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Abstract

In this paper we document the presence of a term structure of risk and

we propose how to measure it using alternative models to forecast volatility

and the Value at Risk at different horizons. We then quantify the benefits of

an investor that is aware of the existence of a term structure of risk in the

context of an asset allocation exercise.
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1 Introduction

Many people believe that there are grave risks facing our financial markets. These

include the massive budget deficits, the balance payments deficits, the high cost of

energy and many other raw materials, the uncertainty over FED policy, war in Iraq

that is going badly, global warming and the extraordinary amount of US Debt that

is held by the Chinese government. In addition, there is a concern that the vast

global derivatives market, the number of unregulated hedge funds, the merging of

financial markets across national borders and the explosive growth of private equity

funds, make the financial system more unstable and susceptible to meltdown. These

concerns are not new but have been serious topics of discussion for several years.

The extraordinary fact however is that the volatility of financial markets today is

about as low as it has ever been. This has been true for most of the years 2004-

2006. This is the situation in the US equity market but it is also true in global

equity markets. The volatility has fallen to very low levels in most equity markets

around the globe as shown in figure 1. It is also reflected in options prices as can

easily be seen by looking at a time series plot of the volatility index, VIX.
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Fig. 1 - Volatilities of global equity markets. The first five plots report the returns
(top line) and the levels (bottom line) of equity markets in France, United Kingdom,
China, Korea and United States. The sixth plot shows the volatility index in the
US.
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These observations present a puzzle. Are financial markets ignoring these risks or are

the risks not so serious? In this paper we present another resolution of the puzzle.

Most of these risks are potential problems for the future. They are not risks in the

short run, only in the long run. There may be a term structure of risk that faces

financial markets in general and individual investors in particular. This concept

must be carefully defined and examined empirically. Finally we must consider the

implications for asset pricing and portfolio construction.

2 Measurement

In this paper we associate long run risks with the probability and magnitude of losses

of a passive portfolio over a long horizon. Measuring this in nominal terms is only

appropriate if the changes in price level or purchasing power of risk free rates are

minor adjustments. The analysis could be carried out in any of these frameworks.

We choose nominal returns to focus on the dynamics of the financial markets rather

than the nominal economy as a whole.

In contrast Bansal and Yaron (2004) introduce long run risks by postulating a slowly

varying factor in real consumption that induces variation in expected returns. The

long run risk is thus the risk of a low consumption state which corresponds to a low
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return state. Without further elaboration, the prediction of this risk in the distant

future would not be changing over time as current information would have little

ability to predict these events. Conceptually, a model more similar to ours would

introduce the long run risks into the variance of consumption, rather than its level.

To quantify these long run risks, we follow Timmermann and Guidolin (2006). We

consider the long run variance and long run value at risk, LRVaR. These measures

are widely used in financial planning, but can be given a new interpretation with

long horizons. Unknown and unforecastable risks appear in the historical data as

surprising returns and are therefore a part of predicted variance and VaR. Non-

stationary risks can sometimes be corrected for and therefore be used to improve

risk assessment and decision making.

2.1 Volatility forecasts at various horizons

The task of forecasting volatility is one that can only be accomplished after a model

has been specified. But what is the reasonable set of assumptions that one can make

about the underlying economic model? It is common to assume that returns follow a

stationary process, with the understanding that this is a statistical convenience and

not an economic model. With stationary returns, long run risk is constant. This can
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be shown in a simple example that allows us to introduce some of the notation that

we will be using in the rest of the analysis. Let rt be a mean zero random variable

measuring the return on a financial asset and assume that it follows a GARCH(1,1)

process:

rt =
√

htεt, εt ∼ N (0, 1) (1)

ht = (1− α− β) ω + βht−1 + αr2
t−1

Taking the unconditional expectation of squared returns, we obtain

E
[
r2
t

]
= E [ht] = ω

that is our constant estimate of long run risk. Long run risk is the time average of

short run risk and the unconditional term structure of volatility risk is proportional

to
√

T .

