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It can be expensive to acquire the data required for businesses to employ data-driven predictive modeling, for example to 
model consumer preferences to optimize targeting. Prior research has introduced “active learning” policies for identifying 
data that are particularly useful for model induction, with the goal of decreasing the statistical error for a given acquisition 
cost (error-centric approaches).  However, predictive models are used as part of a decision-making process, and costly 
improvements in model accuracy do not always result in better decisions. This paper introduces a new approach for active 
data acquisition that targets decision-making specifically.  The new decision-centric approach departs from traditional active 
learning by placing emphasis on acquisitions that are more likely to affect decision-making. We describe two different types 
of decision-centric techniques.  Next, using direct-marketing data, we compare various data-acquisition techniques.  We 
demonstrate that strategies for reducing statistical error can be wasteful in a decision-making context, and show that one 
decision-centric technique in particular can improve targeting decisions significantly.  We also show that this method is robust 
in the face of decreasing quality of utility estimations, eventually converging to uniform random sampling, and that it can be 
extended to situations where different data acquisitions have different costs.  The results suggest that businesses should 
consider modifying their strategies for acquiring information through normal business transactions. For example, a firm such 
as Amazon.com that models consumer preferences for customized marketing may accelerate learning by proactively offering 
recommendations—not merely to induce immediate sales, but for improving recommendations in the future. 
 

1.        Introduction 

With advances in computing power, network reach, availability of data, and the maturity of induction 

algorithms, businesses are taking advantage of automated predictive modeling to influence repetitive 

decisions, often as tools for extracting customer, competitor and market intelligence (Berry and Linoff, 

2004). Consider an example: telecommunications companies face severe customer retention problems, 

as customers switch back and forth between carriers (the problem of "churn").  For each customer, at 

each point in time, the company faces a decision between doing nothing and intervening in an attempt 

to retain the customer.  This paper focuses on modeling uncertain outcomes for a certain type of 

decision problem:1 a firm or individual must decide repeatedly either to take a specific action or not to 

take the action.  If the action is taken, it results in one of two uncertain but well-defined outcomes.  We 

assume that the utilities associated with each outcome and with not taking the action can be estimated or 

are known.  

                                                 
1 We note below where our theoretical derivation and our proposed techniques apply more generally; however, for most of 
the treatment in the paper we assume this particular setting.  In the penultimate section we discuss extensions to this setting 
and limitations of the techniques we introduce. 
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Such decisions can be based on predictive models built from data on known outcomes; however 

acquiring such data can be costly.  Consider our customer-retention example.2  Outcomes can be 

modeled based on data about customers and their responses to the firm’s actions, and firms collect such 

data in various ways. They undertake direct solicitations, for example via experimental special offers, via 

customer surveys, and via interactions such as Amazon’s on-line acquisition of product ratings.  Firms 

also acquire data directly from third parties.  For example, Acxiom3 sells detailed consumer demographic 

and lifestyle data to many firms in support of their marketing efforts; other firms such as Abacus4 

maintain and sell specialized consumer purchase information.  Firms also collect information indirectly, 

in the course of normal business interactions, for example by observing responses to offers or the 

results of everyday merchandizing decisions.  All these acquisitions involve costs to the firms. 

For this paper, we consider the acquisition of a particular kind of data.  Following the 

terminology used by Hastie et al. (2001) we refer to the data used to induce the predictive model as the 

training data.  Each training data point is a historical example of the phenomenon being modeled (e.g., the 

targeting of a particular customer), described by various variables including a target variable (e.g., 

indicating whether or not the customer responded to the offer).  Of particular importance to this paper, 

in training data each historical example’s label, the target variable’s value, is known. We focus on the 

acquisition of these labels, which can be costly.  For example, obtaining response data for individual 

consumers involves solicitation costs, incentives required for revealing preferences, negative reactions to 

solicitations, etc.  Firms also incur opportunity costs when labels are acquired over time through normal 

business interactions.  For example, making a particular offer to a sample of web-site visitors, for the 

purpose of acquiring training labels, may preclude making another offer already known to be profitable. 

 
2 Later we will expand on this example, noting that more than one model may be used for a complex decision.  For this paper 
we ignore some issues pertinent to this example, such as calculations of lifetime value, but see (Rosset et al. 2003) for a 
treatment from the data-mining perspective. 
 
3 http://www.acxiom.com/ 
4 http://www.abacus-us.com/ 
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To reduce the cost of label acquisition, researchers have studied the selective acquisition of labels 

(see Section 2.2), reasoning that focused selection of cases for label acquisition should yield more-

accurate models for a given acquisition budget, as compared to the standard approach of acquiring labels 

for cases sampled uniformly at random.  There are various label-acquisition strategies for reducing 

statistical error (error-centric approaches).  However, business applications employ predictive models to 

help make particular business decisions.  Of course, a more accurate model may lead to better decisions, 

but concentrating on the particular decisions themselves (a decision-centric approach) has the potential to 

produce a more economical allocation of the acquisition budget.  Prior work has not addressed label 

acquisition to facilitate decision-making directly. 

This paper makes several contributions, largely in the design-science setting described by Hevner 

et al. (2004).  (1) We introduce decision-centric label acquisition as a general approach with intuitive 

advantages over the traditional error-centric approach.  We demonstrate that, in comparison, the error-

centric approach can be wasteful in a decision-making context, because some costly improvements to 

statistical accuracy can have no effect—or, counterintuitively, can have a detrimental effect—on 

decision-making accuracy.   

(2) We introduce and contrast two different general strategies for decision-centric label 

acquisition.  One strategy builds a model to estimate outcome probability, later to be combined with 

utility information.  The other strategy constructs a new modeling task incorporating the utility 

information. These strategies are decision-centric and they are generic, i.e., they can be applied to any 

predictive modeling technique, and thus they extend the existing literature on active learning for 

improving a model’s statistical accuracy.5  

(3) Using data from a direct-marketing campaign, we conduct an experimental comparison of 

various label acquisition strategies.  The results show that an implementation of one of the two decision-

centric strategies, which we call Goal-Oriented Active Learning (GOAL), clearly is preferable over the 

 
5 Note that the problem that has come to be known as “cost-sensitive learning” constitutes a special case of optimal decision-
making.  Decision-centric techniques apply to such problems as well; see the Appendix for a discussion. 
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alternatives (including the alternative decision-centric approach, error-centric acquisition, and uniform 

random acquisition), resulting in better decision-making accuracy and thereby in larger profit.  On the 

other hand, decision-centric acquisition produces models with higher statistical error than error-centric 

acquisition, demonstrating that the technique selects appropriately those error reductions that will 

improve decision-making and avoids wasteful improvements in statistical accuracy.  Furthermore, for 

cases where utilities are not known with certainty, for example when they too must be estimated from 

the data, we analyze GOAL’s robustness to error in utility estimations.  The results show GOAL to be 

relatively robust to utility-estimation error, with decision-making degrading gradually with increasing 

estimation error—in the worst-case converging to the performance of uniform random sampling.  We 

also demonstrate an extension to GOAL for scenarios where label-acquisition costs are not uniform.   

2.  Active Learning: Terminology, Framework and Prior Work 

As described above, a decision resulting in an action will yield one of two well-defined outcomes.    

