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FORECASTING LONG TERM VOLATILITY FROM HISTORICAL DATA

ABSTRACT

Applying modern option valuation theory requires the user to forecast the volatility of the
underlying asset over the remaining life of the option, a formidable estimation problem
for long maturity instruments. The standard statistical procedures using historical data
are based on assumptions of stability, either constant variance, or constant parameters of
the variance process, that are unlikely to hold over long periods. This paper examines
the empirical performance of different historical variance estimators and of the
GARCH(1,1) model for forecasting volatility in important financial markets over horizons
up to five years. We find several surprising results: In general, historical volatility
computed over many past periods provides the most accurate forecasts for both long and
short horizons; root mean squared forecast errors are substantially lower for long term
than for short term volatility forecasts; it is typically better to compute volatility around
an assumed mean of zero than around the realized mean in the data sample, and the
GARCH model tends to be less accurate and much harder to use than the simple
historical volatility estimator for this application.



FORECASTING LONG TERM VOLATILITY FROM HISTORICAL DATA

Introduction

Option pricing theory has developed into a standard tool for designing, pricing, and
hedging derivative securities of all types. The array of available and actively traded
products has expanded enormously in recent years, as new classes of instruments have
been created and traditional ones have been become more widely used.

All valuation models for options and instruments with any option component
require at least one volatility parameter. For more elaborate models, the user may have
to specify a set of parameters to define a time-varying stochastic volatility process. Since
volatility is unobservable, this turns option valuation in the real world into a forecasting
problem. A variety of methods for obtaining a volatility estimate are in common use.

Until fairly recently, explicit options (as opposed to embedded options, like a call
provision in a long term corporate bond) have had maturities that were typically measured
in weeks or months rather than years. Although volatility has proven to be notoriously
difficult to predict accurately and it appears to change randomly over time, one generally
assumed that treating it as a constant parameter over the short run was not too bad.
However, the expansion in derivatives activity has also brought a marked lengthening in
the horizons for which contracts may be written, first for over-the-counter derivatives
such as puts and calls on foreign currencies,;and then for exchange-traded instruments
like LEAPS and FLEX contracts. Today, maturities of 5 to 10 years are not uncommon.
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Valuation and risk management, or simply evaluation of credit risk, for such long
term derivatives poses a major forecasting problem. How should one try to predict the
volatility of, say, the Deutschemark/dollar exchange rate over the next ten years? Is one
better off using a sophisticated approach that attempts to model the stochastic variation
in volatility over time or a "rule-of-thumb" constant volatility procedure that is clearly
over-simplified but may be more robust as the financial environment evolves over a long
horizon? What is the probablc magnitude of the forecast error for the best available
prediction techniciue? The object of this paper is to explore these issues empirically for
several important financial instruments. We will examine and contrast different volatility
estimation procedures specifically from the perspective of their accuracy in producing out
of sample forecasts.

In the next section, we consider the standard procedure for estimating a (constant)
volatility parameter from historical data, and in Section 3 we discuss several tricky issues
in implementing it in practice. Section 4 examines the forecasting performance of the
standard historical volatility estimator in different markets as a function of the forecasting
horizon and the number of past periods in the data sample. We also show that computing
volatility around an assumed mean of zero rather than around the sample mean may
increasse forecast accuracy.

Using historical volatility as the forecast of future volatility treats volatility as a
constant parameter, even though a great deal of evidence suggests that it is not. In

!

Section 5 we discuss formal models of time-varying volatility. If volatility is not
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constant, it would seem that a model explicitly allowing time-variation ought to produce
more accurate predictions. But that is not necessarily the case. Using a GARCH model,
for example, allows volatility to vary systematically over time, but now the GARCH
parameters themselves must be constant and accurately estimable from past data.
Otherwise it can turn out that even though volatility is not constant, using historical
volatility produces more robust forecasts than more sophisticated, but more fragile,
approaches. In fact, when we examine the performance of the GARCH(1,1) model in
Section 6, we find considerable difficulty in attempting to forecast volatilities over long
horizons with it, and no clear improvement in accuracy for the cases in which they could
be used.

The final section summarizes our results.

2. Computing Historical Volatility

In theoretical option pricing models, the term "volatility" has a very clear and
precise meaning, and academic financial economists immediately think of that
interpretation when the volatility of security prices is discussed. Black and Scholes
derived their option valuation equation under the assumption that stock returns, "log price
relatives” to be precise, followed a logarithmic diffusion process in continuous time with

constant drift and volatility parameters, as shown in equation (1).



4as pdt + odz (1)

S

where dS/S is the instantaneous proportional change in the price of the underlying asset,
p is the annual mean return, o is the volatility, dt indicates an infinitesimal unit of time
and dz represents Brownian motion, a Gaussian random variable with mean Q dt, variance
1 dt, and independent increments over time.

