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Nowadays, there is a significant experimental evidence of excellent ex-post predictive accuracy in certain types of

prediction markets, such as markets for elections. This evidence shows that prediction markets are efficient mechanisms

for aggregating information and are more accurate in forecasting events than traditional forecasting methods, such as

polls. Interpretation of prediction market prices as probabilities has been extensively studied in the literature, however

little attention so far has been given to understanding volatility of prediction market prices. In this paper, we present a

model of a prediction market with a binary payoff on a competitive event involving two parties. In our model, each party

has some underlying “ability” process that describes its ability to win and evolves as an Ito diffusion. We show that if

the prediction market for this event is efficient and accurate, the price of the corresponding contract will also follow a

diffusion and its instantaneous volatility is a particular function of the current claim price and its time to expiration. We

generalize our results to competitive events involving more than two parties and show that volatilities of prediction market

contracts for such events are again functions of the current claim prices and the time to expiration, as well as of several

additional parameters (ternary correlations of the underlying Brownian motions). In the experimental section, we validate

our model on a set of InTrade prediction markets and show that it is consistent with observed volatilities of contract returns

and outperforms the well-known GARCH model in predicting future contract volatility from historical price data. To

demonstrate the practical value of our model, we apply it to pricing options on prediction market contracts, such as those

recently introduced by InTrade. Other potential applications of this model include detection of significant market moves

and improving forecast standard errors.
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1. Introduction

Nowadays, there is a significant evidence of excellent efficiency and ex-post predictive accuracy in cer-

tain types of prediction markets, such as markets for presidential elections (Wolfers and Zitzewitz 2004a).

Berg et al. (2003) show that Iowa Electronic Markets significantly outperform polls in predicting the results

of national elections. Moreover, they found “no obvious biases in the market forecasts and, on average, con-

siderable accuracy, especially for large, U.S. election markets”. Leigh and Wolfers (2006) provide statistical

evidence that Australian betting markets for 2004 Australian elections were at least weakly efficient1 and

1 future stock price cannot be predicted from historical prices

1
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responded very quickly to major campaign news. Luckner et al. (2008) report that prediction markets for

the FIFA World Cup outperform predictions based on the FIFA world ranking. According to official press

releases, Hollywood Stock Exchange prediction market consistently shows 80% accuracy for predicting

Oscar nominations (HSX 2008).

One should also acknowledge that prediction markets are not perfect information aggregation

mechanisms and may suffer from certain types of behavioral biases, such as the “favorite-longshot

bias” (Thaler and Ziemba 1988). Reports on behavioral biases and other inefficiencies in prediction markets

are not uniform even for different types of prediction markets on a single exchange. For example, Tetlock

(2004) found that sports wagering markets on TradeSports.com overreact to news and exhibit “reverse

favorite-longshot bias”, however the same inefficiencies are not observed in financial markets on the same

exchange even though both types of markets have similar structure, liquidity and trading volume. Amazingly,

prediction markets with high liquidity can sometimes be less efficient than low-liquidity prediction markets

and the “forecasting resolution of market prices actually worsens with increases in liquidity” (Tetlock 2008).

Notwithstanding the biases mentioned above, the success of public prediction markets as information

aggregation mechanisms led to internal corporate applications of prediction markets for forecasting purposes

and as decision support systems (Berg and Rietz 2003). Chen and Plott (2002) show that prediction markets

on sales forecasting inside Hewlett-Packard Corporation performed significantly better than traditional

corporate forecasting methods in most of the cases. In another example, Google has launched internal

prediction markets in April 2005. Cowgill et al. (2008) report that Google’s experiment with prediction

markets revealed a number of biases such as optimism and overpricing of favorites, however “as market

participants gained experience over the course of our sample period, the biases become less pronounced”.

It is even hypothesized that prediction markets can be used for analysis and evaluation of governmental

policies (Wolfers and Zitzewitz 2004b).

Despite significant experimental evidence that prediction market prices are good estimates of actual

probabilities of the events happening, some researchers have argued that there is little existing theory

supporting this practice (Manski 2006). Several papers published in the last few years attempted to provide
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such theoretical background. For example, Wolfers and Zitzewitz (2006) describe sufficient conditions under

which prediction market prices correspond to mean population beliefs.2 They also show that, for a broad

class of models, prediction market prices must be close to the mean beliefs of traders, even when these

conditions are invalid.

We can see that interpretation of prediction market prices as probabilities has been extensively studied

in the literature. Nevertheless, little attention so far has been paid to understanding volatility of prediction

market prices, a surprising fact, given that volatility is one of the most crucial concepts in the analysis of

markets. Volatility has intrinsic interest to prediction market researchers, not only as a measure of market

dynamics, but also for its numerous practical applications. Even a simple task of distinguishing ‘normal’

market moves from major events can significantly benefit from having a volatility model.

So, our research question emerges naturally: “If the price of a claim3 in a prediction market is expectation

of the actual probability of the event happening, what can we say about volatility of the claim?” To answer

this question we need a model of evolution of the underlying event. Consider a contingent claim that pays

$1 at time T , if and only if some event A happens. A simple model may say that whether the event will

happen is predetermined at time t < T and this information is known to informed traders. A model like

that was used to study information dissemination in financial markets and informational role of prices in

disclosing information held by insiders. In a seminal paper, Kyle (1985) considers a model of a betting

market with three kinds of traders: one risk-neutral informed trader (insider) that knows the real value of the

bet, a mass of random noise traders, and a competitive risk-neutral market maker. Kyle shows that, in this

model, there is a unique linear equilibrium in which price follows a Brownian motion and variance of the

market uncertainty about value of the bet decreases linearly until the end of the trading, when all insider’s

information is revealed to the market. Back et al. (2000) extended the analysis to the market with several

informed traders having different but potentially correlated signals. Both papers, however, present striking

examples of market inefficiency: the information is revealed gradually and full revelation happens only at T .

2 A sufficient but not necessary condition for this is for beliefs and wealth to be uncorrelated.
3 In this paper we adopt a popular financial convention of referring to a prediction market contract as a contingent claim or just a
claim.
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If in these models we enforce the efficiency assumption (i.e., that available information is disseminated to the

market instantly), then the price of a contingent claim will not fluctuate even in the presence of noisy traders.

So, why would the price of a claim fluctuate in an efficient prediction market? Departing from the

framework of Kyle (1985) that relies on presence of informational asymmetries to explain price fluctuations,

we propose the explanation that fluctuation happens because the event A is not predetermined at time t < T ,

even if all information available at time t is revealed to all market players. To model this uncertainty, we

introduce the notion of “abilities” for the event participants. These abilities are not constant, but are evolving

over time, and so we model them as latent4 stochastic processes. At expiration, the state of the “ability”

processes defines what is the outcome of the event: the party with the highest “ability” wins. Since the “ability”

processes evolve stochastically over time, the current state of the claim reveals only partial information about

the future, and the larger the time to expiration, the less certain we are about the final state of the process.

For our modeling purposes, we will further assume that abilities evolve as Ito diffusions, a particular type of

stochastic process that is convenient to work with, as we can apply well-developed tools from stochastic

calculus. Adopting a diffusion-like approach makes our model bear certain similarity to a recently published

result showing that a simple diffusion model provides a good fit of the evolution of the winning probability

in the 2004 Presidential elections market at InTrade.com (Chen et al. 2008). However, Chen et al. (2008)

consider only a very restrictive parametric specification5 and do not analyze the volatility of prices.

As the main theoretical contribution of this paper, we show that the parameters of the underlying stochastic

processes affect the claim price but do not affect its volatility. In fact, one of the simplest, yet most amazing

formulas in the paper shows that if we adopt the diffusion model and the underlying “ability” processes are

homoscedastic, the instantaneous volatility of the claim, for an event involving two parties, is fully defined

by its current price and the time to expiration.6 The results generalize to events with more than two parties,

however the volatility expression becomes more complex, has no closed form (to the best of our knowledge)

and depends on additional parameters of “ability processes” such as ternary correlations.

4 Latent to researchers however observed by traders.
5 No drift, constant volatility
6 If the underlying “ability” processes are heteroscedastic, in practice, one can combine our model with any conditional heteroscedas-
ticity model (say, GARCH) as we show in Section 4.
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The rest of the paper is organized as follows. Section 2 gives a short overview of the volatility concept

and positions our approach within the stream of research on volatility modeling. Section 3 presents our

main theoretical results for pricing of bets in “ideal” prediction markets where the underlying event can

be described by a pair of diffusion process. An extension of the theoretical framework to events involving

more than two competing parties is quite technical and is presented in Appendix A. Section 4 presents our

experimental results obtained for a collection of InTrade prediction markets that show that the volatility

pattern derived from our diffusion model is consistent with empirically observed return volatilities. Section 5

discusses the experimental results and outlines research questions and directions for further research on

this topic. Section 6 presents an application of our model to pricing options on prediction market claims.

Finally, Section 7 concludes the paper with a short summary of the theoretical and empirical results and their

managerial implications.