Predicting which outcome will occur therefore can be modeled as a classification problem, and the 

decision-maker faces the opportunity to induce a classification model from training data.  Formally, a 

classification model is a mapping of an input vector Xx∈  to a discrete class . The model is 

induced from a training set of labeled “examples”—  pairs—which are generalized into a concise 

model . Differently from such a categorical classification model, a probabilistic classification 

model estimates a probability distribution over 

Yy∈

),( yx

YXM →:

Y  for a given input vector x .  A maximum a posteriori 

classification rule would then map x  to the class with the highest estimated probability.  Alternatively, 

the estimated probability can be used in decision-making to estimate the expected utility of the 

corresponding action. 

y

2.1 Active Learning  

A modeling technique’s predictive performance for a particular domain of application is captured by its 

“learning curve,” the relationship between the model’s performance (e.g., its accuracy) and the number 
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of training examples used to induce the model.  Typically, a model’s performance improves with the 

number of training examples, but the marginal improvements diminish as the number of training 

examples increases (cf., Cortes, et al., 1994; Perlich, et al., 2003).  Consider a typical setting where there 

are many potential training examples for which labels can be acquired at a cost, e.g., consumers to whom 

we can send an offer to determine whether they will respond.  Let us refer to examples whose labels are 

not (yet) acquired as unlabeled examples, and to examples whose labels already have been acquired as 

labeled examples.  The goal of active learning (Cohn et al., 1994) is to acquire the labels of unlabeled 

examples judiciously in order to produce a better model as economically as possible.  Specifically, for a 

given number of acquisitions, we would like the model’s generalization performance to be better than if 

we had used the alternative strategy of acquiring labels for a representative sample of examples (via 

uniform random sampling). Active learning chooses to label examples estimated to be particularly 

informative for reducing model error, so ideally it results in a steeper learning curve exhibiting higher 

accuracy for any given number of acquisitions, or reduced acquisition cost for any given level of 

accuracy.  

 The challenge of an active learning method is therefore to estimate the relative contribution of 

possible training examples prior to acquiring their labels.  Most existing methods identify examples for 

acquisition based on some notion of the uncertainty of the currently held model.  For example, 

uncertainty sampling (Lewis and Gale, 1994) is a generic active learning method designed for inducing 

binary classifiers.  Uncertainty sampling defines the most informative examples (whose labels should be 

acquired) as those examples for which the current classification model estimates probabilities closest 

to 0.5.  The rationale is that the classification model does not capture strong discriminative patterns for 

predicting the class membership of these examples, and so the estimation of the classification boundary 

can be improved most by acquiring their labels for training. 
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We propose instead a strategy that employs the (estimated) costs of actions and benefits from 

outcomes, in addition to the estimation of outcome probabilities, in order to evaluate the potential 

contribution to the decision-making task from each acquisition.  

2.2    Prior Work  

The role of information acquisition in decision-support has been studied in a variety of settings. An 

important line of relevant research involves the classic multi-armed bandit problem originally proposed 

by Robbins (1952).  Given k  slot machines with different rates of return, a gambler has to decide which 

machine to play in a sequence of trials in order to maximize the overall reward. The challenge stems 

from the tradeoff between (i) the acquisition through experimentation of information about the returns 

of different machines and (ii) profit generation by playing the machine estimated to have the highest 

winning odds. Differently from active learning, the gambler estimates the success probability of each 

machine, whereas an active learner must induce a multivariate predictive model. 

 Prior work on technology choice also has considered the acquisition of costly information for 

estimating the success of alternative courses of action (McCardle 1985, Kornish 2006).  McCardle (1985) 

analyzes technology adoption decisions, where at each phase the decision maker decides whether to 

acquire information to improve the estimation of technology success or to act based on the current 

knowledge. McCardle’s decision maker must estimate a single parameter (i.e., the probability of success) 

and can only acquire observations of a single random variable. Active learning must consider the 

induction of a predictive model and choose between potential training examples of varying informative 

value. 

  Research on predictive models for business intelligence has focused primarily on modeling techniques 

(e.g., West et al., 1997; Moe and Fader, 2004).  As discussed above, such intelligence relies on expending 

significant time and/or money to obtain data. Therefore, it is important to understand the fundamental 

properties of the information that will be most effective for inducing accurate models, so as to direct the 

acquisition of such information.  The fundamental notion of active learning for building predictive 
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models has a considerable history in the literature.  Work on optimal experimental design (Kiefer, 1959; 

Fedorov, 1972), or OED, examines the choice of observations for inducing parametric statistical models.  

The objective is to devise a distribution over the independent variables reflecting the contribution of 

label acquisition for these examples.  OED generally depends upon a closed-form objective function 

that cannot be derived for non-parametric models.  Simon and Lea (1974) describe conceptually how 

induction involves the simultaneous search of two spaces: the results of searching the hypothesis space 

can affect how the example space will be sampled, and vice versa. Winston (1975) suggests that the best 

examples to select for induction are "near misses," instances that are very similar to correctly classified 

instances. Most existing active-learning methods address categorical classification problems and estimate 

the value of acquisitions based on some notion of the uncertainty of the currently held model.  This idea 

was first introduced by the Query by Committee (QBC) algorithm (Seung et al., 1992), where given a 

stream of training examples an example is considered informative, and its label is acquired, if different 

models from the current version space (Mitchell, 1997) assign the example to different classes. A variety 

of alternative measures of uncertainty have been proposed (e.g., Cohn et al., 1994; Lewis and Gale, 1994; 

Saar-Tsechansky and Provost 2004).  

3. Active Learning for Decision-Making 

Previously introduced active learning strategies identify and acquire information that is estimated to 

produce the largest reductions in the model’s statistical prediction error.  These error-centric strategies 

make no reference at all to the decision-making context in which the model will be used.  Learning a 

model from data should allow the decision maker to better identify the most cost-effective decision—

the action with the highest expected utility. 6 We argue that knowledge of the structure and utilities of 

the decision-making task also can aid in deciding what additional data to acquire.  

 
6 For clarity, we will assume that the utility for the business is immediate profitability.  In practice, business utility would take 
into account other factors, such as customer satisfaction, shareholder satisfaction, regulator satisfaction, and so on. 
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Two different sorts of learning processes may support the identification of the most cost-effective 

decision: 

1. Decision Learning: The optimal decision itself (rather than the outcome of the action) is cast as a 

categorical classification task, incorporating any and all utility information. Specifically, each 

example of a potential decision is labeled to reflect the (estimated) optimal decision and a 

targeting model is induced, mapping each example directly to the predicted highest-expected-

utility decision. 

2. Response Learning: The decision maker induces a predictive model that estimates probabilities 

of action outcomes, which are used subsequently by the decision maker to estimate and compare 

the expected utilities from alternative actions (action versus no-action in our case). The targeting 

strategy applies Von Neumann-Morgenstern expected utility theory (Von Neumann and 

Morgenstern, 1944): given the estimates, for each decision-making opportunity the decision-

maker identifies the action that will produce the highest utility in expectation.     

Both approaches employ learned models when inferring the optimal action. The fundamental difference 

between these two methods is that Response Learning applies induction to model the outcome 

uncertainties, e.g., in consumers’ responses, and applies existing theory about strategies for optimal 

decision-making to derive the predicted optimal action. Decision Learning, by contrast, employs 

expected utility theory to label examples with the optimal action and applies induction to learn a model 

of optimal action from the data. As we will see, these differences can result in different decisions.  