Starting from an-initial value S,, the return over the period from 0 to T is given

by

R=1n(S;/S,)

and R has a Normal distribution, with

Mean = (p - 062/2) T

Standard deviation = o T

The logic of option pricing theory is that, under the assumptions of the model, if
one knows the true volatility along with the other, observable, parameters, there exists
a dynamic self-financing trading strategy that can be followed from the present until the
expiration date that will exactly replicate the payoff on any given option. The volatility
parameter needed to implement that strategy is the volatility that will be exhibited over
the entire remaining lifetime of the option. Th'at is, the parameter that must be forecasted

i

is the standard deviation of the log price relatives for the underlying asset from now until

4



expiration day, which may be a period of years for a long maturity contract.
Generalizations of the basic Black-Scholes framework to allow for volatility that varies
(nonstochastically) over time lead to a very similar result: the volatility parameter that
goes into the model is the square root of the average annualized return variance over the
option’s lifetime.

When an asset’s price follows the constant volatility lognormal diffusion model of
equation (1), o can be estimated easily from historical data. The difficulty arises because
actual prices do not follow (1) exactly, so that price behavior may change over time and
differ over intervals of different lengths. Moreover, the ways in which (1) fails in
practice are not established and regular enough for an alternative model to have become
widely accepted. It is common, therefore, to compute volatility using historical price data
as if (1) were correct but to adjust the estimation methodology, or the volatility number
it produces, in various ways to offset known or suspected problems. The resulting point
estimate for o then becomes the volatility input to the Black-Scholes model or another
fixed volatility valuation equation. Even though true volatility may be believed to vary
stochastica_lly over time, Black-Scholes is familiar and easier to manipulate than any

valuation models that adjust for random volatility formally.

The Standard Historical Volatility Estimate

Consider a set of historical prices for some underlying asset that follows the

process defined in equation (1):



{So,S1,..,5}
We begin by computing the log price relatives, i.e., the percentage price changes
expressed as continuously compounded rates

Ri=In(S,/S,),fortfrom1toT

The estimate of the (constant) mean p of the R, is the simple average

o 2o Re (2)

T

The variance of the R, is given by

v2Z = E (R, - R)* (3)
(T-1)

Annualizing the variance by multiplying by N, the number of price observations in a year

and taking the square root yields the volatility,

0 =y Nv? (4)

If the constant parameter diffusion model of (1) is correct, the above procedure gives the
best estimate of the volatility that can be obtained from the available price data. This

number then become the forecast for volatility going forward, over a time horizon of any

length.

3. Problems with the Lognormal Diffusion Model

Unfortunately, prices for actual securities do not follow (1) in practice.



Time-Varying Volatility

One major problem is that volatility clearly changes over time. As an illustration
consider Figure 1, which plots the volatility of the U.S. Treasury 20 year bond yield.
Taking monthly data on the bond yield from January 1972 through July 1993, we used
equations (2) through (4) to compute the realized volatility over the previous 36 months
and plotted the resulting time series.

These estimates (which are the volatility forecasts that would have been made at
each point in time, based on the available historical data) certainly do not appear to be
Just a constant parameter plus sampling noise. Indeed, in the case of Treasury yields, we
have a good explanation for the sharp rise in volatility that occurred after 1979, when the
Federal Reserve formally changed its operating policies to allow wider fluctuations in

rates.

Serial Correlation in Returns
One virtue of empirical research using financial data is that it is often available in
enormous. quantity, in many cases down to the intraday level of individual transactions.
But while this would permit calculations with extraordinary accuracy if (1) were exactly
correct, the value of using all available data is severely limited by the fact that prices and
returns for many securities appear to have some serial correlation and other distortions
at both short and long intervals.

Apparent serial dependence may arise from several sources. Equation (1) is meant
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to describe the evolution of the equilibrium market price, but price data normally are
produced only by transactions. Since the marketmaking process typically involves bid
and offer quotes around the equilibrium, recorded transactions prices can show extremely
high negative serial correlation, as they bounce back and forth between trades at the bid
and the ask, while the equilibrium price is essentially unchanged.

Brown[1990] provides a striking example of the impact of the effect of the
differencing interval on estimated volatility for Standard and Poor’s 500 Index futures.
Using closing price data for the month of October 1986, the annualized volatility of the
December S&P future was calculated to be .158. Futures data are not available
transaction by transaction, but they are recorded once a minute during the trading day.
Using the 9185 minute by minute price observations, volatility for the same time period
was calculated to be .372. When the sampling interval was lengthened to 1 hour,
estimated volatility dropped to .324.

Two things are evident from these results. First, the choice of differencing
interval can make a huge difference in the measured volatility. Second, the fact that
prices do not obey equation (1) exactly at very short observation intervals means that the
existence of vast amounts of intraday price data is probably not very useful in improving
volatility forecasts.

Positive serial correlation is often found in reported daily closing prices for equities
and other securities. This is generally thought to be due to the "nontrading effect."

i

When transactions for less liquid securities lag behind movements in their equilibrium
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prices, the full impact of a large information event tends to get spread over two or more
days’ recorded closing prices. The resulting positive autocorrelation in returns will
reduce estimated volatility.!

