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ABSTRACT

Model induction from relational data requires aggregation of
the values of attributes of related entities. This paper makes
three contributions to the study of relational learning. (1) It
presents a hierarchy of relational concepts of increasing com-
plexity, using relational schema characteristics such as car-
dinality, and derives classes of aggregation operators that
are needed to learn these concepts. (2) Expanding one level
of the hierarchy, it introduces new aggregation operators
that model the distributions of the values to be aggregated
and (for classification problems) the differences in these dis-
tributions by class. (3) It demonstrates empirically on a
noisy business domain that more-complex aggregation meth-
ods can increase generalization performance. Constructing
features using target-dependent aggregations can transform
relational prediction tasks so that well-understood feature-
vector-based modeling algorithms can be applied success-
fully.
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1.2.6 [Artificial Intelligence]: [Learning]
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1. MOTIVATION AND INTRODUCTION

The Internet, the Web, and social networks such as terror-
ist groups have raised awareness of the need to analyse rela-
tional data. In addition, business data routinely are stored
in relational databases. Manually transforming these data
into the feature-vector format required by most modeling
approaches is time-consuming, and there is little guidance
for producing effective transformations. Relational learning
is attractive because of the expressive power of relational
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models and the ability of the learning methods to incorpo-
rate relational background knowledge.

Until recently, relational learning research has been dom-
inated by Inductive Logic Programming (ILP) [18]. Other
approaches include distance-based methods [9], binary propo
sitionalization [12], simple numeric aggregation [10], and up-
graded propositional learners such as rule learners [4], Struc-
tural Logistic Regression [19], Relational Decision Trees [7]
and Probabilistic Relational Models [11]. The aggregation
of bags (multisets) of related objects into single attributes
is an essential component of relational model induction, and
has significant impact on generalization performance for do-
mains with important 1-to-n relationships. However, aggre-
gation has received little direct attention [10]. Aggregation
methods can be characterized along a number of dimensions
including the underlying calculus (numeric or logical), the
cardinality of the bags, and the complexity of the objects be-
ing aggregated (atomic values or feature vectors, single-type
or multi-type objects).

The objective of this paper is to shed new light on the role
of aggregation methods in relational learning. We present
a hierarchy of classes of relational concepts requiring in-
creasingly more-complex aggregations; different aggregation
operators are appropriate for different classes. We intro-
duce novel target-dependent aggregation methods. We also
evaluate relational learners on a noisy business domain and
draw conclusions about the applicability and performance
of different aggregation operators—and show evidence of
the superiority of more-complex methods (viz., the target-
dependent aggregations). For this paper we have chosen the
relational database formalism for expressing relational data
and concepts. The ideas and methods carry over directly to
learning from graph or first-order-logic representations.

The paper is organized as follows. Section 2 presents
the hierarchy of relational concepts and discusses the re-
lationship between domain properties and concept complex-
ity. Section 3 presents an overview of existing aggregation
methods, their limitations, and systems that apply them.
Here we also present the novel target-dependent aggrega-
tion methods. The subsequent empirical study in section 4
compares the different aggregation methods on a relational
business domain. We conclude with a discussion of implica-
tions, limitations, and future work.
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2. RELATIONAL CONCEPT HIERARCHY

We consider predictive (rather than clustering or unsu-
pervised) relational learning tasks, i.e., finding a mapping
M : (t,RDB) — y where t is a row of the target table
T,' including a target variable y (either numeric for a re-
gression task or categorical for classification), and RDB is
a relational database containing additional tables of related
background knowledge. Figure 1 shows a simple example
of a relational database schema with four tables, the tar-
get table Customer with target attribute y and the back-
ground tables Transaction, ReturnedItems and Prod-
ucts, related through the keys Customerld and ProductId.
We will use this example to illustrate the examples in the
following sections. The database RDB can vary from simple

Customer Transaction
Customerld I Customerld
Gender Date
y r Price

| Productld
B
Returneditems | .
~ Products
Customerld | ______ -
Productld Productld
ProductType

Figure 1: Transaction database

to complex, in terms of the number of tables, the number
of relationships between tables through shared categorical
variables (keys), and the cardinality of those relationships
(1-to-1, 1-to-n, or n-to-m).

Relational concepts also have various complexities. In this
paper we adopt the view that a relational concept is a func-
tion ® including as input ¢ and a fixed number of aggregates
of objects that are related to the target case through keys.
In this paper we assume ® to be deterministic given a vector
of k aggregates, but the target observations may be noisy.
Formally, y = ®(t, ¥(RDB)) + ¢, where aggregation oper-
ation ¥ is a mapping RDB — (vo,%1,...,%%) and € is a
noise term (which for clarity we will ignore in presenting
the hierarchy).

The complexity of a relational concept is determined by:

e the complexity of the relationships (e.g., their cardinali-
ties),

e the complexity of the aggregation function ¥,

e and the complexity of the function ®.2

The complexity of the relationships is determined by the
domain and the prediction task. The relative complexity of
different functions @ is comparatively well understood (and

T is a table of traditional feature vectors, including cat-
egorical variables possibly with large numbers of possible
values.