3.1 A Decision-Learning Approach: predicting the best action  

We explore decision learning, first to evaluate its efficacy for decision-making in general, and then to 

assess how active learning can be applied for cost-effective label acquisition.  As just discussed, decision 

learning will build a model that maps decisions directly to actions.  Thus, the training examples will be 

descriptions of decisions to be made.  Consider the case where an example describes a consumer and the 

decision in question is whether or not to mail her a solicitation. Central to the formulation of the 
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learning problem is the determination of the labels for the training examples.  A possible (naïve) 

approach is to label an example decision as “solicit” if the corresponding historical solicitation had been 

profitable.  However, this naïve approach does not take into account the role of expected utility theory 

in the evaluation of alternatives. Specifically, consumers who did not respond to the campaign (and that 

would be considered unprofitable) may indeed be worthy of solicitation if in expectation the amount they 

would contribute exceeds the cost of solicitation.7  Because of the stochastic nature of consumer 

responses the optimal decision is the action with the greatest utility in expectation. Regardless of 

whether or not a consumer responds in a given campaign, the example decision should be labeled as 

“solicit” if targeting a consumer with the corresponding data description would be profitable in 

expectation. Once examples are labeled with their decision-optimal labels, an error-based categorical 

classification model can be induced to estimate the decision-optimal mapping. Note that the optimal 

decision is never observed directly, even for consumers whose responses are known.8  

 Because the decision-making problem now is formulated as a classification task9 a standard 

active learning method for classification can be applied. In our evaluation we employ Uncertainty 

Sampling (discussed above; Lewis and Gale, 1994) to acquire consumers’ responses. We apply one 

modification to the original approach which has been shown to improve its performance substantially 

(Saar-Tsechansky and Provost 2004): examples are sampled from a distribution; an example’s probability 

of being sampled increases the closer its probability of being profitable is to 0.5.  

3.2     A Response-Learning Approach: improving probabilities judiciously  

As discussed, the alternative to Decision Learning is to concentrate on improving the estimations of 

response probability, and to apply decision theory to identify the optimal choice.  However, if decisions 

are not always improved with more accurate probability estimations, traditional active learning strategies 
 

7 Empirical results support this conclusion. In the data used below for the experiments, because of the low response rate, 
when using the naïve method almost all consumers are assessed to be unprofitable, and the corresponding decision is labeled 
“don’t solicit.” The resultant, induced model targets very few consumers and results in negative profits. 
8 Using the notation introduced next, a consumer   is labeled as profitable if .   ix Ψ≥−⋅−+⋅ CUfUf F

ii
S
ii )ˆ1(ˆ

9 This reformulation procedure is a generalization of the procedure used by MetaCost (Domingos, 1999) for cost-sensitive 
learning.  See the Appendix for a comparison of the cost-sensitive learning setting and the decision-making setting. 
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may not be best–error-reducing active learning approaches may waste resources on acquisitions that 

reduce model error but produce little or no improvement in decision-making. We now derive the 

fundamentals for a new decision-centric active learning approach.  

3.2.1    Theoretical Foundation of a Decision-Centric Acquisition Policy 

Recall that our decision maker decides whether or not to initiate a business action, such as mailing a 

solicitation to a consumer. The decision maker would like to estimate the expected utility from the 

action. Let  be an example (e.g., the description of a consumer) and let  denote the (unknown) 

probability that the action with respect to  will be successful (e.g., consumer  will respond to the 

marketing campaign, or will renew her contract).  Let us assume for the moment that the decision maker 

is considering this action in isolation, an assumption we will relax later, for example as with a single-offer 

targeted marketing campaign where the action would be to make the offer to each of a set of consumers.  

Given that the action is taken, let the utility of success and the utility of failure with respect to instance 

 be and  respectively.  Let the corresponding utility of inaction be . Finally let C denote the 

cost of action. To maximize utility, the action should be initiated if , or 

equivalently, if the probability of a successful outcome exceeds the threshold given by 

ix if

ix ix

ix S
iU F

iU iΨ

i
F
ii

S
ii CUfUf Ψ≥−⋅−+⋅ )1(

F
i

S
i

F
iiTh

i UU
UC

f
−
−+Ψ

=  (1). 

Since the true probability of success is unknown, in order for a decision maker to act optimally it 

is necessary to estimate . Because training information is costly, we would like to reduce the cost of 

inducing an estimation model that will render decisions of a given quality.  We have argued that simply 

reducing model error is not always a cost-effective strategy, and now we can be more specific. Consider 

the case in which the actual probability of success exceeds the threshold (suggesting action is better than 

inaction).  For the induced model to allow a decision maker to act optimally it is sufficient that the 

estimated probability of success  exceed the threshold as well, even if it were to be highly inaccurate.  

if

if̂
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Improvement of the probability estimation via information acquisition when the current estimation 

already specifies the correct decision would not affect decision-making, and therefore the cost of the 

improvement would be wasted.  This observation suggests a complete deviation from the error-centric 

paradigm.  In fact, if the true probability is only slightly above the threshold and the estimate has a non-

negligible variance, improving the probability estimation by reducing the variance may adversely affect 

decision-making (cf., Friedman 1997), as we illustrate below.  

A model is induced from a sample, so the model’s probability estimation  can be treated as a 

random variable.  Let  be the correct decision and let  be the decision derived using the model’s 

probability estimation. Similarly to Friedman’s analysis of incorrect classifications under 0/1 loss 

(Friedman, 1997), the probability of making a “wrong decision”–-i.e., a decision that is inconsistent with 

the decision derived using the true probability of success–-is given by: 

if̂

iΓ iΓ̂

( ) ( )∫∫ ∞−

∞
≥+<=Γ≠Γ

Th
i

Th
i

f

i
th

iif i
Th

iiii fdfpffIfdfpffIP ˆ)ˆ(ˆ)ˆ()ˆ(        (2)  

where the indicator function  is 1 if  is true and 0 otherwise.   )(LI L

In order to reduce the cost of building models that support accurate decisions, it is important to 

understand the circumstances under which costly improvements in probability estimation accuracy 

should be avoided. If we approximate  with a normal distribution, the probability of making an 

inconsistent decision is given by 

)ˆ( ifp

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−Φ=Γ≠Γ

i

Th
iiTh

iiii
f

ffEffsignP
ˆvar

ˆ
)ˆ(      (3) 

where  denotes the right-hand-side tail of the standard normal distribution, E denotes an expectation 

and var denotes the variance of a random variable.  Assume for illustration that a learner is used to 

induce a model from a training sample for estimating the probability that consumers would respond to a 

certain offer, and for a given consumer  the model produces (on average over different samples) a 

probability estimation  such that the expected profit from an offer solicitation to  is higher than the 

expected profit of not making the offer, i.e., . Also assume that the true probability of response 

Φ

ix

if̂ ix

Th
ii ff >ˆ
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suggests the same ( ).  So we expect the model to lead to the correct decision: make the offer. 

Under such circumstances it may not be cost-effective to acquire additional labels (consumer feedback) 

to improve the estimation; improving the estimation may 

Th
ii ff >

increase the chance of decision-making error!  

Specifically, from (3) we see that indeed the larger the average probability estimation produced by the 

learner and hence the more extreme—and in the case in question the more inaccurate—the estimates 

are, the more likely it is that the model would produce the correct decision.  This is because the overly 

extreme estimates reduce the chance that, due to estimation variance, the estimated expected profit from 

action would (mistakenly) fail to exceed that of inaction. There is an incentive, however, to remove such 

inaccuracy when the estimated probability and the true probability of response lead to different 

decisions.10   For example, assume that the true expected benefits from inaction exceed those of action, 

but that on average the learner induces a model that suggests otherwise. Thus, for cost-effective 

acquisition of training labels to support decision-making, one is well advised to take a decision-centric 

strategy, acquiring labels when an improvement in the estimation is likely to lead to higher expected 

utility, and avoiding acquisitions otherwise even if they might produce a more-accurate model.   

The analysis remains essentially the same if we no longer consider a single action in isolation, but 

instead replace inaction with an alternative action with uncertain outcomes and the expected utility of 

this action, , can be estimated (potentially using another model to estimate the probabilities of the 

corresponding uncertain outcomes).  The formulation would then have to include the corresponding 

costs of the different possible outcomes in the obvious fashion.  However, for this paper we assume 

costly examples are acquired to induce one model at a time; we discuss this limitation further below. 

iΨ

In summary, ideally and in contrast with traditional error-centric methods, an active learning 

mechanism should incorporate (1) the costs of alternative courses of action and (2) the utilities derived 

from possible outcomes.  