2. Volatility in Financial Markets

What is volatility? Wikipedia7 defines volatility as “the standard deviation of the continuously compounded

returns of a financial instrument with a specific time horizon.” Volatility is a natural measure of risk in

financial markets as it describes the level of uncertainty about future asset returns. Empirical studies of

volatility can be traced as far as Mandelbrot (1963) who observed that large absolute changes in the price of

an asset are often followed by other large absolute changes (not necessarily of the same sign), and small

absolute changes are often followed by small absolute changes. This famous fact is usually referred to

as “volatility clustering” or “volatility persistence” and is nowadays a “must have” requirement for any

volatility model in the financial literature. It is was not until two decades later that the first successful model

of volatility forecasting was developed by Engle (1982). The insight of Engle’s ARCH8 model was that, in

order to capture “volatility clustering”, one should model volatility conditional on previous returns: if the

square of the previous return is large one would expect the square of the current return to be large as well.

That gave rise to the famous pair of equations:

rt = htεt

7 http://en.wikipedia.org/wiki/Volatility_(finance)
8 AutoRegressive Conditional Heteroscedasticity
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h2
t = α+βr2

t−1

where rt represent return, ht volatility and εt are i.i.d. residuals. Engle’s model was later generalized

by Bollerslev (1986) as GARCH9 to allow for lagged volatility in the volatility equation and the topic

exploded by producing a multitude of different volatility models in the next two decades (Bera and Higgins

1993). The research on volatility modeling was primarily guided by the observed properties of the empirical

distribution of returns in financial markets, so understanding these properties helps understanding the

taxonomy and evolution of volatility models (Engle and Patton 2001). According to Engle and Patton (2001)

a good volatility model must be able to generate return distribution possessing the following properties:

1. Volatility clustering: large absolute returns must be followed by large absolute returns.

2. Mean reversion: long run volatility forecast must be equal to its unconditional volatility i.e., volatility

“comes and goes.”

3. Asymmetry (or leverage) effect: negative shocks generally have higher impact on volatility than

positive shocks.10

4. Heavy tails: financial returns generally have much heavier tails than the normal distribution.

One can now see why it is probably not a good idea to just take an “off-the-shelf” volatility model from

financial literature and apply it to prediction markets:

1. To the best of our knowledge, there is no empirical evidence that prediction market returns show signif-

icant “volatility clustering.” In the experimental part of this paper, we study a collection of InTrade contracts

and indeed provide evidence that volatility of daily returns has some persistency, however experimental

results show that our model outperforms GARCH in volatility forecasting for InTrade contracts.

2. We have strong reasons to suggest that prediction market volatilities are not mean-reverting. The

rationale for this follows from our theoretical model: prediction market volatility is not stationary as it

explicitly depends on the remaining time until contract expiration.

9 Generalized AutoRegressive Conditional Heteroscedasticity
10 The effect is usually present in stock markets but might be absent in some types of financial markets where there are no absolutely
“negative/positive” news, for example, currency markets.
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3. Asymmetry is not meaningful within the context of prediction markets as well. Consider, for example,

a Presidential elections contract on win of the Republican nominee vs. similar contract on win of the

Democratic nominee. An asymmetric model will suggest that if the price of the first contract drops, its

volatility must go up more than if it rises by the same amount. Same logic can be applied to the second

contract and we obtain a contradiction by noting that gain of the first contract is loss of the second contract

and, as prices of both contracts sum to a constant, both of them must have the same volatility.

The major property of the empirical distribution of financial returns that we can also see replicated in the

prediction market returns is the presence of “heavy tails”. We will discuss this property and its modeling

applications more in the Section 5 of this paper.

One may now ask that if “off-the-shelf” volatility models are not likely to work for prediction markets,

whether there are some results from financial literature that we can borrow? The answer is “yes”, if we adopt

a model of latent “ability” processes, we can use modeling techniques employed for option pricing.11 Indeed,

assuming the existence of a latent “ability” process evolving as an Ito diffusion, a prediction market contract

can be priced in the same way as a binary option on a stock whose risk-neutral price evolution is the same as

the evolution of our latent “ability” process.

The next section develops this idea by presenting the binary scenario which is the simplest to solve and

generates the most elegant results.

3. Volatility Model for Prediction Markets on Events With Two Competing Parties

A diffusion model can be most naturally introduced for bets on competitive events such as presidential

elections or the Super Bowl finals. Consider a prediction market for a simple event in which two parties

(McCain vs. Obama or Patriots vs. Giants) compete with each other. Assume that each party has some strength

value like potential to win. Denote strength of the first party as S1, and strength of the second party as S2. We

consider S1 and S2 to be stochastic processes and refer to them as ability processes. What is the price of a

contingent claim sold at time t that will pay $1 if the first party wins at the final moment of time T ? Assuming

11 Be careful, however, that we borrow the “tricks” from risk-neutral pricing but not the arguments in defense of risk-neutral pricing
such as Delta hedging. Those do not work for prediction markets as discussed in the Section 5.
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that the prediction market is efficient and unbiased it must be that π(t) = E [Pw(S1(T ), S2(T )) |Ft ], where

Pw is the instantaneous winning probability of the first party as a function of both party’s abilities, and Ft

represents the information set at time t.1213 Note that in our “ideal” market all market players have the same

information set (Ft) which includes all information on evolution of the ability processes until the current

moment of time.

In order to complete the model we need to make two additional assumptions:

1. We should describe stochastic processes S1 and S2 driving the underlying abilities of each team.

2. We should describe instantaneous winning probability Pw of the first party as a function of both party’s

abilities.

We model S1 and S2 as Ito processes:

dS1 = a1(S1, t)dt+ b1(S1, t)dW1

dS2 = a2(S2, t)dt+ b2(S2, t)dW2
(1)

where a1(s, t), a2(s, t) are drifts and b1(s, t), b2(s, t) are volatilities, potentially different for each pro-

cess S1, S2. The processes are driven by two standard Brownian motions Wi that can be correlated with

corr(W1,W2) = ρ12 (|ρ12|< 1). As for Pw, we can either assume that the strongest party always wins or

allow for additional randomness by including smoothing using either logit or probit function. In the following,

for simplicity, we will assume no smoothing and use Pw(S1, S2) = I+ (S1−S2), where I+ is the indicator

function for positive numbers, i.e. the strongest party wins14. We discuss first a relatively simple case, where

the drifts and volatilities of the “ability” processes remain constant over time.

3.1. Constant coefficients

Consider a constant coefficients model: ai(Si, t)≡ µi, bi(Si, t)≡ σi. In other words, S1 and S2 are assumed

to be Brownian motions with drifts:

dS1 = µ1dt+σ1dW1

dS2 = µ2dt+σ2dW2

12 Formally, it is a σ-algebra generated by (S1(s), S2(s)), 0≤ s≤ t.
13 In this paper we take risk-free rate to be zero though theoretical results can be easily extended to any constant risk-free rate. A zero
rate approximation is sufficient for all practical purposes considering the speculative nature of prediction market contracts.
14 Who wins in case of equal abilities is not important as this is a zero-probability event.



Archak and Ipeirotis: Modeling Volatility in Prediction Markets
Working Paper CeDER-08-07, New York University 9

Note that the difference process (S = S1−S2) can be written as

dS = µdt+σdW,

where µ= µ1−µ2, σ=
√
σ2

1 +σ2
2 − 2ρ12σ1σ2 and W = 1

σ
(σ1W1−σ2W2) is a standard Brownian motion.

Now, by Markovity of our stochastic processes, the price π(t) of a prediction market bid can be written

simply as:

π(t) = P{S(T )> 0|S(t)},

We can further expand π(t) as:

π(t) = P

{
W (T )−W (t)>−S(t) +µ(T − t)

σ

}
(2)

As W is a Brownian motion, W (T )−W (t) is a normal random variable with mean zero and volatility

σ
√
T − t, so:

π(t) = N

(
S(t) +µ(T − t)

σ
√
T − t

)
, (3)

where N is the cumulative density function of the standard normal distribution.

While this is a closed-form result, it depends on the unobserved value S(t)15 and therefore is not directly

useful. We can obtain deeper insight by analyzing the evolution of the price process. By applying Ito’s

formula (Oksendal 2005) to π(t), we get:

dπ(t) =
∂π

∂t
dt+

∂π

∂S
dS+

1
2
∂2π

∂S2
(dS)2. (4)

Now, from Equation 3

∂π

∂t
=

1

2σ
(√
T − t

)3φ

(
S(t) +µ(T − t)

σ
√
T − t

)
(S(t)−µ(T − t))

=
1

2σ(T − t)
φ
(
N −1 (π(t))

)(
N −1 (π(t))− 2µ

√
T − t

)
,

∂π

∂S
=

1
σ
√
T − t

φ

(
S(t) +µ(T − t)

σ
√
T − t

)
=

1
σ
√
T − t

φ
(
N −1 (π(t))

)
,

15 Our derivation is based on the assumption that σ(S(t))⊂Ft i.e. abilities of each party are public information at time t. Thought
it is reasonable to assume that this information is well-known to market players, it might not be available to researchers estimating
the model (or might be perceived as subjective).
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∂2π

∂S2
= − 1

(σ
√
T − t)3

φ

(
S(t) +µ(T − t)

σ
√
T − t

)
(S(t) +µ(T − t))

= − 1
σ3(T − t)

φ
(
N −1 (π(t))

)
N −1 (π(t)) ,

where φ stands for probability density function of the standard normal distribution. We can substitute these

expressions to the diffusion Equation 4 together with dS = µdt+σdW and (dS)2 = σ2dt. The terms for the

drift cancel16 and we get an equation:

dπ(t) = 0 dt+
1√
T − t

φ
(
N −1 (π(t))

)
dW.

