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Abstract 
 

We investigate a consumption-based present-value relation that is a function of future 
dividend growth and find that changing forecasts of dividend growth are an important feature of 
the post-war U.S. stock market, despite the failure of the dividend-price ratio to uncover such 
variation.  In addition, dividend forecasts are found to covary with changing forecasts of excess 
stock returns over business cycle frequencies.  This covariation is important because positively 
correlated fluctuations in expected dividend growth and expected returns have offsetting effects 
on the log dividend-price ratio.  The market risk premium and expected dividend growth thus 
vary considerably more than is apparent using the log divided-price ratio alone as a predictive 
variable. 
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1. Introduction

It is not necessary to delve far into recent surveys of the asset pricing literature to

uncover a few key empirical results that have come to represent stylized facts, part of the

“standard view� of U.S. aggregate stock market behavior:

1. Large predictable movements in dividends are not apparent in U.S. stock market data.

In particular, the log dividend-price ratio does not have important long-horizon fore-

casting power for the growth in dividend payments.1

2. Returns on aggregate stock market indexes in excess of a short-term interest rate

are highly forecastable over long horizons. The log dividend-price ratio is extremely

persistent and forecasts excess returns over horizons of many years.2

3. Variance decompositions of dividend-price ratios show that changing forecasts of future

excess returns comprise almost all of the variation in dividend-price ratios. These find-

ings form the basis for the conclusion that expected dividend growth is approximately

constant.3

Empirical evidence on the behavior of the dividend-price ratio has transformed the way

financial economists perceive asset markets. It has replaced the age-old view that expected

returns are approximately constant, with the modern-day view that time-variation in ex-

pected returns constitutes an important part of aggregate stock market variability. Even the

extraordinary behavior of stock prices during the late 1990s has not unraveled this trans-

formation. Academic researchers have responded to this episode by emphasizing that—in

contrast to stock market dividends—movements in aggregate stock prices have always played

an important role historically in restoring the dividend-price ratio to its mean, even though

the persistence of the dividend-price ratio implies that such restorations can sometimes take

many years to materialize (Heaton and Lucas, 1999; Campbell and Shiller, 2001; Cochrane,

2001, Ch. 20; Fama and French, 2002; Campbell, 2003).

Yet there are noticeable cracks in the standard academic paradigm of predictability based

on the dividend-price ratio. On the one hand, several researchers, focusing primarily on fore-

casting horizons of less than a few years, have argued that careful statistical analysis provides

1A large literature documents the poor predictability of dividend growth by the dividend-price ratio over

long horizons; see for example, Campbell (1991, 2003)and Cochrane(1991, 1994, 1997, 2001) . Ang and

Bekaert (2001) find somewhat stronger predictability; we discuss their results further below.
2See Fama and French (1988), Campbell and Shiller (1988), Hodrick (1992), Campbell et al. (1997),

Cochrane (1997), , Cochrane (2001, Ch. 20), and Campbell (2003).
3See Campbell (1991); Cochrane (1991); Hodrick (1992); Campbell et al. (1997), Ch. 7; Cochrane (2001),

Ch. 20; Campbell (2003).
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little evidence that the log dividend-price ratio forecasts returns (for example, Nelson and

Kim, 1993; Stambaugh, 1999; Ang and Bekaert, 2001; Valkanov, 2003; Goyal and Welch,

2003). These findings have led some to conclude that changing forecasts of excess returns

make a negligible contribution to fluctuations in the aggregate stock market.

On the other hand, researchers have employed predictive variables other than the dividend-

price ratio and found evidence that excess returns on the aggregate stock market are strongly

forecastable at horizons as short as a few quarters. Lettau and Ludvigson (2001a) find that

excess stock returns are forecastable at horizons over which the dividend-price ratio has com-

parably weak forecasting power, namely at “business cycle� frequencies, those ranging from

a few quarters to several years. Such predictable variation in returns is revealed not by the

slow-moving dividend-price ratio, but instead by an empirical proxy for the log consumption-

wealth ratio, denoted cayt, a variable that captures deviations from the common trend in

consumption, asset (nonhuman) wealth, and labor income. The consumption-wealth vari-

able cayt is less persistent than the dividend-price ratio, consistent with the finding that the

former forecasts returns over shorter horizons than the latter.

Taken together, these empirical findings raise a series of puzzling questions. If some

statistical analyses imply that the dividend-price ratio doesn’t forecast returns, does it follow

that expected excess returns are approximately constant? If so, then why does cayt have

predictive power for excess returns at horizons ranging from a few quarters to several years?

Moreover, if results using cayt suggest that business cycle variation in expected returns is

present, why does the dividend-price ratio have difficulty capturing this variation?

This paper argues that it is possible to make sense of these seemingly contradictory find-

ings and in the process provide empirical answers to the questions posed above. We study a

consumption-based present-value relation that is a function of future dividend growth. The

evidence we present has two key elements. First, using data on aggregate consumption and

dividend payments from aggregate (human and nonhuman) wealth, we show that changing

forecasts of stock market dividend growth do make an important contribution to fluctuations

in the post-War U.S. stock market, despite the failure of the dividend-price ratio to uncover

such variation. Although U.S. dividend growth is known to have some short-run forecastabil-

ity arising from the seasonality of dividend payments, to our knowledge this study is one of

the few to find important predictability in direct long-horizon regressions, and in particular

at horizons over which excess stock returns have been found to be forecastable. The second

key element of our empirical findings is that the dividend forecasts we uncover are found

to positively covary with changing forecasts of excess stock returns. Menzly et al. (2004)

argue that such covariation can arise naturally in general equilibrium models that include a

forecastable component in dividend growth. Brennan and Xia (2001) present a general equi-

librium model that incorporates time-variation in the conditional mean of dividend growth.
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Our findings help resolve the puzzles discussed above, for two reasons. First, the results

help explain why the log dividend-price ratio has been found to be a relatively weak pre-

dictor of U.S. dividend growth, despite the evidence presented here that dividend growth is

highly forecastable. Movements in expected dividend growth that are positively correlated

with movements in expected returns have offsetting effects on the log dividend-price ratio.

Second, the results help explain why business cycle variation in expected excess returns is

uncovered by cayt, but is not well captured by the dividend-price ratio. Movements in ex-

pected returns that are positively correlated with movements in expected dividend growth

will have offsetting effects on the log dividend-price ratio, but not necessarily on the log

consumption-wealth ratio.

We emphasize two implications of our findings. First, expected dividend growth is not

constant, but instead varies over horizons ranging from one to six years. Thus, the vari-

ation in expected dividend growth that we uncover occurs at business cycle frequencies,

not the ultra-low frequencies that dominate the sampling variability of the log dividend-

price ratio. Second, common variation in expected returns and expected dividend growth

will make it more difficult for the log dividend-price ratio to display statistically significant

predictive power for future returns, consistent with evidence reported in Nelson and Kim

(1993), Stambaugh (1999), Ang and Bekaert (2001), Valkanov (2003), and Goyal and Welch

(2003), as well as for future dividend growth. Such findings should not be interpreted as an

indication that expected returns are constant, however. On the contrary, the results in this

paper suggest that the log dividend-price ratio will have difficulty revealing business cycle

variation in the equity risk-premium precisely because expected returns fluctuate at those

frequencies, and covary with changing forecasts of dividend growth. The findings presented

here therefore suggest not only that expected returns vary, but that they vary by far more

(over shorter horizons) than what can be revealed using the log dividend-price ratio alone

as a predictive variable.

The rest of the paper is organized as follows. In the next section, we present an ex-

pression linking aggregate consumption and dividend payments from aggregate wealth, to

the expected future growth rates of income flows from aggregate wealth. This delivers a

present-value relation for future dividend growth in terms of observable variables. We then

move on in Section 3 to discuss the data, and present results from estimating the common

trend in log consumption and measures of the dividend payments from aggregate wealth.

For the main part of our analysis, we focus on findings using the growth in dividends on

the Center for Research in Security Prices (CRSP) value-weighted stock market index. This

is done in order to make our results directly comparable with those from the existing asset

pricing literature. Nevertheless, in Section 5.3 we show that our main conclusions are not

altered by including aggregate share repurchases in the measure of dividends. In Section
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4 we present the outcome of long-horizon forecasting regressions for dividend growth and

excess returns on the U.S. stock market. Section 5 discusses one possible explanation for

why expected dividend growth could be positively correlated with expected returns. Section

6 concludes.

2. A consumption-based present-value relation for div-
idend growth

We consider a representative agent economy in which all wealth, including human

capital, is tradable. Let Wt be beginning-of-period aggregate wealth (defined as the sum of

human capital, Ht, and nonhuman or asset wealth, At) in period t and let Rw,t+1 be the net

return on aggregate wealth. For expositional convenience, we consider a simple accumulation

equation for aggregate wealth, written

Wt+1 = (1 +Rw,t+1)(Wt − Ct). (1)

Labor income Yt does not appear explicitly in this equation because of the assumption that

the market value of tradable human capital is included in aggregate wealth.4 Throughout

this paper we use lower case letters to denote log variables, e.g., ct ≡ log(Ct).

Defining r ≡ log(1 + R), Campbell and Mankiw (1989) derive an expression for the

log consumption-aggregate wealth ratio by taking a first-order Taylor expansion of Eq. (1),

solving the resulting difference equation for log wealth forward, and imposing a transversality

condition. Ignoring a constant, the resulting expression holds to a first-order approximation:

ct − wt = Et

∞
∑

i=1

ρiw(rw,t+i −∆ct+i), (2)

where ρw ≡ 1 − exp(c− w). This expression says that the log consumption-wealth ratio

embodies rational forecasts of returns and consumption growth. We omit unimportant lin-

earization constants in the equations throughout the paper.

Equation (2) is of little use in empirical work because aggregate wealth, wt, includes

human capital, which is not observable. Lettau and Ludvigson (2001a) address this problem

by reformulating the bivariate cointegration relation between ct and wt as a trivariate cointe-

gration relation involving three observable variables, namely ct, at, and yt, where at is the log

of nonhuman or asset wealth, and yt is log labor income. The resulting empirical “proxy� for

4None of the derivations below are dependent on this assumption. In particular, Eq. (3), below, can

be derived from the analogous budget constraint in which human capital is nontradeable: At+1 = (1 +

Ra,t+1)(At + Yt − Ct), where, Ht = Et
∑∞
j=0

∏j
i=0(1 +Ra,t+i)

−iYt+j .
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the log consumption-aggregate wealth ratio is a consumption-based present-value relation

involving future returns to asset wealth:5

cayt ≡ ct − ωat − (1− ω) yt = Et

∞
∑

i=1

ρiw (ωra,t+i −∆ct+i + (1− ω)∆yt+1+i) , (3)

where ω is the average share of asset wealth, At, in aggregate wealth, Wt, and ra,t is the log

return to asset wealth, At. Under the maintained hypothesis that asset returns, consumption

growth and labor income growth are covariance-stationary, Eq. (3) says that consumption,

asset wealth, and labor income are cointegrated, and that deviations from the common

trend in ct, at, and yt summarize expectations of returns to either asset wealth, consumption

growth, or labor income growth, or some combination of all three. The wealth shares ω and

(1− ω) are cointegration coefficients. We discuss their estimation below. The cointegra-

tion residual on the left-hand side of Eq. (3) is denoted cayt for short. The cointegration

framework says that, if risk premia vary over time (for any reason), cayt is a likely candi-

date for predicting future excess returns. Both Eq. (2) and Eq. (3) are consumption-based

present-value relations involving future returns to wealth.

In this paper we employ the same accounting framework to construct a consumption-

based present-value relation involving future dividend growth from aggregate wealth. We

can move from the consumption-based present-value relation involving future returns, Eq.

(3), to one involving future dividend growth, by expressing the market value of assets in terms

of expected future returns and expected future income flows. The general derivation is given

in Campbell and Mankiw (1989), and the application to our setting is given in Appendix A.

This derivation delivers a present-value relation involving the log of consumption, ct, the log

of dividends from asset wealth, dt, and the log of dividends from human wealth, yt:

cdyt ≡ ct − νdt − (1− ν) yt = Et

∞
∑

i=1

ρiw(ν∆dt+i + (1− ν)∆yt+i −∆ct+i). (4)

Eq. (4) is a consumption-based present-value relation involving future dividend growth.