                                                 
10 There is an incentive whenever the estimated probability  and the true probability  are on different sides of the 
threshold . 

if̂ if
Thf
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3.2.2     Goal-Oriented Active Learning (GOAL)  

Our analysis suggests that the most informative responses can be obtained for cases where the current 

model would lead to erroneous decisions.  Unfortunately, this condition cannot be determined with 

certainty before responses are acquired. Consider, then, the following two scenarios concerning a 

decision as to whether to target particular consumers with an offer.  In scenario A the estimated class 

probability of response is considerably higher than the threshold probability. In scenario B the estimated 

probability of response is only marginally greater than the threshold probability. In scenario A the 

evidence in the training data is strongly in favor of action—target the consumer.  While one cannot 

determine with certainty the consumers for whom the current model would lead to erroneous targeting 

decisions, it is possible to employ a heuristic to capture this notion. Our response-learning policy 

assumes that a confident response probability estimation is also more likely to yield a correct decision, 

rendering additional acquisitions to improve the decision wasteful.  This follows the motivation of 

uncertainty sampling (Lewis and Gale 1994) and most other active learning heuristics. More specifically, 

if the estimated probability of response is significantly larger or smaller than the probability for which 

the decision maker would be indifferent regarding two or more alternative actions, we will infer that 

there is substantial evidence in the data in favor of the corresponding action, and thus that the decision 

is more likely to be correct (and vice versa). Furthermore, when the current decision is erroneous, a 

more substantial change in the estimated probabilities is necessary to affect the decision in Scenario A as 

compared to Scenario B, requiring more training examples to sway the estimation in favor of inaction 

(all else being equal). Thus, the approach we propose here acquires labeled examples pertaining to 

decisions that are more likely to be erroneous and also are less costly to affect, i.e., decisions for which a 

relatively small change in the estimation can change the preference order of choice (when  is closer to 

).  Of course, although the design is guided by the theoretical development above, this is a heuristic 

method.  Note also that this selection criterion generalizes the selection criterion of uncertainty sampling 

if̂

Th
if
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(Lewis and Gale 1994).  Specifically, with a particular (perhaps unlikely) choice of utilities,11 this criterion 

reduces to the selection criterion of uncertainty sampling.  Thus, the theoretical development just 

presented provides an alternative explanation for uncertainty sampling’s effectiveness in maximizing 

classification accuracy. 

The new active learning technique we propose operates iteratively. At each phase,  examples 

are selected from the set of unlabeled examples UL ; their labels are acquired and the examples are added 

to the set of labeled training examples

1≥n

L . The estimated effectiveness of each potential acquisition is 

calculated as follows. Each example ULxi ∈  is assigned a score that is inversely proportional to the 

minimum absolute change in the probability estimation that would result in a decision different from the 

decision implied by the current estimation, i.e., the score of example  is inversely proportional to ix

Th
ii ff −ˆ . 

For selection, as described in Section 3.1, rather than selecting the examples with the highest 

scores (as is common in active learning), a sampling distribution is created. Specifically, the effectiveness 

scores are considered to be weights on the examples, and examples are drawn from a distribution where 

the probability of an example to be selected for labeling is proportional to its weight. Incorporating a 

stochastic element in the selection of examples alleviates the danger of acquiring multiple identical 

examples (due to identical weights), helps to avoid selecting outliers, and generally is likely to choose 

examples from denser areas of the example space (all else being equal).  Formally, the sampling-

distribution weight  assigned to example )(xW ULxi ∈  is given by  

([ 1ˆ)(
−

−+⋅= Th
iii ffxW βκ )] ,  where β  is some small real number to avoid division by zero (in the 

empirical evaluation that follows 001.0=β ) ,  and κ  is a normalizing factor given by  

                                                 
11 Specifically, = 0.5 if , i.e., the sum of the utilities of the outcomes of the main action is 
equal to twice the sum of the utility of the alternative action (in our case, of inaction) and the cost of the main action.    

Th
if )(2)( CUU i

F
i

S
i +Ψ=+
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1ˆULsize

i
Th

ii ffβκ , to make W  a distribution. Figure 1 presents pseudocode of the method, 

which we call Goal-Oriented Active Learning (GOAL).  
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Figure 1: The Goal-Oriented Active Learning (GOAL) Algorithm 

Input: Set of unlabeled examples UL , initial set of labeled examples L , modeling 
technique I , stopping criteria, batch size n, cost of acquisition C, utilities 

 for each example i
S
i

F
i UU Ψ,, ULx ,  i ∈

   While (stopping criteria not met)  
1 Apply I  to L , resulting in model  M 
2 Apply model M to UL   
3 For each example ULxi ∈  compute  ( )[ ] 1ˆ)(

−
−+⋅= Th

iii ffxW βκ   
   4       Sample from the probability distribution W , a subset S  of n  examples  
            from UL without replacement  

5 Remove  from UL , acquire labels for examples in , and add them to  S S L
End While 
Output: Model M generated from L  

The problem setting we employ here includes two alternative actions. However, the framework 

applies directly to a decision among n alternative actions if the expected utility from alternative actions 

can be estimated (possibly by using other predictive models). Specifically, assume consumer responses to 

action A are being modeled. Following GOAL’s principles, it would be most cost effective to acquire 

responses for which it is likely that a small change in the consumers’ estimated response probabilities to 

action A may alter the decision. In our analysis above we derive the likelihood of a decision change by 

comparing the expected utility from A to that of the alternative action and by computing a distance 

between the current distribution of uncertain outcomes and one that would lead to a decision change. 

The treatment in a multi-action (>2) scenario differs only by the choice of the relevant action whose 

expected utility should be compared to that derived for action A. A change in a consumer response 

estimation to A will change the preference order of choice if: (i) A is currently the action with the 

highest expected utility, but a change in the estimation of A’s outcome probabilities would lead to the 

action with the second-highest expected utility to be the action of choice; or if (ii) a change in the 

estimation of A’s outcome probabilities would result in the expected utility from A to exceed that of the 

action with the (current) highest expected utility. In (i) the relevant comparison is between A and the 

second-best action, whereas in case (ii) the relevant comparison is between A and the action currently 

estimated to have the highest expected utility. 
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4. A Direct Marketing Campaign Case Study 

Our empirical evaluation employs data from a direct-marketing campaign, which comprise real 

consumer interactions and both information-acquisition costs and utilities from successful targeting. The 

data pertain to a charity’s periodic solicitations to potential donors; they were the data for the KDDCUP 

competition in 1998 (Zadrozny and Elkan, 2001; Wang et al., 2003) and are now publicly available 

(Blake et al., 1998).  For these data, each solicitation costs 68 cents and the average response amount is 

$15. The response rate is approximately 5%. Because of the low response rate and the cost of 

solicitation, informed decisions that minimize wasteful solicitations are critical to the success of the 

campaigns. Building the predictive models used to generate targeting decisions requires costly 

acquisitions of consumer responses. For cost-effective utilization of the charity’s donor base, it is 

important to identify the most informative solicitations for training the model so as to improve future 

targeting decisions.  

4.1   Acquisition Strategies for the Direct Marketing Problem  

 Given an acquisition budget, an acquisition strategy solicits potential donors in a training phase 

and acquires their responses (e.g., whether or not they responded to the solicitation, and if so, in what 

amount).  These form the labeled training data.  Once the labels are acquired, a targeting model is 

induced from the training data and subsequently is employed in the main campaign to target potential 

donors.  In the main campaign, a successful solicitation is one that results in a contribution that exceeds 

the solicitation cost. Therefore, the training objective is to reduce the total acquisition cost of training 

examples necessary to achieve a particular level of campaign profit, or alternatively to increase the 

campaign profit for a particular acquisition investment. 