Sampling at longer intervals is an easy way to limit the effect of serial dependence
a high frequencies, but it also means using fewer data points, which increases sampling
error. The best choice of sampling frequency must depend on the statistical properties
of the particular price series under consideration. One reasonable principle would be that
if prices show no serial dependence at a given interval, there is no statistical reason to
sample less frequently. In our empirical investigation of volatility forecasting procedures
below, we use monthly observations.

One final point on this topic is that work by Fama and French [1988], Poterba and
Summers [1988] and others has found evidence of significant negative autocorrelation
over periods of several years in stock prices. While this will have little effect on
volatility forecasting for most exchange traded equity options, it should affect valuation

of equity warrants, as well as many newer derivative products, including LEAPS and

FLEX options, and similar long maturity over-the-counter instruments.> Long run

! fThis is one reason that stock index futures prices often

appear to have higher volatility than the underlying stock index:
closing futures prices have virtually no measured serial
correlation.

? LEAPS are exchange-traded options on individual stocks with
maturities up to three years. FLEX options are stock index
contracts traded at the Chicago Board Options Exchange, whose terms
can be negotiated; maturities can be up to five years. The Chicago
Board of Trade has also recently introduced a FLEX-type instrument
based on T-bond futures and other long maturity option contracts
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negative autocorrelation will not have much impact on the cost of option replication, since
hedging costs are largely determined by short run price variability. But other risk
measures, like the probability that an option which is initially deep out-of-the-money will

end up in-the-money may be affected much more.

Nonnormal Returns Distributions

A third way in which actual securities returns differ from equation (1) is the well-
documented problem of "fat tails." Equities and many other securities exhibit more large
price changes than is consistent with the lognormal diffusion model. Some researchers
have attempt to deal with the empirical returns distribution by fitting constant elasticity
of variance models or other specifications that allow for this. See Macbeth and Merville
[1980], for example. There are two problems with this approach. One is that except for
special cases, the use of a more complex stochastic process for returns makes derivatives
valuation substantially harder. But more importantly, it may not help solve the volatility
forecasting problem at all, since the parameters of the alternative process must now be
assumed tc-) be stable and accurate estimates from past data, or another source are now
required. There is no guarantee that the degree of tail fatness would prove to be easier
to estimate, or more stable over time, than volatility is.

Perhaps the most important way in which this issue confronts actual participants

in options markets is in deciding how to handle major events that are "unique" in some

are available at different exchanges.
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sense. Dealing with the effect of an outlier like October 19, 1987 in estimating stock
volatilities is a prime example of the difficulty. Figure 2 shows a rolling volatility for
the S&P 500 Index, calculated at each point from daily closing prices over the previous
24 months. While there were clearly variations in the volatility from year to year during
the 1960’s and 1970’s, the large jump after October 1987 is extreme. One day’s price
drop caused a huge increase in estimated volatility. This presented large problems for
participants in the options markets in 1988, because after the Crash, the day to day
variation in equity returns dropped quickly back to rather low levels, more consistent with
a volatility of around 15 percent. In that circumstance, should market participants
nevertheless have used a volatility close to the "historical” estimate of around 27 percent?
Or should they have used 15 percent, essentially acting as if the Crash had never
happened? What if they had needed a long term volatility forecast, in order to price a
warrant with a maturity of several years? Whatever choice is made in such a case is
bound to be arbitrary. A reflection of the arbitrariness of the decision is the "echo” effect
of the Crash: exactly 24 months and one day after October 19, 1987, that data point
drops out—of the calculation and the historical volatility drops overnight to under 15
percent.

Noisy Estimates of the Mean

A different issue arises with respect to the estimate of the mean return. Since
volatility is measured in terms of deviations from the mean return, an inaccurate estimate

of the mean will reduce accuracy of the volatility calculation. Unfortunately, the sample
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average return, as shown in equation (2), is a very noisy estimate of the true parameter
p. With a diffusion process, sampling more frequently reduces the sampling error of the
volatility estimate (as long as serial dependence does not appear), but the accuracy of the
mean estimate depends only on the first price and the last price of the sample. This is

easily seen by substituting for the R, in (2):

7o Z:TRt _ (1nstrl: Ins, ;) _ lnST;lnSo (5)

All of the prices observed between S, and S; drop out of the calculation. Moreover,
under equation (1), the standard deviation of (In S; - In S,) is 0T, so the standard error
of R as an estimate of u is 6//T. This only depends on the length of the sample period,
and not on the number of prices observed during that period.

For example, suppose the volatility of the price process is 20 percent and we have
4 years of historical daily price data. The standard error of the sample average around
the true mean is 20 /v/4 = 10 percent. So, if the average annual return were, say, 15
percent in our 4 year sample (with more than 1000 data points), a 95 percent confidence
region for'the true mean would still range from -5 percent to +35 percent.