2There is a tradeoff between aggregation complexity and
function complexity since parts of ® can be integrated into
. However, it is generally not possible to make up for lack
of complexity in ¥ through a more complex function @,
since aggregation involves loss of information that cannot
be recovered.

we have methods capable of learning very complex functions
® from feature vectors). The complexity of aggregations,
however, has received comparatively little treatment. Con-
sider three levels of aggregation complexity:

A simple aggregation ¥° is a mapping from a bag of zero
or more atomic values to a categorical or numerical value
1. Examples of simple aggregation operations for numeric
values are count, mean, and maximum. Examples for cate-
gorical values are the most common value (mode) and the
count of the most common value.

A multi-dimensional aggregation ¥™ is a mapping that
takes as input a bag of zero or more objects, each with p
attributes in form of a feature vector (z1, ..., zp).

It is possible to aggregate a bag of objects with p at-
tributes using p simple aggregation operators ¥® for each
attribute, but in contrast to a multi-dimensional aggregation
operator U™ this approach implicitly assumes attribute in-
dependence. The increased complexity of ¥ accounts for
dependencies between object attributes. A common sub-
set of multi-dimensional aggregations can be expressed as a
boolean conditioning on one attribute (selection) followed by
a simple aggregation of a different attribute of all selected
objects. More generally, a multi-dimensional aggregation
captures any relationship between two or more attributes,
for instance the slope of prices over time (explaining whether
a customer is buying increasingly more-expensive products).
Time-series data often harbor concepts where an important
predictor value is dependent on a temporal field and inde-
pendent aggregation would be meaningless.

A multi-type aggregation ¥' is a mapping that takes as in-
put two (or more) bags of objects of different types, possibly
with feature vectors of different lengths.

Some useful aggregations cannot be achieved with a mul-
tidimenisonal aggregation or any function thereof. For ex-
ample, consider finding the total value of the products that
a customer has returned. This aggregation incorporates two
bags: the products bought by the customer, along with their
prices, and the products returned.

Given our definitions, we now can present a hierarchy of
relational concept classes. A concept class M> is more com-
plex than class M, if any concept é in M; can be expressed
in M»> and there are concepts in M> that cannot be expressed
in M;. We will assume a target table T" with target column
y, and background tables A and B that are related to T and
potentially to each other via keys. A lowercase expression
t denotes one row in a table T. Objects ¢t in T and b in B
are related through keys: kr,,B; appears in T as column ¢
and in B as column j, and is commonly a categorical vari-
able with a large number of possible values. The operator
TA(S,... ,1)(THZG;%A) denotes a left outer join < of tables
T and A under the condition ¢; = a; and the subsequent pro-
jection of columns f,... ,I® from A. The notation 1:n (join
cardinality) declares that for every value ¢; there can be zero
or more rows in A fulfilling the equality condition t; = a;.
Given the complexity of notation we will keep the simple
form of single joins; however note that it is straightforward
to extend the hierarchy replacing WA-(f,---J)(Tti:aTWA)
by a chain of such operators joining across multiple tables

3We denote the columns for the projection uniformly as
f,--.,1; clearly the values may be different for different pro-
jections.
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The following list presents relational concept classes in
order of increasing complexity. For the sake of simplicity,
where possible we only include one aggregation in a func-
tion ®. However, the distinction between classes is not in
the number of aggregations needed to express a particular
concept, but rather in the complexity of the most complex
aggregation used.

1. Propositional:

y=2(t) ory = 1(t, (vp.(1...» (T 5= .ay B)))

A relationship of cardinality 1:1 returns exactly one object
(feature vector) for each object in T. There is no need for
aggregation and the features of objects in B can be concate-
nated directly to the feature vector in T'. A typical case is a
customer table T' and a demographics table B that contains
additional information for each customer.

y =2t (5.¢t..) Tz mm B)))

If the relationship has a cardinality of n:1 there will also be
exactly one observation in B for each observation in 7. An
example is the abstraction hierarchy in the Product table
(cf., Figure 1) where ProductType is an abstraction of a
particular product into a class, for instance ‘book’.

2. Independent attributes:

y = a(t, V(5.1 (T 1=y B))

The least complex relational concept class requires only sim-
ple aggregations. The object of a 1-to-n relationship may
have a number of attributes, each of which can be aggre-
gated independently. For example, simple concepts like ‘the
average price of products bought’ fall into this category. An
example that requires multiple simple aggregations from dif-
ferent tables is ‘the proportion of productions returned by
the customer’; this requires the count of the products in
the Transaction table and the count of products in the Re-
turnedItems table for this customer. Calculating the pro-
portion would be part of the function ®, not the part of the
aggregation.

3. Dependent attributes within one table:

y=®3(t, 0" (7p.(4,... ’l)(Tti:b[j)‘WB)))

The attributes from the objects in table B cannot be ag-
gregated independently as before but have to be considered
jointly using a multidimensional aggregation. The number
of products bought on December 22"¢ is an example that
could be expressed using conditioning (on Date), selection,
and then a simple aggregation. A more complex example is
the slope of the price over time, explaining whether a cus-
tomer is buying increasingly more-expensive products.

4. Dependent attributes across tables:
Y= @a(t, U (ma(fa, i) (T 5z A

WB.(fB,...,lB)(Tgi:b:‘WB)))
The total amount spent on items later returned requires
information from two tables (Transaction, ReturnedItems)
during the aggregation. Since the two tables may have dif-
ferent types they cannot simply be merged into one. Note
that even if they have the same type (the joins end at the
same table) it may be important to know from which join
a particular object has come. This information is lost if the

results are simply merged.*

5. Global graph features:

y = ®5(t, ¥¥(©)) where O stands for transitive closure over
a set of possible joins. Such a global concept could for in-
stance be a function of customer reputation. The aggrega-
tion W! for reputation may require the construction of an
adjacency matrix and the calculation of its eigenvalues and
eigenvectors.

