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Abstract
A new research design is introduced for the empirical analysis of the relationship between
implied volatility and ez-post realized volatility. The dynamics of volatility are emphasized,
and the analysis is cast in terms of non-overlapping data, so that exactly one implied and
one realized volatility estimate pertain to each period under consideration. The conclu-
sions from the empirical analysis when using our design are significantly different from
those previously reached. Recent literature indicates that implied volatility contains little
information about future volatility, beyond that contained in the history of realized volatil-
ity. We show that on the contrary, implied volatility efficiently predicts future realized

volatility and in particular subsumes the information content of past realized volatility.






1. Introduction

The volatility implied in option prices (‘implied volatility’) is widely regarded as the
option market’s forecast of future return volatility, over the life of the relevant option.
Viewed thus, implied volatility is a conditional volatility forecast, based on information
available to option market participants. If option markets are efficient, implied volatility
should in fact be an efficient forecast of future volatility and should reflect all relevant
information available to option markets.! A natural question to ask in this context is: how
well does implied volatility predict ez-post realized volatility? If implied volatility is indeed
an efficient predictor of future volatility, it should subsume the information content of all
variables in the market’s ez-ante information set, in explaining ez-post realized volatility.
In particular, implied volatility ought to subsume the information contained in the entire
history of past realized volatility.

Intriguingly, this proposition has found little empirical support in previous research.
While implied volatility in isolation does appear to explain future volatility, recent research
suggests that its explanatory power is considerably diminished once elements from the his-
tory of past volatility are added as explanatory variables [Day and Lewis (1992), Canina
and Figlewski (1993), and Lamoureux and Lastrapes (1993)]. By no means has implied
volatility been found to subsume the information in past realized volatility; on the con-
trary, past realized volatility often has as much or greater power than implied volatility in
explaining ez-post realized volatility. Thus, Day and Lewis (1992) are unable ‘... to make
strong statements’ about the relative information content of implied volatility. A stronger
expression of this view is contained in Canina and Figlewski (1993)—henceforth CF—who
conclude that * .. implied volatility has virtually no correlation with future volatility, and

it does not incorporate information contained in recent observed volatility.’

1 Implied volatility has been interpreted as such in a wide variety of settings [e.g. Day and Lewis
(1988), Harvey and Whaley (1992), Latane and Rendleman (1976), Poterba and Summers (1986), and

Schmalensee and Trippi (1978)].



The result is striking, in that it is obtained in the context of the most actively traded
options—the S&P 100 (OEX) index options. If implied volatility says little about future
volatility even in this market, option prices are probably not set according to participants’
volatility forecasts, contrary to what conventional option pricing theory would suggest. CF
attribute this apparent failure of conventional pricing models to a failure of the underlying
frictionless markets assumption. They argue that conventional theory only places very
broad bounds on option prices, and that within these bounds, institutional and demand-
supply factors determine traded prices. Other researchers [e.g. Lamoureux and Lastrapes
(1993)] suggest that such results simply reflect the need for more general option pricing
models, such as those accomodating priced stochastic volatility, in order to explain observed

option prices.

In this paper, we introduce a new research design for examining this issue, and demon-
strate that it leads to significantly different economic conclusions. Broadly speaking, our
design differs in three ways from that used in the existing literature. First, we sample im-
plied and ez-post volatility at a lower frequency than that of previous studies. This serves
two purposes. One, it makes the resulting structure consistent with the pricing model
used to compute implied volatility, and mitigates any contradiction inherent in viewing
implied volatility as the option market’s volatility forecast. Two, our design reduces the
noise contained in the time series movement of implied volatility and thus improves the

power to detect fundamental changes in expected volatility.

The second difference in our analysis is that we account for the endogeneity of implied
volatility. Previous studies have regarded implied volatility as a variable exogenously
determined by option markets. The problem with this approach is that implied volatility
is not merely a volatility forecast, but is in fact a full measure of the price of an option.
Indeed, it is market practice to quote option prices in terms of ‘implied volatilities.” Viewed
thus as an option’s price, implied volatility quite plausibly depends on past levels of both

implied and realized volatility. In this case, implied volatility is an endogenous function of
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the volatility history, not an exogenous variable as previously assumed, and our treatment
takes this potential simultaneity into account.

