-MIDAS with IP level/variance (and the IP level model following closely).

In fact all models involving IP fare better than the models with PPI. For the intermediate

horizon - i.e. one quarter ahead - we observe that the RV-based models still dominate for

the full sample although the models driven by macroeconomic variables are roughly at par

with the benchmark model.

The first sub-sample ending in 1919 is disastrous for the models involving macroeconomic

data. A plausible explanation is that the macroeconomic data may not be of good quality

to produce good forecasts. Another explanation is that the full sample parameter estimates

simply don’t fit this sub-sample. As we will show, it is the latter that appears to be the case

as the forecasting results with the sub-sample estimates will show later.

For the Great Depression sub-sample there are clearly two models that forecast best at the six

month horizon: (1) the fixed sample RV and (2) the GARCH-MIDAS involving IP (level). It

is also interesting to note that all models involving macroeconomic series are at par with the

statistical models at the one quarter horizon, while all models involving macroeconomic tend

to outperform statistical models at the six month horizon. The improvements are roughly

10 % in terms of MSE in the longer horizon case.
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The 1953-2004 and 1985-2004 sub-samples share similar features, i.e. the models involving

economic data perform best at the six month horizon, are at par with the RV-based models

and under-perform relative to them one month ahead. The orders of magnitude of gains (6

months) and losses (1 month) are also around 10 %. Somehow, the 1953-1984 samples proves

disastrous for the models involving economic variables. It is also worth noting that while

the IP-based models had a slight edge over the PPI-based ones in the earlier sub-samples.

This seems no longer the case in the post-WWII period.

To robustify our findings we turn to Table 11 where we focus on the semester horizon,

using the sub-sample estimates instead of the full sample estimates. The results in the table

clearly show that our main findings remain. The weakest results appear to be for the 1953-

1984 sub-sample - although for this sub-sample the models involving PPI do comparatively

well - as this is the era of the oil price shock. It is also worth noting that the 1890-1919

sub-sample shows very good forecast results for all the models driven by macroeconomic

variables. Hence, it is clearly the case that for this sub-sample the full sample estimates are

highly inadequate.

4.3 Measuring the contribution of economic sources

How much of expected volatility can be explained by economic variables? To answer

this question we compute the ratio: V ar(log(τ
[M ]
t ))/V ar(log(τ

[M ]
t g

[M ]
t )), where M refers

to a specific model: GARCH-MIDAS with rolling window RV, with fixed span RV,

with Macro volatility, level, and finally Spline-GARCH. We also consider a second ratio,

namely: V ar(log(τ
[M ]
t ))/V ar(log(τ

[gm−rollRV ]
t g

[gm−rollRV ]
t )), where now all ratios have the

same denominator, the GARCH-MIDAS with rolling RV. The choice of this particular

expected volatility is motivated by the fact it yields the best predictions and is therefore

a good choice as common target. The variance ratio results appear in Table 12, where we

cover the full sample as well as the sub-samples 1890-2004, 1890-1919, 1920-1952, 1953-2004,

1953-1984 and 1985-2004.

The full sample estimates tell us that the GARCH-MIDAS model with rolling RV has the

most important long run component contribution - over 50 % during the Great Depression

era. Among the models involving economic time series we observe that the IP level model

contributes to more than 15 % to total volatility in the post-WWII samples, while it is

the IP variance model - i.e. output uncertainty is clearly a great source of market volatility
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during the Great Depression era. If we combine level and variance of IP into one model, it

is not surprising that we see the largest contribution - over 25 % even in some sub-samples.

In contrast, inflation is the great source of the long run component during the 1953-1984

sample - over 35 % of the variance is due to the long run inflation driven component.

The results show that there is clearly room for improvement in terms of explaining volatility

with economic variables. Yet, with the two historical series we have, there is quite already

significant fraction of variation in expected volatility that can be attributed to economic

sources. Obviously, the framework we introduced here allows us to consider other series -

because we used long historical series our hands were tied due to a small set of available

series.

5 Summary and Conclusion

In this paper we introduced a new versatile class of component volatility models combining

insights of Spline-GARCH and MIDAS filters. This new class allowed us to distinguish short-

and long-run sources of volatility and link them directly to economic variables. The new

model specifications also relate to the long established use of realized volatility, yet refines

these measures through MIDAS filtering.

The approach we propose to measure the contribution of economic variables can be viewed

as regression through filtering. Our analysis focused on long historical time series. The

long time span limited the set of macroeconomic series available. The class of GARCH-

MIDAS models can easily handle any set of variables. With more recent data, we could

consider liquidity-related series, event-related dummy variable (e.g. announcement effects),

etc. Hence, our analysis of GARCH-MIDAS models is not confined to macroeconomic

variables as one could conceivably incorporate other economic variables. We leave this for

future research.

To assess the economic content we suggest a variance ratio measuring the contribution of

economic sources to expected volatility. The results reveal that for the full sample the long

run component typically accounts for roughly half of predicted volatility. For the most recent

period the results show roughly a 30 % contribution. When the long run component is driven

by economic variables the numbers are not so high, except for specific sub-samples such as

the Great Depression and some of the post-WWII era.
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What is most encouraging is our findings regarding long term forecasting. We find models

with the long term component driven by inflation and industrial production growth are at

par in terms of out-of-sample prediction for horizons of one quarter and out-perform pure

time series statistical models at longer horizons. The significance of this finding is important

and is mostly attributable to the ability of our new models to incorporate macroeconomic

variables directly into the specification of volatility dynamics.

Finally, it should also be noted that the idea of component models - short and long run -

which are driven by economic sources can potentially be extended to multivariate settings

- correlation that is. A step in that direction is the work of Colacito, Engle, and Ghysels

(2007).
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Table 1: Summary Statistics for U.S. Daily Stock Returns and Quarterly Macroeconomic Level Variables

Daily U.S. stock return series from 1885 to 2004 were constructed from William Schwert’s website and the CRSP dataset. The macroeconomic
variables are Producer Price Index inflation rate (PPI) and Industrial Production growth rate (IP). Quarterly macroeconomic rates are
obtained by taking geometric means of monthly rates.