Nevertheless long run risk can change over time or at least there is no a priori reason

to restrict our statistical model from this possibility. As a matter of fact, unknown

and unknowable events can occur and if ex post we say that there is a shift in

the distribution, ex ante we must assess the probabilities. The important question

is whether the historical risks can be used to assess the future risks and this is a
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question of the stationarity of the distribution. If the distribution is stationary, then

unknown and unknowable risks are already sensibly incorporated in the forecasts of

future risk. But if the distribution is changing, then these changes must be modeled.

An example of a model that allows for time varying long run risk is the spline

GARCH of Engle and Rangel (2005), in which economic or exogenous variables

such as recessions, inflation and macro volatility increase the long run variance.

This is a multiplicative model in which the conditional variance is assumed to be

the product of a long run and of a short run components and where both terms can

be time varying. In particular, mean-zero returns follow the process:

rt =
√

τtgtεt, εt ∼ N (0, 1) (2)

gt = (1− α− β) + α

(
r2
t−1

τt−1

)
+ βgt−1

where τt is a function of time and exogenous variables. By taking unconditional

expectations of squared returns

E
[
r2
t

]
= τtE

[
gtε

2
t

]
= τtE [gt] = τt

it is clear that τt can be interpreted as the long run forecast of variance. We will also

refer to this component as the low frequency variance or sometimes the unconditional
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Fig. 2 - Long vs. short run volatility of the S&P500. The thick line is short run
volatility and the smooth thin line is the long run volatility.

variance when it is a function of deterministic or exogenous variables. One possibility

is that the long run variance τt is an exponential quadratic spline of time:

log (τt) = ω0 + ω1 + ω2 +
K∑

k=1

θk [max (t− tk, 0)]2

Figure 2 reports the measure of short run and long run volatility for the S&P500

forecasted by the spline GARCH model. The figure shows how there may be periods

in which the short run risk (thick line) is high, while the long run risk is low and
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viceversa. The picture also shows how the current date volatility appears to be at

a record low level, while long run volatility is higher. This is the case not only for

the US, but also for a large number of countries, as it is documented in figure 3.

2.2 The term structure of value at risk

The Value at Risk T periods ahead from the current date is the α quantile of the

conditional distribution of returns at time t + T . In formulas:

Prt

(
rt+T ≤ −V aRα

t+T

)
= α

As a benchmark we will consider the case of i.i.d. mean zero returns: rt ∼ N (0, h),

∀t. In this situation the value at risk is simply proportional to the square root of

time:

V aRα
t+T =

√
hTΦ−1 (α) (3)

It is often convenient to standardize the measure reported in (3) by
√

T , in which
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Fig. 3 - Measures of volatility. In each subplot, the thick line represents the condi-
tional volatility, the thin line is the unconditional volatility and the squares are the
annualized realized volatility. Each panel is for a different countries. From the top
left to the bottom right: India, Argentina, Japan, Brazil, South Africa and Poland.
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case i.i.d. returns are equivalent to a constant term structure of risk.

When returns are not i.i.d., the term structure of VaR can slope upward or down-

ward. An interesting case to consider is the one in which returns follow a TARCH(1,1)

process:

rt = µ +
√

htεt (4)

ht = ω + βht−1 + αr2
t−1 + γr2

t−1I(rt−1<0)

The law of motion of the conditional variance is such that following periods of neg-

ative returns there is an expectation for a relatively higher variance in the future.

Although one-period returns are symmetrically distributed at each point in time,

multi-period returns are not as illustrated in figure 4. The probability that is at-

tached to the extreme negative events that may occur many periods in the future

has potentially important consequences that should be taken into account in the

context of any asset allocation exercise.

Table 1 reports the estimate of the parameters of model (4) for a long dataset
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Fig. 4 - Asymmetric volatility: binomial tree. At each node returns have a symmet-
ric distribution, but following periods of positive returns the volatility lowers, while
after periods of negative returns the volatility increases. This implies an asymmetric
distribution of multi-period returns.

of daily observations on the S&P500, ranging from 1950 to 2006. As expected

the asymmetric volatility parameter is positive and significant at a 95% level of

confidence. Negative shocks have 3 times the effect of positive shocks in forecasting

future variances.