We can see that instantaneous volatility of π(t) (call it Σ(t)) is given by the expression:

Σ(t) =
1√
T − t

φ
(
N −1 (π(t))

)
, (5)

which depends only on the current price π(t) and the time to expiration T − t and does not depend on any

parameters of the underlying latent stochastic processes.

3.2. General Case For Binary Claims

The result we obtained in the previous example for the constant coefficient case can be generalized with

some restrictions on parameters of the underlying diffusions as stated by the next Theorem. In particular, we

relax the assumption that drifts or volatilities of “ability” processes are constant, though we need to assume

that the coefficients are non-stochastic and that, if the dependency on the current process state is present, it is

linear. Note that this theorem covers both the case of a standard Brownian Motion with drift as well as the

case of a log-normal Brownian Motion with drift as the latter can be written as dS = µSdt+σSdW . It also

implicitly covers the case of a “barrier” bet that pays one dollar if S1(T )>K where K is a fixed constant -

just take µ2 ≡ σ2 ≡ 0.

THEOREM 1. (Contingent claim pricing in a simple prediction market with two competing par-

ties) Consider a complete probability space (Ω,F , P ) on which we have a two-dimensional Brow-

nian motion (W1(t), W2(t); Ft); 0 ≤ t ≤ T , where Ft is a natural filtration for W1,2 i.e. Ft =

16 As they should because of the law of iterated expectations.
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σ ((W1(s), W2(s)); 0≤ s≤ t). Assume that each (Wi(t); Ft) is a standard Brownian motion and

corr(W1(t), W2(t)) = ρ12, |ρ12| < 1. Consider a prediction market for a competitive event such that

underlying ability processes S1 and S2 are Ft-measurable and satisfy the diffusion equation:

dSi = µi(t)(αSi +β)dt+σi(t)(αSi +β)dWi,

where µi(t) is a continuous function, σi(t) is a continuous non-negative function, α ≥ 0 and

P {αSi +β > 0}= 1. Define the contingent claim price process π(t) as

π(t) = E [I (S1(T )>S2(T )) |Ft ] .

Under conditions above, π(t) is an Ito’s diffusion with zero drift and instantaneous volatility given by the

following expression:

Σ(t) =

√
σ2

1(t) +σ2
2(t)− 2ρ12σ1(t)σ2(t)√∫ T

t
(σ2

1(u) +σ2
2(u)− 2ρ12σ1(u)σ2(u))du

φ
(
N −1 (π(t))

)
.

In other words, dπ(t) = Σ(t)dW where W is some standard Brownian motion with respect to filtration Ft.

Proof: See Appendix B.

COROLLARY 1. In case of constant volatility of the underlying ability processes(σi(t)≡ σi), the volatility

of the contingent claim is just

Σ(t) =
1√
T − t

φ
(
N −1 (π(t))

)

The Theorem 1 extends our previous result that given the current price of the contingent claim and its time

to expiration we can determine its instantaneous volatility without knowing any parameters of the underlying

ability processes such as their drifts or volatilities unless there are “seasonal” effects in the volatility of the

“ability” processes in which case our constant coefficient estimate (Equation 5) needs to be scaled by the ratio

of the current volatility of the “ability” processes to the future average volatility of the “ability” processes

until the expiration. For example, if the current claim price is 0.5, the time to expiration is 10 time units and
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Figure 1 Claim Volatility As Function of Its Current Price and Time (claim expires at T = 1, current time t= 0)

we assume no “seasonal” effects, then its instantaneous volatility (with respect to the same time units) should

be 1√
10

1√
2π
≈ 0.126.

Note that our formula predicts that:

1. Having the claim price fixed, volatility of the claim is proportional to inverse square root of the time

until expiration.

2. Having the time to expiration fixed, volatility of the claim is a strictly decreasing function of the

distance between the claim price and 0.5 and it goes to zero as the claim price approaches 0.0 or 1.0.

The dependency of the claim volatility on the claim price and the time to expiration is shown in Figure 1.

One, however, might be more interested in the behavior of claim volatility if we don’t force its price to be

constant but let the claim evolve “naturally”. Two interesting questions that might be asked based on our

model are:

1. What is the expected instantaneous claim volatility at some future moment of time r?

2. What is the expected average volatility of the claim from the current moment of time until the future

moment of time r?

The first of these questions is answered by Theorem 2 which says that our best forecast of the instantaneous

volatility in the future is the current claim volatility weighted by “seasonal” effects if necessary.

THEOREM 2. (Instantaneous volatility is a martingale) In the setting of the Theorem 1, Σ(t)

σ(t)
is a martingale

i.e.,
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∀ r ∈ [t, T ] E
[

Σ(r)
σ(r)

|Ft

]
=

Σ(t)
σ(t)

.

In particular, if we assume that σi(t)≡ σi, then Σ(t) is a martingale.

Proof: See Appendix B.

The second question is answered by the Theorem 3.

THEOREM 3. (Average expected claim volatility) In the setting of the Theorem 1, take r ∈ (t, T ) and

define

Λ =

∫ r
t
σ2(u)du∫ T

t
σ2(u)du

i.e., Λ is the volatility-weighted ratio of the time elapsed to the total contract duration (in particular, if we

assume that σi(t)≡ σi, then Λ = r−t
T−t ). Then,

E
[
(π(r)−π(t))2 |Ft

]
=
∫ Λ

0

1√
1−λ2

φ2

(
1√

1 +λ
N −1 (π(t))

)
dλ (6)

Proof: See Appendix B.

COROLLARY 2. (“Ex-post expected” price trajectory) In the setting of Theorem 3,

E [π(r) |Ft, π(T ) ] = π(t) +
1
π(t)

∫ Λ

0

1√
1−λ2

φ2

(
1√

1 +λ
N −1 (π(t))

)
dλ.

Proof: Direct application of the Theorem 1 from Pennock et al. (2002), which says that, if the market price

in a prediction market is an unbiased estimate of the probability of the actual event E, then

E [π(t) |π(t− 1), E ] = π(t− 1) +
Var{π(t)|π(t− 1)}

π(t− 1)
.

Q.E.D.

The corollary 2 deserves some clarification. Our model was built under assumption that the claim price is

a martingale i.e. E [π(r) |Ft ] = π(t). It follows that an “average” of all price trajectories of a claim from

point (t, π(t)) is just a horizontal line. Imagine now that an observer (but not a trader) has access to an oracle



Archak and Ipeirotis: Modeling Volatility in Prediction Markets
14 Working Paper CeDER-08-07, New York University

Figure 2 Expected claim price conditional on event happening (’x’) or not (’o’) (claim expires at T = 1, current

time t= 0)

that can say whether the event will actually happen or not. Naturally, if the oracle says “yes”, it eliminates

all price trajectories converging to zero. The corollary 2 tells us what one would obtain by averaging all

remaining trajectories that converge to one. We show the expected price trajectories for several initial price

values in the Figure 2. Note that all price trajectories converge either to 1.0 (event happens) or to 0.0 (event

does not happen).

In conclusion of this section, we would like to note that our model can be extended to handle claims with

three or more competing parties. The extension is based on similar ideas, but the results and the derivations

become quite technical, so we list the details in Appendix A.

4. Experimental Evaluation

In this section we present the experimental evaluation of our model on a set of InTrade prediction market

contracts.

4.1. Data

Our data set contained daily observations for a collection of InTrade prediction market contracts. InTrade

is an online Dublin-based trading exchange web site founded in 2001 and acquired by TradeSports.com in

2003. The trading unit on InTrade is a contract with a typical settlement value of $10, which is measured on a

100 points scale. To be consistent with our convention that the winning contract pays $1, we have normalized

all price data to be in [0,1] range, so, for example, a 50 points price of InTrade contract is represented by 0.5
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Variable Min Max Mean Median Standard Deviation

Observations per contract 1 1427 375.76 237 334.52
Time to expiration 2 1933 417.68 347 306.35
Daily deviations -0.93 0.942 -1.5923e-005 0 0.018869
Returns -0.9975 449 0.019172 0 1.4059
Price 0.001 0.995 0.244 0.075 0.32092
Volume 0 9 0.46122 0 1.4053

Table 1 Descriptive statistics for 901 InTrade contracts (338,563 observations)

in our data set. The full data set we analyzed included daily closing price and volume data for a collection of

901 InTrade contracts obtained by periodic crawling of InTrade’s web site.17 Table 1 provides the descriptive

statistics for our sample. Note that we use term “price difference” or “absolute return” to represent price

changes between two consecutive days at = pt− pt−1, while just “return” refers to rt = pt−pt−1

pt−1
.