The third difference is that our analysis explicitly accounts for—and sheds light on—
the nature of the dynamic properties of volatility. In particular, we account for the concern
[e.g. French, Schwert and Stambaugh (1987), Schwert (1990)] that the time series of
volatility might be non-stationary.?

Briefly, we conduct the analysis in two stages. First, we characterize the individual
time series properties of implied volatility® of at-the-money OEX call options and of the
realized volatility? of the underlying index, separately. We document that the two volatil-
ity series exhibit similar dynamics, and that they possess some form of long-term memory.
Formal statistical tests in the time and frequency domains suggest that both series are
non-stationary or at least near non-stationary. Their time series behavior appears to be
well-described by the class of persistent ‘fractionally integrated’ processes. This analysis
contributes to and complements (i) the time series analysis of monthly stock-return volatil-
ity reported in French, Schwert and Stambaugh (1987); (ii) the observation that changes
in implied volatility are predictable [see Harvey and Whaley (1992)}; and (iii) a devel-
oping literature which suggests that stock returns follow fractionally integrated GARCH
processes [see Baillie, Bollerslev and Mikkelson (1993)].

In the second stage analysis, we investigate the relationship between ez-ante implied
and ez-post realized volatility. We consider two different econometric approaches to the

analysis of the joint time series behavior of the two volatility series. Under the first

2 Thus, we mitigate the concern that the explanatory power of implied volatility reported in previous
literature may in fact be spurious, an artifact of the non-stationarity of the implied and /or realized volatility
series.

3 In this and other papers in the literature, implied volatility is computed using the Black and Scholes

(1973) model.

4 We use the terms actual, realized, ex-post and historical interchangeably in reference to volatility.
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approach, we examine the ability of implied volatility to explain future realized volatil-
ity using conventional single-equation models, as well as bivariate system specifications
that account for the potential simultaneity in the two volatility series. In the second
approach, we examine the time series properties of the residuals from the regression of re-
alized volatility on implied volatility. Specifically, we test for whether the residuals display
any predictability. Under the null that implied volatility aggregates volatility information
efficiently, the residuals should exhibit no predictability. This procedure, while similar in
spirit to ‘cointegration’ tests used to assess whether non-stationary (unit root) processes
move together over time, is stronger: here, we examine not only whether the regression
residuals are stationary (as in cointegration tests), but also whether they are white noise,

in order to rule out any predictability in the residual series.

The empirical results are interesting under either approach, and show that there ex-
ists an economically and statistically significant relationship between implied and realized
volatility, far stronger than previously documented. In fact, implied volatility subsumes
the information contained in the history of realized volatility in some of the specifications
we consider. These results suggest that at least for the S&P 100 index, option markets
aggregate volatility information in an efficient manner; the no-arbitrage model of Black
and Scholes (1973) does provide a fair first-order characterization of option prices in this
market. Our results are quite different from those reported in previous literature. We
attribute the difference, in large part, to the differences in experiment design mentioned
before, and we discuss the advantages of our approach in understanding the behavior of

options markets.

The analysis proceeds as follows. Section 2 describes and motivates the construction
of our data set. Section 3 deals with the individual time series properties of the implied
and realized volatility series. Besides being of interest in their own right, the time series
properties suggest the relative usefulness of the various econometric tests conducted later.

Section 4 describes the tests conducted to analyze the relationship between implied and
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realized volatility, and the results are discussed. Section 5 concludes.

2. Data and Sampling Issues

Our empirical analysis is cast in the context of S&P 100 index (‘OEX’) options. OEX
options began trading on the CBOE in February 1983, initially with quarterly expiration
cycles: March, June, September, and December. Exchange traded options with 1-month
expiration cycles became available in November 1983, and our two (monthly) data series
begin at that time. The data series end in May 1993 and cover a timespan of nine and a
half years, or 115 months.

In the remainder of this section, we motivate the sampling scheme employed here,

formally describe the data series and then discuss associated measurement error issues.

2.1 Motivating The Sampling Scheme

As in all previous studies in this literature, we use the Black-Scholes (henceforth BS)
model to estimate the beginning-of-period implied volatility from call option price data.
The fundamental research question is whether implied volatility predicts future volatility,
and whether it does so efficiently. To examine this issue empirically, the research design
should ideally be such that there is no contradiction inherent in viewing implied volatility
as option markets’ ez-ante volatility forecast over the period in question.