For Decision Learning we evaluate two acquisition strategies: 

(1) As discussed above, Decision Learning casts the decision problem as a classification task and we 

employ Uncertainty Sampling to identify useful response acquisitions.  
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(2) As an alternative to active learning we acquire responses from a set of donors sampled uniformly at 

random. Uniform random sampling (URS) is the most widely applied practice for the acquisition of labels 

based on a set of unlabeled training examples. In spite of its simplicity of implementation, URS is 

remarkably effective because it attempts (implicitly) to obtain a representative sample.   

For Response Learning we evaluate three label-acquisition strategies: 

(3) Acquisition of responses from a representative set of donors, using URS.   

(4) An error-centric acquisition (ECA) method that focuses on the model’s average error reduction. 

Because probability estimates must be used to evaluate the expected profitability of alternative 

solicitations, an acquisition strategy that improves these estimations may also be effective for improving 

targeting decisions.  To our knowledge BOOTSTRAP-LV (Saar-Tsechansky and Provost, 2004) is the only 

generic method designed specifically to reduce class-probability-estimation error, rather than 

classification error.  BOOTSTRAP-LV follows the traditional error-centric paradigm, acquiring examples 

that reduce the average probability estimation error. Specifically, the method estimates the variance in 

learned models’ response probabilities, for each potential example, and assigns a higher preference to the 

acquisition of responses from examples with higher variance.12   In the experiments described here the 

number of bootstrap-samples used in BOOTSTRAP-LV is k=10, and performance does not vary 

significantly for larger values of k.  

(5) GOAL.  Let the estimated probability that a potential donor  would respond to a mailing be , the 

estimated contribution amount (described below) be , and the mailing cost be C . The profit from 

inaction is zero; hence a solicitation is initiated if  and the threshold probability 

ix if̂

S
iÛ

0ˆ ≥−⋅ CUf S
ii

 
12 An associated technical report (Maytal Saar-Tsechanksy and Provost, 2005) provides a comparison to other error-centric 
policies with these data. The study demonstrates that Bootstrap-LV results in the highest profits on average and is therefore 
the error-centric policy we chose for this study. 
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4.2 Experimental Setting 

In order to evaluate the five acquisition strategies, we compare the profits generated from solicitation 

decisions derived from the models induced with each.  We now describe the induction methods 

examined, the data partitioning, and the method for calculating generated profits. 

 For estimating the probability of response, we employ Probability Estimation Trees (PETs)—

unpruned C4.5 classification trees (Quinlan, 1993) for which the Laplace correction is applied at the 

leaves (Provost and Domingos 2003; Perlich et al. 2003); as discussed below similar results are obtained 

for other induction techniques.  For this application, revenues from successful solicitations are not 

known in advance and therefore also must be estimated. To do so, we use a linear regression model 

induced from historical data on past donations.13  For the Decision-Learning approach we use all the 

predictors employed above to estimate the probability of response and the contribution amounts.  In 

addition, we include the targeting costs, the estimated response probability, and the estimated 

contribution amounts as independent variables for the Decision-Learning approach. The response 

probabilities and contribution amounts are estimated from the corresponding available training data for 

each point on the learning curve. To minimize experimental variance we also employ Probability 

Estimation Trees for Decision Learning.  

                                                 
13 We employ predictors that were identified in earlier studies to be predictive of donation amounts. The predictors are: the 
amount of the most recent gift, the number of donations per solicitation, average donation amount in response to the last 22 
promotions, and the estimated probability of donation as estimated by the model. Following Zadrozny and Elkan (2001) the 
probability estimation is incorporated as a predictor in the linear regression model to remove a sample selection bias. Because 
large gifts are rare there exists a selection bias towards one group of frequent donors who donate small amounts resulting in 
the regression model underestimating gifts by donors who contribute large amounts infrequently. To alleviate such a bias, 
Heckman (1979) recommends incorporating the probability of belonging to either group (i.e., the probability of making a 
donation) as a predictor in the regression model. 
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On a separate (holdout) set of donors, we compare the profits generated by each method for an 

increasing number of acquired responses. More specifically, at each acquisition phase the responses of 

M additional donors are acquired by each method and added to its respective training set. Each point 

on each curve shown hereafter is an average over 10 independent experiments.  For each experiment, 

the data are randomly partitioned into: an initial set L  of labeled training examples selected at random 

(used to build the first model); an unlabeled pool UL  of donors from which each strategy will acquire 

additional responses, which then are added to L  (cumulatively as the active learning progresses); and an 

independent test set T  of potential donors whose responses and donations are known to the 

experimenters, for evaluating the strategies. To reduce experimental variance, the same data partitions 

are used by all methods. 

The profit is calculated via the simulated process depicted in Figure 2 (recall that responses are known 

to the experimenters for the entire test set). For the Response-Learning approach, for each potential 

donor in the test set, a solicitation is mailed if the estimated expected revenue exceeds the solicitation 

cost. For the Decision-Learning approach, a solicitation is mailed if the profitability model estimates that 

the consumer is likely to be profitable (with probability ≥  0.5). In both approaches, the cost of mailing 

is subtracted from the total profit whenever a solicitation is made; if a donor responds to a solicitation 

the actual donated amount is added to the overall profit. 

 

if̂

CUf S
i >⋅ ˆˆ
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Figure 2:  Decision-making profitability calculation from charity solicitations 
 

4.3     Results 

Since we are not aware of such an experiment being carried out previously, first we show that Decision 

Learning is inferior to Response Learning when acquiring labels uniformly at random. Figure 3 plots the 

profit generated with each approach for an increasing number of training data. The curves clearly show 

that the estimation of response probabilities consistently results in significantly better decisions. Thus, 

while the decision task can in principle be formulated as a classification task, targeting decisions are less 

accurate on average when they are induced from the data, as compared to when they are derived directly 

from expected utility theory.  
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Figure 3:  Profits from targeted solicitations. Targeting decisions are derived with Decision Learning and 
Response Learning for an increasing number of responses used for training. 

 

Why is it advantageous to induce consumers’ response probabilities and to apply a policy derived from 

expected utility theory, rather than to learn the final targeting policy completely from data? First, note 

that both approaches have access to the same estimations for the probability of response   and the 

utilities from different outcomes.  The optimal targeting rule 

if̂

( )F
i

S
ii UUfEU ,,ˆ  comes directly from Von 

Neumann-Morgenstern expected utility theory and determines whether a consumer with an estimated 

probability of response , a contribution , and a targeting cost  is profitable in expectation. if̂
S
iU F

iU
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Response Learning estimates  from the data and the optimal targeting rule if̂ ( )F
i

S
ii UUfEU ,,ˆ  is applied 

to infer each consumer’s profitability. By contrast, with Decision Learning ( )F
i

S
ii UUfEU ,,ˆ  itself must be 

induced from the data. Thus, unless (i) Decision Learning implicitly learns a better  than learning it 

directly (which seems unlikely), or (ii) induction of 

if̂

( )F
i

S
ii UUfEU ,,ˆ  is perfect, then targeting decisions 

based on Decision Learning’s induced mapping ( )F
i

S
ii UUfEU ,,ˆ^

 will necessarily be inferior to decisions 

derived from Response Learning. Indeed, as shown by the initially increasing profit curve of Decision 

Learning in Figure 3, the expected utility mapping induced from the data improves with more training 

examples. However, because ( )F
i

S
ii UUfEU ,,ˆ  is known exactly and can be readily deployed, there is no 

advantage in imperfectly relearning this knowledge via induction. 