Sample Variable Mean STD Skewness Kurtosis Variable Mean STD Skewness Kurtosis

Full Sample Daily stock returns 0.00034 0.01026 -0.13 21.06 PPI 0.00178 0.01017 -1.11 16.18
IP 0.00335 0.01759 0.12 12.77

1884 - 1919 Daily stock returns 0.00027 0.00846 -0.32 9.99 PPI 0.00198 0.01161 0.71 3.87
IP 0.00461 0.02067 0.33 7.44

1920 - 1952 Daily stock returns 0.00038 0.01315 0.29 16.24 PPI 0.00025 0.01395 -1.84 13.77
IP 0.00314 0.02453 -0.10 8.31

1953 - 2004 Daily stock returns 0.00036 0.00903 -0.93 28.47 PPI 0.00262 0.00480 1.10 7.03
IP 0.00262 0.00675 -1.10 6.27

1953-1984 Daily stock returns 0.00031 0.00774 0.06 7.03 PPI 0.00329 0.00474 1.74 7.14
IP 0.00280 0.00814 -1.04 4.85

1985-2004 Daily stock returns 0.00045 0.01077 -1.47 33.54 PPI 0.00154 0.00473 0.22 6.15
IP 0.00233 0.00357 -0.72 3.39
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Table 2: Parameter Estimates for GARCH-MIDAS with Realized Variance

GARCH-MIDAS models with various specifications are fitted using QMLE. The model specification has different interpretations for GARCH-
MIDAS model with fixed span RV and the one with rolling window RV. The ‘Qtr/4yr’ model with fixed span RV sets its long run component
τ fixed at a quarterly frequency and uses 16 lagged quarterly RV’s (i.e. RV’s spanning past 4 years) to model the τ filter. In contrast the
GARCH-MIDAS model with rolling window RV uses quarterly rolling window RV’s, i.e. sum of 65 (approximate number of days in a quarter)
squared daily returns, that cover past 4 years to model the τ . For various sample choices and GARCH-MIDAS with (fixed span/rolling
RV), the specification of Qtr/4yr is commonly taken. The ω in the table is ω2 as the optimal ω1 is 1 such that the optimal weights are
monotonically decreasing over the lags. The numbers in the parenthesis are robust t -stats computed with HAC standard errors. LLF is the
optimal log-likelihood function value and BIC is the Bayesian Information Criterion.

Sample MIDAS Regressor µ α β θ ω m LLF/BIC

1890-2004 Fixed RV 0.00058 0.10722 0.85999 0.00966 4.51517 0.00003 106878.7
(14.92) (13.12) (81.56) (20.11) (3.25) (17.74) -6.7499

Rolling RV 0.00058 0.10994 0.85091 0.01112 4.40323 0.00003 106883.5
(12.89) (9.83) (40.16) (21.28) (1.13) (14.85) -6.7502

1890-1919 Fixed RV 0.00054 0.15368 0.78035 0.00462 236.68483 0.00005 30603.5
(7.26) (9.57) (39.35) (-7.96) (30.32) (14.58) -6.9161

Rolling RV 0.00052 0.15732 0.75886 0.00741 29.82684 0.00004 30612.4
(7.12) (13.86) (34.45) (10.77) (1.59) (12.49) -6.9181

1920-1952 Fixed RV 0.00076 0.10643 0.84806 0.00901 14.61377 0.00004 31251.3
(9.59) (8.74) (53.67) (-13.43) (49.00) (11.40) -6.4200

Rolling RV 0.00076 0.10499 0.85280 0.01102 3.73909 0.00003 31270.8
(9.26) (11.15) (62.16) (15.10) (3.44) (7.30) -6.4240

Table continued on next page ...
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Table 2 continued

Sample MIDAS Regressor µ α β θ ω m LLF/BIC

1953-2004 Fixed RV 0.00053 0.08820 0.89231 0.01179 3.18549 0.00003 45051.8

(8.90) (7.18) (55.52) (-7.81) (1.49) (5.39) -6.8790

Rolling RV 0.00053 0.08914 0.88873 0.01187 3.04689 0.00002 45050.7

(7.10) (5.74) (37.80) (9.57) (1.04) (5.78) -6.8789

1953-1984 Fixed RV 0.00047 0.08482 0.89993 0.00720 4.15859 0.00004 28571.6

(5.30) (6.30) (43.07) (-3.09) (2.15) (3.56) -7.0980

Rolling RV 0.00048 0.09256 0.88041 0.01094 6.24408 0.00002 28576.6

(1.06) (6.20) (33.07) (3.58) (36021.77) (843.32) -7.0992

1985-2004 Fixed RV 0.00068 0.09183 0.88155 0.01029 3.50909 0.00004 16490.1

(5.81) (3.38) (24.60) (-4.86) (0.59) (4.68) -6.5245

Rolling RV 0.00070 0.10285 0.83415 0.01030 13.67546 0.00003 16486.4

(5.75) (3.27) (14.29) (8.91) (1.40) (6.04) -6.5230
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Table 3: Parameter Estimates for GARCH-MIDAS with Realized Variance - Log Specification

GARCH-MIDAS models with various specifications are fitted via QMLE. The specifications are the same as in Table 2, with the difference
that the long run component τ is specified in terms of logs as in equation (11). The numbers in the parenthesis are robust t -stats computed
with HAC standard errors. LLF is the optimal log-likelihood function value and BIC is the Bayesian Information Criterion.