Sublevels in the hierarchy

These five concept classes constitute a coarse hierarchy where
each class comprises a number of sublevels. Within a given
class, various dimensions span the space of subclasses. For
example, if there is relational autocorrelation [8] in the tar-
get values and if the target values are known for some rows
of T', ® may be able to take advantage [20]. In such domains,
joins should link back to the target relation and the (known)
values of the target variable can be aggregated through a
simple aggregation:

\Ils(nT_y(TmB, ... ,A%T)).

Another example of a subclass dimension is the assumed
form of attribute dependence within concept class 3. The
simplest case is a pairwise dependence of attributes with
boolean conditioning. A more complex case is a (linear) cor-
relation between pairs of numeric attributes. And so on. For
the empirical results presented below, we primarily examine
sublevels of class 2 (independent attributes), except where
noted otherwise. We introduce novel aggregation functions
that summarize the distributions of the values to be aggre-
gated. More on this below.

3. RELATIONAL AGGREGATION

The following sections present three common approaches
to aggregation in relational learning, a novel approach that
combines vector distances with target-dependent aggrega-
tion, and how they relate to the presented concept classes.
Relational learning has taken two approaches: (1) aggregation-
based feature construction/invention with subsequent model
estimation and (2) direct learning of a relational mapping.
Aggregation must take place in either approach; the main
difference between the two is whether the aggregation is op-
timized jointly with the estimation of @ (often rendering the
aggregation more complex) or whether they are performed
independently. As shown for some cases in the presentation
of the hierarchy, there are interactions between the aggre-
gation and the function. That notwithstanding, for the re-
mainder of this paper we focus on the aggregation operators
¥, assuming the existence of some strategy for the identifi-
cation of related objects® as well as an appropriate learner
for ®.

3.1 First-Order Logic

The field of relational learning for years has been dom-
inated by Inductive Logic Programming (ILP) [18], focus-

4The question of whether two equal-type bags can be merged
prior to aggregation in combination with a simpler multidi-
mensional aggregation depends on whether the aggregation
is transitive under the bag-merging operation. The mins-
mum for instance is transitive, since the minimum of the
minimums of two sets is the same as the minimum of the
merged set.

SFor example, graph traversal using foreign keys as links and
tables as nodes.



ing on classification tasks. These first-order-logic-based ap-
proaches search for sets of clauses, typically that identify
positive examples. For instance a clause learned to charac-
terize a rich customer (cf., Figure 1) might be:

RichCustomer(x)<+ Customer(X,Y,Z),
Transaction(X,V,P,W), P>100

The prediction of an ILP model is positive if at least one of
the clauses is true for the particular case. Binary propo-
sitionalization [13] [12] [1] also learns sets of (first-order)
clauses, but rather than using them directly for prediction
it constructs binary features that are given as input to a
traditional learning method (e.g., decision tree induction) to
learn the function ®. Both ILP and binary propositional-
ization use existential unification of first-order-logic clauses
for aggregation. Given the tables from section 2, the exam-
ple clause Customer(X,Y,Z), Transaction(X,V,P,W), P>100
is true for a particular customer X if he bought a product
that cost more than USD 100. The bag of products that
are related to a customer is aggregated into a single binary
value based on the condition P>100. The major advan-
tage of logic-based aggregation is its ability to address all
levels of complexity as outlined in section 2, including de-
pendent bags across tables. The level 4 task of identifying
customers who bought a product that was returned by an-
other customer who bought it after 2001 can be expressed
in first-order logic as:

Customer(X), Transaction(X,V,P,W),ReturnedItem(Y,W),
Transaction(Y,B,C,W),B>2001

The disadvantage of logic-based aggregation is the common
lack of support for numeric aggregation. In particular, it is
difficult in pure logic to express that a product was returned
more than 20 times. A function-free clause can test whether
the maximum of a numeric set is larger than a particular
value but it cannot estimate the mean or the cardinality of
the set. In order for an ILP system to apply numeric ag-
gregates they have to be declared by the user of the system
as intensional background knowledge (as for instance pro-
posed by Muggleton [17]) and only a few systems support
such intensional declarations.

ILP currently is the only approach that explores concepts
up to level 4 in the hierarchy. However, without explicit nu-
meric support through intensional background knowledge,
ILP methods are severely limited in expressive power in com-
parison to the methods discussed below.

3.2 Simple Numeric Aggregation

A number of relational approaches including Probabilistic
Relational Models [11] and ‘upgraded’ propositional learners
such as Relational Decision Trees [7] rely on a set of simple
aggregation operators such as mean, min, max, count for
numerical values, and proportions and most common value
for categorical variables. Numeric aggregates in combina-
tion with logic-based feature construction were proposed by
Knobbe et al. [10]. These operators apply only to bags of
single attributes and cannot express concepts above level 2,
which require dependent aggregation.