A closer examination of the data reveals several interesting facts that must be taken into account in our

empirical application. At first, 288,119 of 338,563 observations that we have (i.e. > 85% of the whole data

sets) had zero price change since the previous day. Moreover, 287,430 of these observations had zero daily

trading volume, what means that most of the time price did not change because of the absence of any trading

activity. We presume that absence of activity in many of InTrade prediction markets can be attributed partially

to low liquidity of most of the markets in our sample and partially to high transaction costs for contracts

executed on the exchange.18 Even if we exclude observations with at = 0 from our data set, returns exhibit

the following “round number” bias: absolute returns divisible by 5 ticks19 occur much more frequently than

absolute returns of similar magnitude that are not divisible by 5 ticks. For example, 5 ticks price difference

has occurred 2,228 times in our data set as opposed to 624 times for 4 tick difference and 331 times for 6

tick difference. In fact, more than half of all non-zero price differences in our data set are divisible by 5 ticks.

The bias can be easily seen in Figure 3 that plots absolute return sizes against corresponding frequencies on

regular and log scales. Similar effect can be observed for prices, as shown in Figure 4.

17 InTrade keeps historical data for each contract on the web site, however expired contracts disappear from the web site after certain
amount of time. This is why periodic crawling was necessary.
18 InTrade charges a 5 points commission from each such contract.
19 One InTrade tick is equal to 0.1 InTrade point or 0.1 cent in our normalization.
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Figure 3 Number of times a deviation of a certain size has occurred (tick = 0.1 InTrade point; zero deviations

excluded)

Figure 4 Histogram of prices

4.2. Model Test

Our theoretical model predicts that, for each observation, conditional on price history:

at = htεt, (7)

ht =

√∫ Λ

0

1√
1−λ2

φ2

(
1√

1 +λ
N −1 (pt)

)
dλ (8)
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where ht is the conditional volatility of absolute returns, Λ = 1
T−t

2021 and εt are independent identically

distributed standard22 random variables23. While most of InTrade contracts in our sample have more than two

possible outcomes, we believe the qualitative behavior of contract prices can be well captured by our simple

result for binary model. To test our statement we propose taking logs of the absolute value of Equation 7:24

log(|at|) = E [log |εt|] + log(ht) + log |εt| −E [log |εt|] .

Now, let γ = E [log |εt|] and µt = log |εt| −E [log |εt|]. Note that E [µt |Ft ] = 0 and

log(|at|) = γ+ log(ht) +µt,

so we’re in a regression-like setting even though the residuals are not normally distributed.

We suggest two different tests of our model, both of which require taking absolute values of price differ-

ences and regressing them on a constant and log(ht). The first test checks for presence of heteroscedasticity

effects of time and price as predicted by our theory. The null hypothesis here is that coefficient on log(ht)

is equal to zero and we want to reject it. To the contrary, the second test checks that the magnitude of

heteroscedasticity effects is consistent with our theory. The null hypothesis here is that coefficient on log(ht)

is equal to one and we do not want to reject it.

Results of this regression are given in the Table 2, standard errors are corrected for heteroscedasticity25.

Note that we included zero deviations (but not zero volume trading days), but to avoid taking logs of zero

we added a small smoothing factor (10−4) under the log(|at|). In Table 2 we report the results of three

regressions. The first regression included all observations, the second regression included all observations

with price in (0.05,0.95) range and the last regression included all observations with price in (0.1,0.9)

20 As we take daily returns, time must be measured in days.
21 In this section we assume that the underlying “ability” process is homoscedastic i.e. σi(t)≡ σi.
22 mean zero, variance one
23 We do not know what is the distribution of εt, however for small values of Λ it must be close to normal.
24 We take logs instead of squares of returns as logs are more robust to outliers in the data (which are plenty because of the “fat tails”
of the return distribution, as will be discussed later). Similar results can be obtained with squares of returns.
25 As one can see from the Figure 5, residuals are indeed heteroscedastic as when volatility is high so is the residual.
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Variable Coefficient Robust Std. Err. 95% Conf. Lower Bound 95% Conf. Upper Bound

constant -3.38 0.031 -3.4437 -3.323
log(ht) 0.630 0.005 0.6204 0.639
constant -2.46 0.086 -2.6338 -2.298
log(ht) 0.846 0.020 0.8078 0.886
constant -2.10 0.115 -2.3266 -1.876
log(ht) 0.946 0.028 0.8900 1.001

Table 2 Three pooled regressions of logs of absolute returns (R2 = 0.109, 0.027, 0.022)

range. We report results with excluded marginal observations because such observations are most seriously

affected by the bias depicted in Figure 3. Moreover, there is substantial evidence from the prior research

suggesting that people tend to overvalue small probabilities and undervalue near certainties, i.e., the so

called “favorite-longshot bias” (Thaler and Ziemba 1988). This effect may be especially strong in our sample

as it happened to be skewed towards low price contracts (see Figure 4). As we see from Table 2, the null

hypothesis for the first test is strongly rejected in all three cases, meaning that there are indeed strong

heteroscedasticity effects of the current contract price and the time until contract expiration. For the second

test, while in the first two cases the null hypothesis is rejected at 95% confidence level, the coefficient on

log(ht) improves (i.e. approaches the predicted value of 1) as we exclude the marginal observations.

At that point we may get concerned that our results might be affected by potential heterogeneity of

contracts. While the basic theory suggests that εt are i.i.d. residuals, in practice we may expect correlations in

volatility levels for the same contract, for example, due to different liquidity levels of contracts in the sample

(some contracts, like those for democratic primaries are very liquid but many others are not, and may display

lower or higher volatility because of liquidity issues). In order to alleviate these concerns we also included

contract-specific effects to our regression. In the Table 3 we report results of panel data regressions with fixed

effects for contracts. Note that the Breusch and Pagan LM test rejects absence of effects (χ2(1) = 5448.76,

Prob >χ2 = 0.0000) and the Hausman test does not reject the random effects model26 (χ2(1) = 0.97, Prob

>χ2 = 0.3258).

We also noted that because of potential auto-correlation in absolute returns we may underestimate actual

26 We still report results of the fixed effects model as the number of samples that we have makes efficiency not a concern. Results of
the random effects model are quantitatively similar.
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Variable Coefficient Robust Std. Err. 95% Conf. Lower Bound 95% Conf. Upper Bound

log(ht) 0.6438 0.013112 0.61810 0.66951
log(ht) 1.0370 0.039503 0.95957 1.11443
log(ht) 1.1910 0.049832 1.09341 1.28876

Table 3 Three fixed effect regressions of logs of absolute returns (within R2 = 0.0456, 0.0244, 0.0268)

standard errors; we tried a random-effects regression with AR(1) disturbances (GLS estimator). Indeed, we

found significant auto-correlation in residuals (ρ= 0.526); correcting for autocorrelation makes standard

errors slightly larger but does not affect the results significantly.

Furthermore, we have replicated all results using the instantaneous volatility from Equation 5 instead of

the average daily volatility from Equation 8. As most of the observations in our sample are relatively far

from the expiration date, instantaneous volatilities were close to daily averages and the regression results

were not significantly different.

As instantaneous volatility expression provides particularly nice separation of time and price effects,

we also suggest running a simple visual test in addition to regression based testing. As we have plenty of

observations, we can use data to estimate sample means of the log(|at|) conditional on fixed price or fixed

time to expiration. We can then plot the means against predictions of our model and see if the qualitative

behavior is similar. Results that we obtained are presented in Figure 5. Solid lines shown on the picture are

plots of log (φ(N −1(pt−1))) and −0.5 log (T − t) shifted by a constant so that they match the data means.

4.3. Predicting future volatility and comparison with GARCH model

So far, in our experimental results we were ignoring potential heteroscedasticity of the “ability” processes

and, therefore, potential heteroscedasticity of the contract prices. Our main concern is that, if “volatility

clustering” indeed has significant presence in prediction market prices, one might be able to forecast volatility

better by using historical data than by using our theoretical results. In general, one cannot prove or disprove

such a statement as different prediction markets and even different contracts can exhibit different levels of

“volatility clustering”, and so the answer can only be given on a per-contract basis. In this paper, we report

our test for a sample of 51 InTrade contracts where each contract represents the Democratic Party Nominee

winning Electoral College Votes of a particular state in 2008 Presidential Election.
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Figure 5 Sample means of log of absolute returns conditional on fixed price or time to expiration against

predictions of our model.

In our test we compared three models, the GARCH(1,1) model (Bollerslev 1986), our model assuming

homoscedasticity of the “ability” processes, and the GARCH(1,1) model applied to standardized residuals

from our model27. Note that our model is non-parametric while other two models require estimating

parameters of the GARCH process from historical data. As we are more interested in forecasting volatility

than in explaining it, we separated observations for each contract into two equal parts - the first part was

used to learn parameters of the GARCH processes (on a per contract basis) and the second part was used

for evaluation of forecasting accuracy. We have compared all three models in terms of total log-likelihood

on the testing part of the sample as this is a natural fit criterion for GARCH models. Results are given in

Table 4. In 26 out of 51 cases the model 3 (GARCH on standardized residuals) provided the best forecasts

and in 17 out of the rest 25 cases our model outperformed regular GARCH. Overall, the results support the

hypothesis that there is a significant “volatility clustering” in the data, however our model is generally better

in forecasting volatility than the results based on pure historical data. Moreover, our model seems to capture

effects of time and price on claim volatility that are orthogonal to the heteroscedasticity captured by GARCH.