Under the maintained hypothesis that ∆dt, ∆yt, and ∆ct are covariance-stationary, Eq.

(4) says that consumption, dividends from asset wealth, and dividends from human capital

(labor income) are cointegrated, and that deviations from their common trend—given by the

left-hand side of Eq.(4)—provide a rational forecast of either dividend growth, labor income

5We will often refer loosely to cayt as a proxy for the log consumption-aggregate wealth ratio, ct−wt. More

precisely, Lettau and Ludvigson (2001a) find that cayt is a proxy for the important predictive components of

ct−wt for future returns to asset wealth. Nevertheless, the left-hand side of (3) will be proportional to ct−wt
under the following conditions: first, expected labor income growth and consumption growth are constant

and, second, the conditional expected return to human capital is proportional to the return to nonhuman

capital.
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growth, or consumption growth, or some combination of all three. The income shares ν

and (1− ν) are cointegration coefficients. We discuss their estimation further below. The

cointegration residual on the left-hand side of Eq. (4) is denoted cdyt, for short. The model

implies that the consumption-aggregate dividend ratio is stationary and mean-reverting.

Two recent theoretical models that specify the consumption-aggregate dividend ratio as a

mean-reverting process are Santos and Veronesi (2000) and Longstaff and Piazzesi (2004).

It is instructive to compare cdyt with the proxy for the consumption-aggregate wealth

ratio cayt in Eq. (3), studied in Lettau and Ludvigson (2001a). Eq. (3) says that if investors

want to maintain flat consumption paths (i.e., expected consumption growth is approxi-

mately constant), fluctuations in cayt reveal expectations of future returns to asset wealth,

provided that expected labor income growth is not too volatile. This implication was studied

in Lettau and Ludvigson (2001a). Analogously, Eq. (4) says that if investors want to main-

tain flat consumption paths, fluctuations in cdyt summarize expectations of future dividend

growth. This implication of the framework is studied here. Investors with flat consump-

tion paths will appear to smooth out transitory fluctuations in dividend income stemming

from time-variation in expected dividend growth. Consumption should be high relative to

its long-run trend relation with dt and yt when dividend growth is expected to be higher

in the future, and low relative to its long-run trend with dt and yt when dividend growth

is expected to fall. Moreover, if expected consumption growth and expected labor income

growth do not vary much, cdyt should display relatively little predictive power for future

consumption and labor income growth, but could forecast stock market dividend growth, if

in fact expected dividend growth varies over time. In this case, Eq. (4) says that cdyt is a

state variable that summarizes changing forecasts of dividend growth to asset wealth.

The framework presented above does not predict which variables on the right-hand side

of Eqs. (3) and (4) have time-varying conditional means and could therefore be forecastable.

It states merely that, if there is predictable variation (for any reason) in the variables on the

right-hand side of Eqs. (3) and (4), cayt and cdyt are good candidates for uncovering that

variation. Of course, by imposing additional theoretical structure (structure that specifies

preferences and technology), predictions could be developed about which variables ought to

be forecastable according to specific theories. Importantly, however, the empirical investiga-

tion of this paper does not require imposing such additional structure, and we view this as

one its main virtues. The results we obtain exploit only cointegration, a phenomenon that

can be motivated by the logic of a simple budget constraint identity, applicable to a wide

variety of theoretical structures.

It is instructive to compare the consumption-based present-value relations Eqs. (3) and

(4) with the linearized expression for the log dividend-price ratio. Following Campbell and

Shiller (1988), the log dividend-price ratio can be written (up to a first-order approximation
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and ignoring constants) as

dt − pt = Et

∞
∑

i=0

ρi(rt+1+i −∆dt+1+i), (5)

where pt be the log price of stock market wealth, dt is the log dividend, ρ ≡ 1
1+exp(d−p) , and

rt is the log return to stock market wealth. This equation says that if the log dividend-price

ratio is high, agents must be expecting either high future returns on stock market wealth or

low dividend growth rates.

Like the consumption-based expressions developed above, this expression does not pre-

dict which variables on the right-hand side should be forecastable; it suggests only that, if

there is predictable variation in returns or dividend growth, dt − pt is a good candidate for

uncovering that variation. Many studies, cited in the introduction, have documented that

dt − pt forecasts returns over long horizons but explains little of the variability in future

dividend growth. Other studies find that the forecasting power of dt − pt for future excess

returns over shorter horizons is statistically tenuous. As a consequence, expected dividend

growth is often modeled as constant, and questions remain about the predictive power of

dt − pt for future returns. We argue here that such findings are consistent with an entirely

different explanation of the data: both expected dividend growth and expected returns vary,

but the two contain a common component and are therefore positively correlated. This

makes forecastable movements in dividends and returns hard to detect statistically using the

dividend-price ratio.

This be seen by simplifying the notation of Eq. (5) to

dt − pt = ηr,t − ηd,t, (6)

where ηr,t ≡ Et
∑∞

i=0 ρ
irt+1+i and ηd,t ≡ Et

∑∞
i=0 ρ

i∆dt+1+i. Suppose ηr,t and ηd,t are each

equal to the sum of an independent component and a common component:

ηd,t = xd,t + vt

ηr,t = xr,t + vt,

where xd,t is the independent component of expected dividend growth, xr,t is the independent

component of expected return volatility, and vt is the component common to both expected

returns and expected dividend growth. By assumption, xd,t and xr,t are uncorrelated, so that

Var(dt − pt) =Var(xd,t)+Var(xr,t). Thus, it is clear that the common component, vt, will

have no influence on the dividend-price ratio, making a potentially important forecastable

component of dividends and returns hard to detect using the dividend-price ratio. But the

expressions in Eqs. (3) and (4) show that the forecasting power of cayt for returns and
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cdyt for dividend growth is not compromised by such common variation in expected returns

and expected dividend growth, because these variables are not (offsetting) functions of both

expected returns and expected dividend growth. Thus, unlike dt−pt, cayt captures variation
in both components of expected returns, xr,t and vt, while cdyt captures variation in both

components of expected dividend growth, xd,t and vt. These considerations motivate the

use of the consumption-based ratios developed above to uncover possible time-variation in

expected returns and expected dividend growth that might be missed by the dividend price

ratio.

Eq. (6) also implies that, if dividend growth rates are forecastable by some variable other

than dt−pt, and if dt−pt does not forecast dividend growth, it must be that the forecastable

component in dividend growth is offset by a simultaneous movement in expected returns.

The evidence we present below using consumption-based ratios is consistent with such a

scenario.

It is important to emphasize that forecastable variation in dividend growth is entirely

consistent with the “excess volatility� phenomenon of LeRoy and Porter (1981) and Shiller

(1981). Cochrane (1991) illustrates this phenomenon by providing a variance decomposition

of Eq. (5):

Var (pt − dt) = Cov

(

pt − dt,
∞
∑

j=1

ρj−1∆dt+j

)

− Cov

(

pt − dt,
∞
∑

j=1

ρj−1rt+j

)

. (7)

If discount rates were constant, returns would be unforecastable and the last term on the

right-hand side would be zero. In this case, all variation in price-dividend ratios arises from

covariation between pt−dt and future dividend growth, i.e., from changing dividend forecasts

where dt−pt is the forecasting variable. Cutting the sums off at a 15-year horizon, Cochrane

shows empirically that almost all of the variation in price-dividend ratios is attributable to

changing return forecasts (the last covariance term on the right-hand side); price-dividend

ratios are therefore said to be excessively volatile. This phenomenon remains a robust

feature of the stock market even today; see Cochrane (2001) for an update of this variance

decomposition using more recent data. Notice, however, that prices can be excessively

volatile at the same time that dividend growth is highly forecastable, as long as most of

the variation in expected dividend growth is attributable to the common component, vt,

in Eq. (6). This component has no influence on the dividend-price ratio and therefore

no influence on the variance decomposition Eq. (7). It follows that substantial predictable

variation in dividend growth can be entirely consistent with the excess volatility phenomenon

documented by LeRoy and Porter (1981), Shiller (1981), and Cochrane (1991).

The approximate consumption identities developed above serve to motivate and interpret

an investigation of whether consumption-based present-value relations might be informative
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about the future path of dividend growth, asset returns, labor income growth or consumption

growth. Nothing in the empirical investigation itself, however, is dependent on these approx-

imations. But we can assess the implications of the framework by investigating whether em-

pirical measures of these present-value relations contain information about the future path

of consumption growth, labor income growth, or dividend growth from the aggregate stock

market. We do so next.

3. The common trend in consumption, dividends and
labor income

3.1. Data and preliminary analysis

Before we can estimate a common trend between consumption and measures of ag-

gregate dividends, we need to address two data issues that arise from the use of aggregate

consumption and dividend/income data. First, the log of asset wealth, at, is a measure of

real, per capita household net worth, which includes all financial wealth, housing wealth, and

consumer durables. Durable goods are properly accounted for as part of nonhuman wealth,

At, a component of aggregate wealth, Wt, and so should not be accounted for as part of

consumption or treated purely as an expenditure. Treating durables purchases purely as an

expenditure (by, e.g., removing them from At and including them in Ct) is improper because

it ignores the evolution of the asset over time, which must be accounted for by multiplying

the stock by a gross return. In the case of many durable goods, this gross return would be

less than one and would consist primarily of depreciation. The budget constraint Eq. (1)

thus applies to the flow of consumption, Ct; durables expenditures are excluded from Ct

because they represent replacements and additions to a capital stock (investment), rather

than a service flow from the existing stock. Total flow consumption is unobservable because

we lack observations on the service flow from much of the durables stock. We therefore

follow Blinder and Deaton (1985) and Campbell (1987) and use the log of real per capita

expenditures on nondurables and services (excluding shoes and clothing), as a measure of ct.

This measure of consumption typically comprises over 85 % of total personal consumption

expenditures. An internally consistent cointegration relation can then be obtained if we

assume that the log of (unobservable) real total flow consumption is cointegrated with the

log of real nondurables and services expenditures.

Second, we have experimented with constructing various empirical measures of nonstock

dividends by adding forms of non-equity income from private capital, the largest component

of which is interest income, to stock market dividends. In our sample, however, we find the

strongest evidence of a common trend between log consumption, log stock market dividends,
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and log labor income. A likely explanation is that the inflationary component of nominal

interest income, along with the explicit inflation tax on interest income inherent in the U.S.

tax code, makes real interest income difficult to measure. Such tax treatments can create

peculiar trends in interest income that have nothing in particular to do with the evolution

of permanent real interest income. These problems are especially evident in our sample

during the 1970s and 1980s when nominal interest income grew rapidly because of inflation.

In addition, we do not directly observe dividend payments from some forms of nonhuman,

nonfinancial household net worth, primarily physical capital.6

The theory calls for the real component of nominal interest income, which is not directly

observable. The nominal value of interest-bearing assets is observable, and can be put in real

terms by deflating by a price level to get the component that should be associated with real

consumption. But to obtain real interest income, one needs to also multiply this value by a

real interest rate for the asset. (This is important because real interest income was negative

for periods of the 1970s when inflation was high.) To construct the appropriate real interest

rate for each asset class requires obtaining data on the nominal interest rate for that asset

and subtracting off inflation. The difficulty is that the asset data are in the Flow of Funds

accounts while nominal interest data are in the National Income and Product Accounts, and

the asset classes are not the same in the two data bases.

Some researchers have documented a significant decline in the percentage of firms paying

tax-inefficient dividends in data since 1978 (e.g., Fama and French, 2001). It might seem

that such a phenomenon would create inflation-induced trends in aggregate stock market

dividend income similar to those for nominal interest income. An inspection of the dividend

data from the CRSP value-weighted index, however, reveals that—with the exception of the

unusually large one-year decline in dividends in 2000, discussed below—the average annual

growth rate of dividends has not declined precipitously over the period since 1978, or over

the full sample. The average annual growth rate of real, per capita dividends is in fact

higher, 5.6%, from 1978 through 1999, than the growth rate for the period 1948 to 1978.

The annual growth rate for the whole sample (1948-2001) is 4.2%.