Equity option traders often estimate volatilities from 1 to 3 months of data. One
month of prices for a stock with a volatility of .25 will yield a sample mean whose
standard deviation around the true value is over 85 percent. In other words, roughly one
third of the time, the trader’s volatility estimate for a typical stock will be computed in -

terms of the deviations of its returns from a sample mean that is more than 85 percentage

12



points above or below the correct value on an annualized basis!
Given that degree of imprecision, many researchers consider it more accurate

simply to assume a value for the mean that is consistent with financial theory rather than

trying to estimate the mean from the data. This amounts to a kind of Bayesian approach,
based on the notion that the principles of finance allow us to place tighter bounds on an
asset’s true mean return than classical statistics does. For instance, we do not think the
S&P 500 index should ever have an equilibrium ex ante mean return that is negative,
regardless of the sample mean in a given set of data.

One viable approach with daily data is simply to impose a mean of 0. See Black
[1976], for example. Another possibility is to use the risk free interest rate. Fortunately,
the estimate of the volatility does not depend very heavily on the mean. Thus, while it
is extremely difficult to obtain an accurate mean estimate from the data, the real problem
as far as volatility calculation is concerned is to avoid using extreme sample mean returns
that will periodically be produced from short data samples. A corollary of this principle
is that if one is interested in volatility, using elaborate models for mean returns, e.g.,
allowing £he risk premium to vary over time, is unlikely to be worth the effort in terms
of any improvement in accuracy. Below, we will examine the effect of imposing a mean

return of zero on empirical forecast accuracy in our volatility estimation.

Estimating volatility in practice

Given that actual securities prices do not come from a constant volatility lognormal
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diffusion process, computing historical volatility as shown in equations (2) - (4), is no
longer theoretically optimal. But, while the problems we have just mentioned are well-
known, option traders, and many academic researchers as well, typically ignore them and
calculate historical volatility estimates by the most basic method.

The normal (though not necessarily optimal) way most traders deal with the fact
that volatility changes stochastically over time is to use only recent observations in the
calculation and discard data from the distant past. It then becomes necessary to decide
how much past data to include in a historical sample. There is a tradeoff between trying
to examine a large sample and trying to eliminate data that are so old as to be obsolete.
One consideration in making this choice may be the length of the forecasting horizon.
In trying to predict volatility over the next 3 months, it is plausible that one might prefer
a short sample of more recent data, perhaps just the last 6 to 12 months, while to forecast
volatility for the next 3 years, a longer historical sample might be called for. We

examine these issues empirically in the next section.

4. The Forecasting Performance of Historical Volatility
The most common method of producing volatility forecasts from historical data is
simply to select a sampling interval and the number of past prices to include in the
calculation and then to apply equations (2) - (4), (making ad hoc adjustments when the
procedure appears to be giving inappropriate answers). The thought that it may make
sense to adjust the length of the historical ‘samplc for different forecasting horizons
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suggests that it would be worthwhile to examine the issue empirically.
Consider estimating volatility from k past prices in order to forecast the volatility
that will be experienced over the next T periods. This might be called, simply, the (k,T)

model. The volatility estimate from that procedure is given in equation (6)

k _ )z
Z_:l (R, - R)? (6)
x-1

We have used the (k,T) procedure to construct time series of volatility forecasts
from monthly data for a large number of financial series, including interest rates, stock
prices, and exchange rates. In this paper we report results for a selection of the most
important series: the S&P 500 index, 3 month Treasury bill rates, 20 year Treasury bond
yields, and the Deutschemark/dollar exchange rate. The length of the data samples
varies, with the longest starting in 1947, while the exchange rate data only begin in 1970,
after the era of floating rates. Table 1 provides details about the data series.

We want to analyze the accuracy of the (k,T) procedure, as a function of its
parameters: the lengthé of the historical sample, k, and the forecasting horizon, T. In the
results reported below, we examine k and T values of 6, 12, 24, 36, 48, and 60 months.
Forecast accuracy is measured by the root mean squared forecast error. For the results
to be comparable across all different k and T values, the forecasts must cover exactly the
same time periods. Thus, if t,., and t., represent the beginning and ending dates for a

given data series, while t,,, and t,, are the first-and last dates for which volatility forecasts
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are calculated, then we set
tie = they + 59
and
tass = teoq - 60
to allow up to five years of historical data prior to the first forecast period and five years
to computing realized volatilities following the final forecast period.

Both historical and realized volatilities are computed around the an assumed value
of zero for the mean returns. We present results later to show how much difference this
makes to forecast accuracy. We have made no adjustment for October 1987, or any other
unusual events. The distorting effect of the Crash is more limited here than in Figure 2,
because we are using monthly data. A 20+ percent drop in stock prices in one day
obviously produces a much larger annualized volatility than the same price change over
a month.

The procedure therefore works as follows. Beginning at the data point t,,, returns
(i.e., log price relatives) over the previous k months are computed and the historical
volatility ié calculated around an assumed mean of 0. This will be the forecast as of date
tiy for volatility over all future horizons. Realized volatility is then computed over the
next T periods, for all T values, and the forecast errors are recorded. The period is
advanced one month, and the process repeated, with one data point dropped off the
beginning of the sample and one new one added at the end, for the historical sample and

each T period forecasting horizon. The procedure continues until forecasts and forecast
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errors at all horizons have been produced for all dates from t,, to t,,. The root mean
squared errors are then calculated for each (k,T) pair.