The orthogonal nature of these two different sources of heteroscedasticity implies that one can significantly

27 Standardized residual is the return rt normalized by our prediction of the return volatility which is ht
pt

where ht is given by
Equation 8
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improve forecasts of future contract volatility by running GARCH on standardized residuals from our model

rather than running it directly on the return data.

5. Discussion and Future Work

Overall, our experiments show that realized volatility of prediction markets is consistent with what our

diffusion-based theory would predict. The model provides good predictions of market volatility without

requiring one to know anything about the market except for the current price and time to expiration. However,

there are still areas for improving the model and providing even better fit. We outline three directions for

improvement in future work:

1. Our model ignores market micro-structure as well as possible behavioral biases such as “favorite-

longshot” and rounding biases. No market (especially prediction market) is ideally liquid - the bid-ask queue

has always finite depth and there are usually transaction costs. As well, traders are not fully rational. It is an

interesting research question to examine whether the volatility model can be extended to capture the effects

of the structure of the bid-ask queue and/or some standard behavioral biases.

2. Our idea of two underlying “ability” processes being driven by Brownian motions might not ideally

represent the real stochastic process driving the event probability. As we already mentioned before, most

of the contracts in our sample involve more than two competing entities while in the experimental part we

analyzed them as if they were binary cases. While the Appendix provides full derivation of the volatility

expression in case of more than two competing parties, the result depends on unobserved correlations between

Brownian motions driving the data and therefore cannot be directly applied to our data set.28 Even if using

the binary scenario is fine, we put significant restrictions on the claim price dynamics by assuming that they

are driven by Brownian motions. Brownian motions result in sample paths that are continuous and short-term

price changes that are almost normally distributed. However in our sample we frequently observe price

jumps that are completely improbable if we assume normal distribution of returns. For example, the contract

for Michigan to hold new democratic primaries in 2008 had a 59 cents price drop on March 19th, a move

that, according to our estimates, constitutes almost 15 (!) standard deviations. One might want to extend

28 Another interesting extension of this work would be to show how the correlations can be uncovered from the historical price data.
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Contract Model 1 logL Model 2 logL Model 3 logL

ALABAMA.DEM -431.09 92.341 59.567
ALASKA.DEM 4.8287 69.42 33.529
ARIZONA.DEM 67.601 114.71 140.06
MONTANA.DEM -152.22 122.64 -98.139
NEBRASKA.DEM -381.61 -29.548 1.445
ARKANSAS.DEM 65.974 138.61 156.86
NEVADA.DEM 180.46 240.81 256.33
CALIFORNIA.DEM -4850.1 -10412 -1047.2
NEWHAMPSHIRE.DEM 228.38 260.14 267.53
COLORADO.DEM 322.91 294.21 326.68
CONNECTICUT.DEM -198.42 425.92 289.61
DELAWARE.DEM 330.8 433.69 354.24
GEORGIA.DEM 127.85 121.84 130.57
NEWJERSEY.DEM 378.27 398.59 388.51
HAWAII.DEM 553.4 567.01 588.64
IDAHO.DEM 158.06 112.52 141.09
NEWMEXICO.DEM 310.15 302.49 319.12
NEWYORK.DEM 223.36 447.15 405.75
ILLINOIS.DEM 589.39 553.41 613.2
NTH.CAROLINA.DEM -206.83 155.25 42.05
NTH.DAKOTA.DEM 75.26 90.081 83.445
INDIANA.DEM 112.67 140.14 146.4
IOWA.DEM 329.78 329.35 329.39
OHIO.DEM 270.74 269.71 302.36
OKLAHOMA.DEM -8.6928 99.777 119.05
KANSAS.DEM 27.434 108.34 123.38
KENTUCKY.DEM 131.22 110.77 134.07
LOUISIANA.DEM 102.25 119.51 134.51
MAINE.DEM 366.05 330.65 336.14
MARYLAND.DEM 440.08 469.23 487.67
OREGON.DEM 358.88 356.9 348.78
MASSACHUSETTS.DEM 518.96 503.46 510.21
PENNSYLVANIA.DEM 324.09 325.93 335.2
MICHIGAN.DEM 271.28 300.39 292.54
MINNESOTA.DEM 324.2 323.13 324.94
RHODEISLAND.DEM 378.95 494.51 445.77
STH.CAROLINA.DEM 95.084 101.23 83.047
STH.DAKOTA.DEM 113.23 112.25 121.73
MISSISSIPPI.DEM 133.45 128.62 111.81
TENNESSEE.DEM -559.44 80.524 61.8
MISSOURI.DEM 182.58 202.71 207.44
DISTRICTOFCOLUMBIA.DEM Not converged 598.3 Not converged
TEXAS.DEM 141.63 117.9 144.61
UTAH.DEM Not converged 109.58 Not converged
VERMONT.DEM 431.11 429.22 452.49
VIRGINIA.DEM 240.58 242.67 262.89
WASHINGTON.DEM 436.91 424.04 434.15
WESTVIRGINIA.DEM -27.236 94.784 96.654
WISCONSIN.DEM 266.56 301.05 282.31
WYOMING.DEM -1285.7 82.772 -66.499
FLORIDA.DEM 226.92 209.12 225.51

Table 4 Model Comparison in terms of log-likelihood outside of training sample. Model 1: GARCH(1,1);

Model 2: our model; Model 3:- GARCH(1,1) on standardized residuals from Model 2
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our model to cover cases when the underlying “ability” processes are driven by a jump-diffusion i.e. have

a Poisson jump component in addition to a regular Brownian motion. Using jump-diffusion will allow for

modeling of more interesting dynamics such as sudden arrival of new significant information to the market.

3. Finally, in our work, we price claims as if traders are risk-neutral. Indeed there is no “pricing kernel” or

“stochastic discount factor” in our pricing formula. As prediction market bets are somewhat similar to binary

options, it is tempting to say that we just borrow a risk-neutral pricing approach from the option pricing

literature. Unfortunately, the traditional argument to support risk-neutral pricing of options, i.e. traders can

replicate the option by trading in the underlying stock(s) (Delta hedging) does not work for prediction

markets as the underlying either does not physically exist or cannot be traded. Nevertheless, we can suggest

at least three alternative arguments in defense of risk-neutral pricing:

(a) In some prediction markets traders may indeed behave as risk-neutral either because the market

uses “play money” instead of real ones (like Hollywood Stock Exchange which uses “Hollywood dollars”)

or because trader’s participation is limited (Iowa Prediction Markets limit traders’ positions by 500$).

(b) Wolfers and Zitzewitz (2006) show that under certain conditions prediction market prices maybe

close to the mean population beliefs even if the traders are not risk-neutral, so risk-neutral pricing might be a

valid approach even in the presence of certain risk-aversion.

(c) As we already described in the beginning of the paper, there is significant experimental evidence

that prediction market prices are unbiased estimates of the actual event probability.

Note that the last argument was our main justification in this paper. Without trying to answer the question

of “why is it so?”, we just adopted risk-neutral pricing to see where the theory leads us. The results we have

obtained in the experimental part of this paper, might be seen as a joint test of market efficiency and non-bias

assumptions, as well as our diffusion model.

6. Application: Pricing options on prediction market contracts

This section presents application of our model to pricing options on prediction market contracts. Options are

popular financial instruments with numerous applications such as risk hedging or speculation on volatility.

A classic “vanilla” call option on a security provides the right but not the obligation to buy a specified
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quantity of the security at a set strike price at a certain expiration date.29 A major breakthrough in option

pricing was achieved by Fischer Black and Myron Scholes who were first to discover the PDE.30 approach to

option pricing and obtain a closed form solution for “vanilla” call price now known as the Black-Scholes

formula (Black and Scholes 1973, Merton 1973).

In this section, we consider binary options on prediction market claims, like those recently introduced by

InTrade. Such binary option will pay $1 if on option’s expiration date (T ′) the underlying contract’s price is

larger than the strike price (K). Note that option’s expiration date (T ′) is different from the expiration date of

the underlying contract (T ).31 For example, InTrade’s option X.15OCT.OBAMA.>74.0 will pay 100 points

($1 in our normalization) if on T ′ = 15 OCT 2008, the price of the 2008.PRES.OBAMA contract is at least

74 points (K). The expiration date for the underlying contract is T = 09 NOV 2008.

As we already assume risk-neutrality, it is easy to define the option price:

ct = P{π(T ′)>K|π(t)}. (9)

We know the evolution process for the underlying contract:

dπ(t) = 0 dt+

√
σ2

1(t) +σ2
2(t)− 2ρ12σ1(t)σ2(t)√∫ T

t
(σ2

1(u) +σ2
2(u)− 2ρ12σ1(u)σ2(u))du

φ
(
N −1 (π(t))

)
dW,

so it only remains to calculate the expectation. The result is stated by the following theorem.

THEOREM 4. (Pricing options on prediction market claims in a simple prediction market with two

competing parties) In the setting of the Theorem 1, take T ′ ∈ (t, T ) and consider a binary option on the

contract π(s) with payoff

ct = P{π(T ′)>K|π(t)}.