In this context, observe that the BS option pricing model assumes that volatility is
either (a) constant; or (b) non-stochastic over an option’s life. I this assumption and
the standard ‘perfect market’ assumptions underlying the BS model are correct, implied
volatility is indeed a bona-fide estimate of the average return volatility over the relevant
option’s life. However, if volatility is stochastic, with random shifts over the life of the
option, then the pricing formula is different, and the BS implied volatility can no longer

be regarded as markets’ volatility forecast.’

5 Bs implied volatility may be viewed as a measure of an option’s price—one that controls for the time

to. expiration of an option, the extent to which it is in or out of the money etc., as discussed in section 3.
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Thus, it would appear to be internally inconsistent to use a research design that
(i) employs the BS implied volatility as an ez-ante volatility forecast; and then (ii) allows
volatility to vary stochastically over an option’s life. Such inconsistency is characteristic
of all previous studies in this literature. On one hand, the studies compute and interpret
the BS implied volatility of an option as the conditional expectation of volatility. On
the other hand, option prices (i.e. the BS implied volatility) and ez-post volatility are
sampled several times over an option’s life. In effect, this allows for stochastic volatility
and potentially leads to the inconsistency noted above.

In this study, we mitigate this inconsistency through the use of non-overlapping data.
Our sample is constructed by sampling one call option per month. The implied volatility of
the sampled option, computed using the BS formula, serves as our observation of implied
volatility for that month. Ez-post or realized volatility is computed using daily return data
for the month under consideration.

The next option in the time series is sampled only after the expiration of the previous
option; we do not resample volatility prior to expiration. Over any given option’s life, we
have exactly one pair of implied and realized volatility estimates. Thereby, we keep the
empirical work consistent with the BS assumption that volatility is non-stochastic over an
option’s life.

We now elaborate on the sampling scheme motivated above and detail the construction

of our data series.

2.2 Variable Definitions

By convention, OEX options expire on the third Saturday of every month. We move
to the Wednesday that immediately follows, and begin by recording the OEX level on this
date—Sy, say. On the same date, we locate the 1-month call option that is closest to the
meney. We record the price C; of this call, and its exercise or strike price K;. This option
expires on the third Saturday of the following month ¢ + 1; the next (¢ + 1) call option

is sampled on the Wednesday that immediately follows. An entire sequence of monthly

6



option prices is constructed in this manner. The key feature of this sampling procedure is
that there is no overlap in the lifespans of successive options.
From each observed call price C;, implied volatility o;; is computed by solving numer-

ically the implicit equation associated with the BS call price formula, i.e.
C: =S¢ N(dy) — Kye™ " N(d; — 0:1/72) (1)

where d; = [log(S¢/K;)+(pt+0%/2)7e)/0it+ /T2, with 7, denoting the time to expiration and
p: the interest rate. For the latter, we use the 1-month LIBOR—the inter-bank borrowing
rate in the Eurodollar market—as this is probably close to the rate faced by option traders.
The typical implied volatility estimate obtained by solving (1) is based on options with
about 25 days to expiration.

While implied volatility represents an ez-ante volatility forecast, we also compute the
ez-post return volatility over each option’s life. Following Schwert (1990), this ez-post
measure or ‘realized volatility’ oj; is computed as the sample standard deviation of the

daily index returns over the remaining life of the option. That is,

1
Oht = T_t Z(Tt,k —F)? (2)
k=1

where 7; is the number of days to expiration, 7, = Tt_l E;‘:l Tt,k, and ry x is the index
return on day k in month ¢.

Both volatility measures are expressed in annual terms, to facilitate interpretation.
Finally, the empirical analysis uses the logarithms of the volatility series, denoted as i; =
log 0t and h; = log oj¢. All data were obtained from the financial databases of Interactive

Data Corporation (IDC).