This procedure obviously results in potentially quite large autocorrelations in the
forecast errors, because each month’s forecast and realized volatility are computed from
a data sample that only differs from that used in the previous month by two data points.
We have made no attempt to adjust for this. Lack of independence in a time series does
not change the estimate of the mean of the series of squared errors (which is still the
sample MSE).> One way to think about this procedure is that we are looking at the
forecasting performance that would have been experienced by a financial institution
making markets in derivatives in every month over the entire sample period and
consistently using the (k,T) approach to estimate future volatility.

Tables 2 - 5 contain the results for the four series we are examining here, and they
are displayed visually in Figures 3 - 6. To illustrate them, consider Figure 3 which
shows the forecasting accuracy of the (k,T) procedure in predicting the volatility of the
S&P 500 index. The curve marked with dark boxes is the forecast accuracy of six month
forecasts ﬁade from varying amounts of past data. The first point, for example, shows
that using realized volatility over the previous six months as a forecast of what will be
observed over the next six months gives a very inaccurate answer, with a root mean

squared error of .0704. (Note that the average volatility of the S&P index was only .132

3 The standard error on the MSE computed under the assumption

of independence would be biased, but we do not calculate standard
deviations for the root mean squared forecast errors.
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over the whole sample, so the RMS forecast error is about half of the realized volatility.)

Volatility calculated from the prior 12 months gives a better estimate for the next
6, but the k value that produces the most accurate 6 month prediction is 60, the maximum
considered, with RMSE of 060. One reason these results look so bad is that the 6 month
volatility has a great deal of sampling noise, being constructed from only 6 observations.
If we really needed a 6 month volatility, we should probably use daily or weekly data in
the calculations. Forecasting at the two year horizon is more accurate, again reaching
the minimum RMSE with 5 years of historical data. Five year forecasts turn out to be
the most accurate, and in results not shown here, even longer historical samples were
found to produce still better predictions.

The results for the other financial time series are broadly similar to what we have
Just seen for the S&P index, although 3 month T-bills show the somewhat anomalous
result that the most accurate forecast of volatility over a 5 year horizon comes from
historical volatility computed over only the previous 2 years of data.

In all cases, the predictability of average volatility seems to improve markedly for
longer fore.casting horizons. For example, the lowest RMSEs obtained for the S&P index
were .0580 at 6 months, .0417 at two years, and as low as .0269 for five years. This
was quite unexpected: We anticipated that the further in the future a forecast had to go,
the less accurate it would become, but the opposite is clearly the case here. This suggests
that volatility exhibits mean reversion over long horizons, so that (unlike a random walk)

extreme levels that might occur in a short period tend to average out over time.
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Another clear result, for all of these series (except T-bills), as well as others that
are not shown here, is that the most accurate volatility estimates appear to come from the
longest samples of past prices: the lowest RMSE is produced by the five year estimates.
This is a much longer historical sample than is typically used by market participants,
especially for a forecast horizon of two years and under.

To these two rather surprising results, we might add a third conclusion suggested
by this analysis, which is that the predictability of volatility over the long term seems to
be quite good (except, perhaps, for T-bills once again). The fact that the RMSE of a five
year volatility forecast constructed from historical price data on the S&P index is as low
as 2.7 percent, seems quite remarkable.*

The Effect of Estimating the Mean on Forecast Accuracy

As mentioned above, financial theory may be able to give us a better estimate of
the true mean return than can be obtained from a limited amount of past returns data.
In the results we have just discussed, volatility was computed around a mean assumed a
priori to be zero. To examine the difference this makes in forecasting performance, we
replicated the analysis of Tables 2 - 5, with volatility computed around the sample mean.

Table 6 shows results on the percent reduction in RMSE that constraining the mean
produced, for a selection of historical sample and forecast horizon pairs. For example,

when S&P 500 volatility is calculated from the previous 12 months of data and used to

4 For the S&P 500, using 10 yéars of past data and forecasting

10 years ahead produced an RMSE of 2.3 percent over the 45 years
spanned by our data.
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forecast over the next 12 months, the RMSE is 6.8 percent lower when the mean is not
estimated. Only in a handful of cases did constraining the mean lead to an increase in
forecast RMSE. As one would anticipate, the effect is larger when shorter time periods
are involved. These results indicate that even over quite long sample periods, more
accurate forecasts may be obtained by computing volatility around zero rather than around |

the sample mean.

5. Forecasting Long Term Volatility with Models of the ARCH Family

Volatility needs to be forecasted because it changes over time. The procedures
discussed in the previous sections are essentially ad hoc approaches that are based on a
constant volatility framework. However, in recent years a number of related formal
models for time-varying variance have been developed. In this section, we will discuss
using these models to predict volatilities of asset returns.

Consider the following model for returns.