Sample MIDAS Regressor µ α β θ ω m LLF/BIC

1890-2004 Fixed RV 0.00058 0.10312 0.87382 50.21358 3.39990 -9.66612 106848.4
(13.35) (14.35) (93.38) (25.42) (3.98) (-129.11) -6.7480

Rolling RV 0.00058 0.10332 0.87322 56.26263 2.26791 -9.67914 106846.1
(12.92) (15.96) (113.33) (18.33) (3.90) (-112.45) -6.7478

1890-1919 Fixed RV 0.00054 0.15233 0.78688 46.68378 35.41077 -9.79615 30599.8
(7.60) (9.32) (36.43) (5.19) (1.37) (-92.38) -6.9153

Rolling RV 0.00053 0.15472 0.77506 74.41938 18.66361 -9.91757 30606.2
(7.67) (10.23) (37.59) (6.10) (2.53) (-90.69) -6.9167

1920-1952 Fixed RV 0.00075 0.10398 0.86611 43.89592 3.90938 -9.58621 31260.1
(9.47) (10.87) (70.43) (13.47) (4.15) (-72.64) -6.4218

Rolling RV 0.00075 0.10383 0.86633 49.23552 2.55245 -9.57460 31259.5
(9.50) (10.33) (69.17) (12.60) (4.48) (-72.56) -6.4217

Table continued on next page ...
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Table 3 continued

Sample MIDAS Regressor µ α β θ ω m LLF/BIC

1953-2004 Fixed RV 0.00052 0.08350 0.90344 121.95035 1.37404 -9.98047 45049.7

(6.91) (6.82) (67.39) (4.36) (2.87) (-44.59) -6.8787

Rolling RV 0.00052 0.08295 0.90442 105.59277 1.20684 -9.90959 45045.8

(7.37) (6.28) (61.87) (3.50) (3.13) (-40.22) -6.8781

1953-1984 Fixed RV 0.00047 0.08361 0.90223 102.03849 3.60318 -10.01656 28571.6

(5.61) (7.63) (53.76) (1.39) (2.50) (-23.28) -7.0980

Rolling RV 0.00047 0.08691 0.89428 130.72881 4.30043 -10.19076 28574.2

(5.81) (7.99) (60.77) (4.31) (2.96) (-42.30) -7.0986

1985-2004 Fixed RV 0.00067 0.08874 0.89184 85.69048 1.75511 -9.68758 16487.2

(5.71) (3.10) (25.05) (2.76) (1.40) (-31.68) -6.5233

Rolling RV 0.00067 0.08790 0.89373 73.99919 1.30213 -9.60975 16484.3

(6.01) (2.97) (26.05) (2.55) (2.02) (-30.14) -6.5222
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Table 4: Parameter Estimates of GARCH-MIDAS with PPI

GARCH-MIDAS models with various specifications are fitted via QMLE. The specifications appear in
equations (12) for the level and (13) for the variance. Quarterly macroeconomic level variable is obtained
by taking geometric mean of monthly rates. The corresponding variance is estimated from equation (19), a
similar approach to Schwert (1989). For both specifications with macroeconomic level and variance in the
MIDAS filter, 16 lags are taken to model log τt. θl and θv are rescaled by multiplication of 10−2 and 10−4

to make the macro level variables represented in percentage unit. The numbers in the parenthesis are robust

t -stats computed with HAC standard errors.

Level of PPI

Sample µ α β θl ωl,1 ωl,2 m

1890-2004 0.00056 0.09539 0.89444 0.28091 15.65280 3.36746 -9.12962
(12.18) (13.12) (122.20) (2.56) (0.92) (1.19) (-65.34)

1890-1919 0.00053 0.14355 0.81297 0.24431 13.23874 3.57186 -9.54223
(7.10) (8.73) (37.41) (2.44) (1.14) (0.95) (-84.40)

1920-1952 0.00073 0.09379 0.89822 0.22639 16.33749 2.52484 -8.72243
(8.59) (8.59) (79.16) (2.32) (1.03) (0.97) (-30.69)

1953-2004 0.00051 0.07720 0.91517 0.86818 25.47665 6.97972 -9.44728
(8.01) (6.07) (68.34) (2.14) (0.43) (0.64) (-33.77)

1953-1984 0.00047 0.08202 0.90040 1.09618 7.39798 2.67376 -10.03831
(4.93) (7.80) (58.92) (4.50) (1.89) (3.10) (-48.36)

1985-2004 0.00065 0.07746 0.91406 0.75169 73.15156 19.27176 -9.01668
(5.35) (2.91) (33.42) (0.82) (0.56) (0.57) (-24.85)

Variance of PPI

Sample µ α β θv ωv,1 ωv,2 m

1890-2004 0.00056 0.09486 0.89532 0.05428 1.00000 1.00000 -9.10021
(11.48) (12.41) (111.20) (1.40) (0.28) (0.26) (-60.47)

1890-1919 0.00053 0.14346 0.81063 0.19544 8.31992 1.40548 -9.74430
(7.16) (8.59) (36.21) (3.16) (1.15) (0.91) (-74.32)

1920-1952 0.00073 0.09337 0.89955 -0.03908 11.09956 1.00000 -8.57764
(3.71) (6.92) (84.13) (-0.12) (0.95) (0.05) (-9.32)

1953-2004 0.00051 0.07650 0.91562 0.65945 16.24953 4.06291 -9.39528
(7.04) (7.03) (79.82) (2.03) (0.99) (1.40) (-39.53)

1953-1984 0.00047 0.07970 0.90643 1.27777 19.68184 4.95236 -9.87795
(6.12) (9.31) (88.04) (3.80) (1.31) (1.62) (-47.34)

1985-2004 0.00066 0.07845 0.91371 0.85993 30.76334 300.00000 -9.03304
(3.53) (2.59) (31.38) (1.29) (0.40) (0.36) (-10.99)
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Table 5: Parameter Estimates of GARCH-MIDAS with IP

GARCH-MIDAS models with various specifications are fitted via QMLE. The specifications appear in
equations (12) for the level and (13) for the variance. Quarterly macroeconomic level variable is obtained
by taking geometric mean of monthly rates. The corresponding variance is estimated from equation (19), a
similar approach to Schwert (1989). For both specifications with macroeconomic level and variance in the
MIDAS filter, 16 lags are taken to model log τt. θl and θv are rescaled by multiplication of 10−2 and 10−4

to make the macro level variables represented in percentage unit. The numbers in the parenthesis are robust

t -stats computed with HAC standard errors.