3.3 SetDistances

Kirsten, Wrobel and Horwath [9] proposed a distance-
based method for relational learning. The approach classi-
fies objects using a k-nearest-neighbor method with a prede-
fined relational distance metric. This metric aggregates two

bags of objects related to two cases by calculating the min-
imum distance of all possible pairs of objects, choosing one
from one bag and one from the other. The distance between
two objects is the sum of squared distances for numeric val-
ues and edit distances for categorical values, normalized by
the number of attributes. If an attribute is a key, rather
than taking the edit distance the algorithm proceeds recur-
sively and estimates the distance of all objects related to the
current vector using that key. This form of aggregation im-
plicitly assumes attribute independence and does not take
advantage of numeric aggregates like count or average.

3.4 ValueDistrib utionsand Target-Dependent
Aggregation

The objective of aggregation can be understood as a sum-
marization of the underlying distribution from which the
related objects were sampled. Therefore, the design and se-
lection of appropriate aggregations depends on the charac-
teristics of the value distributions. For example, limiting the
aggregation to mean and variance for a numeric attribute
is sufficient description for a Normal distribution since all
higher moments are zero. Typically, simple aggregations
such as mean, mode, and max, provide only a very coarse
summarization.

‘We now present a more complex approach to independent-
attribute aggregation, based on nonparametric density esti-
mation combined with the observation that there may be im-
portant differences in the distributions for different classes.
The methods we present here are for categorical attributes,
but the general notion also applies to numeric attributes.
Furthermore, the methods themselves are easily extended
to numeric attributes after discretizing and coding of nu-
merical values as categorical dummies.®

A common method to aggregate a single categorical at-
tribute with numerous values is the selection of a subset of
values that appear most often and convert them into dummy
variables or counts. However, the most common values may
not be the most predictive for a given relational learning
task. Our approach examines the distributions of values
conditioned on the classes of the training cases in order to
select predictive values and to construct “reference vectors”
that capture the typical distributions of values related to
positive or negative cases. Particular cases will be compared
to the reference vectors to produce aggregated values.

Consider a value order to be an ordering of the values of a
categorical attribute. We consider a value order to be a list
of (value v;:index ) pairs, for clarity when referring to the in-
dices instead of the values themselves. For example, a value
order for ProductType might be (watch:1,book:2,CD:3,DVD:4).

Definition 1: Given a particular case t (a row of tar-
get table T') and an arbitrary value order for categorical
attribute B.j, case vector CVE-J'(WB-J'(Tt,-zb:‘WB)) has
at position ¢ the number of instances of v; in the bag re-
turned by the join and projection. For example, the bag
of ProductTypes {book,CD,CD,book,DVD,book} for a spe-
cific case t under the order shown above would result in
CVIgroducts.PraductType = (07 31 21 1)

In order to preserve the native distances of numeric values
one should use a thermometer coding scheme ([23],[15]) to
code the dummies. This approach corresponds to estimat-
ing the cumulative distribution rather than the probability
distribution function.



Definition 2: Given a selection condition ¢ and a value or-

der for attribute B.j, reference vector RV ;(7p.;(T B))

[l
Ti=bp,,(1in)
has at position 4 the sum of values C'V*[4] for all cases t for
which ¢ was true.

Definition 3: Given a selection condition ¢ and a value or-
der for attribute B.j, variance vector VVg ;(np.;(T

e . cvh ;D2
has at position ¢ the variance ﬁ of the correspond-

—=
ing case-vector values over all cases t for which ¢ was true.
N, is the number of cases for which the condition ¢ was true.

B))

- B
t;=by,(1:n)

We now will use these vectors to construct two types of
feature: (i) useful individual values, and (ii) distribution-
based features (here, using vector distances). We focus on
constructing features that take into account the different
value distributions for positive and negative cases.

3.4.1 Target-Dependenindividual Values

As mentioned above, a straightforward method for cre-
ating features is to create dummy variables based on fre-
quently occurring values; specifically, one could choose the
most common (MOC) value(s) in the unconditional refer-
ence vector, RV.

Rather than selecting values that are most common across
all related objects, a target-dependent approach will select
categorical values that are most commonly related to pos-
itive training cases (MOP) and analogously those that are
most commonly related to negative cases (MON). Specifi-
cally, for MOP, given an arbitrary value ordering and RVY="
we select those values v; for which RV¥='[4] is largest. Sim-
ilarly for MON we select those values v; for which RVY=C[4]
is largest.

A more complex, difference-based approach selects cate-
gorical values that are common for one class but not common
for the other. In particular we select the values for which
the absolute value of RVY=!'[i]— RVY=°[4] is largest (MOD).
The Mahalanobis distance [14] normalizes the scores by the
variances before selecting the largest (MOM):

RVY=1[]-RVY=C[]
VVy=1[]+VvVvy=0[q]

Table 1 summarizes the five strategies to select dummies
from single categorical values grouped into three groups of
increasing complexity: target independent most common
(first row), target-dependent most common positive or nega-
tive value (second row and third row), and the value(s) with
the maximum difference between the positive and negative
reference vectors (fourth row and fifth row).

3.4.2 \ectorDistances

Using vector distances, features can be constructed that
compare distributions of values more comprehensively, rather
than summarizing using only the most frequent values. Specif-
ically, for each case vector C'V and reference vector RV
we compute four vector distances: edit distance (ED), Eu-
clidean distance (EU), Mahalanobis distance (MA), and co-
sine distance (COS). Since it is not clear a priori which of
the distances will best capture the underlying concept, we
compute all of them and leave it to the function estimator
for ® to select among them.