Figure 4 shows the average acquisition selection times and the profits obtained from targeting 

decisions using Response Learning (RL) when labeled training examples are acquired with GOAL, Error-

Centric Acquisition (ECA), and Uniform Random Sampling (URS), as well as using Decision Learning 

(DL) when labeled training examples are acquired with Uncertainty Sampling (US).  Profitability is 

plotted for increasing costs of response acquisitions. Initially, each method received (the same) 2000 

training examples.  At each phase ten responses and in total 5000 responses were acquired actively by 

each method. Note that initially all acquisition methods have access to the same, small set of responses, 

and therefore, the same consumer response model is induced by all RL methods resulting in the same 

performance (DL learns a different model, of course). As additional donors’ responses are acquired by 

each method, the sets of responses available for training begin to differ in composition, resulting in 

different learned models. 

When Uncertainty Sampling is applied to acquire informative responses for Decision Learning, the 

resultant profits do not surpass the performance obtained with GOAL, nor do they surpass profits of 

Response Learning when responses are acquired at random. This demonstrates that active acquisition 
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using Uncertainty Sampling does not overcome Decision Learning’s handicap, its need to induce the 

optimal decision-making rule (imperfectly) from the data.   
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Acquisition strategy Average selection time 
in millisecond (std.) 

GOAL (RL)  20.05       (1.82) 
ECA (RL) 5.83x102  (31.21) 
URS (RL) 4.18         (0.03) 
US (DL) 10.70       (0.04) 

Figure 4: Profits generated and selection times when responses are acquired via GOAL, Error-centric 
acquisition (ECA), uniform random sampling (URS) for Response Learning (RL), and when responses are 
acquired via Uncertainty Sampling (US) for Decision Learning (DL).  

 

For Response Learning we proposed three alternative response-acquisition policies that aim to 

improve decision-making for a given budget: GOAL, error-centric acquisition, and acquisitions drawn 

uniformly at random. As shown in Figure 4, GOAL improves the profits (on average) more than the 

other methods.  For a given cost, GOAL obtains higher profits from better targeting decisions and is 

significantly more efficient computationally when compared with ECA.14 GOAL also generates higher 

profits as compared to when responses are acquired uniformly at random. Similarly, URS acquisitions are 

clearly inferior to those obtained with ECA. 

 As Figure 4 shows, as more responses are acquired and the composition of the training sets 

diverges, the relative advantage of GOAL becomes more apparent. GOAL produces statistically 

significantly higher profits than URS according to the Wilcoxon signed rank test (p<0.05) once 10 

                                                 
14 Computations were performed on a Dell Precision Workstation with two Pentium P4 2.0 GHz CPUs and 512MB main 
memory, running Linux. 
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responses are acquired and onward, and it obtains statistically superior profits than ECA once 180 

responses are acquired and until 2500 responses are acquired.  

The difficulty of improving targeting decisions and profitability is well demonstrated by the number of 

acquisitions required in order to obtain a given improvement in profits. For example, ECA must acquire 

more than 3500 responses in order to obtain a 1.5% increase in profits; GOAL must acquire only about 

600 responses, less than one-fifth of the responses required by ECA, to exhibit the same improvement in 

performance.  The largest improvements are obtained in the early acquisition phases, where after only 

400 responses are acquired by each method GOAL results in 1.8% higher profits on average compared to 

ECA.  Qualitatively and quantitatively similar results are obtained when assessing decision-making error 

rather than profit, and in particular when separating the targeting of profitable donors and unprofitable 

donors (see Saar-Tsechansky and Provost, 2005).  

 These results provide strong evidence that GOAL effectively identifies acquisitions that can 

improve decision-making.  Two possible explanations are (1) that the advantages conferred by GOAL are 

attributed to its ability to avoid wasteful improvements in probability estimation, or  (2) because it 

actually does a better job of improving probability estimation for a given budget.  Figure 5 compares the 

error of the probability estimates produced by GOAL with those generated by ECA (as always, on out-of-

sample test sets).  Probability estimation accuracy is measured with BMAE  (Best-estimate Mean Absolute 

Error), computed as 
N

xpxp
BMAE

N

i iibest∑=
−

= 1
)(ˆ)(ˆ , where  is the probability estimated by the model 

under evaluation (and that was induced from the selected subset of the available examples); N  is the 

number of test examples for which the models are evaluated;  is a surrogate to the best estimated 

probability and is estimated by a “best” model induced using the entire set of available (labeled) 

examples  (and using a more complicated modeling approach, a Bagged-PET which generally 

produces superior probability estimations (Provost and Domingos, 2003; Perlich et al. 2003)). 

)(ˆ ixp

bestp̂

ULL∪
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Figure 5: Comparison of probability estimation error 

 

In contrast to the pattern shown in Figure 4, on average the probability estimations obtained with 

GOAL for a given acquisition cost are considerably worse than those obtained with ECA.  ECA’s 

improvements are statistically significant according to the Wilcoxon test (p<0.05) after both strategies 

have acquired 500 examples. 

Figure 4 and Figure 5 demonstrate that GOAL leads to improved decision-making for a given 

cost, while the average probability estimations it produces are inferior. As the discussion in Section 3.2 

suggests, some improvements in probability estimation accuracy may not improve decision-making.  

Such improvements are wasteful since they are costly to achieve.  In particular, costly accuracy-

improving acquisitions will be cost-effective only if they lead to different targeting decisions. GOAL and 

ECA differ in the manner by which they value response acquisitions: ECA prefers acquisitions estimated 

to improve response probability estimation the most, regardless of its impact (or the lack thereof) on 

decision-making. GOAL, by contrast, promotes improvements in response probability estimation based 

on their estimated potential impact on improving decisions, regardless of the subsequent improvement 

in the model’s average probability estimation. Thus, for example, GOAL may prefer a small improvement 

in the average probability estimation over a large improvement if the former is more likely to improve 

decisions and profitability. By contrast, ECA will always acquire responses estimated to improve the 

probability estimation model the most, even if the acquisitions are not likely to improve decisions.   

Furthermore, as our analysis suggests, ECA may acquire information regarding already correct decisions 
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that reduces the estimation error but that increases the likelihood of incorrect decisions due to 

estimation variance. Thus ECA may (1) forgo acquisitions that lead to better decisions, and (2) acquire 

data that leads to worse decisions.  Apparently, GOAL often avoids these pitfalls. 

Finally, GOAL is generic: it does not make any assumption about the form of the model or about 

the induction algorithm. Hence, it can be applied with any model for estimating class probabilities.  

Whether it will be effective for various models must be assessed empirically.  It produces qualitatively 

and quantitatively similar results for logistic regression and for naïve Bayes (Saar-Tsechansky and 

Provost, 2005).  

4.4 The Effect of Error in the Estimation of Utilities on GOAL’s Performance 

To identify useful acquisitions GOAL employs information about the decision task: knowledge of 

the possible actions, the corresponding uncertainties, and the utilities of different outcomes. In some 

cases, uncertain utility-producing events must be estimated, such as the contribution amounts in the 

direct marketing task.  Error-centric acquisition and random sampling do not base their acquisition 

decisions on these utilities, and thus these alternative policies are not adversely affected by the inaccurate 

estimations. We now examine the impact of the quality of estimation on GOAL’s relative advantage.  

To simulate estimations of varying quality, for each consumer we assume estimations of 

response amounts are drawn from a Gaussian distribution with a mean equal to the true amount and a 

standard deviation that increases to produce increasingly inaccurate estimates. The shapes of the 

resultant distributions are depicted in Figure 6 (for a consumer whose true contribution is $15). As the 

standard deviation increases the probability that the estimated contribution is within $2 of the true 

value drops from 0.97 to 0.19 (for standard deviations of 1 and 10, respectively). Note, that a standard 

deviation of 2, which leads to a probability of 0.77 that the estimation is within $2 of the contribution, 

is already worse than the simple linear estimation model we employ, which leads to a standard deviation 

of 1.  As before, we measure the marketing campaign’s profitability in order to evaluate a policy’s 

efficacy at improving the campaign’s targeting decisions. Note that the accuracy of contribution 

±

±
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estimation can affect campaign profitability via two separate processes. It can affect GOAL’s response 

acquisitions—the phenomenon we aim to characterize here.  It also can affect the targeting decisions 

themselves: for a given model, different decisions can be derived for different contribution estimations. 