Level of IP

Sample µ α β θl ωl,1 ωl,2 m

1890-2004 0.00056 0.09499 0.89481 -0.27666 2.42355 2.90066 -8.97772
(13.57) (11.69) (105.34) (-1.99) (2.57) (1.58) (-55.99)

1890-1919 0.00054 0.14157 0.81879 -0.09659 40.18934 140.04966 -9.42615
(7.15) (9.41) (45.61) (-2.05) (0.94) (0.87) (-78.56)

1920-1952 0.00073 0.09488 0.89602 -0.18956 2.70598 3.19719 -8.65862
(9.22) (9.53) (84.88) (-1.90) (1.03) (1.33) (-33.44)

1953-2004 0.00052 0.07719 0.91537 -0.97995 4.71858 2.93907 -8.97020
(8.17) (6.98) (81.50) (-2.61) (1.00) (0.91) (-34.76)

1953-1984 0.00048 0.08116 0.90720 -0.91602 5.64629 3.85090 -9.36597
(6.09) (7.76) (78.79) (-2.43) (0.83) (0.88) (-45.23)

1985-2004 0.00067 0.08119 0.90727 -1.18704 16.13726 2.81964 -8.70549
(5.57) (2.91) (30.40) (-1.71) (0.41) (0.48) (-22.74)

Variance of IP

Sample µ α β θv ωv,1 ωv,2 m

1890-2004 0.00056 0.09694 0.89053 0.07487 2.60113 1.48199 -9.33932
(11.44) (14.44) (120.92) (6.04) (1.25) (2.70) (-78.59)

1890-1919 0.00054 0.13932 0.81980 0.02446 243.02613 299.99971 -9.54998
(7.57) (9.62) (45.86) (2.15) (93.86) (143.60) (-73.31)

1920-1952 0.00073 0.09794 0.88783 0.06086 8.02994 2.52323 -9.20466
(8.39) (9.60) (80.70) (4.39) (1.56) (2.89) (-40.88)

1953-2004 0.00051 0.07521 0.91845 0.05856 67.72180 13.80331 -9.23309
(7.58) (6.06) (72.43) (1.03) (0.92) (1.03) (-35.47)

1953-1984 0.00047 0.07946 0.91062 0.31918 2.54411 2.07558 -9.81497
(6.19) (8.93) (90.93) (1.84) (1.11) (3.51) (-51.99)

1985-2004 0.00066 0.07740 0.91338 1.23540 300.00000 30.09057 -9.10001
(5.59) (2.91) (33.16) (3.45) (1.89) (2.06) (-24.96)
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Table 6: Parameter Estimates of GARCH-MIDAS with Level and Variance Combined

GARCH-MIDAS models with IP and PPI level/volatility series are fitted via QMLE. The specification appears in equation (14). Quarterly
macroeconomic level variable is obtained by taking geometric mean of monthly rates. The corresponding variance is estimated from equation
(19), a similar approach to Schwert (1989). For both macroeconomic level and variance in the MIDAS filter, 16 lags are taken to model log τt.
θl and θv are rescaled by multiplication of 10−2 and 10−4 to make the macro level variables represented in percentage unit. The numbers in
the parenthesis are robust t -stats computed with HAC standard errors.

Sample µ α β θl ωl,1 ωl,2 θv ωv,1 ωv,2 m

PPI

1890-2004 0.00056 0.09577 0.89342 0.26545 16.31711 3.52783 0.06544 7.64032 2.59355 -9.20210
(38.71) (35.17) (109.71) (1.84) (0.73) (0.97) (0.86) (0.37) (0.75) (-42.49)

1890-1919 0.00053 0.14380 0.80822 0.18369 2.99299 35.93817 0.21308 5.35999 1.00001 -9.79149
(0.23) (0.32) (1.21) (0.02) (0.00) (0.00) (2.16) (0.00) (0.00) (-10.93)

1920-1952 0.00073 0.09353 0.89787 0.24101 23.80903 3.46200 0.03687 300.00000 51.89784 -8.80583
(28.87) (16.06) (77.44) (1.51) (1.16) (1.24) (0.91) (0.95) (0.96) (-38.64)

1953-2004 0.00051 0.07741 0.91464 0.83498 22.56342 6.54459 0.10025 87.24949 14.37031 -9.47324
(25.69) (12.28) (62.59) (0.73) (0.15) (0.25) (105.05) (0.29) (0.29) (-18.06)

1953-1984 0.00047 0.08029 0.90318 0.42313 300.00000 149.99514 0.99909 28.59527 6.90855 -9.99398
(59.40) (20.34) (39.42) (1.87) (0.77) (0.81) (13.98) (1.85) (1.72) (-39.95)

1985-2004 0.00065 0.07728 0.91260 0.83396 187.67441 300.00000 0.10540 300.00000 105.04887 -9.08392
(44.44) (7.66) (39.51) (2.56) (1.90) (1.89) (3.36) (0.21) (0.20) (-29.75)

IP

1890-2004 0.00057 0.09713 0.88973 -0.26152 2.42752 2.02052 0.07588 1.37742 1.17955 -9.27531
(53.84) (26.77) (104.64) (-0.84) (0.92) (0.48) (3.10) (1.44) (1.67) (-64.09)

1890-1919 0.00054 0.13974 0.81747 -0.06005 300.00000 91.48020 0.02705 187.06963 230.57839 -9.55180
(36.82) (35.91) (49.03) (-1.92) (1.65) (1.73) (1.41) (0.11) (0.10) (-149.28)

1920-1952 0.00073 0.09769 0.88804 -0.05322 300.00000 192.31363 0.07561 1.33973 1.00000 -9.28313
(35.50) (38.37) (92.17) (-1.45) (1.15) (1.20) (2.96) (0.82) (1.34) (-36.78)

1953-2004 0.00053 0.07808 0.91397 -1.04182 4.75446 2.98089 0.11639 112.79673 300.00000 -9.04673
(19.47) (13.38) (70.04) (-1.77) (1.65) (1.25) (1.73) (2.98) (2.65) (-26.05)