Similarly to the difference-based methods in the previous
section, in addition to these distances we also calculate for

Method | Definition

MOC CVi] where i is the index (one of the indices)
for which RV[4] is largest (RV is the uncondi-
tional reference vector)

MOP CVi] where ¢ is the index (one of the indices)
for which RV¥=![] is largest (the positive ref-
erence vector)
MON CV[i] where ¢ is the index (one of the indices)
for which RVY=C[4] is largest (the negative ref-
erence vector)

MOD CVi] where ¢ is the index (one of the indices)
where the absolute value is largest in vector
RVY=! — Ryv=0

MOM CV[i] where ¢ is the index (one of the
indices) with maximum absolute value of

RVY=1[;]-RVY=0[j]
VVYI=1[+VV¥=0]]

Table 1: Summary of aggregation methods produc-
ing features representing single categorical values

Reference | Euclidean | Edit | Cosine | Mahalanobis
Vector

All EU ED COS MA

Positive EUP EDP | COSP MAP

Negative EUN EDN | COSN | MAN

Positive vs. | EUD EDD | COSD MAD
Negative

Table 2: Summary of vector-based aggregation
methods

each of the four measures the difference between the dis-
tances to the positive and negative reference vectors:

EDD = ED(RVY=},CV) — ED(RV'=°,CV)
EUD = EU(RVY=',CV) — EU(RVY=°,CV)
COSD = COS(RVY=*,CV) — COS(RVY=°,CV)
MAD = MA(RVY=',CV) — MA(RVY=°,CV)

Combining the options for distance and target conditions,
we have a three-by-four matrix of vector-based aggregations
shown in Table 2. As with the methods of the previous sec-
tion, the vector-distance aggregations can be grouped into
three increasingly more complex groups: target independent
(first row), dependent on either positive or negative refer-
ence vector (second and third row), and dependent on the
difference between the target-dependent distances (fourth
row).

It should be noted that since these aggregations use the
target to estimate features, the subsequent modeling (for
®) can be overly optimistic about the power of the feature,
which can lead to overfitting. Therefore, for the results that
follow, the reference vectors, vector distances and special
categorical values are estimated on 50% of the training set
and @ is estimated using the other 50% of the training set.

4. EXPERIMENT AL RESULTS

In this section we present results comparing the various
aggregation methods on a relational learning problem in the
domain of initial public stock offerings. We include the com-
parative performance of four logic-based relational learners



(FOIL [22], Tilde [2], Lime [16], and Progol [17]), which can
express concepts of up to level 4. All other methods re-
side within level 2. The next sections present the domain
description, a brief overview of the methodology, and our
results.

4.1 Domain: Initial Public Offerings

Initial public stock offerings have a unique ticker for the
firm that is selling shares of its equity. An IPO typically is
headed by one or occasionally two banks and is supported
by a number of additional banks as underwriters. The job
of the bank is to put shares on the market, to set a price,
and to guarantee with their experience and reputation that
the stock of the issuing firm is indeed valued correctly.

The IPO domain consists of 5 tables:

e IPO(Date,Size,Price, Ticker, Exchange,SIC,Runup)
e HEAD(Ticker,Bank)

e UNDER(Ticker,Bank)

o IND(SIC,Ind2)

e IND2(Ind2,Ind)

The last two relations, IND and IND2 represent an in-
stance of an abstraction hierarchy on SIC (Standard Indus-
trial Classification) codes. For example SIC code 7372 iden-
tifies the division of ‘Prepackaged software’. This particular
industry group is a member of the major group ‘Business
Services’ with the two-digit code 73.

In this domain, Date, Size, Price and Runup are numerical
variables; Ticker, Bank, SIC, Ind2 are categorical and keys,
and Ind and Exchange are simple categorical attributes.
Note that the background tables contain only categorical
attributes whereas the target table has mostly numeric at-
tributes. The classification task is to predict whether the
offer was (would be) made on the NASDAQ exchange.

4.2 Methods

We compare the generalization performance of 4 general
approaches: ILP, logic-based feature construction, selection
of specific individual values, and target-dependent vector
aggregation. We also constructed two other features from
the relational background data: when there is an instance
of an abstraction hierarchy (via a sequence of n:1 joins) we
include the values directly in the feature vector (AH). For
comparison, we also include a constructed feature that takes
advantage of relational autocorrelation (as Provost et al. ad-
vise [20]). The “autocorrelation” aggregation (AC) takes
advantage of joins back to the target table, and computes
the proportion of linked training cases that are positive (ex-
cluding the particular case in question of course). Table 3
summarizes the approaches.

For the evaluation of the aggregation methods we had to
implement (1) an exploration strategy that finds related ob-
jects, (2) a feature selection step to reduce the number of
features, and (3) a learner that builds a model to predict
the target given the aggregates and the features in the tar-
get table. We used straightforward approaches for each of
these steps.

Exploration: Given a set of tables and keys, the system
constructs a graph with tables as nodes and keys as links
between tables and executes a breadth-first search, start-
ing from the target relation, over all possible exploration

chains of increasing length. The exploration stops once the
number of chains exceeds a stopping criterion. The second
number in the size column in Table 4 shows the stopping
criterion (maximal number of chains) for the exploration.
For each exploration chain, the system executes the corre-
sponding join(s) and selects all attributes from the last table
joined to. It then applies the aggregation methods of varying
complexity to every attribute independently. The resulting
values (one for every row in the target table) are appended
to the original feature vector from the target table.