2.8 Noise in Data
Any estimate of implied volatility is potentially noisy, due to a number of possible
measurement errors. We review some of the sources of noise in the measured series, consider

how they might affect our results, and discuss how our research design reduces their impact.
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The BS formula (1) applies to a European style call option on an underlying asset
that is known in advance to pay no dividend prior to expiration of the option. However,
OEX options are American-style, and the underlying asset—the S&P 100 index—pays
dividends. Nevertheless, there is some justification for our use of the BS formula, on two
grounds. First, European and American calls have identical BS values when there are
no dividend payments, so in this sense the American feature of the OEX calls causes no
problem in itself. With index dividends, we could of course have a positive premium for
the American calls over otherwise identical European calls, but since the OEX is an index
of 100 stocks and dividend payments are likely to be small and smooth, the deviation from
BS pricing for the at-the-money option is likely to be small.

Additional sources of noise in implied volatility include (i) non-synchronicity (within
the day) in the measured option and index prices; (ii) bid-ask spreads in option prices; and
(iii) the ‘wild-card’ option embedded in the OEX option [see Harvey and Whaley (1992)].
All these factors potentially reduce the information content of measured implied volatility.
Hence, any relationship detected in this study should be interpreted as a conservative lower

bound on the true relationship between implied and realized volatility.

Two major features of our experiment design ensure that this downward bias in esti-
mating the relationship is somewhat mitigated. First, our sampling frequency (monthly)
is modest, relative to the daily or weekly frequencies used in previous studies. We argue
that this improves the signal-to-noise ratio in the system. For instance, day-to-day changes
in true expected volatility are small, on average. Thus, a relatively large portion of the
day-to-day variation in observed volatility would simply be noise—due to sampling error
or to the measurement errors discussed above. Indeed, Harvey and Whaley (1992) have
shown that such disturbances have a significant impact when data are sampled at a high
frequency. By contrast, on a month-to-month basis, fundamental changes in volatility are
larger. Hence, at a monthly level, a larger fraction of the variation in observed volatility

may be attributed to fundamental changes in volatility. Thus, the signal-to-noise ratio
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should improve when moving from daily to monthly sampling. Additionally, monthly sam-
pling has some economic appeal, since it corresponds to the approximate frequency at
which most macroeconomic news—which are important sources of market volatility—are
released.

A second feature of our sampling scheme is that we do not include any options with
short terms to expiration. This obviates the need to deal with the options most sensitive
to bid-ask spreads and non-synchronicities—those with small prices in dollar terms—and
minimizes the value of the ‘wild-card’ option as a component of overall option value.

It should be emphasized, though, that even if all the errors noted above® were first-
order, the study of the implied-realized volatility relationship is still meaningful, but now
has a different economic interpretation. The BS implied volatility is one measure of an
option’s price, one that controls for option-specific characteristics such as moneyness, time
to expiration and so on. To the extent option prices are related in some manner to
market participants’ volatility expectations, BS implied volatility ought to provide one
measure of option markets’ volatility forecast. Hence, a study of the implied-realized
volatility relationship could simply be viewed as a test of the informativeness of option
prices about future return volatility—without necessarily drawing detailed inferences on
market efficiency or even on the exact validity of a particular pricing model.

We now examine the dynamics of each volatility series in separation, following which

we imvestigate the relationship between the two series.

3. Time Series Properties of Implied and Realized Volatility

In this section we characterize the time series properties of each of the two volatility
series separately. The entire empirical analysis that follows is based on the log volatil-
ity series ¢, and h,;. Henceforth, we refer to these as ‘implied’ and ‘realized’ volatility,

respectively, dropping the log prefix.

6 And others, such as misspecification of the log-normal price process assumed in the BS formula.
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3.1 Univariate ARMA Models for Volatility

To gain a first grasp of the fundamental time series properties of volatility, we begin
with a conventional Box-Jenkins (1970) analysis of the two series. Figures 1a and 1b
display the autocorrelation functions for implied and realized volatility, respectively. For
both series, these functions are shaped somewhat similarly to what one might expect for

AR(1) series. To consider this further, we fit ARMA(p, q) models of the form
@(B)(z: — p) = O(B)e: , ©)

where z; represents either of the two series i, and Ay, u is the mean parameter, &, is white
noise, and ¢ and © are polynomials of order p and g in B, the backshift operator defined
by Bxy = z41.