1953-1984 0.00050 0.08415 0.90157 -1.02798 5.20349 3.56877 0.15256 111.58383 300.00000 -9.50151
(36.84) (31.54) (96.57) (-1.94) (1.47) (1.37) (2.40) (0.79) (0.77) (-57.46)

1985-2004 0.00067 0.07476 0.91919 -0.50259 300.00000 195.28726 1.49983 221.26956 22.98366 -8.83420
(15.98) (9.37) (46.79) (-0.90) (2.41) (2.68) (69.77) (4.61) (5.54) (-9.62)
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Table 7: Parameter Estimates of Two-sided GARCH-MIDAS with PPI and IP

GARCH-MIDAS models with PPI or IP series are fitted using QMLE. The sample period marked with * is a sample period excluding 1987
crash; the stock return series and macroeconomic series corresponding to second half of 1987 is excluded from the sample. The specification
appears in equation (15). Quarterly macroeconomic level variable is obtained by taking geometric mean of monthly rates. The corresponding
variance is estimated from equation (19), a similar approach to Schwert (1989). For both macroeconomic level and variance in the MIDAS
filter, 16 lags and 16 leads are taken to model log τt. θl and θv are rescaled by multiplication of 10−2 and 10−4 to make the macro level
variables represented in percentage unit. The numbers in the parenthesis are robust t -stats computed with HAC standard errors.

µ α β θb
l θf

l θb
v θf

v ω1 ω2 ω3 ω4 m

PPI series
1890-2004 0.00057 0.09678 0.89169 0.28341 0.29523 0.08601 0.18473 20.26192 26.08244 8.45295 10.34749 -9.27780

(105.91) (55.15) (145.00) (1.45) (0.82) (0.81) (0.81) (0.66) (0.62) (0.65) (0.75) (-54.69)
1890-1919 0.00053 0.14350 0.80576 0.28414 0.90884 0.21854 0.00151 52.39654 71.92129 3.03391 40.61308 -9.83587

(35.24) (53.01) (47.06) (2.19) (0.25) (1.92) (1.65) (1.10) (1.03) (0.54) (0.39) (-63.55)
1920-1952 0.00073 0.09396 0.89822 1.09287 0.35375 0.05589 0.15051 17.39842 13.23109 58.25269 63.90278 -8.81556

(35.76) (22.55) (68.70) (0.53) (0.56) (0.62) (0.79) (0.83) (0.64) (0.77) (0.66) (-16.61)
1953-2004 0.00053 0.07814 0.91273 0.78515 319.05936 0.36701 0.26801 41.07113 76.16412 16.13123 300.00000 -9.63502

(21.71) (35.23) (83.56) (1.54) (1.94) (1.93) (1.94) (2.51) (3.41) (3.47) (3.27) (-28.50)
1953-1984 0.00047 0.08185 0.90173 1.05254 2918.61284 -0.51883 1.15017 23.30470 55.79583 86.09265 300.00000 -9.97948

(29.43) (33.26) (53.70) (1.93) (0.81) (-0.80) (0.81) (0.88) (1.42) (1.42) (1.49) (-36.18)
1985-2004 0.00074 0.09061 0.88136 -0.54966 21.78506 11.45776 3.70936 18.61113 300.00000 2.36975 1.73479 -10.46234

(44.20) (16.30) (28.03) (-1.90) (1.81) (2.86) (1.90) (3.33) (3.85) (2.24) (1.73) (-24.50)
1985-2004* 0.00062 0.03513 0.96242 11.27455 13.41385 0.71945 -0.00476 1.93444 2.03338 37.73751 300.00000 -10.82070

(6.89) (3.63) (36.03) (0.30) (0.27) (0.71) (-0.37) (1.45) (0.75) (0.11) (0.10) (-3.66)

IP series
1890-2004 0.00058 0.09901 0.88201 -0.86988 -0.92877 0.10266 0.18593 1.83330 2.54428 2.51452 3.16714 -9.35205

(82.24) (38.06) (80.23) (-0.84) (-1.43) (1.07) (0.54) (1.55) (1.54) (0.24) (0.55) (-28.29)
1890-1919 0.00054 0.14503 0.80089 -0.12499 1.50459 0.09650 0.13656 31.10268 226.78195 28.67380 27.38901 -9.80616

(47.59) (44.15) (32.73) (-2.00) (0.69) (2.06) (1.29) (1.17) (1.10) (0.88) (1.03) (-66.68)
1920-1952 0.00074 0.10004 0.86286 -0.42589 0.30435 0.14860 0.15721 1.71286 1.81926 4.93039 3.39250 -9.88961

(124.61) (46.48) (67.36) (-3.06) (0.79) (2.65) (5.13) (3.26) (1.44) (2.88) (3.25) (-65.37)
1953-2004 0.00055 0.08552 0.89258 -3.42508 -4.10994 -0.01433 -0.03582 2.98868 2.79418 211.43088 1.00084 -8.46612

(10.27) (5.79) (74.08) (-0.41) (-0.15) (-0.14) (-0.16) (0.40) (1.43) (0.16) (0.00) (-8.57)
1953-1984 0.00053 0.09247 0.86958 -3.36394 -4.21650 0.17340 0.00009 3.00846 3.22511 51.63566 300.00000 -8.85431

(36.70) (15.41) (43.14) (-4.42) (-5.42) (1.18) (2.78) (5.07) (4.09) (0.29) (0.28) (-46.19)
1985-2004 0.00073 0.09043 0.85325 -17.69083 -3.14898 0.00277 0.00151 5.80172 1.75117 12.96889 10.91845 -8.37420

(76.34) (37.86) (27.65) (-1.27) (-6.29) (1.15) (1.22) (2.48) (3.42) (4.93) (11.41) (-41.20)
1985-2004* 0.00066 0.04611 0.92404 -7.95350 -3.10168 0.00192 0.00085 5.38666 1.95158 12.93163 10.07683 -8.61166

(23.58) (8.15) (26.82) (-1.39) (-4.42) (1.14) (1.27) (2.06) (3.23) (4.97) (15.26) (-36.05)
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Table 8: Parameter Estimates of Spline-GARCH

Spline-GARCH-MIDAS models are fitted via QMLE. The specification appears in equation (17). For a given sample choice, the number of
knots is selected via the BIC. For empirical implementation, we normalized t in the equation (17) by dividing it with the total number of
days in the sample. This makes our spline parameters typically bigger than those shown in Engle and Rangel (2007). The numbers in the
parenthesis are robust t -stats computed with HAC standard errors.