Define λ=
∫ T ′
t σ2(u)du∫ T
t σ2(u)du

i.e. λ is the volatility-weighted ratio of the time to the option expiration to the time to

29 In this section we consider European style options only. An American style option will give owner the right to exercise it on or
before the expiration date.
30 Partial Differential Equation
31 Naturally, it must be that T ′ <T .
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the contract expiration (in particular, if we assume that σi(t)≡ σi, then λ= T ′−t
T−t ). Then the option price is

given by the equation

ct = N

(√
1
λ

N −1(π(t))−
√

1
λ
− 1N −1(K)

)
. (10)

Proof: See Appendix B.

Several interesting observations can be made from this formula:

1. The option price is strictly increasing in the current contract price and strictly decreasing in the strike

price.

2. As time to the option expiration converges to time to the contract expiration (λ→ 1), the option price

converges to the current contract price (π(t)).

3. If the current contract price is 0.5 and the option expires halfway to the contract expiration,32 then the

option price is equal to the strike price ct =K.

To give the reader better intuition of how the option price behaves with varying parameters λ and K we

include a plot of option prices for a fixed value of the current price (π(t) = 0.5) in the Figure 6.

One can also take derivative of the option price with respect to the strike price to retrieve the risk-neutral

density of the claim price at time T ′. The result is

f(p) =
φ
(√

1
λ
N −1(π(t))−

√
1
λ
− 1N −1(p)

)
φ (N −1(p))

√
1
λ
− 1. (11)

We have plotted it for different values of the current price and λ in the Figure 7.

7. Managerial Implications and Conclusions

Although volatility is one of the most widely studied concepts in financial markets, little attention, so far,

has been given to understanding volatility of betting or prediction markets. This is unfortunate as being

able to predict market volatility in prediction markets can be as important as in financial markets. Practical

applications may include detection of significant market moves, improving forecast standard errors in

32 as weighted by volatilities of the underlying “ability” processes
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Figure 6 Option prices for prediction market contracts as a function of the time to option expiration and the

strike price. The current contract price is 0.5.

prediction markets, pricing claims in conditional prediction markets and pricing options on prediction market

claims.

This paper is the first attempt to provide a theoretical model of prediction market volatility. In doing so,

we assume “ideal”, i.e., unbiased and efficient prediction market and assume that the event being predicted is

driven by a set of latent diffusion processes. Combination of both assumptions results in some interesting

theoretical results, such as the fact that instantaneous volatility of a claim on a binary event is a particular

function of the current claim price and its time to expiration. The result does not hold for events with more

than two competing parties as we show that claim prices for such events will also depend on correlations

between latent processes.

Volatility results we obtained bear certain similarity to the family of autoregressive conditional het-

eroscedasticity models started by the seminal paper of Engle (1982). The main difference is that ARCH

models represent conditional volatility of returns in a stock market as a function of previous absolute returns,

a well-known effect of volatility clustering, while our model suggests that conditional volatility in a prediction

market is a function of the current price and the time to expiration. The second difference is that while ARCH
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Figure 7 Risk-neutral densities for future contract prices. Rows correspond to π(t) = 0.25, 0.5, 0.75 and

columns correspond to λ= 0.25, 0.5, 0.75.

models are usually experimental, our model of conditional heteroscedasticity can be derived theoretically

from a stochastic model of “ability” processes.

While our theory is based on a model of “ideal” market, our experimental results for a collection of real

InTrade prediction markets show that volatility patterns of real prediction markets are consistent with what

our model predicts, especially if we exclude marginal (very high or very low priced) observations from the

data set. Our results for a sample 51 of InTrade contracts on 2008 Presidential Elections demonstrate that

our model is better in forecasting volatility than GARCH applied to historical price data, although the best

performance is obtained by combining both models.
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Appendix A: Extending our Model to N parties

One of the limitations of the model we studied so far is that we consider only bets with at most two competing parties.

What if we have N > 2 parties (for example, Clinton, McCain and Obama) competing? Can the results be generalized

to the case when each of the parties have a separate “abilities” process? The answer is “partially, yes”. We start from a

ternary (N = 3) example and later extend it to the case of arbitrary number of assets; the technique we use is borrowed

from (Johnson 1987). To simplify notation we will also assume constant coeffients of the underlying diffusions, though

it is not essential for derivation.

In the ternary case we have 3 ability processes dS1 = µ1dt+σ1dW1

dS2 = µ2dt+σ2dW2

dS3 = µ3dt+σ3dW3

,

where each Wi is a standard Brownian motion and corr(Wi,Wj) = ρij if i 6= j. Consider a bet that pays $1 at time T if

S1 ≥max(S2, S3). When does such event happen? Easy to show that this event will happen if and only if both of the

following are true:

1
σ12

√
T − t

(
W t,T

1 −W t,T
2

)
>

1
σ12

√
T − t

(S2(t)−S1(t) + (µ2−µ1)(T − t)) ,

and

1
σ13

√
T − t

(
W t,T

1 −W t,T
3

)
>

1
σ13

√
T − t

(S3(t)−S1(t) + (µ3−µ1)(T − t)) ,

where W T,t
i =Wi(T )−Wi(t), σij =

√
σ2
i +σ2

j − 2ρijσiσj . It will be convenient to introduce extra variables Aij(t)≡

Sj(t)−Si(t) + (µj −µi)(T − t) to represent the right side of each expression. Note that because of the normalization

chosen, the left side of each expression is a standard normal variable; moreover, both variables are jointly normal. The

correlation between them is

ρ123 =
σ2

1 − ρ12σ1σ2− ρ13σ1σ3 + ρ23σ2σ3

σ12σ13

.

Define φ123 as the probability density function of these two variables:

φ123(x, y) =
1

2π
√

1− ρ2
123

exp
(
− 1

2(1− ρ2
123)

(x2 + y2− 2ρ123xy)
)
.

The price of a bet on the win of first party is just:

π1(t) =
∫ ∞
A12(t)

∫ ∞
A13(t)

φ123(x, y)dxdy.

We can apply Ito’s formula to the bet price. The result will have zero drift, however the quantity of interest to us is its

diffusion term which is{
− 1√

T − t

∫ ∞
A13(t)

φ123(A12(t), y)dy
}
dW12 +

{
− 1√

T − t

∫ ∞
A12(t)

φ123(x,A13(t))dx
}
dW13,
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where Wij = 1
σij

(σjWj −σiWi) is a standard Brownian motion. It can be further simplified if we note the following

fact about two-dimensional normal distribution. Let x, y be jointly normal with correlation ρ, zero means and unit

variances. Then we can write x= ρy+ z
√

1− ρ2 where z is independent from y and has zero mean. So,

P {x>A|y=B}= P

{
z >

A− ρB√
1− ρ2

}
= N

(
ρB−A√

1− ρ2

)
.

Now note that φ123(A12(t), y) = φ(A12(t))φ(y|A12(t)), where the last multiplier represents density of y conditional

on x=A12(t). Taking this into account, the diffusion term can be rewritten as

− 1√
T − t

N

(
ρ123A12(t)−A13(t)√

1− ρ2
123

)
φ(A12(t))dW12−

1√
T − t

N

(
ρ123A13(t)−A12(t)√

1− ρ2
123

)
φ(A13(t))dW13,

It immediately follows that instantaneous volatility of the first contract is

Σ11(t) =
1√
T − t


(

N

(
ρ123A12(t)−A13(t)√

1− ρ2
123

))2

φ(A12(t))2 +

(
N

(
ρ123A13(t)−A12(t)√

1− ρ2
123

))2

φ(A13(t))2+

2ρ123N

(
ρ123A12(t)−A13(t)√

1− ρ2
123

)
N

(
ρ123A13(t)−A12(t)√

1− ρ2
123

)
φ(A12(t))φ(A13(t))

} 1
2

.

Moreover, we can easily apply this technique to calculate covariances Σij(t) between any two claims πi and πj . This

result, however, is not very satisfactory as variables A12(t) and A23(t) depend on unobserved (to researchers) state of

the latent ability processes. We now show that the volatility is uniquely determined if we take into account prices of all

three contigent claim (π1, π2 and π3)33.

THEOREM 5. (Prices define volatility for ternary claims)

Fix all ρ and σ parameters and define φijk as above. For each vector of prices (π1, π2, π3) such that πi > 0, πi <

1,
∑
πi = 1, there exists a unique solution of the following system of equations:

π1 =
∫ ∞
A12

∫ ∞
A13

φ123(x, y)dxdy,

π2 =
∫ ∞
A23

∫ ∞
A21

φ231(x, y)dxdy,

π3 =
∫ ∞
A31

∫ ∞
A32

φ312(x, y)dxdy,

σ12A12 +σ23A23 +σ31A31 = 0. (12)

Aij =−Aji ∀i, j ∈ {1,2,3}, i 6= j.