For experimental control, we isolate the effect of estimation accuracy on GOAL’s response acquisitions. 

In particular, we vary the accuracy of the estimations during the acquisition phase to gauge its effect on 

acquisition efficacy, and we use the exact contributions for targeting. Thus, observed changes in 

profitability as the estimation degrades can be attributed only to GOAL’s response-acquisition policy.  
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Figure 6: The distributions from which contribution estimations are drawn when the true contribution is $15. As 
the standard deviation increases, the probability that the estimation is 2$±  from the true value drops from 0.97 to 
0.19.  
 

   Percentage Differences in Profits: GOAL vs. URS

0

2

4

6

8

10

12

1 2 3 5 10

Standard Deviation

High              Estimation Accuracy             Low

Percentage Differences in Profits: GOAL vs. ECA

-2
-1
0
1
2
3
4
5
6
7
8

1 2 3 5 10

Standard Deviation

High               Estimation Accuracy            Low

Percentage Differences in Profits: GOAL vs. DL

25

25.5

26

26.5

27

27.5

28

1 2 3 5 10
Standard Deviation

High              Estimation Accuracy             Low

c. GOAL’s advantage as compared to 
Decision Learning is most significant 
when the utility estimation is accurate. 

 
 
 

a. GOAL’s acquisitions converge to 
those of random sampling as the 
quality of the estimation degrades. 

b. Error-Centric Acquisitions 
produce better results when the 
estimation is very poor. 

Figure 7: Increase in profits using GOAL versus alternative policies, as a function of estimation error.  Vertical axis 
shows percentage differences in profit of GOAL versus the alternative. 
 

Figure 7a shows the improvement in profits generated by models induced with GOAL over those 

generated with URS (after 1000 acquisitions), as a function of the accuracy of contributions’ estimations. 

Differences in profits are shown as a percentage of the profit obtained with random acquisitions. The 
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relationship exhibits two desirable properties. First, GOAL is robust: it generates profits that are 

equivalent or better than those produced with URS for all levels of estimation error. Second, as the 

estimation error increases, the estimated contributions are drawn from a distribution that is less 

concentrated around the true mean, and more closely resembles a uniform distribution.  As a result, 

GOAL’s performance converges to that of URS. 

Figure 7b shows the improvement in profits generated with GOAL over those generated with 

Error-Centric Acquisition. GOAL’s relative advantage with respect to the error-centric policy shows a 

similar pattern: it is not very sensitive to estimation error and is advantageous even when the estimation 

is moderately poor (the probability that the contribution is within ± $2 of the true value being greater 

than or equal to 0.58). Only when the task description provided to GOAL is highly noisy and GOAL’s 

performance approaches that of a uniform acquisition policy, does the error–centric policy become 

preferable (recall that URS is inferior to ECA).  Our prior analysis showed that GOAL’s ability to acquire 

information more economically than ECA stems from the fact that it selectively acquires responses only 

if they are likely to improve decisions. However, when the decision task is misrepresented by erroneous 

estimations, GOAL is less likely to identify truly useful acquisitions. By contrast, error-centric acquisitions 

consistently improve the average probability estimation. 

Figure 7(c) shows how GOAL’s relative advantage with respect to Decision Learning varies with 

respect to the quality of the utility estimation.  GOAL’s relative advantage is most significant when the 

utility estimation is most accurate, but it is also preferable when the estimation variance increases.  As we 

note above, both approaches have access to the estimations for the probability of response   and the 

utilities from different outcomes.  These results show that although GOAL is indeed sensitive to errors in 

the utility estimation, GOAL’s advantage remains significant.   

if̂

4.5 Non-uniform Response Acquisition Costs 

 GOAL aims to capture the potential impact of each response acquisition on future decisions. 

This formulation of the problem so far has assumed that the same cost is incurred to acquire each 
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response. If response acquisition costs were non-uniform, it would be useful to forgo an informative 

response if the same improvement could be obtained for a lower cost via a different acquisition. More 

generally, an acquisition would be preferable if it were expected to produce a larger improvement in 

profit per unit cost. To identify the optimal acquisition schedule it would be necessary to estimate the 

expected increase in profit from each potential acquisition and to acquire responses for which the 

expected improvement per unit cost is the highest.  We will now provide a brief demonstration.  

There are considerable challenges in obtaining a meaningful estimation of the expected increase 

in profitability. For example, it is necessary to estimate profitability on data representative of the target 

population. However, active learning acquires a sample that often is not representative of the population 

to which the model would be ultimately applied. While, as we show here, model induction benefits from 

such a sample, unless the sample is unbiased (Mookerjee, 2001) our ability to infer certain characteristics 

of the target population accurately may be limited. In particular, an estimation of expected performance 

on a biased sample can produce highly inaccurate estimations of performance on the target population 

(Baram et al., 2004). Thus, for this paper we use the heuristic measure employed by GOAL to capture the 

value of each potential acquisition as a proxy for the expected improvement in profit. To penalize the 

value of potential acquisitions for their cost, weights assigned by GOAL are normalized by the cost of 

acquisition to reflect the expected value per unit cost. We therefore prefer the acquisition of responses 

whose marginal impact as captured by GOAL, per unit cost, is the highest. We call this extension to 

GOAL, which incorporates acquisition costs, GOAL-AC. 
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Figure 8: Profits generated with GOAL-AC, GOAL, ECA, and URS where acquisitions costs are drawn from 
a uniform distribution with range [1, 5]. 

 

To evaluate the performance of GOAL-AC with non-uniform acquisition costs we assume 

acquisition costs are drawn from a uniform distribution with range [1, 5]. Figure 8 shows the profits 

generated with GOAL-AC, GOAL, URS and ECA for acquisitions of varying costs.15 As shown, responses 

obtained by GOAL-AC for a given cost are more informative on average and produce better decisions for 

a given acquisition budget. Higher acquisitions costs also lead to decreased profitability for the URS 

policy.16 As compared to GOAL, GOAL-AC effectively integrates information on the cost of each potential 

acquisition and on the expected impact of responses on future decisions in order to prioritize 

acquisitions.17

 
5.  Limitations and Future Work 

One main contribution of this paper is the presentation of a framework for decision-centric active 

learning.  GOAL directs acquisitions to improve the learning of a single predictive model capturing the 

probability distribution of uncertain outcomes to a given action.  These acquisitions could be in a 

decision context including other predictive models, possibly learned from data.  For example, in our 

                                                 
15 Because the acquisitions of different responses incur different costs, the same acquisition costs are not incurred by all 
acquisition strategies. Therefore we plot based on the costs incurred by URS and show profits for other strategies for these 
costs by linearly interpolating profits from known (profit, cost) pairs obtained for higher and lower acquisition costs. 
16 The URS policy increasingly targets more donors that are likely to donate relatively larger amounts. However, low 
response rates along with higher targeting costs lead to a decrease in revenue.  
17 Note that because the simulated acquisition costs are higher on average than the true costs, lower profits are generated by 
all policies as compared to the respective profits shown in previous sections. 
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introductory example we discussed learning a model of response to an incentive for the purpose of 

controlling customer attrition.  Such a decision process would likely also include a model for predicting 

the probability of customer attrition.  However, we do not consider the development of policies for 

scheduling acquisitions for learning multiple models simultaneously.  Decision-centric active learning 

involving not only actively selecting among data to build a model, but also (simultaneously) actively 

selecting from among data for building different models would require significant advances over what 

we have presented here, because we do not directly estimate the expected utility of the acquisition—so 

there is little basis for comparisons between acquisitions for different models.  We hope that this 

limitation is not severe, because (at least in our experience) currently data mining campaigns for different 

models are undertaken separately.  In our example, it is likely that a model predicting the likelihood of 

customer attrition already has been built and tested when the model for a new incentive is to be induced.   