Fortunately, it is not necessary to include every dividend component from aggregate

wealth in the expression Eq. (4) to obtain a consumption-based present-value relation that

is a function of future stock market dividend growth, the object of interest in this study. As

long as the excluded forms of dividend payments are cointegrated with the included forms

6One possibility is to use the product side of the national income accounts to estimate income flows as

the residual from GDP less reported dividend and labor income. This approach creates its own problems,

however, because it requires the income and product sides of the national accounts to be combined, and there

is no way to know how much of the statistical discrepancy between the two is attributable to underestimates

of income versus overestimates of output.
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(as models with balanced growth would suggest), the framework above implies that the in-

cluded dividend measures can be combined with consumption to obtain a valid cointegration

relation. In this study, we use stock market dividends as a measure of dividend payments

from nonhuman (asset) wealth, and we use dt to denote stock market dividends from now

on. If nonstock/nonlabor forms of dividend income are cointegrated with the dividend pay-

ments from stock market wealth, dt, and/or human capital, yt, the framework above implies

a cointegration relation among ct, stock market dividends dt, and labor income yt, and the

resulting cointegration residual should reveal expectations over long horizons of either future

∆dt, ∆yt, or ∆ct, or some combination of all three.

These data considerations have two implications for our analysis. First, as discussed in

Lettau and Ludvigson (2001a), the cointegration parameters in Eqs. (3) and (4) are likely to

sum to a number less than one if, over the period covered by our data sample, there has been a

secular decline in the share of nondurables and services in total consumption. In this case the

log of total consumption can be expected to be proportional (up to a stationary error term)

to the log of nondurables and services expenditures, with the constant of proportionality

greater than unity (see Lettau and Ludvigson, 2001, for further discussion). Second, since

some components of aggregate dividends are omitted in Eq. (4), the sum of the cointegration

parameters in Eq. (3) is unlikely to be identical to the sum of the cointegration coefficients

in Eq. (4). Both of these conclusions are based on a Monte Carlo analysis. For these reasons,

we denote the wealth shares ω and (1− ω) generically as cointegration coefficients αa and

αy, respectively, and likewise denote the shares ν and (1− ν) generically as cointegration

coefficients βd and βy, respectively. The parameters α̂a, α̂y, ̂βd, and ̂βy can be estimated

using either single-equation or system cointegration methods. The estimated values of the

cointegration residuals cayt and cdyt are denoted ĉayt and ̂cdyt, respectively. Throughout

this paper, we use “hats� to denote the estimated values of parameters.

The data used in this study are annual per capita variables, measured in 1996 dollars,

and span the period 1948-2001. Following Cochrane (1994), we use annual data in order

to insure that any forecastability of dividend growth we uncover is not attributable to the

seasonality of dividend payments. Stock market dividends are measured as dividends on the

CRSP value-weighted index and are scaled to match the units of consumption and labor

income. Appendix B provides a detailed description of the sources and definitions of the

data used in this study.

Table 1 first presents summary statistics for the log of real per capita consumption growth,

labor income growth, dividend growth, the change in the log of the CRSP price index, ∆pt,

and the change in the log of household net worth, ∆at, all in annual data. Real dividend

growth is considerably more volatile than consumption and labor income, having a standard

deviation of 12% compared to 1.1% and 1.8% for consumption and labor income growth,
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respectively. It is somewhat less volatile than the log difference in the CRSP value-weighted

price index, which has a standard deviation of 16%, but is still more volatile than the log

difference in net worth, which has a standard deviation of 4%. Consumption growth and

labor income growth are strongly positively correlated, as are ∆pt and ∆at. Annual real

consumption growth and real dividend growth have a weak correlation of -0.16.

We begin our analysis by testing for both the presence and number of cointegration

relations in the system of variables x′t ≡ [ct, dt, yt]
′. Such tests have already been performed

for the system v′t = [ct, at, yt]
′ on quarterly data in Lettau and Ludvigson (2001a) and

Lettau and Ludvigson (2004). The results using annual data are contained in Appendix C.

We assume that all of the variables contained in xt and vt are first-order integrated, or I(1),

an assumption verified by unit root tests. Test results presented in Appendix C suggest

the presence of a single cointegration relation for both vector time series. Normalizing each

cointegration vector by setting the coefficient on consumption to unity, we denote the single

cointegration relation for v′t = [ct, at, yt]
′ as α′ = (1,−αd,−αy)′, and for x′t = [ct, dt, yt]

′ as

β′ = (1,−βd,−βy)′.
The evidence strongly suggests the presence of a single, trivariate, cointegration relation,

i.e., one that involves all three variables in each cointegrated system. This of course does not

imply that there is no bivariate cointegration in population, as cointegration tests are known

to have low power in finite samples when the relations involved are characterized by slowly

mean-reverting deviations from trend. Regardless of the number of linearly independent

cointegration relations present, it is always the case that econometric procedures can only

identify the space spanned by these cointegration relations; a normalization is required to

obtain linearly independent relations.

The cointegration parameters αd, αy and βd, βy must be estimated. We use a dynamic

least squares procedure that delivers asymptotically optimal estimates (Stock and Watson,

1993).Two leads and lags of the first differences of ∆yt and ∆dt are used in the dynamic

least squares regression. This procedure estimates ̂β
′
= (1,−0.13,−0.68)′. The Newey-West

corrected t-statistics (Newey and West, 1987) for these estimates are -10.49 and -34.82,

respectively. We denote the estimated cointegration residual ̂β
′
xt as ̂cdyt. The estimated

cointegration vector for v′t = [ct, at, yt]
′ is α̂′ = (1,−0.33,−0.57)′, very close to that obtained

in Lettau and Ludvigson (2001a) using quarterly data. The Newey-West corrected t-statistics

for these estimates are -14.32 and -30.48, respectively. The cointegration residual α̂′xt is

denoted ĉayt.

Table 2 displays autocorrelation coefficients for dt − pt, ĉayt, and ̂cdyt. It is well known

that the dividend-price ratio is very persistent. In annual data from 1948 to 2001 it has

a first-order autocorrelation 0.87, a second-order autocorrelation of 0.72. and a third-order

autocorrelation of 0.59. The autocorrelations of ̂cdyt and ĉayt are much lower and die out
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more quickly. Their first-order autocorrelation coefficients are 0.46 and 0.46, respectively;

their scond order autocorrelation coefficients are 0.14 and 0.20, respectively.

In Fig. 1 we plot the de-meaned values of ̂cdyt and ĉayt over the period 1948-2001. The

sample correlation between ̂cdyt and ĉayt is 0.41. The figure shows that the two consumption-

based present-value relations tend to move together over time, although there are some

notable episodes in which they diverge. One such episode is the year 2000, when an extraor-

dinary 30% decline in recorded dividends (an extreme outlier in our sample) pushed ̂cdyt

well above its historical mean.

To better understand the time-series properties of ĉayt and ̂cdyt, it is useful to exam-

ine estimates of vector error-correction representations, or cointegrated vector autoregres-

sions (VARs) for (ct, at, yt)
′ and (ct, dt, yt)

′. The vector error-correction representation for

(ct, at, yt)
′ takes the form

∆xt = υ + γα̂′xt−1 + Γ(L)∆xt−1 + et, (8)

where ∆xt is the (3×1) vector of log first differences for (∆ct,∆at,∆yt)
′, υ and γ are

(3×1) vectors, Γ(L) is a finite order distributed lag operator, and α̂ is the (3×1) vector

of previously estimated cointegration coefficients. A directly analogous set of equations

holds for ∆xt = (∆ct,∆dt,∆yt)
′where α̂ is replaced by ̂β. Note that in the error-correction

representation, α̂′xt−1 is just the cointegration residual, ĉayt. Thus, in the error-correction

representation, the growth rate in each variable is regressed on lags of the growth rates of

all the other variables in the system, and on one lag of the estimated cointegration residual,

ĉayt in the case of the system involving (∆ct,∆at,∆yt)
′, and ̂cdyt in the case of the system

involving (∆ct,∆dt,∆yt)
′.

Table 3 presents the results of estimating first-order cointegrated VARs for ct, at and

yt, and for ct, dt, and yt.
7 The table reveals several noteworthy properties of the data on

consumption, household wealth, stock market dividends, and labor income. First, Panel A

shows that the estimated cointegration residual ĉayt−1 is a strong predictor of wealth growth.

Both consumption and labor income growth are somewhat predictable by lags of either

consumption growth and/or wealth growth, as noted elsewhere (Flavin, 1981; Campbell and

Mankiw, 1989), but the adjusted R2 statistics (especially for the labor income equation) are

lower than those for the asset regression. More importantly, the cointegration residual ĉayt−1

is an economically and statistically significant determinant of next period’s asset growth, but

not next period’s consumption or labor income growth. This finding implies that asset wealth

is mean-reverting, and adjusts over long horizons to match the smoothness of consumption

7The VAR lag lengths were chosen in accordance with findings from Akaike and Schwartz tests. The

second system is also studied in Ludvigson and Steindel (1999).

13



and labor income. These results are consistent with those in Lettau and Ludvigson (2001a)

using quarterly data.

Second, Panel B shows that the estimated cointegration residual ̂cdyt−1 is a strong predic-

tor of dividend growth. These results come from estimates from a cointegrated VAR for ct, dt,

and yt. The findings are analogous to those for the cointegrated VAR involving ct, at, and yt.

Consumption and labor income are predictable by lagged consumption and wealth growth,

but not by the cointegration residual ̂cdyt−1. What is strongly predictable by the cointe-

gration residual is stock market dividend growth: ̂cdyt−1 is both a statistically significant

and economically important predictor of next year’s dividend growth, ∆dt. These findings

imply that when log dividends deviate from their habitual ratio with log labor income and

log consumption, it is not consumption or labor income but dividends that are forecast to

slowly adjust until the cointegration equilibrium is restored. As for asset wealth, dividends

are mean-reverting and adapt over long horizons to match the smoothness in consumption

and labor income.

4. Long-horizon forecasting regressions

A more direct way to understand mean reversion is to investigate regressions of long-

horizon returns and dividend growth on the consumption ratios ̂cdyt−1 and ĉayt−1. The theory

behind Eqs. (3) and (4) makes clear that both ratios should track longer-term tendencies

in asset markets, rather than provide accurate short-term forecasts of booms or crashes.

To investigate such a possibility, Table 4 presents the results of univariate regressions of the

return on the CRSP value-weighted stock market index in excess of the three-month Treasury

bill rate, at horizons ranging from one to six years. In each regression, the dependent

variable is the H-period log excess return, rt+1 − rf,t+1 + ... + rt+H − rf,t+H , where rf,t is

used to denote the Treasury bill rate, or “risk-free� rate. The independent variable is either

dt − pt, ĉayt, or ̂cdyt. The table reports the estimated regression coefficient, the adjusted

R2 statistic in square brackets, and a heteroskedasticity and autocorrelation-consistent t-

statistic for the hypothesis that the regression coefficient is zero (in parentheses). The table

also reports, in curly brackets, the rescaled t-statistic recommended by Valkanov (2003) for

the hypothesis that the regression coefficient is zero. We discuss this rescaled t-statistic

below. Table 5 presents the same output for predicting long-horizon CRSP dividend growth,

∆dt+1 + ...+∆dt+H .

The first row of Table 4 shows that the log dividend-price ratio has little power for

forecast aggregate stock market returns from one to six years in this sample. These results

differ from those reported elsewhere, primarily because we have included the last few years of

stock market data in the sample. Variation in the log dividend-price ratio is too persistent to
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display statistical evidence of stationarity in this sample (see Appendix C). The extraordinary

increase in stock prices in the late 1990s substantially weakens the statistical evidence for

predictability by dt − pt that had been a feature of previous samples. If we end the sample

in 1998, the log dividend-price ratio displays forecasting power for excess returns, but its

strongest forecasting power is exhibited over horizons that are far longer than that exhibited

by the consumption-wealth ratio proxy, ĉayt (see Lettau and Ludvigson, 2001).8 It is possible

that future samples will restore the statistical forecasting power of dt−pt for future returns in
these types of regressions. Lettau et al. (2003), however, find evidence of a structural break

in the mean price-dividend ratio in the mid-1990s, raising the possibility that the historical

relation between dt − pt and future returns has changed.

In contrast to the dividend-price ratio, the second row of Table 4 shows that ĉayt has

statistically significant forecasting power for future excess returns at horizons ranging from

one to six years. This evidence is consistent with that reported in Lettau and Ludvigson

(2001a) using quarterly data. Using this single variable alone achieves an R
2
of 0.25 for

excess returns at a one-year horizon, 0.44 for excess returns over a two-year horizon, and

0.50 for excess returns over a six-year horizon.