µ α β c ω0

1890-2004 0.00058 0.10153 0.87899 0.00006 11.48195
(15.87) (28.05) (181.36) (43.40) (104.22)

1890-1919 0.00053 0.14219 0.80760 0.00005 4.77284
(7.66) (17.02) (61.86) (78.87) (60.31)

1920-1952 0.00076 0.09899 0.85998 0.00010 -0.62802
(9.22) (30.50) (115.91) (58.14) (-0.93)

1953-2004 0.00055 0.08837 0.88075 0.00005 12.81664
(9.24) (11.48) (99.97) (64.46) (5.29)

1953-1984 0.00051 0.09079 0.87796 0.00005 7.41979
(7.37) (13.01) (88.93) (58.39) (35.95)

1985-2004 0.00068 0.08602 0.85996 0.00005 10.77975
(6.75) (9.23) (50.59) (12.90) (31.79)

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 LLF/BIC

1890-2004 -62.71162 81.22589 22.17711 -120.99219 83.50810 88.70340 -171.12468 131.14982 106874.54
(-20.99) (13.54) (18.95) (-95.42) (24.73) (19.94) (-34.82) (57.62) -6.7474

1890-1919 -7.77547 15.82539 30599.92
(-35.31) (72.32) -6.9143

1920-1952 -41.85921 137.65386 -71.97797 -157.77405 201.12332 -134.14541 174.21059 -183.79679 55.79314 31297.15
(-36.09) (75.29) (-53.07) (-32.61) (31.84) (-15.71) (20.05) (-57.51) (13.77) -6.4219

1953-2004 -99.23146 194.77933 -136.05880 68.47953 -88.75609 145.82887 -200.23059 45108.37
(-21.57) (12.73) (-45.71) (100.95) (-22.44) (108.10) (-9.50) -6.8833

1953-1984 -33.15317 66.11422 -47.94705 22.67034 28615.09
(-35.87) (22.06) (-54.92) (13.06) -7.1055

1985-2004 -28.70466 57.60082 -71.44233 16522.09
(-17.17) (66.93) (-9.43) -6.5338
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Table 9: Structural Change Tests for GARCH-MIDAS models

GARCH-MIDAS models with various specifications are fitted via QMLE over the full and sub-samples. To
address the structural break question we compute a likelihood ratio statistic, comparing the log-likelihood
function for the full sample with those of the sub-samples. In particular: −2[LLFfull−

∑

i=sub−samples LLFi]

∼ χ2(df) where df is the number of parameters times one less than the number of sub-samples, which
corresponds to the number of restrictions. The sub-samples come in two configurations (Test1) 1890-1919 /
1920-1952 / 1953-2004 and (Test2) 1890-1919 / 1920-1952 / 1953-1984 / 1985-2004.

Model # of Param. df1 Test 1 p-value df2 Test 2 p-value

GM with Fixed Span RV 6 12 55.54 0.00% 18 75.44 0.00%

GM with Fixed Span RV (Log) 6 12 122.42 0.00% 18 140.67 0.00%

GM with Macro Series

PPI Level 7 14 130.25 0.00% 21 179.25 0.00%

Variance 7 14 140.56 0.00% 21 207.90 0.00%

Level+Variance 10 20 155.81 0.00% 30 212.90 0.00%

IP Level 7 14 134.61 0.00% 21 179.44 0.00%

Variance 7 14 101.37 0.00% 21 161.40 0.00%

Level+Variance 10 20 140.30 0.00% 30 208.28 0.00%

PPI+IP Level+Variance 12 24 149.97 0.00% 36 234.76 0.00%
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Table 10: Comparison of Forecasting Performance of Two Component Volatility

Models using Full Sample Estimates

Various GARCH-MIDAS models and Spline-GARCH model from Engle and Rangel (2007) are fitted over
the full sample and the forecasting performance of these models over the sub-samples are compared. Note
that all the models considered are two component volatility models. However, GARCH-MIDAS with fixed
span RV and GARCH-MIDAS with macro level/vol fix the long run component for a certain period whereas
others do not. For those with fixed component, the models are estimated separately for each forecasting
horizon to match the fixing term with the forecasting horizon. Also, for these models, the number of lags
used in MIDAS filter is determined such that the MIDAS regressors span past 4 years of data (e.g. 16
lags for quarterly RV). To be consistent with others, ‘Qtr/4yr’ GARCH-MIDAS with rolling window RV
as described in Tables 2 and 3 are used. The parameters for the each model are estimated using the full-
sample and the forecasts for next month/quarter/semester are computed assuming that today is the last day
of a month/quarter/semester. The Mean Squared Errors (henceforth MSE) of the forecasts are calculated
with respect to monthly, quarterly and half-year realized variance computed from daily stock return series.
For the purpose of comparison, GARCH-MIDAS model with rolling window RV is chosen as a benchmark.
Except for this case, all the other MSE’s are presented as a ratio to the base MSE from the forecasts of
GARCH-MIDAS with rolling window RV for the corresponding forecasting horizon and the sub-sample.