Diebold, Hickman, Inoue, and Schuermann (1998) show that the common practice

of converting one day volatilities to T-day estimates by scaling by
√

T is inappro-

priate and produces overestimates of the variability of long-horizon volatility. Our
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Fig. 5 - Value at Risk of a TARCH Gaussian simulation. The left panel reports the
VaR for T ranging from 0 to 100 of a TARCH(1,1) simulated from table 1 as a thick
line, while the dotted line is the benchmark case of i.i.d. returns. The right panel

reports
V aRα

t+h√
T

.

work relates to theirs in that we quantify the impact of a TARCH(1,1) volatility

process on the estimate of the VaR at a given future point. We address this task by

simulating one million excess returns following process (4) and calibrating its pa-

rameters according to table 1. We then let T vary between 1 and 100 and construct

the corresponding 1% Value at Risk. Figure 5 reports the results of this simulation.

In comparing the VaR when returns follow an asymmetric process (thick line) with

the VaR obtained under the assumption that returns are i.i.d. (dashed line) it is

apparent that according to this risk measure, both long run risk and short run risk

according to (4) exceed the risk for i.i.d. shocks. Particularly important however is

the fact that this difference increases with horizon. That is, the term structure of

risk can slope upward all the time.
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Table 1
tarch(1,1): estimation of parameters.

ω α β γ
Estimate 8.36× 10−7 0.035 0.918 0.074
Std. Err. 6.40× 10−7 0.003 0.003 0.002

Notes - The sample period is 1950-2006.

3 Implications for asset allocation

It has recently emerged that volatility timing and traditional market timing are

fundamentally related, as well documented by Christoffersen and Diebold (2006).

Fleming, Kirby, and Ostdiek (2001) and Fleming, Kirby, and Ostdiek (2003) study

a one-day horizon asset allocation problem and document the economic value of

various conditional volatility estimators and realized volatilities. Engle and Colacito

(2006) pointed out that correct volatility and correlation timing is typically worth

50-60 basis points when the investment horizon is one day. However most portfolio

managers have investment horizons longer than a day, even though they ultimately

end up doing a static asset allocation exercise. It seems reasonable to think that

an investor, aware that returns follow the TARCH process that we discussed in

the earlier sections, would take the presence of a downside risk into account when

choosing portfolio weights in this context. In this section we give a quantitative

answer to the question of how much can an investor expect from optimally adjusting
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portfolio weights when the variance is asymmetric.

We shall focus on the simplest case in which the investor can only allocate her

wealth among a risky and a risk-less asset. We denote with wt+T the share of the

portfolio that is invested in the risky asset between time t and t + T and with rt+T

the logarithm of the continuously compounded return on the risky asset in excess

of the risk free rate rf between t and t + T . We assume that the agent wants to

maximize terminal wealth according to an exponential utility function:

max
wt+T

Et − exp {−b (wt+T rt+T )} exp
{
−brf

}
(5)

where b is a preference parameter that reflects the absolute risk aversion. The risk

free rate is constant at a daily frequency. If log-returns are conditionally distributed

as normals, an investor seeking to maximize her utility according to (5) could simply

solve a mean-variance exercise:

max
wt+T

Et [wt+T rt+T ]− b

2
Et

[
w2

t+T r2
t+T

]
(6)

However if returns are not lognormally distributed, the equivalency of problems (5)

and (6) does not hold anymore. We now develop an approximate procedure to

choose portfolios according to (5) when the returns follow an asymmetric GARCH
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model. The first step is to approximate the utility function accounting for higher

moments. The result, derived in the appendix, is:

max
wt+T

− exp {−bwt+T µt+T}
[
1 +

b2

2
w2

t+T ht+T −
b3

6
w3

t+T st+T

]
(7)

where µt+T , ht+T and st+T denote the conditional expectations of mean, variance

and third centered moment, respectively. This utility function formalizes the idea

according to which investors like positive first and third moments and dislike sec-

ond moments. Alternatively, agents are now concerned about the lower tail of the

distribution that is depicted in figure 4. The solution can be calculated numerically

based on the forecast first, second and third moments. This optimization is simple,

but does not produce a closed form solution. In the experiment described below,

the mean is constant. To forecast the third central moment we use a recursion de-

veloped in the appendix. Essentially it computes Et

[
(rt+1 + rt+2 + . . . + rt+k)

3] in

terms os Et

[
h

3/2
t+k

]
. Then approximating this by Taylor series, the third moment

can be forecast and used to optimize portfolios at each point in time. Clearly, the

more negative the third moment, the less exposure to the risky asset will be chosen

by this investor.