Proof:

Uniqueness: Assume that there are two different solutions (A12,A23,A31) and (Â12, Â23, Â31). Without loss of

generality we assume that Â12 >A12. From the equation π1 =
∫∞
A12

∫∞
A13

φ123(x, y)dxdy it must be that Â13 <A13

and so Â31 > A31 (here, and in many other places, we use the fact that Aij = −Aji). From the equation π2 =∫∞
A23

∫∞
A21

φ231(x, y)dxdy we conclude that Â23 > A23. By summing all three inequalities with proper multipliers

we get σ12Â12 + σ31Â31 + σ23Â23 > σ12A12 + σ31A31 + σ23A23. But that can’t be as both sides are equal to zero

according to Equation 12. We obtained a contradiction so there can be at most one solution of this system of equations.
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Algorithm 1 Algorithm to restore A-values from prices
M12⇐N −1(1−π1) {Define M12 by π1 =

∫∞
M12

∫∞
−∞ φ123(x, y)dxdy= 1−N (M12).}

m12⇐N −1(π2) {Define m12 by π2 =
∫∞
−∞

∫∞
−m12

φ231(x, y)dxdy= 1−N (−m12) = N (m12).}

Ensure: m12 <M12 {Note, as π2 < 1−π1, we must have m12 <M12.}

a⇐m12, b⇐M12 {Prepare for binary search for A12 on interval (m12,M12).}

repeat

x⇐ 1
2
(a+ b)

A13 :
∫∞
x

∫∞
A13

φ123(x, y)dxdy = π1 {As x < M12 we can find a unique A13 such that∫∞
x

∫∞
A13

φ123(x, y)dxdy= π1.}

A23 :
∫∞
A23

∫∞
−x φ231(x, y)dxdy,= π2 {As x > m12 we can find a unique A23 such that∫∞

A23

∫∞
−x φ231(x, y)dxdy,= π2.}

r⇐ σ12x+σ23A23 +σ31A31

if r < 0 then

a⇐ x

else

b⇐ x

end if

until |r|< ε

Existence:

The proof of the uniqueness part suggests the Algorithm 1 to find the solution. Note that we don’t need to satisfy

the equation π3 =
∫∞
A31

∫∞
A32

φ312(x, y)dxdy, because
∑
πi = 1 it will be satisfied automatically as soon as all other

equations are satisfied. The proposed algorithm proves existence of the solution as we can easily check that r(x) is a

continous and strictly increasing function of x (taking into account dependency of A13 and A23 on x) and m12 <M12

and limx→M12−0 r(x) = +∞ (note that for M12 we have A13 =−∞) and limx→m12+0 r(x) =−∞ (note that for m12

we have A23 =−∞). This completes the proof of the Theorem 2. Q.E.D.

Moreover, we obtained the following simple corollary:

COROLLARY 3. Conditional on prices πi, Aij values (and therefore Σ(t)
√
T − t) don’t depend on time until

33 Obviously, two of them are sufficient as all three will always sum to 1.
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expiration of the claim and drifts of the latent ability processes. Moreover, they will not change if we scale all volatilities

(σ1, σ2, σ3) by the same multiplier.

Example

Assume that current claim prices in the Presidential elections market for three Presidential candidates are π1 = 0.2, π2 =

0.3, π3 = 0.5. Also assume that all three candidates are equally volatile (σi ≡ 1), there is a high positive correlation

between abilities of the first two candidates (ρ12 = 0.5)34 and low negative correlations with the third candidate

(ρ13 = ρ23 =−0.1).

Straightforward to calculate that σ12 = 1, σ13 = σ23 =
√

2.2 and ρ123 = ρ231 ≈ 0.337, ρ321 ≈ 0.772. By applying

our binary search algorithm we obtained the following A values: A12 ≈ 0.225, A13 ≈ 0.350, A23 ≈ 0.198. Finally,

the instantaneous volatilities are 0.2624√
T−t ,

0.3259√
T−t and 0.3904√

T−t . These volatility levels are close to what we would expect

if we considered each claim as a contract for an independent binary event. In the binary case, our estimates would

have been 0.28√
T−t ,

0.3477√
T−t and 0.3989√

T−t .35 One may ask, whether ternary model always gives results “close” to the binary

case. The answer is “no” and here is one of the counterexamples: π1 = 0.35, π2 = 0.25, π3 = 0.40, ρ12 = 0.5, ρ13 =

0.2, ρ23 = 0.35, σi ≡ 1. The ternary model predicts volatility of 0.08746√
T−t for the second claim, while the binary model

overestimates it ( 0.3178√
T−t ).

The last example clearly shows that a multi-party nature of the claim can have influence on its volatility. Unfortunately,

the multi-party nature makes volatility much harder to calculate. Remember, in the binary scenario all we needed to

know in order to calculate the claim volatility was its current price and time to expiration: none of the parameters of the

underlying ability processes mattered if we knew the price. In the ternary case we need more data. At first, we need all

three claim prices π1, π2, π3 (strictly speaking, at least two of them) to determine volatility of any claim. At second,

we need to know relative volatilities of each ability process (say λ2 = σ2
σ1

and λ3 = σ3
σ1

). At last, we need to know

correlations between Brownian motions driving each ability process (values ρij). This result may leave us wondering

whether the case of N > 3 is even harder and makes the volatility depend on some even more obscure parameters.

Fortunately, the answer is no - all we need to know are the current prices, volatilities and pairwise correlations between

Brownian motions. The result is stated by the following theorem.36

THEOREM 6. (Contigent claim pricing in a simple prediction market with N competing parties)

Consider a complete probability space (Ω,F , P ) on which we have a N-dimensional Brownian

motion (W1(t), ...WN(t); Ft); 0 ≤ t ≤ T , where Ft is a natural filtration for W1..N i.e. Ft =

σ ((W1(s), ...WN(s)); 0≤ s≤ t). Assume that each (Wi(t); Ft) is a standard Brownian motion and

corr(Wi(t), Wj(t)) = ρij , |ρij |< 1 (i 6= j). Consider an efficient and accurate prediction market for a competitive

event such that underlying ability processes Si are Ft-measurable and satisfy diffusion equation

dSi = µi(t)(αSi +β)dt+σi(αSi +β)dWi,

34 For example, because they belong to the same party.
35 Note that they are not equal to ternary estimates assuming independence of the underlying Brownian motions (ρij = 0). In our
example, independence assumption gives the following volatilities: 0.2678√

T−t ,
0.3333√
T−t and 0.3780√

T−t .
36 In order to save paper we present constant volatility case. Readers are welcome to extend this result to time-varying volatilities.
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where µi(t) is a continuous function, σi ≥ 0, α≥ 0 and P {αSi +β > 0}= 1. Define a contigent claim price processes

πi(t) as

πi(t) = E [I (∀j 6= i Si(T )>Sj(T )) |Ft ] .

Under conditions above πi(t) is an Ito’s diffusion with zero drift and covariance matrix Γ given by the following

expression

Γij(t) =
1√
T − t

{∑
k 6=i

∑
l 6=j

ρikjlΦ
(
Ai −k;µik; Ωik

)
φ(Aik)Φ

(
Aj −l;µjl; Ωjl

)
φ(Ajl)

}
,

where

ρikjl =
σkσlρkl− ρijσiσj − ρklσkσl + ρjlσjσl

σikσjl
,

ρijk = ρijik,

σij =
√
σ2
i +σ2

j − 2ρijσiσj ,

Ai −j stands for Ai without element Ai j

Ai stands for Ai 1,Ai 2, ...Ai i−1,Ai i+1, ...Ai N ,

Φ (Ai −j ;µij ; Ωij) stands for cumulative distribution function of multivariate normal with mean µij and covariance

matrix Ωij ,

µij =AijΩi
j −j ,

Ωij = Ωi
−j −j −Ωi

j −j

(
Ωi
j −j

)T
,

Ωi
j −j stands for matrix Ωi where we removed j-th row and all columns except for j-th column (so the result is a single

column),

Ωi
−j −j stands for matrix Ωi where we removed j-th row and j-th column (so the result is a square matrix),

Ωi =

 1 ρi 1 2 ... ρi 1 i−1 ρi 1 i+1 ...
ρi 2 1 1 ... ρi 2 i−1 ρi 2 i+1 ...
... ... ... ... ... ...

 ,

and values Aij are chosen to solve the following system of equations:

∀i : πi = Φ
(
Ai;0; Ωi

)
,

∀i, j i 6= j : Aij =−Aji,

∀i, j i 6= j 6= k, i 6= k : σijAij +σjkAjk +σkiAki = 0.

Briefly, dπi(t) = Σi(t)dW where W is some standard Brownian motion with respect to filtration Ft.

Proof: See Appendix.
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Appendix B: Proofs of Theorems
Proof of Theorem 1

Define the function f(S) =
∫ S
x0

1
αx+β

dx, where x0 is some fixed value. Let Yi(t) = f(Si(t)) be a new stochastic process.

Note that f is strictly increasing on the domain of S, so we have that P {Y1(T )>Y2(T )}= P {S1(T )>S2(T )} i.e.

instead of original processes we can consider transformed ones. We can apply Ito’s formula to find drift and volatility of

the transformed process. First calculate the derivatives:

∂f

∂S
=

1
αS+β

,

∂2f

∂S2
=− α

(αS+β)2
.

Now Ito’s formula says:

df(Si, t) =
∂f

∂S
dSi +

1
2
∂2f

∂S2
(dSi)2.

Substituting everything gives us:

dYi =
(
µi(t)−

α

2
σ2
i (t)

)
dt+σi(t)dWi.