The remaining row of Table 4 gives an indication of the forecasting power of ̂cdyt for

long-horizon excess returns. At a one-year horizon, ̂cdyt displays little statistical forecasting

power for future returns in this sample. For returns over all longer horizons, however, this

present-value relation for dividend growth displays forecasting power for future returns. In

addition, the coefficients from these predictive regressions are positive, so high values of ̂cdyt

forecast high excess returns as do high values of ĉayt. The t-statistics are above four for

all horizons in excess of one year, and the R
2
statistic rises from 0.19 at a two-year horizon

to 0.36 at a six-year horizon. Because both ĉayt and ̂cdyt are positively related to future

excess returns, the results imply that both capture some component of time-varying expected

returns.

We now turn to forecasts of long-horizon dividend growth. Table 5 displays results from

the same forecasting exercise for long-horizon dividend growth, presented in Table 4 for

excess returns. Previous studies (cited in the introduction) have found little forecastability in

dividend growth using the dividend-price ratio as a predictor. Table 5, by contrast, suggests

that dt − pt seems to forecast dividend growth, but with the wrong (positive) sign. Such

8Some researchers using different statistical approaches find that the dividend-price ratio remains a pre-

dictor of excess stock returns even in samples that include recent data. Lewellen (2003) notes that when

the dividend-price ratio is very persistent but nonetheless stationary, episodes in which the dividend yield

deviates from its long-run mean for an extended period of time do not necessarily constitute evidence against

predictability. Similar results are reported in recent work by Campbell and Yogo (2002), who find evidence

of return predictability by financial ratios if one is willing to rule out an explosive root in the ratios.
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predictability is at odds with the theory: high prices (relative to dividends) should forecast

higher real dividend growth, not lower. This finding on the sign has been reported elsewhere

(e.g., Cochrane, 1991, Campbell, 2003), but the statistical significance of the coefficient

displayed in Table 5 is new. Table 5 also shows, however, that the statistical significance is

entirely driven by the last two observations in our sample, which include the highly unusual

year-2000 observation for dividends. Using conventional t-statistics, there is no evidence of

a statistically reliable relation between the dividend-price ratio and future dividend growth

from one-to-three-year horizons in the 52 years of data over the period 1948-1999. Using the

Valkanov corrected t-statistics, there is no evidence at any horizon in either sample. We are

therefore reluctant to place emphasis on this result.

Rows 2 and 3 present the results of predictive regressions using ĉayt and ̂cdyt. The

consumption-based present-value relation for future dividend growth, ̂cdyt, has strong fore-

casting power for future dividend growth at horizons ranging from one to six years. The

individual coefficients are highly statistically significant, and the regression results suggest

that the variable explains between 20% and 40% of future dividend growth, depending on

the horizon. Lettau and Ludvigson (2001a) find that ĉayt has predictive power for future

returns; Row 2 shows that it also has statistically significant predictive power for dividend

growth rates in our sample, with high values of ĉayt predicting high dividend growth rates.

The forecasting power of ĉayt is, however, weaker than that displayed by ̂cdyt at every hori-

zon in excess of one year (row 3). For example, at a four-year horizon, ̂cdyt explains about

21% of the variation in dividend growth, while ĉayt explains 14%. At a six-year horizon, ̂cdyt

explains 38% percent of the variation in dividend growth, while ĉayt explains 18%. Still, just

as for excess returns, the results suggest that both ĉayt and ̂cdyt capture some component

of time-varying expected dividend growth.

Table 6 shows that neither ĉayt or ̂cdyt have long-horizon forecasting power for consump-

tion growth or labor income growth. The first panel suggests that consumption growth is

slightly predictable by these variables at a one-year horizon, but this is only because the

variables proxy for serial correlation in consumption growth: their predictive power van-

ishes when lagged consumption growth is included as a regressor (Panel 2). Thus, we find

predictable variation in dividend growth by ̂cdyt that is independent of predictable varia-

tion in consumption growth. This relates to how consumption and dividends are typically

modeled theoretically. Dividends are often modeled in the macro-asset pricing literature

as a simple levered claim to aggregate consumption, a specification that allows dividends

to be more volatile than aggregate consumption but makes the two perfectly correlated.

This makes some sense because stock market cash flows are in fact far more volatile than

aggregate consumption (Table 1). The evidence presented here, however, suggests that div-

idends and consumption are not perfectly correlated: the consumption-aggregate dividend
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ratio varies over time and predicts future dividend growth, but not future consumption

growth. This evidence is supportive of more sophisticated modeling approaches to specify-

ing the relation between consumption and dividends such as those found in recent work by

Santos and Veronesi (2000) and Longstaff and Piazzesi (2004). These models specify that

the consumption-dividend ratio is mean-reverting and can generate forecastable variation in

dividend growth not evident in consumption growth, consistent with the empirical evidence

presented here. The authors show that this type of modeling strategy can generate a sub-

stantial equity premium and greater volatility in stock returns compared to models in which

dividends are a simple deterministic function of aggregate consumption.

The results in Tables 4 and 5 suggest that there is common variation in expected returns

and expected dividend growth. The consumption-wealth ratio proxy, ĉayt, which is a strong

predictor of excess stock market returns, is also a predictor of stock market dividend growth.

Conversely, ̂cdyt, a strong predictor of stock market dividend growth, is also a predictor of

excess stock market returns. A natural question is whether either variable has independent

information for future excess returns and dividend growth. To address this question, Table 7

presents the results of multivariate regressions of long-horizon excess returns (upper panel)

and dividend growth (lower panel) using ĉayt and ̂cdyt as regressors. For comparison, we also

include dt−pt in the multivariate regressions. Table 7 shows that, in forecasting long-horizon

excess returns, ̂cdyt contains little information about future returns that is independent of

that contained in ĉayt: at most forecasting horizons, ĉayt drives out ̂cdyt; at the horizons

for which this is not true, ̂cdyt adds only marginally to the overall fit. But note that

even though both variables convey information about future returns and future dividend

growth, ĉayt contains some information about future returns that is independent of that

contained in ̂cdyt. This suggests the presence of an independent component in expected

excess returns, corresponding to the component xr,t above. The log dividend-price ratio has

some independent forecasting power for returns at five- and six-year horizons, but none at

earlier horizons. This suggests the presence of a long-horizon component in expected returns

that is independent of the business-cycle component captured by ĉayt.

The second panel of Table 7 shows that much the opposite pattern is borne out in long-

horizon forecasting regressions for dividend growth: although both ĉayt and ̂cdyt seem to have

some independent information about future dividend growth over one or two year horizons,

in a bivariate regression ̂cdyt drives out ĉayt in forecasting future dividend growth at all

forecasting horizons greater than three years. For a forecasting horizon of three years, the

information contained in ĉayt and ̂cdyt is apparently sufficiently similar that the regression

has difficulty distinguishing their independent effects (although ̂cdyt is statistically significant

at the 6% percent level). Accordingly, ĉayt and ̂cdyt are not marginally significant predictors

of dividend growth over a three year horizon, but they are strongly jointly significant (the
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p-value for the F -test is less than 0.000001). In the trivariate regression including dt − pt,
we find that, at horizons greater than one-year, the dividend-price ratio is a marginally

significant predictor, but again high prices forecast low real dividend growth in this sample.

The findings in Table 7 suggest that much of the variation in expected dividend growth

is common to variation in expected returns, at least for two- and three-year horizons. The

findings also suggest that there is a component of expected returns, as captured by cayt,

that moves independently of expected dividend growth. This is analogous to the example

presented in Section 2. If much of the variation in expected dividend growth is common to

variation in expected returns, we would not expect innovations in expected dividend growth

to have an important effect on the log dividend-price ratio, for the reasons discussed in

Section 2. By contrast, if there were a component of expected returns that is independent

of expected dividend growth, we would expect innovations in expected returns to have a

positive effect on the log dividend-price ratio, again for the reasons discussed in Section 2.

One way to evaluate these possibilities is to estimate elasticities of the dividend-price ratio

with respect to innovations in expected dividend growth and expected returns, as captured

by ̂cdyt and ĉayt, respectively. Such estimates can be accomplished by running regressions of

dt−pt on innovations in ̂cdyt and ĉayt. The output below is generated by regressing dt−pt on
the residuals, εcdy,t and εcay,t, from first-order autoregressions for ̂cdyt and ĉayt, respectively.

The lagged log dividend-ratio is also included as a regressor to control for the substantial

persistence in dt − pt. citeferson/sarkissian/simin:03 point out that, when the predictable

component of the regressand is large (as it is for the extremely persistent price-dividend

ratio), spurious regression is a concern if the regressor is also sufficiently persistent, even if

it is stationary. The potential for this problem can be eliminated by including the lagged

dependent variable in the regression. The estimation output from our regressions using data

from 1948 to 2001, with t-statistics in parentheses, is

dt − pt = −0.06
(−1.45)

+ 0.96
(18.89)

(dt−1 − pt−1)− 1.31
(−1.0)

εcdy,t

dt − pt = −0.05
(−1.41)

+ 0.97
(22.02)

(dt−1 − pt−1) + 4.24
(2.73)

εcay,t.

These results confirm the intuition suggested by the long-horizon forecasting regressions

presented above. Innovations in expected dividend growth, as proxied by εcdy,t, have no sta-

tistically significant effect on dt − pt, consistent with the finding that much of the variation

in expected dividend growth is common to variation in expected returns. By contrast, inno-

vations in expected returns, as proxied by εcay,t, are statistically significant at conventional

significance levels, consistent with the presence of a component of expected returns that

moves independently of expected dividend growth and is therefore correlated with dt − pt.
Of course, dt − pt could still have trouble displaying statistically reliable forecasting power
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for future returns, because unlike cayt, it has no way of isolating such an independent com-

ponent.

It is natural to ask whether other variables typically used in the business cycle and stock

return forecasting literatures have forecasting power for dividend growth. Table 8 provides

an answer from univariate long-horizon regressions of dividend growth on a host of other

forecasting variables. One regression (row 1) uses just one-period lagged dividend growth as

a predictor. We also report the results of using the term spread, TRM (ten-year Treasury

bond minus the one-year Treasury bond, denoted), the default spread,DEF (the BAA minus

AAA corporate bond rates), a short-term interest rate, RREL (the annualized three-month

Treasury bill rate minus its four-quarter moving average), and the Cochrane and Piazzesi

(2002) bond risk factor (a linear combination of forward rates) as predictive variables for

dividend growth. We use the largest sample period over which each of these variables is

available (see the notes to Table 8). Lagged dividend growth has modest predictive power

at one- and three-year horizons, but the R2 statistics are small. Other than lagged dividend

growth, most of these variables have little forecasting power. One exception is Cochrane

and Piazzesi’s bond risk factor, which has statistically significant forecasting power for one-

year-ahead dividend growth, with a modest R2 of 3%.(Since this variable is a monthly

variable, we used the end-of-year value of the variable as our annual observation. This

had greater predictive power than the average over the year.) In general, however, the

results suggest that the consumption-based ratios studied here are superior as predictors of

stock market dividend growth to most other variables used in the stock return and business

cycle forecasting literatures. Finally, we note that while even a naive measure of detrended

dividends created from a one-sided band-past filter has some univariate forecasting power

for future dividend growth, results (not reported) show that its forecasting power is driven

out in a multivariate regression by ̂cdyt.

We can also ask whether ̂cdyt and ĉayt have forecasting power for other measures that

might be related to aggregate consumption and/or dividend growth, such as aggregate output

and investment. Results from forecasting real per capita GDP and investment growth, by

including ̂cdyt or ĉayt in multivariate forecasting regressions that also use RREL, TRM,

and DEF , show that ̂cdyt and ĉayt have strongly significant marginal forecasting power over

a one-year horizon, but generally do not display statistically significant forecasting power at

longer horizons. Lettau and Ludvigson (2002) considered the forecasting power of ĉayt for

future investment growth in quarterly data, and report coefficients with the same negative

sign as here; see Lettau and Ludvigson (2002) for an economic interpretation. The results

reported in this study—using annual data and a different sample—are qualitatively similar,

but seem to imply slightly less forecasting power at longer horizons that the previous study

showed. These results are available upon request.