Feature Selection: Once the stopping criterion is met
the system selects (10 times) a subset of 10 features using
weighted sampling based on estimated performance. We
tried alternative methods for feature selection without much
difference in performance.

Model Estimation: We used C4.5 [21] to learn a tree
for each of the 10 feature sets. For each class-probability
prediction, we used the average over the 10 trees of the class
frequencies at the leaves. For classification, we thresholded
the estimates at 0.5. The results did not change significantly
using logistic regression for the modeling.

Logic-Based Feature Construction: In order to eval-
uate logic-based feature construction we used the ILP sys-
tem FOIL [22] to learn n first-order-logic (FOL) clauses and
appended the corresponding binary features to the feature
vector in the target table IPO. This methodology was ap-
plied successfully to text classification by King [24] and by
Populescul et al. [19].

ILP: We selected four ILP systems based on availabil-
ity, platform independence and diversity. FOIL [22] uses
a top-down, separate-and-conquer strategy adding literals
to the originally empty clause until a minimum accuracy is
achieved. Tilde [2] learns a relational decision tree using
FOL clauses in the nodes to split the data. Lime [16] is
a top-down ILP system that uses Bayesian criteria to se-
lect literals. Progol [17] learns a set of clauses following a
bottom-up approach that generalizes the training examples.
We did not provide any additional (intensional) background
knowledge beyond the facts in the database. We supplied
a declarative language bias for Tilde, Lime, and Progol (as
required).

Evaluation: Generalization performance is evaluated in
terms of classification accuracy and area under the receiver
operating curve (AUC) [3]. Note that ILP systems only
produce class labels but no probability scores. We therefore
included ILP only in the accuracy comparisons. All results
represent generalization performance averaged over 5 runs
on test sets of size 800. We show error bars of + one stan-
dard deviation in the figures but refrained from including
them in the tables.

4.3 Results

Table 4 shows the generalization performance of the ag-
gregation methods as a function of training-set size and the
number of joins allowed. The methods are grouped into
four (vertical) blocks of increasing complexity: no feature
construction (NO), target-independent aggregation (MOC,
VD, MVD), target-dependent aggregation dependent on ei-
ther positive or negative class (MPN, VDPN, MVDPN), and
target-dependent aggregation based on the difference be-
tween the positive and negative reference vectors (MD,VDD,
MVDD). To help with the abbreviations (needed to make



Method | Description
Name
NO No feature construction, no relational information—only the attributes in the IPO table
MOC Attributes in IPO table and counts of most common categoricals (MOC)
VD Attributes in the IPO table and vector distances EU, ED, COS, MA to the unconditional reference vector
MVD Attributes in IPO table, most common categoricals and unconditional vector distances (EU, ED, COS, MA)
MPN Attributes in IPO table and counts of most common positive (MOP) and negative (MON) categoricals
VDPN Attributes in the IPO table and vector distances to positive and negative reference vectors (EUP, EUN, EDP,
EDN, COSP, COSN, MAP, MAN)
MVDPN | Attributes in the IPO table, most common positive (MOP) and negative (MON) categoricals, and vector
distances to positive and negative reference vectors (EUP, EUN, EDP, EDN, COSP, COSN, MAP, MAN)
MD Attributes in IPO table and counts of most common discriminative categoricals (MOD, MOM)
VDD Attributes in the IPO table and differences of the vector distances to positive and negative reference vectors
(EUD, EDD, COSD, MAD)
MVDD | Attributes in the IPO table, and counts of most common discriminative categoricals (MOD, MOM), and
differences of the vector distances to positive and negative reference vectors (EUD, EDD, COSD, MAD)
AH Attributes in IPO and attribute Ind in table Ind2 related through the abstraction hierarchy
AC Attributes in IPO and the proportion of training cases (excluding the particular case) that a case was related
to that are positive
LF Logic-based features extracted from the clauses learned by FOIL
Table 3: Summary of aggregation approaches compared in experiments
Size NO || MOC VD | MVD (| MPN | VDPN | MVDPN MD | VDD | MVDD
250: 6 0.619 0.641 | 0.679 0.634 0.627 0.683 0.671 || 0.635 | 0.675 0.690
250: 9 0.619 0.685 | 0.665 0.665 0.664 0.685 0.697 || 0.695 | 0.682 0.703
250:12 0.619 0.674 | 0.655 | 0.706 0.675 0.714 0.694 (| 0.659 | 0.697 0.703
500: 6 0.635 0.663 | 0.674 0.679 0.674 0.679 0.685 || 0.675 | 0.711 0.741
500: 9 0.635 0.706 | 0.686 0.684 0.692 0.705 0.721 | 0.725 | 0.697 0.737
500:12 0.635 0.689 | 0.689 0.71 0.706 0.707 0.696 || 0.711 | 0.741 0.739
1000: 6 || 0.671 0.677 | 0.691 0.685 0.667 0.717 0.709 (| 0.702 | 0.713 0.747
1000: 9 || 0.671 0.705 | 0.71 0.688 0.715 0.745 0.745 || 0.735 | 0.747 0.747
1000:12 || 0.671 0.702 | 0.705 0.708 0.711 0.723 0.727 || 0.715 | 0.767 0.759
2000: 6 || 0.699 0.675 | 0.689 0.681 0.667 0.709 0.729 || 0.691 0.73 0.758
2000: 9 || 0.699 0.729 0.69 0.719 0.731 0.728 0.76 || 0.731 | 0.753 0.764
2000:12 || 0.699 0.715 | 0.709 0.73 0.718 0.733 0.723 0.72 | 0.779 0.758