R, = E[R,] +€, Ele,] =2 7)

var[e,] = 0%

Although variants exist in which the mean in equation (7) is a function of the variance,
we will restrict ourselves here to constant mean models and focus on the process followed
by o.
The simplest, of course, is the constant volatility model
for which the standard variance fitting proc&ledure in equations (2) - (4) applied to all
20



o =C (8)

available historical data is the appropriate estimation strategy.

The first time-varying volatility model is the Autoregressive Conditional
Heteroskedasticity (ARCH) model of Engle (1982). Variance in period t is modelled as
a constant plus a distributed lag on the squared residual terms from previous periods. An
ARCH(q) specification involves q lagged residual terms. Equation (9) shows an

ARCH(3) model.

2 - 2 2 2
6.°=c+a €, +a€e, ,+a e, (9)

For stability, the sum of the a coefficients should be less than 1.0.

In principle, q may be any number, but generally only a few lags are used. Cases
requiring variance effects that are expected to be of longer duration are better suited to
the Generalized ARCH, or GARCH, framework developed by Bollerslev (1986). A
GARCH model explains variance by two distributed lags, one on past squared residuals
to capture high frequency effects, and the second on lagged values of the variance itself,
to capture- longer term influences.

The simplest, and most commonly used, member of the GARCH family is the

GARCH(1,1) model shown in equation (10).

0?,=C+a, 0% _, + b€, (10)
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The GARCH(1,1) model embodies a very intuitive forecasting strategy: the variance
expected at a given date is a combination of a long run variance and the variance
expected for last period, adjusted to take into account the size of last period’s observed
shock.

Since the expected value of € is ¢, the long run steady state value for the variance

is given by

2 - c
0% Longrun = 1-a, - bl (11)

Here, long run stability requires a, + b, < 1.0.

The GARCH model has the virtue that it is quite simple but it captures the kind
of time variation that seems plausible for variances. However, GARCH has two
shortcomings. One is that it can be hard to fit, especially when more than one lag on
each variable is involved. It also restricts the impact of a shock to be independent of its
sign, whereas there is evidence of an asymmetric response for some markets, notably the
stock market. Stock return volatility increases following a sharp price drop, but a price
rise may éven lead to lower volatility.

To deal with these problems, Nelson (1991) proposed Exponential GARCH
(EGARCH), which models the log of variance, so that the right hand side of (10) can
become negative without creating a problem. EGARCH also allows for an asymmetric

reaction to positive and negative shocks. In this paper we will only present results for
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the GARCH specification.’

Problems with ARCH-family Models

These models have been widely examined and applied in economics and finance.®
Nearly all of the work with them has focused on in-sample explanation of variance
movements, rather than forecasting per se. The model is normally fitted by assuming a
density function for the € terms--the normal is by far the most common, for log price
relatives--and deriving parameter estimates by maximum likelihood estimation.

Although financial economists automatically model security returns as lognormal,
we also know that this model does not fit perfectly. The fact that "too many" large price
changes are observed for a lognormal distribution is well known. The explanation for
this fact is not agreed upon; one possibility is that the returns distribution appears to have
fat tails because it really involves prices drawn from a distribution that is lognormal at
every point in time, but with time-varying variance. If that is the source of the problem,
an ARCH-type model may resolve it.

An- important problem in implementing ARCH-family models is simply doing the
estimation. These models seem to require quite a large number of observations before

they behave well. Likelihood surfaces may be quite flat, making finding a maximum

5 fThe out-of-sample performance of the EGARCH model for short

term volatility forecasting is examined for five major financial
assets by Cumby, Figlewski, and Hasbrouck (1993).

¢ See, Bollerslev (1992) for a review of their applications
in finance.
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difficult, or the maximum for a given sample may lie outside the theoretically acceptable
region (negative coefficients or values greater than 1.0, implying long run instability of
the system).

ARCH models in particular present the problem that one might like to allow a
fairly long distributed lag on past shocks, but that would entail fitting a large number of
parameters. Moreover, as more past squared residuals are added to the system, some of
the estimated parameters are likely to become negative. Negative parameters can present
great difficulties both for estimation and for forecasting, because a particularly large e
may drive the entire fitted variance negative. A GARCH formulation has the advantage
that one fits only a small number of parameters, increasing the likelihood that they will
all be well-behaved, but disturbances over all recent periods can enter into the calculation.

All ARCH-type models share three significant shortcomings as forecasting tools.
First, they all seem to need a large number of data points for robust estimation. Second,
they are subject to the general problem that the more complex any model is and the larger
the number of parameters it involves, the better it will tend to fit a given data sample,
and the qﬁicker it will tend to fall apart out of sample. For any procedure to be useful
in forecasting, it must be sufficiently stable over time that one can fit coefficient estimates
on historical data and be reasonably confident that the model will continue to hold as time
goes forward.

The third problem is that all three models essentially focus on variance one step

ahead. They are not designed to produce variance forecasts for a long horizon. For
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example, consider the forecasts from a GARCH(1,1) model.