19



4.1. Related empirical findings

The evidence presented above suggests that there is important predictability of div-

idend growth over long horizons, and that predictable variation in dividend growth is cor-

related with that in excess returns. To our knowledge, such evidence is largely new. Other

researchers (cited in the introduction) have found that dividend growth predictability—if ev-

ident at all in long-horizon regressions—occurs at relatively short horizons and is not highly

correlated with predictable variation in excess returns. More recently, Kothari et al. (2004)

study the stock market’s reaction to aggregate earnings news and find indirect evidence that

expected cash flows and discount rates move together over time, consistent with the findings

reported in this paper. Goyal and Welch (2003) show that the dividend-price ratio forecasts

itself more than it forecasts returns or dividend growth. This finding, in conjunction with an

approximate identity defining the log stock return, implies that there must be some offset-

ting movements in expected returns and expected dividend growth. Ang (2002) investigates

the forecastability of long-horizon dividend growth for the aggregate stock market using an-

nual data from 1927-2000. Although Ang concludes that there may be some long-horizon

forecastability of dividend growth based on results from rolling forward a first-order vector

autoregression for dividend yields, dividend growth rates and returns, he finds little evidence

of predictability in long-horizon dividend growth from direct long-horizon regressions. These

findings are consistent with those of the earlier papers cited in the introduction which use the

log dividend-price ratio as a predictive variable, and our own results using dt − pt, reported
above.

One recent study that finds predictability of dividend growth in direct long-horizon re-

gressions is Ang and Bekaert (2001), who report results based on observations from the

fourth quarter of 1952 to the fourth quarter of 1999 on the S&P 500 stock market index.

Like Ang (2002), they confirm the earlier findings of Campbell (1991) and Cochrane (1991)

that dividend growth is largely unpredictable by the dividend-price ratio in univariate long-

horizon forecasting regressions. As Campbell (1991) and Cochrane (1991) emphasize, such

findings imply that changing forecasts of future returns must comprise most of the variation

in the dividend-price ratio. But Ang and Bekaert (2001) find that the dividend-price ratio

has marginal predictive power for future dividend growth in a multivariate regression once

the earnings yield is included as a regressor. (The earnings yield also has marginal predictive

power.) There are two main differences between our predictability results and those in Ang

and Bekaert (2001). First, the joint forecasting power of the dividend yield and the earnings

yield for dividend growth is concentrated at shorter horizons than in regressions using ̂cdyt

and ĉayt. Second, the R2s for the regressions using the former variables are substantially

lower than those using the latter. For example, in the sample used in Ang and Bekaert
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(2001), the dividend yield and the earnings yield jointly explain about 21% of dividend

growth one year ahead, and about 13% over a five-year horizon. The comparable numbers

using ̂cdyt alone as a predictive variable are 31% and 34%. These numbers are higher than

those reported in Table 4 because we use the slightly shorter sample employed by Ang and

Bekaert (2001) in order to make the results directly comparable to theirs.

4.2. Additional statistical tests

4.2.1. Multivariate long-horizon forecasting regressions9

The cointegration coefficients in ĉayt and ̂cdyt are estimated using the full sample.

This estimation strategy is appropriate for testing the forecasting implications of the theo-

retical framework above, because sufficiently large samples of data are necessary to recover

the true cointegration coefficients, and there is no implication (either from the theoretical

framework or from statistical theory) that ĉayt and ̂cdyt should forecast the right-hand side

variables in Eqs. (3) and (4) unless the cointegration coefficients have converged to their true

values. Fortunately, cointegration coefficients are “superconsistent,� converging to their true

values at a rate proportional to the sample size T , and can therefore be treated as known in

second-stage forecasting regressions. It follows that a valid test of the predictability implied

by the theoretical cointegration framework in Eqs. (3) and (4) requires the use of the full

sample to estimate the cointegration coefficients in ĉayt and ̂cdyt. This issue is discussed in

more detail in Lettau and Ludvigson (2001b).

A separate issue concerns not whether ĉayt and ̂cdyt have forecasting power, but whether

a practitioner, operating in the early part of our sample and without access to the whole

sample to estimate cointegration coefficients, could have exploited the forecasting power of

ĉayt and ̂cdyt. Out-of-sample or subsample analysis is often used to assess questions of this

nature. A difficulty with these procedures, however, is that the subsample analysis inherent

in out-of-sample forecasting tests entails a loss of information, and as such makes out-of-

sample tests substantially less powerful than in-sample forecasting tests (Inoue and Kilian,

2002). This loss of power means that out-of-sample (and subsample) analyses can fail to

reveal true forecasting power that even a practitioner could have had in real time.

With these considerations in mind, we now provide an alternative approach to assessing

the forecasting power of ĉayt and ̂cdyt. The approach we propose eliminates the need to

estimate cointegration parameters using the full sample in a first-stage regression, but at the

same time avoids the power problems inherent in out-of-sample and subsample analyses. We

9We are grateful to Jushan Bai for pointing out the possibility of using the methodology used in this

subsection.
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consider single-equation, multivariate regressions taking the form

zt+h = a+ b1ct + b2at + b3yt + ut, (9)

where a, b1, b2, and b3 are regression coefficients to be estimated, and the dependent vari-

able zt+h is either the h-period excess return on the CRSP value-weighted index or the

h-period dividend growth rate on the CRSP value-weighted index. Rather than estimating

the cointegration relation among ct, at, and yt in a first-stage regression and then using

the cointegration residual as the single right-hand side variable, the regression Eq. (9) uses

the multiple variables involved in the cointegration relation as regressors directly. If there

is a relation between the left-hand side variable to be forecast, and some stationary linear

combination of the regressors ct, at, and yt, the regression can freely estimate the non-zero

coefficients b1, b2, and b3 that generate such a relation. For this excercise, we maintain the

hypothesis that the left-hand-side variable is stationary, while the right-hand side variables

are I (1). Then, under the null hypothesis that (ct, at, yt)
′ has a single cointegration relation,

it is straightforward to show that the limiting distributions for b1, b2, and b3 will be stan-

dard, implying that the forecasting regression Eq. (9) will produce valid R2 and t-statistics.

Because this procedure does not require any first-stage estimation of cointegration parame-

ters, it is clear that the forecasting regression Eq. (9), in particular its coefficients and R2

statistics, cannot be influenced by such a prior analysis.

Table 9 reports long-horizon regression results for excess returns and dividend growth,

from an estimation of Eq. (9) and a directly analogous multivariate regression in which ct,

dt, and yt are the regressors. The table reports the coefficient estimates at the top of each

cell, heteroskedasticity and serial correlation robust t-statistics in parentheses, and adjusted

R2 statistics in square brackets. Inference on b1, b2, and b3 can be accomplished by re-writing

Eq. (9) so that the hypotheses to be tested are written as a restrictions on I (0) variables

(Sims et al. (1990)). For example, the hypothesis b1 = 0 can be tested by rewriting Eq. (9)

as

zt+h = a+ b1 [ct − ωat − (1− ω) yt] + [b2 + b1ω] at + [b3 + b1 (1− ω)] yt + ut

= a+ b1 [cayt] + [b2 + b1ω] at + [b3 + b1 (1− ω)] yt + ut.

It follows that the ordinary least squares estimate of b1 has a limiting distribution given by

√
T
(

̂b1 − b1
)

−→ N

(

0,
σ2u

T
∑T

t=1 (cayt − cay)
2

)

,

where σ2u denotes the variance of ut, and cay is the sample mean of cayt. These may be

evaluated by using the full sample estimates, ĉayt. A similar rearrangement can be used to
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test hypotheses about b2 and b3. Note that the full sample estimates of the cointegration

coefficients are only required for inference about the forecasting excercise—they do not affect

the forecasting excercise itself.

The results in Table 9 are consistent with those obtained using ĉayt and ̂cdyt as forecasting

variables. In almost every case, the individual coefficients on each regressor are strongly

statistically significant as predictive variables for excess returns and dividend growth, and the

R2 statistics indicate that the regressors jointly explain about the same fraction of variation

in future returns and future dividend growth explained by the individual regressors ĉayt and
̂cdyt. For example, the multivariate regression with ct, at, and yt explains 26% of one-year-

ahead excess returns, whereas ĉayt explains 25%. The multivariate regression with ct, dt,

and yt explains about 24% of the variation in one-year-ahead dividend growth, whereas ̂cdyt

explains 21%. The adjusted R2 statistics are slightly lower than in the regressions that

include only ̂cdyt or ĉayt because there are three regressors instead of one. These results do

not support the conclusion that ĉayt and ̂cdyt have forecasting power merely because they

are estimated in a first stage, using data from the whole sample period.

4.2.2. Small sample robustness

There are at least two potential econometric hazards with interpreting the long-

horizon regression results using ̂cdyt and ĉay, presented above. One is that the use of

overlapping data in long-horizon regressions can skew statistical inference in finite samples.

Valkanov (2003) shows that, in finite samples where the forecasting horizon is a nontriv-

ial fraction of the sample size, the t-statistics of long-horizon regression coefficients do not

converge to a well-defined distribution, and the finite-sample distributions of R2 statistics

in long-horizon regressions do not converge to their population values. A second possible

econometric hazard with interpreting the long-horizon regression results presented in the

previous section occurs because (like most long-horizon forecasting variables) ̂cdyt and ĉay

are persistent variables, which, although predetermined, are not exogenous. This lack of

exogeneity can create a small-sample bias in the regression coefficient that works in the di-

rection of indicating predictability even where none is present (Nelson and Kim, 1993 and

Stambaugh, 1999).

To address these potential inference problems, we perform three robustness checks. The

first is to compute the rescaled t/
√
T statistic (where T is the sample size), recommended

by Valkanov (2003). The second is to use vector autoregressions to impute long-horizon

R2 statistics, rather than estimating them directly from long-horizon regressions. The third

is to perform both bootstrapped estimates of the empirical distribution of the predictive

regression coefficients and adjusted R2 statistics under the null of no predictability.
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We begin by discussing the rescaled t/
√
T statistic, which is due to Valkanov (2003).

Valkanov shows that, when there is nontrivial overlap in the residuals of long-horizon re-

gressions, the t-statistic for whether the predictive variable is statistically different from zero

diverges at rate T 1/2. Thus, Valkanov proposes testing for statistical significance by using

a rescaled t/
√
T statistic, which has a well-defined limiting distribution. The distribution

of this rescaled statistic is nonstandard, however, and depends on two nuisance parameters,

δ and c. The parameter δ measures the covariance between innovations in the variable to

be forecast, and innovations in some forecasting variable, call it Xt. The parameter c mea-

sures deviations from unity in the highest autoregressive root for Xt, in a decreasing (at

rate T ) neighborhood of 1. Both of these parameters can be consistently estimated using

the methodology described in Valkanov (2003). With these estimates in hand, the rescaled

t-statistic, t/
√
T , can be compared against critical values provided in Valkanov (2003).

The rescaled t-statistics for our application are reported in curly brackets in Table 4,

for univariate predictive regressions of excess returns on ĉayt and ̂cdyt, and in Table 5 for

univariate predictive regressions of dividend growth on ĉayt and ̂cdyt. The tables report

both the statistic itself and whether its value implies that the predictive coefficient in each

regression is statistically significant at the 5% 2.5% and 1% levels. According to this rescaled

t-statistic, ĉayt is a powerful forecaster of excess returns (statistically significant at the 1%

level) at every horizon ranging from one to six years, as is ̂cdyt at all but the one-year horizon

(Table 4). For future dividend growth (Table 5), the rescaled t-statistic implies that ̂cdyt

is a statistically significant predictor at the 1% percent level at every horizon from one to

six years, whereas ĉayt is a statistically significant predictor of dividend growth at the 1%

level at every horizon ranging from one to four years. According to these statistics, the

forecasting power of ĉayt and ̂cdyt for long-horizon excess stock market returns and stock

market dividend growth is robust to accounting for biases arising from the use of overlapping

data in finite samples.