Table 4: Classification accuracy of aggregation methods grouped by complexity

the table legible) a condensed summary of the different meth-
ods under comparison can be found in Table 3. Within each
block of methods in Table 4, the first column presents an ag-
gregation method that uses only specific categorical values
(the five with the largest entries in the reference vector), the
second column only vector distances, and the third column
both.

The best performance for each training size (three-row
horizontal division) is highlighted in bold, and the best per-
formance for each 3x3 sub-block is in italics (if it is not
already bold). The results show that as the complexity of
aggregation increases, performance increases as well. The
best performance within a sub-block is always one of the two
aggregations including vector distances. Using only single
categorical values is almost always outperformed by vector-
distance aggregation. Increasing the exploration limit (max-
imum number of joins) improves performance in most cases;
however the marginal improvement decreases. Specifically,
the increase in performance moving from 6 joins to 9 is larger
than moving from 9 to 12 joins (the latter sometimes hurts
performance). Moving to a larger number of joins can hurt
performance for two reasons: (1) the longer the chain that
relates objects to a target case, the further away and less

relevant the linked entities are; (2) since features are con-
structed from every join, the number of features increases
linearly in the number of joins and the feature selection be-
comes less effective due to problems of multiple comparison
[6].

Figure 2 shows learning curves for classification accuracy,
including error bars of + one standard deviation for the ex-
periments exploring 12 joins. The learning curves show that
increasing the training-set size always improves the gener-
alization performance, and that more-complex aggregation
leads to better the performance. The graph also shows that
the most complex aggregation (VDD) has the smallest vari-
ance of the four methods.

Analyzing the tree learned by C4.5 for the most complex
model MVDD identifies the following variables as predic-
tive: whether one underwriter was "Hambrecht’, the differ-
ence between the edit distances to the positive and negative
reference vectors of the underwriting banks, the number of
IPO’s previously underwritten by the head bank, the date
of the IPO, the difference between the positive and negative
edit distances of the head bank, the two-digit industry code,
and the difference in Mahalanobis distance to the IPOs pre-
viously performed by the underwriting banks. This provides



Size | NO | AH | FOIL | Tilde | Lime | Progol AC LF
250 | 0.649 | 0.641 | 0.645 | 0.646 | 0.568 0.594 | 0.73 | 0.592
500 | 0.650 | 0.665 | 0.664 | 0.628 | 0.563 0.558 | 0.719 | 0.643

1000 | 0.662 | 0.701 | 0.658 | 0.630 | 0.530 0.530 | 0.724 | 0.638

2000 | 0.681 | 0.711 | 0.671 | 0.650 | 0.512 0.541 | 0.753 | 0.641

Table 5: Classification accuracy of aggregation methods that are independent of join depth
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Figure 2: Learning curves: accuracy as a function
of training-set size for NO, VD, VDNP, and VDD

confirming evidence that the differences between the vector
distances play an important role for this task.

Table 5 contrasts the results for the other methods, which
are independent of the number of joins: abstraction hier-
archies (AH) in the domain tables IND2 and IND, the four
ILP systems FOIL, Tilde, Lime, and Progol, relational auto-
correlation (AC), and logic-based feature construction (LF).

Including the values of the abstraction hierarchy (AH)
improves slightly over no relational background knowledge
(suggesting that the industry classes are linked to exchange),
but cannot compete with target-based aggregation. The AC
results show that there is a significant degree of autocorrela-
tion in this domain. Banks seem to operate primarily on one
exchange or the other. AC outperforms all methods in this
table, and only falls short of the best aggregation method
MVDD in Table 4.

The two ILP systems FOIL and Tilde are still competitive
for small data sets but for larger training sets do not do as
well as simply using no relational background knowledge.
There are three potential reasons for the low performance of
the logic-based methods: (1) the task is noisy and the search
mechanism within the system is overly sensitive to noise; (2)
ILP systems are not optimized for numeric values, and/or
(3) the relational domain properties (e.g., cardinality of the
relationships) are not suitable for the particular systems.
Logic-based systems can be used on simple feature-vector
domains and have (on those domains) the same expressive
power as a decision tree or a rule learner. However doing
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Figure 3: Learning curves: AUC as a function of
training-set size for NO, VD, VDNP, and VDD

worse than C4.5 on the mostly numerical feature vectors
suggests that the search strategy itself is not optimal for this
task or that the regularization mechanism is insufficient and
the systems overfit.

The low performance of LF is caused entirely by overfit-
ting the training data since it contains, in addition to the bi-
nary features, all the original attributes from the target table
IPO used by NO. The binary features are learned from the
training set by optimizing classification performance. They
are therefore very predictive on the training set and the de-
cision tree overestimates their predictive performance.