2 _ 2 2
¢°,=Cc+ a0, + b€,

E [o%,,,] =C+ a0, + b, E, [€*,,,]

C+ (a, + b)) 0%, (12)

E.[02,,,] C:§:(a1+b1)k + (a, + b)) ¥o?,

Because the forecast for variance in period t+1 involves the unknown value of the period
t squared disturbance, we must substitute its expected value as of period t, which is
simply the period t model variance. It is clear that once one is forecasting more than a
few periods ahead, the forecasts can not incorporate any new information from the

(unknown) future disturbances, and will simply converge to the long run variance at a

rate that depends on the value of (a, + b)).

6. Forecasting Performance of the GARCH(1.1) Model

The discussion in the last section makes it clear that the GARCH formulation has
several advantages over ARCH for our purposes. In order to evaluate the ability of
GARCH to produce accurate out of sample long run volatility forecasts, we attempted to
fit GARCH(1,1) models to the monthly data examined above. The first series we looked

at was returns on the S&P 500 stock index.
A sequence of GARCH(1,1) models were to be fitted to a rolling sample of

returns. As above, we wanted to explore the ‘effect of changing the amount of past data
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on forecasting accuracy at various horizons. Because the estimation is time consuming,
we reestimated the parameters only once per year, rather than every month. The smallest
amount of past data we attempted to use was 5 years, i.e., 60 monthly observations.

For example, in the first experiment with the S&P 500 index we tried to fit a
GARCH(1,1) on the monthly returns from January 1948 through December 1952. Those
parameters would be used to construct out-of-sample GARCH forecasts for the first 6
months of 1953 (as shown in equation (12)). The monthly predicted variances would then
be averaged, and the predicted average variance over the 6 month period turned into an
annualized volatility, which could be compared to the realized "average" volatility over
that period.” In a similar fashion, volatility forecasts for 12 month and 24 month
horizons would be produced at the same time.

Once the forecast for January - June 1953 was constructed, we would advance the
sample 1 month, by incorporating the squared residual from the realized return for
January and forecasting the February - July volatility. After 12 such out-of-sample
forecasts were produced, we would refit the GARCH model, adding the realized returns
for 1953 iﬁto the sample and dropping the same number of observations from the

beginning, to keep a window of fixed size.

7 What we have called the "average" volatility is actually the

square root of the average of the monthly variance forecasts.
Because of Jensen’s Inequality, this will not be equal to the
average of the predicted monthly volatilities, i.e., the square
roots of the variances. However, it 1is the correct way to
construct the volatility input to a European option pricing model
when variance changes (nonstochastically) over time.
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This procedure turned out to be infeasible, because it was extremely difficult to
fit the model on as few as 60 data points. Of the first 36 five-year periods, the estimation
routines in GAUSS were unable to converge on parameter values in 30 of them. When
we increased data in the estimation to a rolling 10-year sample, we still failed to achieve
convergence in 10 of the periods. We finally settled on an updating procedure of
allowing the initial observations to remain in the sample until it contained 15 years of
data, after which we would begin dropping observations as with the fixed window
procedure. In cases where updated parameter estimates could not be fitted, we simply
continued using the old parameter values to produce forecasts. While we were still not
able to estimate parameters for the first two 10 year periods (which were therefore
dropped), with this procedure only 5 of the subsequent estimations failed.

The difficulty in fitting the GARCH(1,1) models even on long data samples was
not unique to the S&P 500 index. In fact, the S&P index gave us the least amount of
trouble of the four data series. It was impossible to use samples as.short as five years
for any of the series we examined. For the 20 year Treasury bond yield, a 10 year fixed
window fz;.iled to converge 11 out of 30 times, but allowing the window to expand to 15
years as before (and dropping the first two periods) reduced the number of failures to 6
in 28. We were not able to fit the basic GARCH(I,I) model at all for the 3 month
Treasury bill rate, even with 15 years of data, or for the Deutschemark exchange rate.

Table 7 shows the root mean squared forecast errors for the GARCH(1,1) models

that we were able to fit for the S&P 500 ’index and 20 year Treasury yields, and
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compares them to the RMSEs of historical volatilities computed over the previous 5 and
10 years. Forecasts of S&P volatility performed relatively well, achieving comparable
RMSE:s to the historical volatilities at all three horizons, although no apparent superiority.

The results are different for the GARCH predictions of Treasury bond yield

volatility. Here, the GARCH post-sample forecasts are distinctly less accurate than
historical volatility, and they get substantially worse for the longest horizon. There is
apparently not enough stability in the model (as fitted to monthly data) for it to perform
well out-of-sample in this market.

Our conclusion from these results is that attempting to allow for predictable time-
variation in asset volatilities with a GARCH specification poses very difficult estimation
problems, and does not appear to produce any superiority in accuracy over the much
easier procedure of simply computing the historical variance over a long sample of past
data. One additional thing we see in these results is that, at least for the S&P 500 index
and for 20 year Treasury bonds, the 10 year historical volatility is even better than the

5 year estimate.