Our analysis suggests that the more informative acquisitions are those that are more likely to 

affect the ultimate decision-making. The manifestation of this principle in GOAL is the heuristic measure 

of the “mobility” of the decision. We address only binary uncertain outcomes, for which GOAL can 

calculate the minimum “distance” between the current estimated probability distribution and one that 

would lead to a decision change. When actions can lead to multiple (>2) uncertain outcomes, it is not 

clear what measure can be used to capture the “distance” between the current distribution and those 

which would alter the decision. In such setting, a comparison between the actual expected utility from 

action A and that of the relevant alternative may be a suitable measure of the mobility of the decision 

(Melville, et al., 2005).  Indeed this also would address the aforementioned limitation regarding 

scheduling acquisitions for more than one model.  

 We show that GOAL’s effectiveness is undermined by highly inaccurate decision parameters. It is 

conceivable that in some domains information about the decision task, such as the utilities from various 

outcomes, can be obtained at a cost. This scenario suggests opportunities to develop acquisition policies 

that not only acquire information directly for model induction, but also (or instead) identify information 
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that can improve the performance of another acquisition strategy. In the context of GOAL, such a policy 

could suggest how to acquire information cost-effectively about consumers’ likely response amounts so 

as to support GOAL’s acquisitions of responses.  For example, a policy could target acquisitions that 

would improve simultaneously the models for estimating response probability and response amount. 

The successful development of such policies may be dependent on the ability to estimate accurately the 

expected increase in profits per unit cost. However, the less directly related to profitability the impact of 

the information acquired is, the more challenging it will be to derive effective heuristic measures of the 

benefit of costly information to profitability.  

Finally, the employment of active interactions with consumers also gives rise to a new challenge of 

balancing between the benefits of making offers or recommendations to consumers intended to increase 

sales at present versus informative interactions that can benefit learning. The tradeoff between activities 

initiated to support learning and those that exploit what is already known has been explored in the 

robotics literature; a similar framework may prove useful for business as well (Pednault et al., 2002). 

6. Conclusion and Implications 

Because the information required for effective predictive modeling often is costly to obtain, it is 

beneficial to devise mechanisms to direct the acquisition of data for cost-effective improvements to 

decision-making.  The main contributions of this paper are the formulation of the decision-centric active 

learning problem, the development of decision-centric active learning techniques, and the demonstration 

via rigorous experimentation that a well-designed technique can improve substantially over alternative 

approaches. The framework can be adapted for developing strategies and techniques to address other 

decision-making settings.  

GOAL’s acquisition method is derived from theoretical observations regarding the conditions 

under which class probability estimation error is more likely to undermine decision-making. When 

applied to a direct-marketing problem, GOAL’s decision-centric strategy identifies acquisitions that 

significantly improve models for targeting, as measured by campaign profitability. Examining the 



  SAAR-TSECHANSKY AND PROVOST                 
Active -Learning for Decision-Making 

 
 

33 
 

 

                                                

relationship between error reduction and decision-making efficacy reveals that the economies exhibited 

by GOAL indeed are derived from acquiring labels that will affect solicitation decisions, sometimes at the 

expense of overall probability-estimation error reduction. An additional advantage of GOAL is that it 

does not require much computation. 

This paper introduces the notion that decision-centric, active acquisition of modeling 

information can lead to more profitable model building and application. We have motivated the use of 

such techniques with examples of modeling consumer preferences and loyalty, which recently have been 

high-profile modeling applications. These are applications for which the acquisition of labels for training 

data carries clear costs.  There are many other uses of predictive modeling in business, many of which 

have associated data acquisition costs.  A further implication of this work is that decision-centric data 

acquisition strategies should be considered elsewhere as8 well.13  

The notion of decision-centric active information acquisition also suggests that businesses should 

consider modifying their strategies for acquiring information through normal business transactions. A 

firm, such as Amazon.com, that models consumer preferences for customized marketing can accelerate 

learning by proactively offering recommendations—not merely to induce immediate sales, but for 

improving recommendations in the future. The decision-centric acquisition approach presented here 

suggests that such active acquisition of information may well result in better decisions in the future. For 

firms such as Amazon.com, such capacity potentially could be employed to accelerate induction of 

consumer preference models and to offer more accurate and effective recommendations, earlier.   
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Appendix: Cost-Sensitive Learning vs. Decision-Centric Learning 

The topic of study that has come to be known as “cost-sensitive learning” (CSL) addresses the task of 

inducing effective classification models given a set of known misclassification (error) costs.  CSL is a 

special case of optimal decision-making, and it bears similarities to, but also some important distinctions 

from, the setting we study here. It is useful to outline this relationship in order to highlight the potential 

application of GOAL to CSL problems. CSL pertains to the prediction of an uncertain and discrete 

outcome/class: CSL aims to infer a model for predicting that instance x belongs to class i that minimizes 

the conditional expected loss: ∑= j
jiCxjpxiL ),()|()|( , ji ≠  , where  is the probability 

that instance x  belongs to class j, and  is the cost of classifying an instance to class i when it 

really belongs to class j.   

)|( xjp

),( jiC

In contrast, optimal decision-making pertains to general choice problems, where a (possibly 

costly) action is taken, after which the uncertainties (outcomes) are played out and the utilities collected. 

Different actions may incur different costs and an action does not necessarily correspond to the 

prediction that an instance belongs to a particular class. While traditional CSL defines a symmetric 

decision problem where the same set of outcomes may be played out after each action, in a general 

decision-making problem the alternative actions can lead to different sets of uncertainties. For example, 

when a consumer is targeted in a marketing campaign, a cost is incurred, and the subsequent 

uncertainties correspond to consumers’ responses such as a purchase or a decline of the offer. If the 

consumer is not targeted, however, no cost is incurred, and there are no uncertainties that follow. 
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Optimal decision-making also must consider the benefits from accurate decisions, which are normally 

assumed in CSL to be zero.  

Thus CSL constitutes a special case of optimal decision-making, with some unique properties 

that do not carry over to the more general case. To demonstrate the possible ramifications of the 

differences between the two tasks, consider the following result for CSL derived for binary class 

problems. When the misclassification costs in CSL are uniform, one would be indifferent between 

different actions (assigning an instance to either class) if the outcome probabilities are 0.5.  This result 

does not carry over to a general decision-making setting. For example, if the cost of targeting a 

consumer who does not respond is equal to the benefit generated when the consumer accepts an offer, 

the decision maker will not be indifferent between actions when the probability of response is 0.5. This 

is because targeting a consumer is costly while the alternative is not, and the possible outcomes of a 

targeting decision are different from those following a decision not to target the consumer. Indeed, the 

decision maker is only indifferent if the consumer’s probability of response is 1, as the cost of targeting a 

consumer can be recovered in expectation only if the consumer responds with certainty. 

The above discussion suggests that a method for decision-centric active learning should also 

apply to special cases of decision-making, such as cost-sensitive learning (with unequal or equal 

misclassification costs). As such, our framework extends acquisition policies to address decision-making 

and classification with varying misclassification costs.  

Note also that error-centric policies are not necessarily “cost-insensitive.”  For example, one 

method for addressing a CSL problem is to learn an accurate class-probability estimation model to allow 

one to estimate the expected utilities from various classifications.  The error-centric acquisition policy we 

use is of this sort—error-centric but still applicable to cost-sensitive and decision-making tasks. 
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