Finite sample problems with overlapping data can also be avoided by using vector autore-

gression to impute implied long-horizon R2 statistics, rather than estimating them directly

from long-horizon returns. The methodology for measuring long-horizon statistics by es-

timating a VAR has been covered by Campbell (1991), Hodrick (1992), and Kandel and

Stambaugh (1989), and we refer the reader to those articles for further details. We present

the results from using this methodology in Table 10, which investigates the long-horizon

predictive power of ĉayt and ̂cdyt in two ways. First, we can use the estimated cointegrated

VARs (or error-correction representations) reported in Table 3 to impute long-horizon R2

statistics for dividend growth, ∆dt, and wealth growth, ∆at. Following Cochrane 1994,

Appendix D, this is done by writing the error-correction representation in AR(1) notation

(see Cochrane (1994), Appendix D), and then applying the standard VAR methodology
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for imputing long-horizon statistics to the resulting AR(1) representation. Note that wealth

growth is highly correlated with the log return on the CRSP value-weighted index and there-

fore proxies for rt (the correlation is over 0.89 in our sample). The cointegrated VAR for

ct, dt, and yt in Panel C of Table 3 can be used to impute long-horizon R2 statistics for

forecasting ∆dt with ̂cdyt, while the cointegrated VAR for ct, at, and yt in Panel B of Table

3 can be used to impute long-horizon R2 statistics for forecasting ∆at with ĉayt. Second,

we can use standard bivariate, first-order VARs for dividend growth ∆dt and either ĉayt or
̂cdy, and for stock returns rt and either ĉayt or ̂cdy, to compute the implied long-horizon

R2 statistics. This latter approach is more common. In either approach, we calculate an

implied R2 statistic using the coefficient estimates of the VAR and the estimated covariance

matrix of the VAR residuals.

Table 10 shows that the pattern of the implied R2 statistics from the vector autore-

gressions is similar to those produced from the direct long-horizon regressions. Moreover,

the results from using the cointegrated VARs (estimates are presented in Table 3) are very

similar to those using the bivariate VARs. For example, the implied adjusted R2 statistics

for forecasting dividend growth with ̂cdyt in the bivariate VAR (row 4) peaks at 0.2 for a

three-year horizon, whereas the comparable R2 statistic using the cointegrated VAR is 0.17

over this same horizon (row 2). A similar pattern holds for the implied R2 statistics for

forecasting with ĉayt: the implied R2 statistic for forecasting excess returns with ĉayt in the

bivariate VAR is as high as 49% at a three-year horizon (row 5), whereas the implied R2

statistic for forecasting ∆at with ĉayt in the cointegrated VAR is 36% (row 1). We conclude

that the evidence favoring predictability of dividend growth and excess stock returns by ̂cdyt

and ĉayt is robust to the VAR methodology.

Our third method for addressing potential finite sample biases is to estimate the empirical

distribution of regression coefficients and adjusted R2 statistics from predictive regressions

in which ĉayt and ̂cdyt are used as forecasting variables. Table 11 presents results based on a

bootstrap simulation conducted under the null hypothesis of no predictability (i.e., residuals

for the dependent variable are generated by regressions on a constant). We use first-order

autoregressive specifications as our reduced form models for ĉayt and ̂cdyt. The standard

bootstrap is not consistent if the data series have a near-unit root. However, ĉayt and ̂cdyt

do not appear well-characterized as near-unit root processes, since—unlike the log dividend-

price ratio—standard cointegration tests strongly reject the hypothesis that they are I (1)

random variables. We generate artificial sequences of excess returns and dividend growth are

generated by drawing randomly (with replacement) from the sample residuals, under the null

of no predictability. The simulations are repeated 10,000 times. Nelson and Kim (1993) also

perform randomization, which differs from bootstrapping only in that sampling is without

replacement; our results are very similar using randomization. To avoid difficulties caused
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by the use of overlapping data, we focus here on one-year-ahead regressions.

Table 11 summarizes the estimated sampling distribution for the slope coefficient and the

R2 statistic in univariate forecasting regressions of annual excess returns and annual dividend

growth. The results of each simulation are nearly identical. In almost every case, the

estimated predictability coefficient and R2 statistic lie outside of the 95% confidence interval

based on the empirical distribution under the null of no predictability. In most cases they

lie outside of the 99% confidence interval. The one exception is for the case in which excess

returns are regressed on the one-year lagged value of ̂cdy; in this case, we cannot reject the

hypothesis that one-step-ahead forecasting power of ̂cdyt is not statistically distinguishable

from zero. This is not surprising, since even the standard asymptotic statistics suggest

that ̂cdyt only has significant predictive power for returns at horizons longer than one year.

For all of the other regressions and forecasting horizons, we find that our estimated slope

coefficients and R2 statistics are large relative to their sampling distributions under the null

of no predictability. A Monte Carlo simulation of 10,000 artificial time-series generated from

the Normal distribution under the null of no predictability generated almost identical results.

We conclude that the predictability findings documented here are robust to correcting for

small sample biases in the regression coefficients and R2 statistics.

4.3. Including Share Repurchases

So far we have focused on measuring dividends as the actual cash paid to sharehold-

ers of the CRSP value-weighted index. We do this in order to make our results directly

comparable with the existing literature, which has focused on forecasting the growth rate in

this particular measure of dividends. This measure is of interest because it represents the

predominant form of payout to shareholders over much of the post-War period. Moreover,

as noted by Campbell and Shiller (2001), traditional dividends are an appealing indicator of

fundamental value for long-term shareholders, because the end-of-period share price becomes

trivially small when discounted from the end to the beginning of a long holding period.

Nonetheless, there is a growing view that changing corporate finance policy has led

many firms, in recent years, to compensate shareholders through repurchase programs rather

than through dividends (Fama and French, 2001; Grullon and Michaely, 2002). Still, large

firms with high earnings have continued to increase traditional dividend payouts over time

(DeAngelo, DeAngelo and Skinner, 2002). The impact on aggregate dividends is therefore

unclear. In this section we show that our main conclusions are not altered by adjusting

dividends to account for share repurchase activity.

One way to adjust dividends for such shifts in corporate financial policy is to add dollars

spent on repurchases to dividends. We do so here by adding aggregate gross share repurchase
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expenditures for the Industrial Compustat firms reported in Grullon and Michaely (2002) to

our measure of dividends. Gross repurchases are readily available from the published work of

Grullon and Michaely (2002), and this procedure is conservative for our purpose because the

sum of share repurchases net of new issues and traditional dividend payments would be that

much closer to our original series. These data cover the period 1972 to 2000 and are added

to the CRSP dividends after being scaled to match the units of our original dividend series.

As Grullon and Michaely (2002) note, repurchase activity prior to 1972 represented a tiny

fraction of shareholder compensation for U.S. corporations; thus, the traditional dividend

series should provide an accurate measure of actual payouts in data prior to 1972.

Table 12 presents the results of univariate long-horizon forecasting regressions for the

growth in dividends plus repurchase activity, using ĉayt and ̂cdyt as forecasting variables in

separate regressions.10 The results should be compared with those in Table 5, which presents

the analogous findings using CRSP value-weighted dividends. Comparing the output from

the two tables, it is immediately evident that the inclusion of share repurchases does not

alter the main conclusions obtained from using traditional dividends: ĉayt and ̂cdy are both

strong predictors of the long-horizon growth rates in this series, with t-statistics that begin

above 4.0 for horizons at one year and increase, and R-squared statistics that are in line

with those in Table 4. We conclude that adjusting dividends for repurchases does not alter

the main finding in this paper, namely that the growth in compensation to shareholders

is forecastable in post-War data, and over horizons previously associated exclusively with

return forecastability.

5. Why might expected dividend growth covary with
expected returns?

If investors themselves desire smooth consumption paths, why don’t managers per-

fectly smooth dividend payments? Some authors have noted that dividends are smoother

than earnings, consistent with the hypothesis that managers do some dividend smoothing

(Cochrane, 1994; Lamont, 1998). One possibility is that although dividend-smoothing is

possible over long horizons (as revealed by the slow-moving dividend-price ratio), it is more

difficult over horizons corresponding to the business cycle. Several researchers have presented

evidence that is suggestive. Gertler and Hubbard (1993) study firm-level data from Compu-

stat and find that dividend payouts are lower during a slowdown in economic growth than

they are during periods of economic expansion. Bernanke and Gertler (1989) and Bernanke

et al. (1996) present theoretical and empirical evidence of countercyclical variation in the

10The cointegration relation cdyt is reestimated using the new dividend series inclusive of repurchases.
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external finance premium, suggesting that managers who need to finance long-term projects

have a greater need to retain earnings in recessions than in expansions. The equity risk

premium also appears countercyclical: it rises during an economic slowdown and falls during

periods of economic growth (Fama and French, 1989; Ferson and Harvey, 1991; Lettau and

Ludvigson, 2001). Taken together, these findings suggest that high risk premia occur in

periods of economic recession and coincide with a temporarily low stock price, temporarily

low earnings, and temporarily low dividends. In such a world, consumers might be better

able to smooth consumption than managers are able to smooth dividends. If this is true,

earnings growth should be predictably higher when, according to ̂cdyt, dividend growth and

excess stock returns are predictably higher.

Table 13 presents some evidence that is supportive of this hypothesis using earnings

data for NYSE firms. The earnings data are from Lewellen (2003) and are the ratio of

operating earnings before depreciation to market value. Unfortunately, the sample is limited

by the availability of Compustat data to the period 1964-2000. We use Lewellen’s data

because earnings per share is contaminated by variability in share issuance. Table 13 reports

that earnings growth is predictably higher when dividend growth is predictably higher. The

regressor ̂cdyt is strongly statistically significant as a predictor of earnings growth at business

cycle frequencies, with t-statistics in excess of 4.0 for one-to-three-year forecasting horizons,

and in excess of 3.0 for a four-year horizon. The univariate forecasting regression explains

about 17% of the variation in earnings growth four years hence. Thus, when consumption is

high relative to its common trend with dt and yt, both dividends and earnings are temporarily

low and are forecast to grow more quickly in the future. These results are consistent with

the hypothesis that manager’s dividend-smoothing ability is imperfect over business cycles.

6. Conclusion

This paper presents evidence that changing forecasts of dividend growth are an impor-

tant feature of the post-War U.S. stock market, despite the failure of the dividend-price ratio

to uncover such variation. Although these findings contradict the common conclusion that

expected dividend growth is roughly constant, they reinforce the textbook conclusion that

expected returns are time-varying and make an important contribution to aggregate stock

market fluctuations. Dividend forecasts covary with changing forecasts of excess stock re-

turns, and are positively correlated with business cycle variation in expected returns. Such

fluctuations in expected returns and expected dividend growth have offsetting effects on

the dividend-price ratio. The findings provide at least a partial explanation for why the

consumption-wealth ratio has been found superior to the log dividend-price ratio as a pre-

dictor of excess stock market returns over medium-term horizons.
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Our results suggest that an important component of time-varying expected returns and

time-varying expected dividend growth is not captured by the log dividend-price ratio, or

likely by other aggregate financial ratios. The results also imply that time-varying investment

opportunities will be poorly captured by variation in the log dividend-price ratio, because

it fails to reveal significant movements in the investment opportunity set that occur over

business cycle horizons. This implication should be of special relevance to the growing body

of literature on strategic asset allocation, in which the log dividend-price ratio is often used

as a proxy for time-variation in the investment opportunity set, and as an input into the

optimal asset allocation decision of a long-horizon investor. For a lucid summary of this

literature, see Campbell and Viceira (2001).

The results in this paper hold for post-War data. There is little evidence of forecastability

in dividend growth by ̂cdyt once pre-War (available from 1929) data are included in the

sample. A likely explanation is the relatively poor quality of pre-War consumption and

labor income data. For example, data-collection methodologies changed discretely at the

beginning of the post-War period, and Romer (1989) finds that pre-War GDP estimates

significantly exaggerate the size of cyclical fluctuations in the pre-War era. The upshot for

our empirical application is that there is no evidence of a cointegration relation among ct, dt,

and yt in samples that include pre-War data. Since the forecasting power of ̂cdyt is predicated

on cointegration, it is not difficult to understand why we find little predictive power in such

samples.