Remember that P {Y1(T )>Y2(T )}= P {S1(T )>S2(T )}. Now,

Yi(T ) = Y1(t) +
∫ T

t

(
µi(u)− α

2
σ2
i (u)

)
du+

∫ T

t

σi(u)dWi(u)

So Y1(T )> Y2(T ) if and only if
∫ T
t
σ1(u)dW1(u)−

∫ T
t
σ2(u)dW2(u)> Y2(t)− Y1(t) +

∫ T
t

(
µ2(t)− α

2
σ2

2(t)
)
dt−∫ T

t

(
µ1(t)− α

2
σ2

1(t)
)
dt. We already know that the left side is a normal variable with mean zero and variance:

σ2
t,T =

∫ T

t

(
σ2

1(u) +σ2
2(u)− 2ρ12σ1(u)σ2(u)

)
du,

so

π(t) = N

(
Y1(t)−Y2(t) +

∫ T
t

(µ1(u)−µ2(u))du− α
2

∫ T
t

(σ2
1(u)−σ2

2(u))du
σt,T

)
.

As before we’re not so much interested in the formula itself as in the diffusion equation. By applying Ito’s formula

to π(t) we can easily calculate its drift and volatility; we can save time, however, by noting that drift must be

zero as in the simple case (expectations of stochastic processes must have zero drift). The volatility term is just
∂π
∂Y1

σ1(t)dW1 + ∂π
∂Y2

σ2(t)dW2 which can be written as

σ(t)
σt,T

φ
(
N −1 (π(t))

)
dW

where

σ(t) =
√
σ2

1(t) +σ2
2(t)− 2ρ12σ1(t)σ2(t),

is instantaneous volatility (compare it with expression for σt,T ) and

W (t) =
σ1(t)W1(t)−σ2(t)W2(t)

σ(t)

is a standard Brownian motion. That proves the Theorem. To prove the Corollary just note that if σ(u)≡ c on [t, T ],

then σt,T = c
√

(T − t). Q.E.D.
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Proof of Theorem 2

We will use the notation from the Proof of Theorem 1, in particular, definitions of σ(t) and σt,T . Let V (t) = Σ(t)σt,T

σ(t)
=

φ (N −1(π(t))). This can be written as V (t) = U(π(t)), where U(x) = φ (N −1(x)). Note that U ′(x) =−N −1(x)

and U ′′(x) =− 1
U(x)

. We are now ready to apply Ito’s formula in integral form which gives us:

V (s) = V (t)−
∫ s

t

N −1(π(u))dπ(u)−
∫ s

t

1
2U(π(u))

(dπ(u))2. (13)

Note, that
∫ s
t

N −1(π(u))dπ(u) is an Ito integral and its integrand is square intergrable (follows from the construction

of the “ability” processes), so its expectation is zero. The second integral is∫ s

t

1
2U(π(u))

(dπ(u))2 =
∫ s

t

1
2U(π(u))

σ2(u)
σ2
u,T

U2(π(u))du=
∫ s

t

σ2(u)
2σ2

u,T

V (u)du.

After applying conditional expectation to the Equation 13 we get

E [V (s) |Ft ] = V (t)− 1
2

∫ s

t

σ2(u)
σ2
u,T

E [V (u) |Ft ]du,

here we used Fubini’s theorem to put the expectation operator under the integral. Now, if we define f(u) = E [V (u) |Ft ],

we have an integral equation

f(s) = f(t)− 1
2

∫ s

t

σ2(u)
σ2
u,T

f(u)du.

After taking the derivative of both sides with respect to s and rearranging terms we get:

∂

∂s
(log f(s)) =

1
2
∂

∂s

(
log
(
σ2
s,T

))
.

Here we use the fact that ∂
∂s

log
(
σ2
s,T

)
= −σ2(s)

σ2
s,T

. Easy to see that all solutions of this equation are of the form

f(s) =Cσs,T . But then,

E [Σ(s) |Ft ] =
σ(s)
σs,T

E [V (s) |Ft ] =
σ(s)f(s)
σs,T

≡Cσ(s).

Q.E.D.

Proof of Theorem 3

We will use the notation from the Proof of Theorem 1, in particular, definitions of σ(t) and σt,T . First, note that

E
[
(π(r)−π(t))2 |Ft

]
= E

[(∫ r

t

Σ(u)dW
)2

|Ft

]
=
∫ r

t

E
[
Σ(u)2 |Ft

]
du, (14)

where the last step is obtained by applying Ito’s isometry (Oksendal 2005). Now, the easiest proof is obtained by noting

that the evolution process of the prediction market contract

dπ(t) = 0 dt+
σ(t)
σt,T

φ
(
N −1 (π(t))

)
dW,

does not depend on parameters of the “ability” processes except for σ. As we will obtain the same result with any

valid values of µ,α and β, we can as well take the simplest possible set: µ ≡ 0, α ≡ 0, β ≡ 1. With these settings

Y (t) = Y1(t)− Y2(t) is just a Brownian motion and π(u) = N
(
Y (u)

σu,T

)
and Σ(u) = σ(u)

σu,T
φ
(
Y (u)

σu,T

)
. By using the

normality of increments of a standard Brownian motion:

E
[
Σ(u)2 |Ft

]
=
∫ ∞
−∞

1
σt,u

φ

(
δ

σt,u

)[
σ(u)
σu,T

φ

(
Y (t) + δ

σu,T

)]2

dδ.
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Simple algebraic calculations give

φ

(
δ

σt,u

)
φ2

(
Y (t) + δ

σu,T

)
= φ

δ
√

2σ2
t,u +σ2

u,T

σt,uσu,T
+C

φ2

 Y (t)√
2σ2

t,u +σ2
u,T

 .

Only the first term depends on δ, so we can integrate to obtain

E
[
Σ(u)2 |Ft

]
=
σ2(u)φ2

(
Y (t)√

2σ2
t,u+σ2

u,T

)
σu,T

√
2σ2

t,u +σ2
u,T

=
σ2(u)

σu,T

√
2σ2

t,u +σ2
u,T

φ2

N −1 (π(t))σt,T√
2σ2

t,u +σ2
u,T

 .

This can be rewritten as

E
[
Σ(u)2 |Ft

]
=

σ2(u)/σ2
t,T√

1−λ(u)
√

1 +λ(u)
φ2

(
N −1 (π(t))√

1 +λ(u)

)
,

where

λ(u) =
σ2
t,u

σ2
t,T

.

Note that d(λ(u)) = σ(u)2

σ2
t,T

. If we substitute this expression to the Equation 14 and change the variable as u 7−→ λ we

immediately obtain the Equation 3. Q.E.D.

Proof of Theorem 4

We will use the notation from the Proof of Theorem 1. The easiest proof is obtained by noting that the evolution process

of the prediction market contract

dπ(t) = 0 dt+
σ(t)
σt,T

φ
(
N −1 (π(t))

)
dW,

does not depend on parameters of the “ability” processes. As we will obtain the same result with any valid values of

µ,α and β, we can as well take the simplest possible set: µ≡ 0, α≡ 0, β ≡ 1. With these settings Y (t) = Y1(t)−Y2(t)

is just a Brownian motion and π(t) = N
(
Y (t)

σt,T

)
, so

P{π(T ′)>K|π(t)}= P

{
N

(
Y (T ′)
σT ′,T

)
>K

∣∣∣∣N (
Y (t)
σt,T

)
= π(t)

}
.

The resulting formula can be obtained by simple algebraic manipulations and the fact that Y (T ′)−Y (t) is a normal

random variable with mean zero and standard deviation σt,T ′ . Q.E.D.

Proof of Theorem 6

Proof is a straightforward but tedious extension of the 3-dimensional argument to higher dimensions. We’ll sketch it

below.

At first, as in proof of the binary case, define the function f(S) =
∫ S
x0

1
αx+β

dx, where x0 is some fixed value. Let

Yi(t) = f(Si(t)) be a new stochastic process. Note that P {Yi(T )>maxj 6=iPj(T )}= P {Si(T )>maxj 6=i Sj(T )}.

After applying Ito’s formula we get

dYi =
(
µi(t)−

α

2
σ2
i

)
dt+σidWi.

Remember that πi is the price of a bet that pays $1 at time T if Yi(T )≥maxj 6=i Yj(T ). This can happen if and only if

∀j 6= i the following is true:

1
σij
√
T − t

(
W t,T
i −W t,T

j

)
>

1
σij
√
T − t

(
Yj(t)−Yi(t) +

∫ T

t

(µj −µi)(u)du
)
≡−Aij(t). (15)
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From this representation we can see that

∀i, j i 6= j : Aij =−Aji,

∀i, j i 6= j 6= k, i 6= k : σijAij +σjkAjk +σkiAki = 0.

Moreover, the left side of the equation 15 is a standard normal variable. Moreover, all these variables are jointly normal

and their covariance matrix is Ωi. It immediately follows that πi = Φ (Ai;0; Ωi).

Ito’s formula again gives us drift of πi: ∑
j 6=i

∂Φ (Ai;0; Ωi)
∂Aij

1√
T − t

dWij .

To complete the proof just note that
∂Φ(Ai;0;Ωi)

∂Aij
is the cumulative distribution function of Ai −j conditional on Aij

multiplied by the marginal density at Aij (i.e. φ(Aij)). But conditioning a multivariate normal variable on one of

its components also gives a normal variable and its mean and variance are given by µij and Ωij (Wikipedia 2008).

Q.E.D.