In order to quantify the benefit of knowing that returns follow an asymmetric volatil-

ity process, we simulate daily returns according to model (4) and then we compare
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two investors with the same objective function (5): one makes forecasts of the distri-

bution of returns based on the TARCH(1,1) process reported in (4), while the other

one believes that returns are distributed according to the GARCH(1,1) process in

(1).1 For the results to be comparable, we will assume that the two models agree

on the unconditional forecasts of mean returns and variance.2

The metric that we adopt to quantify these benefits is based on the criterion function

5. For a given risk free rate r̃f , an agent that refrains from investing in the risky

asset would obtain an average utility U
(
r̃f
)

= − exp
{
−br̃f

}
. By allocating a non-

zero share of her portfolio in the risky asset at the actual risk-free rate rf , she could

instead expect a utility U
(
rf
)

= −E
[
exp {−b (wt+T rt+T )} exp

{
−brf

}]
. The risk-

free rate r̃f that would make her indifferent between the two strategies can be easily

shown3 to be equal to:

r̃f = rf +
− log E exp {−bwtrt}

b
(8)

Hence our evaluation strategy that consists in obtaining sequences of optimal portfo-

lio weights {w1,t}T
t=1 and {w2,t}T

t=1 based on forecasting from (4) and (1) respectively

and then comparing the ‘certainty equivalent’ returns r̃f
1 and r̃f

2 based on the sample

1More precisely, we use these models to describe the process of returns in excess of their mean.
2The appendix also reports the details on how to compute multi-period forecasts of third cen-

tered moments.
3We document this in the Appendix.
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counterparts of the terms involving an expectation. It is natural to expect that r̃f
2

will typically be greater than r̃f
1 : we want to quantify this benefit.

Figure 6 reports the percentage annualized gains when the investment horizons are

20 days (left panel) and 1 year (right panel). A number like 1 on the vertical axis

means that an investor that is informed of the asymmetry in the volatility process

and optimally adjusts portfolio weights would need 100 basis points in excess of

what an investor that ignores the asymmetry would need in order to refrain from

investing in the risky asset. We plot these gains for increasing values of the coefficient

of absolute risk aversion, b. The average gain can be as high as 220 basis points

and it is decreasing with b just because the amount of wealth that is invested in

the risky asset is decreasing with risk aversion. In moving from a 20 day to a year

long exercise, there is still a sizeable gain to be made. The decrease of the average

benefit has presumably to be attributed to the difficulty of accurately forecasting

the distribution of multi-period returns as the horizon gets longer and longer.

Although this represent the outcome of the simplest example of portfolio allocation,

the results reported in this section are suggestive of the fact that there is potentially

a considerable gain that can be obtained by appropriately timing volatility over

horizons that are longer than a day. Along these lines it is not hard to imagine that

multivariate asset allocation experiments would yield even larger gains, that must
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Fig. 6 - Annualized percentage gain from volatility timing when the investment
horizon is 20 days (left panel) and 252 days (right panel). The vertical axis reports
the extra return that an investor that is aware of the asymmetry of the volatility
process could obtain. The horizontal axis reports the preference parameter b. The
thick line is the average gain, while the dashed lines represent the 95% confidence
interval.

be taken into account as the planning horizon increases.