7. Conclusions

Applying modern option valuation theory requires the user to forecast the volatility
of the underlying asset over the remaining life of the option. This is a formidable
estimation problem for long maturity instruments. The standard statistical procedures
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using historical data are based on assumptions of stability, either constant variance, or
constant parameters of the variance process, that are unlikely to hold over long periods.

In this paper, we have examined the empirical performance of historical variance
estimators different and of the GARCH(1,1) model for forecasting volatility in important
financial markets over horizons up to five years. We have found several surprising
results:

* In general, historical volatility computed over many past periods provides the
most accurate forecasts for both long and short horizons.

* Root mean squared forecast errors are substantially lower for long term than for
short term volatility forecasts.

* It typically increases forecast accuracy to compute volatility around an assumed
mean of zero rather than around the realized mean in the data sample.

* The GARCH model tends to be less accurate and much harder to use than the
simple historical volatility estimator for this application.

29



References

Black, Fischer. Fischer Black on Options 1, Xeroxed, May 17, 1976.

Bollerslev, Tim. "Generalized Autoregressive Conditional
Heteroscedasticity." Journal of Econometrics 31, 1986, pp. 307-327.

Bollerslev, Tim. Ray T. Chou and Kenneth F. Kroner. "ARCH Modeling
in finance." Journal of Econometrics 52, 1992, pp. 5-59.

Brown, Stephen. "Estimating Volatility." Financial Options: From

Theory to Practice, Figlewski, et al, eds., Homewood T1l: Business
One Irwin, 1990, pp. 516-537.

Cumby, Robert,” Stephen Figlewski and Joel Hasbrouck. "Forecasting
Volatilities and Correlations with EGARCH Models." Journal of
Derivatives 1, Winter 1993, pp. 51-63.

Engle, Robert. "Autoregressive Conditional Heteroscedasticity with
Estimates of the Variance of United Kingdom Inflation.™
Econometrica 50, 1982, pp. 987-1000.

Fama, Eugene and Kenneth French. "Permanent and Temporary

Components of Stock Prices." Journal of Political Economy 96, April
1988, pp. 246-73.

Macbeth, James and Larry Merville. "Tests of the Black-Scholes and

Cox Call Option Valuation Models." Journal of Finance 35, May 1980,
285-3000.

Nelson, Daniel. "Conditional Heteroscedasticity in Asset Returns:
A New Approach." Econometrica 59, 1991, pp. 347-370.

Poterba, James and Lawrence Summers.. "Mean Reversion in Stock
Prices: Evidence and Implications." Journal of Financial Economics
22, Oct. 1988, pp. 27-59.

30



TABLE 1

Dates and Sources of Data Series

Series Dates Source
Standard and Poor’s 500 Stock Index 1/47 - 12/92 CRSP
1/93 - 12/93 Bloomberg
3 Month U.S. Treasury Bill Yield 1/47 - 12/92 Salomon Bros.
1/93 - 11/93 Bloomberg
20 Year U.S. Treasury Bond Yield 1/50 - 12/92 Salomon Bros.
1/93 - 7/93 Bloomberg
Deutschemark Exchange Rate (DM per $) 1/70 - 10/92 International Financial

Statistics (IMF)
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TABLE 6

Percent Reduction in Forecast RMSE from Computing Volatility
around Zero rather than the Sample Mean

Past Forecast S&P 500 3 Month 20 Year Deutsche-

Obs Horizon T-Bills T-bonds mark
6 6 -13.3 2.8 -6.0 -12.6
12 12 -6.8 3.9 3.9 4.3
36 12 5.2 -3.3 -1.8 2.5
36 36 3.5 2.9 1.5 -1.5
60 12 5.4 -1.7 -1.1 2.2
60 36 3.9 -1.2 0.9 -0.5
60 60 -3.2 -0.7 0.0 4.4
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TABLE 7

Out-of-Sample Root Mean Squared Errors
GARCH(1,1) Forecasts versus Historical Volatility

Standard and Poor’s 500 Stock Index

Months forecasted: Jan 1960 - Dec 1992

Observations: 386
Successful estimations: 27
Failed estimations: 5

5 Year 10 Year
GARCH Historical  Historical

RMSE RMSE RMSE
Horizon
6 months 0656 .0658 .0640
12 months .0530 .0530 .0534
24 months .0461 .0485 .0461

Yield to Maturity on 20-Year U.S. Treasury Bonds

Months forecasted: Jan 1963 - Dec 1990

Observations: 288
Successful estimations: 22
Failed estimations: 6

5 Year 10 Year
GARCH Historical  Historical

_ RMSE RMSE RMSE
Horizon
6 months 0597 0616 .0606
12 months .0596 .0547 .0521
24 months .0731 .0480 .0442

Note: GARCH models were fitted on a minimum of 120 months of historical data.
Models were reestimated every 12 months and new data points were added to the
estimation sample. Data points were dropped from the beginning of the sample only
when the sample size exceeded 180 (15 years).
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