Forecasting MSE Ratio - relative to GARCH-MIDAS with Rolling Window RV
Horizon 1890-2004 1890-1919 1920-1952 1953-2004 1953-1984 1985-2004

GARCH-MIDAS with Rolling Window RV
Month 0.000014 0.000005 0.000027 0.000012 0.000001 0.000029
Quarter 0.000078 0.000025 0.000183 0.000043 0.000008 0.000099
Semester 0.000263 0.000063 0.000680 0.000111 0.000027 0.000246

GARCH-MIDAS with Fixed Span RV
Month 1.91 1.21 1.71 2.37 1.29 2.45
Quarter 0.99 1.37 0.94 1.03 1.14 1.01
Semester 0.84 1.28 0.76 1.00 1.09 0.98

GARCH-MIDAS with Rolling Window RV (Log)
Month 1.08 1.09 1.10 1.04 1.10 1.04
Quarter 1.02 1.17 1.01 0.99 1.08 0.98
Semester 0.97 1.03 0.96 0.98 1.04 0.96

GARCH-MIDAS with Fixed Span RV (Log)
Month 1.40 1.15 1.37 1.49 1.11 1.52
Quarter 1.16 1.34 1.20 1.01 1.11 0.99
Semester 0.97 1.22 0.95 0.98 1.09 0.96

Spline-GARCH
Month 1.05 1.10 1.08 1.01 1.07 1.00
Quarter 1.06 1.29 1.07 0.97 1.09 0.95
Semester 1.08 1.12 1.12 0.91 1.01 0.89

Table continued on next page ...
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Forecasting MSE Ratio

Horizon 1890-2004 1890-1919 1920-1952 1953-2004 1953-1984 1985-2004

GARCH-MIDAS with PPI level

Month 1.12 1.22 1.12 1.11 1.17 1.10

Quarter 1.09 1.88 1.02 1.01 1.36 0.97

Semester 1.08 1.90 1.04 0.97 1.38 0.90

GARCH-MIDAS with PPI variance

Month 1.12 1.24 1.12 1.10 1.17 1.10

Quarter 1.08 1.88 1.01 1.02 1.35 0.98

Semester 1.06 2.06 1.00 0.98 1.44 0.90

GARCH-MIDAS with PPI (level+variance)

Month 1.12 1.21 1.12 1.10 1.15 1.10

Quarter 1.09 1.85 1.02 1.01 1.32 0.97

Semester 1.09 1.94 1.05 0.97 1.34 0.91

GARCH-MIDAS with IP level

Month 1.12 1.22 1.11 1.12 1.18 1.11

Quarter 1.05 1.81 0.98 1.02 1.38 0.97

Semester 0.95 1.85 0.87 0.99 1.49 0.90

GARCH-MIDAS with IP variance

Month 1.13 1.26 1.12 1.11 1.18 1.10

Quarter 1.06 1.67 1.01 1.01 1.23 0.99

Semester 1.02 1.85 0.96 0.98 1.28 0.93

GARCH-MIDAS with IP (level+variance)

Month 1.11 1.24 1.09 1.10 1.18 1.10

Quarter 1.06 1.54 1.03 1.01 1.20 0.98

Semester 0.92 1.85 0.82 0.98 1.23 0.93
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Table 11: Comparison of Forecasting Performance of Two Component Volatility Models for One Semester

Horizon using Sub-sample Estimates

Various GARCH-MIDAS models are fitted over each of sub-samples separately and the forecasting performance of these models over the
sub-samples are compared. Note that all the models considered are two component volatility models. However, GARCH-MIDAS with fixed
span RV and GARCH-MIDAS with macro level/vol fix the long run component for a certain period whereas others do not. For those with
fixed component, the models are estimated separately for each forecasting horizon to match the fixing term with the forecasting horizon.
Also, for these models, the number of lags used in MIDAS filter is determined such that the MIDAS regressors span past 4 years of data (e.g.
16 lags for quarterly RV). To be consistent with others, ‘Qtr/4yr’ GARCH-MIDAS with rolling window RV as described in Table 2 is used.
The parameters for the each model are estimated using the sub-samples and the forecasts for next month/quarter/semester are computed
assuming that today is the last day of a month/quarter/semester. The Mean Squared Errors (henceforth MSE) of the forecasts are calculated
with respect to monthly, quarterly and half-year realized variance computed from daily stock return series. For the purpose of comparison,
GARCH-MIDAS model with rolling window RV is chosen as a benchmark. Except for this case, all the other MSE’s are presented as a ratio
to the base MSE from the forecasts of GARCH-MIDAS with rolling window RV for the corresponding forecasting horizon and the sub-sample.

MSE Ratio for semi-annual forecast horizon

1890-1919 1920-1952 1953-2004 1953-1984 1985-2004
GARCH-MIDAS with PPI level 0.79 0.93 1.07 0.90 0.99

GARCH-MIDAS with PPI variance 0.73 0.86 0.98 0.80 0.86

GARCH-MIDAS with PPI (level+variance) 0.73 0.93 1.06 0.83 0.90

GARCH-MIDAS with IP level 0.75 0.86 0.98 1.05 0.97

GARCH-MIDAS with IP variance 0.78 0.92 1.02 1.11 1.04

GARCH-MIDAS with IP (level+variance) 0.77 0.89 0.98 1.05 0.97
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Table 12: Summary Table for Variance Ratios

The first variance ratio is: V ar(log(τ
[M ]
t ))/V ar(log(τ

[M ]
t g

[M ]
t )), where M refers to a specific model: GARCH-

MIDAS with rolling window RV, with fixed span RV, with Macro variables, and finally Spline-GARCH.
Except for GARCH-MIDAS with rolling RV, each model has a second line which refers to a variance ratio

normalized by V ar(log(τ
[gm−rollRV ]
t g

[gm−rollRV ]
t )).