While our findings help to explain some puzzling features of post-War U.S. stock market

behavior, we caution that the results provide but one piece of a larger puzzle concerning

the behavior of the dividend-price ratio, especially in more recent years. For example, the

aggregate price-dividend ratio soared to unprecidented levels in the 1990s and even today

remains above historical norms. Lettau et al. (2003) provide a partial explanation for this

surge based on evidence of an unprecedented decline in macroeconomic risk. There is also

a growing view that shifts in corporate financial policy may have created persistent changes

in dividend growth rates (e.g., Fama and French 2001). It is too soon to tell whether such

shifts in corporate financial policy will be sustained. But trend-like shifts in price-earnings

ratios and other valuation measures suggest that factors other than changes in corporate

payout policy must have contributed to the behavior of aggregate financial ratios in recent

data. Whatever the reason for these changes, the results presented here suggest that some

of the differences at cyclical frequencies between the log dividend-price ratio and the log

consumption-wealth ratio have been attributable historically to changing forecasts of long-

horizon dividend growth.
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Table 1: Summary statistics

∆ct ∆yt ∆dt ∆pt ∆at

Univariate summary statistics

Mean (in %) 2.01 2.30 4.01 6.88 2.45

Standard Deviation (in %) 1.14 1.83 12.24 16.13 4.05

Correlation matrix

∆ct 1.00 0.78 -0.13 -0.00 0.32

∆yt 1.00 -0.10 -0.10 0.18

∆dt 1.00 0.64 0.52

∆pt 1.00 0.83

∆at 1.00

Notes: This table reports summary statistics for annual growth of real per capita consumption ∆ct, labor

income ∆yt, dividends on the CRSP value-weighted index ∆dt, the CRSP value-weighted price index

∆pt, and asset wealth ∆at. The sample spans the period 1948-2001.



Table 2: Autocorrelations of ratios

Ratio ρ1 ρ2 ρ3 ρ4

d− p 0.87 0.72 0.59 0.47

c− 0.33 a− 0.57 y 0.46 0.14 0.05 0.00

c− 0.13 d− 0.68 y 0.46 0.20 0.24 0.16

Notes: This table reports autocorrelations of ratios involving consumption ct, labor income yt, dividends

on the CRSP value-weighted index dt, the CRSP value-weighted price index pt, and asset wealth at. ρi

denotes the autocorrelation of order i (in years). The cointegrating coefficients in the last two rows are

estimates using dynamic least squares with two leads and lags. The sample is annual and spans the

period 1948-2001.



Table 3: Estimates from cointegrated VARs

Panel A: (c, a, y)

Equation

Dependent variable ∆ct ∆yt ∆at
∆ct−1 0.267 0.449 -0.523
(t-stat) (1.279) (1.220) (-0.696)

∆yt−1 -0.039 -0.148 0.433
(t-stat) (-0.294) (-0.641) (0.916)

∆at−1 0.112 0.128 0.392
(t-stat) (2.777) (1.794) (2.702)

ĉayt−1 -0.007 0.102 1.726
(t-stat) (-0.053) (0.457) (3.803)

R̄2 0.199 0.050 0.207

Panel B: (c, d, y)

Equation

Dependent variable ∆ct ∆yt ∆dt
∆ct−1 0.469 0.652 -0.136
(t-stat) (2.284) (1.869) (-0.060)

∆yt−1 -0.074 -0.156 -0.252
(t-stat) (-0.572) (-0.709) (-0.176)

∆dt−1 0.029 0.052 -0.129
(t-stat) (2.311) (2.389) (-0.917)
̂cdyt−1 -0.038 0.219 2.400
(t-stat) (-0.408) (1.377) (2.314)

R̄2 0.179 0.098 0.104

Notes: The table reports estimated coefficients from cointegrated first-order vector autoregressions

of the column variable on the row variable; ct is log consumption, yt is log labor income, at is log asset

wealth (net worth), dt is log stock market dividends, and pt is the log CRSP value-weighted price index

index. t-statistics are reported in parentheses. Estimated coefficients that are significant at the 5% level

are highlighted in boldface. The sample is annual and spans the period 1948-2001.



Table 4: Univariate long-horizon regressions – excess stock returns

h-period regression:
∑h

i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in years)
zt = 1 2 3 4 5 6

dt − pt 0.14 0.24 0.27 0.34 0.52 0.73
(1.90) (1.40) (1.21) (0.73) (0.84) (1.12)
{0.26} {0.19} {0.16} {0.10} {0.11} {0.15}
[0.08] [0.10] [0.10] [0.10] [0.16] [0.23]

ĉayt 5.87 10.50 11.93 12.54 16.31 21.66
(4.15) (5.58) (6.86) (6.72) (7.18) (7.82)

{0.51∗∗∗} {0.75∗∗∗} {0.90∗∗∗} {0.78∗∗∗} {0.96∗∗∗} {0.81∗∗∗}
[0.25] [0.44] [0.40] [0.32] [0.36] [0.50]

̂cdyt 1.50 5.54 6.36 6.90 8.30 11.81
(1.45) (7.54) (4.89) (5.07) (4.69) (4.96)
{0.26} {1.10∗∗∗} {0.59∗∗∗} {0.61∗∗∗} {0.74∗∗∗} {0.69∗∗∗}
[0.01] [0.19] [0.23] [0.22] [0.22] [0.36]

Notes: This table reports the results of h-period regressions of returns on the CRSP value-weighted index

in excess of a 3-month Treasury bill rate, rr,t, on the variable listed in the first column:
∑h

i=1(rt+i −
rf,t+i) = k + γ zt + εt,t+h, where the zt are the cointegration residuals listed in the first column, ct is log

consumption, yt is log labor income, at is log asset wealth (net worth), dt is log stock market dividends,

and pt is the log CRSP value-weighted price index. ĉayt and
̂cdyt are estimated cointegrating residuals for

the systems (ct, at, yt)
′ and (ct, dt, yt)

′, respectively. For each regression, the table reports OLS estimates

of the regressors, Newey-West (1987) corrected t-statistics (in parentheses), the t/
√
T test suggested in

Valkanov (2001) in curly brackets, and adjusted R2 statistics in square brackets. Significant coefficients

using the standard t-test at the 5% level are highlighted in boldface. Significance at the 5%, 2.5%, and 1%

level of the t/
√
T test using Valkanov’s (2001) critical values is indicated by ∗, ∗∗, and ∗ ∗ ∗, respectively.

The sample is annual and spans the period 1948-2001.



Table 5: Univariate Long-horizon Regressions – Dividend Growth

h-period regression: dt+h − dt = k + γ zt + εt,t+h

Horizon h (in years)
zt = 1 2 3 4 5 6

dt − pt 0.09 0.18 0.19 0.23 0.29 0.34
(2.94) (2.11) (2.70) (2.27) (2.70) (2.41)
{0.40} {0.29} {0.37} {0.31} {0.37} {0.33}
[0.07] [0.15] [0.13] [0.14] [0.15] [0.19]

dt − pt 0.07 0.11 0.12 0.17 0.23 0.30
(1948-1999) (1.57) (1.63) (1.60) (1.98) (2.05) (2.44)

{0.30} {0.21} {0.22} {0.19} {0.23} {0.27}
[0.02] [0.03] [0.03] [0.06] [0.08] [0.14]

ĉayt 4.50 5.87 5.45 5.26 6.30 6.77
(6.89) (7.15) (4.63) (3.88) (3.81) (2.31)

{1.00∗∗∗} {0.91∗∗∗} {0.56∗∗∗} {0.51∗∗∗} {0.40∗} {0.25}
[0.31] [0.35] [0.22] [0.14] [0.16] [0.18]

̂cdyt 2.76 3.97 3.68 4.02 5.24 6.10
(4.74) (6.02) (5.18) (4.32) (5.69) (4.16)

{0.73∗∗∗} {0.91∗∗∗} {0.65∗∗∗} {0.54∗∗∗} {0.75∗∗∗} {0.50∗∗∗}
[0.21] [0.26] [0.21] [0.21] [0.29] [0.38]

Notes: This table reports results from h-period regression of dividend growth on the CRSP value-weighted

index: dt+h− dt = k+ γ zt+ εt,t+h, where the zt are the cointegration residuals listed in the first column,

ct is log consumption, yt is log labor income, at is log asset wealth (net worth), dt is log stock market

dividends, and pt is the log CRSP value-weighted price index. ĉayt and
̂cdyt are estimated cointegrating

residuals for the systems (ct, at, yt)
′ and (ct, dt, yt)

′, respectively. For each regression, the table reports

OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in parentheses), the t/
√
T test

suggested in Valkanov (2001) in curly brackets, and adjusted R2 statistics in square brackets. Significant

coefficients using the standard t-test at the 5% level are highlighted in boldface. Significance at the 5%,

2.5%, and 1% level of the t/
√
T test using Valkanov’s (2001) critical values is indicated by ∗, ∗∗, and

∗∗∗, respectively. The sample is annual and spans the period 1948-2001 with the exception of the second

panel, which use the 1948-1999 sample.



Table 6: Long horizon regressions – consumption and labor income growth

Horizon h (in years)
Variables 1 2 3 4 5 6

h-period regression: consumption growth

ĉayt -0.21 -0.17 -0.26 -0.40 -0.54 -0.52
(-2.42) (-1.03) (-0.98) (-1.33) (-1.53) (-1.59)
[0.06] [0.00] [0.00] [0.01] [0.02] [0.01]

̂cdyt -0.15 -0.15 -0.16 -0.18 -0.27 -0.33
(-2.16) (-1.18) (-1.09) (-1.09) (-1.45) (-1.76)
[0.06] [0.01] [ 0.00] [-0.01] [0.01] [0.01]

multivariate h-period regression: consumption growth

∆ct−1 0.31 0.39 0.35 0.22 0.00 -0.06
(2.47) (1.62) (1.19) (0.52) (-0.01) (-0.13)

ĉayt -0.11 -0.05 -0.13 -0.31 -0.54 -0.54
(-1.27) (-0.36) (-0.55) (-1.14) (-1.66) (-1.89)
[0.13] [0.03] [0.00] [ 0.00] [0.00] [-0.01]

∆ct−1 0.32 0.37 0.36 0.31 0.13 0.04
(2.52) (1.32) (1.22) (0.76) (0.30) (0.10)

̂cdyt -0.11 -0.09 -0.10 -0.13 -0.24 -0.32
(-1.73) (-0.76) (-0.75) (-0.95) (-1.65) (-1.98)
[0.15] [0.04] [0.01] [-0.01] [-0.01] [-0.01]

h-period regression: labor income growth

ĉayt -0.15 -0.05 -0.20 -0.33 -0.57 -0.78
(-1.00) (-0.21) (-0.49) (-0.59) (-0.91) (-1.28)
[ 0.00] [-0.02] [-0.01] [-0.01] [ 0.00] [0.01]

̂cdyt -0.02 0.12 0.09 0.16 0.12 -0.09
(-0.15) (0.58) (0.33) (0.46) (0.33) (-0.22)
[-0.02] [-0.01] [-0.02] [-0.02] [-0.02] [-0.02]

Notes: This table reports results from univariate h-period regression of consumption and labor income

growth: ct is log consumption, yt is log labor income, at is log asset wealth (net worth), dt is log stock

market dividends, and pt is the log CRSP value-weighted price index. ĉayt and ̂cdyt are estimated

cointegrating residuals for the systems (ct, at, yt)
′ and (ct, dt, yt)

′, respectively. For each regression, the

table reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in parentheses),

the t/
√
T test suggested in Valkanov (2001) in curly brackets, and adjusted R2 statistics in square

brackets. Significant coefficients using the standard t-test at the 5% level are highlighted in boldface.

The sample is annual and spans the period 1948-2001.