4 Concluding remarks

In this paper we have documented the presence of a term structure of risk and

provided tools that can be used by academics and practitioners to actively manage

portfolios in the presence of downward risk. The implications in the context of a

simple asset allocation exercise are suggestive of the fact that taking into account

time varying asymmetries in the multi-period distributions of asset returns can po-
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tentially result in significant financial gains. This provides a useful starting point

for the exploration of the benefits that can be obtained in the context of large scale

systems.
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A Approximation of the utility function

Following the notation of section 3, the utility function is:

Ut = Et − exp {−bWt+T}

where Wt+T = wt+T rt+T . A third order Taylor expansion around wt+T µ delivers:

Ut ≈ −Et exp {−bwt+T µ}
[
1− bwt+T (rt+T − µ) +

b2

2
w2

t+T (rt+T − µ)2 − b3

6
w3

t+T (rt+T − µ)3

]
= − exp {−bwt+T µ}

[
1 +

b2

2
w2

t+T ht+T −
b3

6
w3

t+T st+T

]

where st+T denotes the conditional third centered moment of the distribution of

rt+T . This is the analytical form we worked with in section 3.
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B Multi-period forecasts of second and third mo-

ments

Given the following process for the logarithm of excess returns:

rt =
√

htεt

ht = ω + αr2
t−1 + βht−1 + γIrt−1<0r

2
t−1

the conditional forecast of the variance of multi-period returns can be computed as:

Et

( T∑
j=1

rt+j

)2
 =

T∑
j=1

Et

[
r2
t+j

]
=

T∑
j=1

Etht+j

= ht+1 +
T∑

j=2

[
ω

j−2∑
i=0

(
α + β +

γ

2

)i

+
(
α + β +

γ

2

)j−1

ht+1

]

We shall denote the third centered conditional moment as:

st+j = Et

( j∑
i=1

rt+i

)3


21



The one period ahead third moment is equal to zero:

st+1 = Et

[
h

3/2
t+1ε

3
t+1

]
= 0

The conditional third moment of two periods continuously compounded returns is:

st+2 = Et

[
(rt+1 + rt+2)

3]
= 3Et

[
rt+1r

2
t+2

]
= 3Et

[√
ht+1εt+1

(
ω + αht+1ε

2
t+1 + βht+1 + γIεt+1<0ht+1ε

2
t+1

)]
= −12

5
γh

3/2
t+1

Similarly:

st+3 = st+2 + 3
√

ht+1Et [εt+1ht+3] + 3Et

[√
ht+2εt+2ht+3

]
= st+2 + 3

√
ht+1Et

[
εt+1

(
ω + αht+2 + βht+2 +

γ

2
ht+2

)]
− 12

5
γEt

[
h

3/2
t+2

]
= st+2 + 3

(
α + β +

γ

2

)√
ht+1Et [εt+1ht+2]−

12

5
γEt

[
h

3/2
t+2

]
= st+2 + 3

(
α + β +

γ

2

)
(st+2 − st+1)−

12

5
γEt

[
h

3/2
t+2

]
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and

st+j = st+j−1 +
(
α + β +

γ

2

)
(st+j−1 − st+j−2)−

12

5
γEt

[
h

3/2
t+j−1

]
, ∀j ≥ 4

where Et

[
h

3/2
t+j

]
can be approximated to a first order as:

Et

[
h

3/2
t+j

]
≈

(
h

3/2 − 3

2
h

3/2
)

+
3

2
h

1/2
Etht+j

= k0 + k1Etht+j

C Computation of the certainty equivalent risk-

free rate

Given the utility function discussed in this paper, a sequence of portfolio weights

{wt}T
t=1 and the actual risk free rate rf deliver the following expected utility:

U
(
rf
)

= −E [exp {−bwtrt}] exp
{
−brf

}
(9)
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An agent that allocates all of her wealth in the risk-less asset at the rate r̃f obtains:

U
(
r̃f
)

= − exp
{
−br̃f

}
(10)

The rate r̃f that makes the investor indifferent between (9) and (10) is computed

as:

U
(
rf
)

= U
(
r̃f
)

− log E [exp {−bwtrt}] exp
{
−brf

}
= − log exp

{
−br̃f

}
− log E [exp {−bwtrt}] + brf = br̃f

from which it follows:

r̃f = rf +
− log E [exp {−bwtrt}]

b
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