Model 1890-2004 1890-1919 1920-1952 1953-2004 1953-1984 1985-2004

GM with Rolling Window RV 46.15 24.57 54.09 37.22 29.39 27.75

GM with Rolling Window RV (Log) 32.86 17.44 45.89 23.84 19.04 19.16

GM with Fixed Span RV 41.23 14.82 52.05 31.99 9.06 30.47
41.02 14.60 51.23 31.57 8.94 30.29

GM with Fixed Span RV (Log) 32.37 11.20 45.35 25.99 8.74 21.99
32.14 10.96 45.34 25.91 8.66 21.88

Spline-GARCH 25.22 12.87 53.67 54.81 54.55 59.37
25.13 12.45 52.87 54.13 56.97 59.14

GM with Macro Series

PPI Level 5.82 6.89 5.96 17.11 35.10 10.16
5.78 6.72 5.97 17.10 35.54 10.33

Variance 0.43 9.51 0.45 5.91 22.36 6.85
0.42 9.26 0.45 5.77 22.19 7.14

Level+Variance 5.07 13.50 5.41 17.25 35.89 11.60
5.03 13.30 5.41 17.20 36.23 11.65

IP Level 2.76 4.12 2.44 11.32 17.04 16.31
2.74 4.02 2.42 11.25 17.11 16.47

Variance 11.08 3.66 15.38 0.43 5.56 10.40
11.02 3.54 15.26 0.42 5.51 10.67

Level+Variance 13.02 5.91 14.20 14.11 25.09 21.43
12.93 5.72 14.05 14.07 25.45 23.63
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Figure 1: Optimal Weighting Functions

The figure shows the estimated optimal lag weights for variations of GARCH-MIDAS with fixed span RV
over the full sample period. MIDAS lag year is the number of years spanned in MIDAS regression for τ
and it determines the number of lagged RV’s in MIDAS filter. For example, GARCH-MIDAS with monthly
fixed span RV and 3 MIDAS lag years uses 36 lagged monthly RV’s in MIDAS regression for τ . Three
choices of regressors (monthly/quarterly/biannual RV) are considered and three choices of number of lags
(3, 4 and 5 MIDAS lag years) are considered. The horizontal axis of the figure is lag period in “months.”
Hence, weights for GARCH-MIDAS with quarterly fixed span RV show shapes of step functions. Weights for
GARCH-MIDAS with quarterly fixed span RV shown in the figure are constant for 3 months. The biannual
case can be understood in the similar sense.
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Figure 2: GARCH-MIDAS with Fixed Span RV, 1890-2004

The first panel shows the estimated conditional volatility and its long run component of GARCH-MIDAS
model with quarterly fixed RV and 4 MIDAS lag years of RV’s (or 16 lagged quarterly RV’s) in the MIDAS
filter. They are all shown in standard deviation and annualized scale. The estimated parameters are shown
in the first row of Table 2. In the second panel, these conditional variance and long run component are
summed over quarters to show quarterly aggregated conditional variance and quarterly aggregated long run
component with quarterly RV’s for comparison. As in the first panel, these are shown in standard deviation
and annualized scale.
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Figure 3: GARCH-MIDAS with Rolling Window RV, 1890-2004

The first panel shows the estimated conditional volatility and its long run component of GARCH-MIDAS
model with quarterly rolling window RV and 4 MIDAS lag years of RV’s in the MIDAS filter. They are all
shown in standard deviation and annualized scale. The estimated parameters are shown in the second row of
Table 2. In the second panel, these conditional variance and long run component are summed over quarters to
show quarterly aggregated conditional variance and quarterly aggregated long run component with quarterly
RV’s for comparison. As in the first panel, these are shown in standard deviation and annualized scale.
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Figure 4: Quarterly Macroeconomic Level Variables, 1886-2004

These figures show macroeconomic level variables used in the GARCH-MIDAS with macroeconomic variables
as specified in equation (12). PPI and IP represent producer price Index inflation rate and industrial
production growth rate, respectively. The original dataset consists of monthly series of these variables. For
PPI and IP, we obtained quarterly series by taking geometric means of 3 months, i.e. a quarter, of these
series.
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Figure 5: Quarterly Macroeconomic Volatility, 1886-2004

These figures show macroeconomic volatility variables used in the GARCH-MIDAS with macroeconomic
variables as specified in equation (13). PPI and IP represent roducer price index inflation rate and industrial
production growth rate, respectively. For these quarterly macroeconomic series, we adopt a variant of Schwert
(1989) approach, as in equation (19), to measure macroeconomic volatility, which is shown in these figures.
Note that the GARCH-MIDAS with macroeconomic variables as in equation (13) uses macroeconomic
variance as an input and it is a squared term of volatility.
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Figure 6: GARCH-MIDAS with Macroeconomic variables: Two-sided IP, 1890-

2004

The figure pertains the two-sided IP level/volatility GARCH-MIDAS models for the full sample. 16 lags
and 16 leads of both quarterly IP level and variance are filtered by MIDAS filter to model the long-run
component τ . The corresponding parameter estimates are shown in Table 7. The top panel contains the
time series paths of τ and g ∗ τ. They are all shown in standard deviation and annualized scale. The lower
panel contains the lag-lead weights for level and volatility of IP in the τ component according to equation
(15).
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Figure 7: GARCH-MIDAS with Macroeconomic variables: Two-sided IP, 1920-

1952

The figure pertains to the two-sided IP level/volatility GARCH-MIDAS models for the interwar subsample
which includes the Great Depression period. 16 lags and 16 leads of both quarterly IP level and variance are
filtered by MIDAS filter to model the long-run component τ . The corresponding parameter estimates are
shown in Table 7. The top panel contains the time series paths of τ and g ∗τ. They are all shown in standard
deviation and annualized scale. The lower panel contains the lag-lead weights for level and volatility of IP
in the τ component according to equation (15).
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Figure 8: GARCH-MIDAS with Macroeconomic variables: Two-sided IP, 1985-

2004

The figure pertains to the two-sided IP level/volatility GARCH-MIDAS models for the most recent subample
which includes 1987 crash. 16 lags and 16 leads of both quarterly IP level and variance are filtered by MIDAS
filter to model the long-run component τ . The corresponding parameter estimates are shown in Table 7.
The top panel contains the time series paths of τ and g ∗ τ. They are all shown in standard deviation
and annualized scale. The lower panel contains the lag-lead weights for level and volatility of IP in the τ
component according to equation (15).
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Figure 9: Comparison of τ component from Spline-GARCH model fitted over

the Full Sample and the sub-samples

Long-run components as measured by τ in Spline-GARCH model fitted over the full sample and each of
sub-samples are compared. The full sample period (1890-2004) is divided into three sub-sample periods:
1890-1919, 1920-1952, and 1953-2004. The optimal number of knots, with lowest BIC, for the full sample
is seven while those of sub-samples are one, eight, and six, respectively. All are shown in standard deviation
and annualized scale.
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