Table 7: Multivariate long-horizon regressions

Horizon h (in years)
Variables 1 2 3 4 5 6

h-period regression: excess stock returns

dt − pt 0.02 0.02 0.09 0.18 0.35 0.46
(0.30) (0.14) (0.59) (0.88) (1.36) (1.86)

ĉayt 5.59 9.01 8.96 8.61 12.76 15.68
(3.10) (3.59) (2.78) (1.89) (2.57) (3.27)

̂cdyt 0.03 2.14 2.58 2.72 1.60 3.30
(0.03) (2.08) (2.33) (1.95) (1.09) (2.54)
[0.22] [0.44] [0.41] [0.35] [0.42] [0.60]

ĉayt 5.90 9.23 9.88 9.65 13.61 16.68
(3.50) (4.29) (4.18) (2.84) (3.66) (4.18)

̂cdyt -0.07 2.10 2.50 2.95 2.60 4.81
(-0.10) (2.01) (2.03) (1.73) (1.31) (2.50)
[0.24] [0.45] [0.41] [0.33] [0.36] [0.53]

h-period regression: dividend growth

dt − pt 0.03 0.08 0.12 0.17 0.19 0.21
(0.67) (1.33) (1.87) (2.19) (2.28) (2.13)

ĉayt 3.23 3.49 2.39 1.26 1.07 0.37
(2.94) (2.43) (1.47) (0.69) (0.52) (0.12)

̂cdyt 1.91 2.46 2.38 2.91 4.06 5.06
(3.34) (2.62) (2.46) (2.17) (3.44) (2.80)
[0.37] [0.43] [0.30] [0.28] [0.34] [0.43]

ĉayt 3.63 4.47 3.58 2.21 1.53 0.83
(3.88) (2.83) (1.67) (1.07) (0.75) (0.25)

̂cdyt 1.79 2.30 2.28 3.11 4.60 5.75
(3.50) (2.37) (1.90) (2.47) (4.34) (3.11)
[0.38] [0.41] [0.26] [0.21] [0.28] [0.37]

Notes: This tables reports results from h-period regression of returns on the CRSP value-weighted index

in excess of a three-month Treasury bill rate (top panel) and dividend growth (bottom panel). ct is log

consumption, yt is log labor income, at is log asset wealth (net worth), dt is log stock market dividends,

and pt is the log CRSP value-weighted price index. ĉayt and
̂cdyt are estimated cointegrating residuals for

the systems (ct, at, yt)
′ and (ct, dt, yt)

′, respectively. For each regression, the table reports OLS estimates

of the regressors, Newey-West (1987) corrected t-statistics (in parentheses), and adjusted R2 statistics in

square brackets. Significant coefficients at the 5% level are highlighted in boldface. The sample is annual

and spans the period 1948-2001.



Table 8: Other forecasting variables – dividend growth, univariate regressions

Horizon h (in years)
Variables 1 2 3 4 5 6

∆dt−1 -0.26 -0.24 -0.32 -0.17 -0.42 -0.34
(-2.34) (-1.87) (-2.30) (-1.48) (-1.92) (-1.55)
[0.05] [0.02] [0.03] [-0.01] [0.04] [0.02]

TRMt−1 -0.66 0.03 2.13 3.49 4.10 2.85
(-0.59) (0.02) ( 0.97) (1.35) (1.30) (0.98)
[-0.02] [-0.02] [-0.01] [0.01] [0.02] [0.00]

DEFt−1 -0.02 -0.01 0.02 0.06 0.07 0.11
(-0.53) (-0.19) ( 0.46) (1.09) (1.13) (1.97)
[-0.02] [-0.02] [-0.02] [0.00] [0.00] [0.04]

RRELt−1 -0.85 0.77 0.79 -1.63 -0.39 -2.74
(-0.97) (0.71) (0.48) (-1.97) (-0.26) (-1.46)
[-0.02] [-0.02] [-0.02] [-0.02] [-0.02] [-0.01]

CPt−1 -0.01 -0.01 0.00 0.00 0.00 0.02
(-5.91) (-1.13) (-0.46) (0.53) (0.38) (1.19)
[0.03] [-0.01] [-0.03] [-0.03] [-0.03] [0.01]

Notes: This table reports results from h-period regression of dividend growth. TRMt is the term spread,

or the difference between the ten-year Treasury bond yield and the three-month Treasury bond yield;

DEFt is the BAA corporate Bond rate minus the AAA corporate bond rate; RRELt is the relative bill rate

and CP is the Cochrane-Piazzesi (2003) bond factor. For each regression, the table reports OLS estimates

of the regressors, Newey-West (1987) corrected t-statistics (in parentheses), and adjusted R2 statistics in

square brackets. Significant coefficients at the 5% level are highlighted in boldface. The sample is annual

and spans the period 1948-2001 for the regression including lagged dividend growth, 1953-2001 for the

regressions including TRM, DEF, and RREL, and 1965-2001 for the regressions including CP.



Table 9: Multivariate long-horizon regressions

Horizon h (in years)
Variables 1 2 3 4 5 6

h-period regression: excess stock returns on c, a, and y

ct 6.50 11.96 13.48 13.92 17.34 22.53
(4.76) (6.18) (6.37) (6.48) (6.91) (6.92)

at -1.83 -3.29 -3.60 -3.67 -5.06 -6.76
(-4.57) (-5.82) (-5.83) (-5.85) (-6.90) (-7.11)

yt -4.01 -7.43 -8.50 -8.85 -10.56 -13.52
(-4.91) (-6.43) (-6.73) (-6.89) (-7.05) (-6.96)
[0.26] [0.49] [0.48] [0.40] [0.41] [0.55]

h-period regression: excess stock returns on c, d, and y

ct 1.53 5.44 7.12 8.38 10.36 14.70
(1.59) (6.56) (4.97) (5.52) (5.69) (5.62)

dt -0.07 -0.54 -0.55 -0.58 -0.74 -1.16
(-0.60) (-5.10) (-3.00) (-3.03) (-3.20) (-3.49)

yt -1.30 -4.03 -5.48 -6.50 -7.96 -11.05
(-1.98) (-7.09) (-5.58) (-6.26) (-6.39) (-6.18)
[0.00] [0.15] [0.23] [0.25] [0.24] [0.37]

h-period regression: dividend growth on c, a, and y

ct 4.31 5.04 4.52 4.70 6.18 6.61
(6.26) (6.60) (4.64) (4.16) (4.16) (3.34)

at -1.44 -1.91 -2.05 -2.49 -3.46 -3.70
(-7.16) (-8.56) (-7.22) (-7.56) (-7.99) (-6.41)

yt -2.44 -2.67 -2.10 -1.88 -12.31 -22.50
(-5.93) (-5.86) (-3.60) (-2.78) (-2.61) (-2.12)
[0.29] [0.37] [0.29] [0.29] [0.38] [0.40]

h-period regression: dividend growth on c, d, and y

ct 2.14 2.88 2.41 2.39 3.28 4.08
(3.92) (4.77) (3.59) (2.74) (3.86) (2.99)

dt -0.45 -0.64 -0.62 -0.69 -0.88 -0.98
(-6.49) (-8.28) (-7.23) (-6.20) (-8.15) (-5.66)

yt -1.22 -1.60 -1.21 -1.09 -1.57 -2.13
(-3.28) (-3.86) (-2.64) (-1.82) (-2.70) (-2.28)
[0.24] [0.33] [0.29] [0.31] [0.40] [0.48]

Notes: See next page.



Notes: This table reports results from h-period regression of returns on the CRSP value-weighted

index in excess of a three-month Treasury bill rate, and dividend growth. ct is log consumption, yt is

log labor income, at is log asset wealth (net worth), and dt is log stock market dividends. For each

regression, the table reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in

parentheses), and adjusted R2 statistics (in square brackets). Significant coefficients at the 5% level are

highlighted in boldface. The distribution of the coefficient estimates is as follows. Consider a regression

zt = µ + β1x1t + β2x2t + β3x3t + εt, where x1, x2, and x3 are cointegrated and the cointegrating vector

is (1,−θ2,−θ3). Let ηt = x1t − θ2x2t − θ3x3t. Then the OLS estimate of β1 has a limiting distribution

of
√
T (̂β1 − β1) → N(0, σ2(1/T

∑T
t=1(ηt − η̄t)2)−1) where η̄t is the mean of ηt and σ

2 is the variance of

ε. Note that ηt depends on the cointegrating vector. The standard error is Newey-West corrected. The

sample is annual and spans the period 1948-2001.



Table 10: Implied long-horizon R2 from VARs

Variable Implied R2 for forecast horizon H

1 2 3 4 5 6

VECM (c, a, y)
∆at 0.31 0.39 0.40 0.36 0.32 0.28

VECM (c, d, y)
∆dt 0.17 0.17 0.16 0.18 0.18 0.19

VAR (∆d, ĉayt)
∆dt 0.37 0.36 0.36 0.39 0.47 0.48

VAR (∆d, ̂cdyt)
∆dt 0.19 0.17 0.18 0.21 0.29 0.34

VAR (r, ĉayt)
rt 0.25 0.32 0.33 0.49 0.52 0.62

VAR (r, ̂cdyt)
rt 0.03 0.22 0.25 0.33 0.40 0.38

Note: The table reports implied (unadjusted) H-period R2 statistics estimated from vector

error correction models (VECM) and vector autoregressions (VAR). The sample is annual

and spans the period 1948-2001.



Table 11: Small sample inference of slope and R2

xt ̂β 95% CI 99% CI R2 95% CI 99% CI

excess returns

ĉayt 5.87 (-3.12, 3.10) (-4.56, 4.48) 0.25 (-0.02, 0.06) (-0.02, 0.11)
̂cdyt 1.50 (-2.45, 2.48) (-3.53, 3.66) 0.01 (-0.02, 0.05) (-0.02, 0.10)

dividend growth

ĉayt 4.50 (-1.79, 1.79) (-2.62, 2.59) 0.31 (-0.02, 0.06) (-0.02, 0.11)
̂cdyt 2.76 (-1.54, 1.56) (-2.29, 2.21) 0.21 (-0.02, 0.06) (-0.02, 0.11)

Notes: This table reports confidence intervals from a bootstrap procedure. Ten thousand artificial time

series of the size of our data set are generated under the null hypothesis of no predictability. The

data-generating process is zt+1 = α + et+1, xt+1 = µ + φxt−1 + vt+1 where zt is either excess returns

or dividend growth and xt is either cay or cdy. The parameters in the data-generating process are

set to sample estimates for both the bootstrap and the Monte Carlo. We then run OLS regressions

zt+1 = α + βxt + ut+1 and study the distributions of ̂β and the R2. We draw (with replacement) from

the residuals of the system estimated under the null hypothesis. The columns denoted ̂β and R2 report

our empirical estimates using annual data from 1948 to 2001.



Table 12: Univariate long-horizon regressions – including share repurchases

h-period regression: dt+h − dt = k + γ zt + εt,t+h

Horizon h (in years)
zt = 1 2 3 4 5 6

dt − pt 0.09 0.10 0.10 0.11 0.15 0.19
(1.76) (1.12) (0.81) (0.70) (0.81) (0.88)
[0.01] [0.01] [0.00] [0.00] [0.01] [0.02]

ĉayt 4.41 6.31 6.85 7.05 8.67 9.93
(4.52) (5.02) (4.21) (3.64) (5.07) (4.68)
[0.24] [0.26] [0.21] [0.18] [0.21] [0.26]

̂cdyt 4.25 5.05 4.58 4.78 6.49 8.27
(5.77) (5.23) (2.99) (2.37) (3.28) (4.04)
[0.20] [0.19] [0.12] [0.11] [0.16] [0.26]

Notes: This table reports results from h-period regression of dividend growth on the CRSP value-weighted

index: dt+h−dt = k+γ zt+ εt,t+h, where dividends d are adjusted to include share repurchases using the

estimates in Grullon and Michaely (2002). For each regression, the table reports OLS estimates of the

regressors, Newey-West (1987) corrected t-statistics (in parentheses), and adjusted R2 statistics in square

brackets. Significant coefficients using the standard t-test at the 5% level are highlighted in boldface. The

sample is annual and spans the period 1948-2000, since the repurchases data from Grullon and Michaely

are only available through 2000.



Table 13: Long-horizon regression – earnings growth

Horizon h (in years)
Variables 1 2 3 4 5 6

̂cdyt 2.35 3.80 5.11 7.04 6.98 7.22
(3.79) (3.01) (3.28) (3.54) (2.56) (2.21)
[0.09] [0.08] [0.09] [0.17] [0.15] [0.15]

Notes: This table reports results from h-period regression of earnings growth: et+h−et = k+β̂cdyt+εt,t+h.

The earnings data are from Lewellen (2001). For each regression, the table reports OLS estimates of the

regressors, Newey-West (1987) corrected t-statistics (in parentheses), and adjusted R2 statistics in square

brackets. Significant coefficients at the 5% level are highlighted in bold face. The sample is annual and

spans the period 1964-2000.



Notes: ĉayt and ̂cdyt are estimated cointegrating residuals for the systems (ct, at, yt)
′ and (ct, dt, yt)

′,

respectively. ct is log consumption, yt is log labor income, at is log asset wealth (net worth), dt

is log stock market dividends, and pt is the log CRSP value-weighted price index. The sample is

annual and spans the period 1948-2001.