The results for probability estimation (reported in Ta-
ble 6) are similar to the results for accuracy. The most com-
plex aggregation methods (MVDD or VDD) outperform the
other methods and the performances increase with training
size. Figure 3 shows the learning curves of NO,VD,VDPN,
and VDD including error bars of + one standard deviation
for 12 joins.

Figure 4 shows the ROC curves for NO, MVD, MVDNP,
and MVDD exploring 12 joins. MVDD and MVDNP present
an interesting case where the ROC curves cross. MVDNP
is better for high thresholds whereas MVDD is better for
lower thresholds. Analyzing the probability estimation per-
formances of methods that are independent of join depth
in Table 7 shows again that the autocorrelation aggregation
(AC) performs very well, only surpassed by the best per-
forming aggregations. Abstraction hierarchies (AH) are not
as useful for probability estimation as they were for classi-



Size NO | MOC | VD | MVD | MPN | VDPN | MVDPN || MD | VDD | MVDD
250: 6 0.642 0.697 | 0.717 | 0.691 0.672 0.748 0.716 0.68 | 0.729 0.734
250: 9 0.642 0.707 | 0.711 0.74 0.725 0.756 0.761 || 0.749 0.75 0.764
250:12 0.642 0.729 | 0.722 | 0.755 0.715 0.79 0.74 || 0.713 | 0.763 0.760
500: 6 0.666 0.702 | 0.738 0.741 0.72 0.746 0.739 0.75 | 0.774 0.79
500: 9 0.666 0.775 | 0.753 0.757 0.758 0.77 0.802 || 0.796 | 0.775 0.821
500:12 0.666 0.741 | 0.744 | 0.787 0.775 0.785 0.76 || 0.792 | 0.812 0.812
1000: 6 || 0.672 0.743 | 0.754 0.749 0.735 0.793 0.797 | 0.767 | 0.788 0.802
1000: 9 || 0.672 0.765 | 0.768 0.763 0.787 0.808 0.825 || 0.797 | 0.818 0.826
1000:12 || 0.672 0.778 | 0.774 | 0.781 0.78 0.809 0.797 || 0.793 | 0.842 0.829
2000: 6 || 0.709 0.727 | 0.744 0.752 0.732 0.795 0.796 || 0.787 | 0.794 0.824
2000: 9 || 0.709 0.785 | 0.772 0.781 0.807 0.805 0.835 || 0.799 | 0.832 0.838
2000:12 || 0.709 0.791 | 0.779 | 0.801 0.790 0.81 0.788 || 0.798 | 0.855 0.836

Table 6: Probability estimation performance (AUC) for aggregation methods grouped by complexity

have shown, via the concept hierarchy, that with respect to
aggregation there are various classes of relational learning
problems, and that problems with high aggregation com-
i plexity can be deceptively simple in description.

Looking carefully at aggregation for relational learning
creates a considerable design space for relational feature con-
struction (either separately from learning or internally to a
8 learning program). Within level 2 of the hierarchy, we have
presented aggregation methods of various complexities. We
are not aware of any learning program that considers even a
small fraction of these aggregation operators, nor any that
uses the more successful, target-dependent aggregations.

Within the scope of the IPO domain the empirical results
demonstrate that aggregation operators of higher complex-
ity can significantly improve the generalization performance
of relational learners. The best methods (VDD, MVDD) use
target-dependent vector-distance aggregation. These aggre-
gations transform the relational learning task into a con-
ventional feature-vector learning task, enabling the applica-
tion of conventional learning methods. An advantage of this
transformation-based approach is its general applicability to
regression, classification, and probability estimation tasks.

Our results further show that for the same level of per-
formance, increased aggregation complexity can reduce the
amount of exploration necessary. This is important since
the size of the space increases exponentially in the search
depth if the relations have a one-to-n or m-to-n cardinal-
ity. Scalability of relational learning remains an important
research topic in relational learning [5].

Although quite suggestive, the generalizability of our pos-
itive findings (in favor of the more complex aggregations)
is limited due to the focus on one particular domain and
the limited maximum training size of 2000. Future work
includes extending these experiments to multiple domains
with different relational characteristics.
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Figure 4: ROC curves for NO, MVD, MVDNP and
MVDD

fication. Note, that ILP systems only predict a class label
and therefore do not appear in the table.

Size No AH AC LF
250 | 0.642 0.63 0.79 | 0.626
500 | 0.666 | 0.673 | 0.814 | 0.694

1000 | 0.672 | 0.699 | 0.821 | 0.703

2000 | 0.709 | 0.714 | 0.838 | 0.702

Table 7: Probability estimation performance (AUC)
of aggregation methods that are independent of join

depth

5. CONCLUSIONS AND FUTURE WORK

The main contribution of this work is the first detailed
examination of aggregation for relational learning. Along
with search through the relationship graph, aggregation is
a major component of any relational learning method. We

The collection of aggregation methods we have presented
are certainly is not complete (even within level 2 of the hi-
erarchy). Our findings motivate further exploration of po-
tential aggregation methods. In particular numeric multi-
dimensional and multi-type aggregation has received little
treatment. Another open issue is the joint optimization of
aggregation and model estimation. (Rather than treating
them separately, as we have done.)

More generally, this work highlights that existing approaches
to relational classification can show major performance dif-
ferences. The field of relational learning still needs to de-



velop a better understanding of why methods perform better
or worse on certain domains.
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