Table 1 displays results of fitting AR(1), AR(2) and ARMA(1,1) models to the implied
and realized volatility series, in panel A and panel B, respectively. J udging by these results,
an ARMA(1,1) process appears to be an adequate descriptor of both volatility series.
The Box and Pierce (1970) portmanteau statistics for the fitted ARMA(1,1) models are
insignificant, indicating little evidence of any higher order components in either series.
Thus, both volatility series appear to exhibit similar dynamics, roughly compatible with
low order ARMA specifications. Indeed, the i)oint estimates are similar for both series.

These indications from the analysis in the time domain are of course only tentative,
and the picture proves more complicated when we move to the frequency domain. Here, we
consider the shape of the spectral densities of the two series, displayed in figures 2a and 2b.”
For each series, the shape of the spectrum corresponds approximately to what Granger
(1966) terms ‘the typical spectral shape of an economic variable.’ Roughly speaking, the
density is high at low frequencies, and tapers down towards the high frequency end. This

" The shape of the spectrum s(w) = [yp + 22:‘;1 vx cos(kw)]/ (27) is estimated by the peri-
odogram I(w;) = 2[(Zt(xt —-I) cos(wjt))2 + (Et(mt - I) sin(w,-t))z]/T, using SAS. Here, Vi is

the autocovariance function and w; = 277 /T is the jth Fourier frequency.
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suggests that the volatility series possess significant low frequency (long-term memory)
components and might even indicate non-stationarity.® In what follows, we implement

formal statistical tests designed to detect the nature of this memory property.

3.2 Augmented Dickey-Fuller Unit Root Tests

In this section, we examine whether the volatility series possess unit roots (i.e. whether
the AR coefficient ¢; is unity) using procedures suggested by Dickey and Fuller (1979).
The existence of a unit root would indicate a strong instance of the type of long-memory
property mentioned in the previous subsection, and would imply that the series are non-
stationary.

Specifically, the test is for the significance of v in the augmented Dickey-Fuller (ADF')

regression

k
Azy=a+7zi1+ Y Bilze—i+ &, (4)

i=1

where z; is either i; or hy, and A = 1 — B is the first difference operator. The null
hypothesis is that the series z; is a (non-stationary) unit root process. The specification
imposing @ = 0 allows no drift, whereas a non-zero drift is admitted for general a. In
either case, a significantly negative value of v would reject the null of a unit root and
suggest that z; is stationary. The number of lagged dependent variables k is chosen so
as to leave the estimated error terms ét serially uncorrelated.® Table 2 reports results for
both series, with k set to 2.

As the results for both series are similar, we discuss those for implied volatility

8 This is likewise suggested by the large magnitude of the AR coefficient ¢ in table 1, and especially
by its dramatic increase after introducing MA terms. French, Schwert and Stambaugh (1987) and Schwert
(1987) also argue that the log realized volatility series is non-stationary, for data covering a different period
of time.

9 For both series, the Durbin-Watson statistics are very close to 2.0 whenever k is one or greater.

Adding a linear deterministic time trend does not materially change any of our results.
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(panel A). When a is restricted to zero (first row), 4 (-0.003) is insignificant. Thus,
we cannot reject the hypothesis that (log) implied volatility is a unit root process with
zero drift. On the other hand, when « is unrestricted (second row), conflicting evidence
obtains. In this instance, the point estimate of 4 (-0.25) is much larger in magnitude and
is statistically significant.!® Based on this, we would reject the null hypothesis of non-
stationarity in the form of a unit root process with non-zero drift, in favor of a stationary
alternative. Thus, there seems to be mixed evidence on whether the two volatility series
are stationary or not.!’ Qualitatively similar results obtain for the realized volatility series,
as is seen in panel B.

While the stationarity question is of some interest in itself, it also has other important
implications. Specifically, it affects (i) the nature of the econometric specifications that
would be used to analyze the relationship between implied and realized volatility; and
(ii) the distribution of test statistics in both the univariate and bivariate analyses. Hence,
we pursue this question in somewhat greater detail.

We first note that the fact that no definite conclusions emerge from the unit root tests
might be attributed to their knife-edged nature. The tests admit long-term memory and
non-stationarity either at the rather strong level of a unit root process (essentially a random
walk), or not at all. Long-term memory and/or non-stationarity may exist in weaker forms.
Usually a process is considered to exhibit long-term memory if the spectrum s(w) — oo as

w — 0 and the autocorrelation function is not absolutely summable, > ;> |px| = 00. A

0y = 0, then the asymptotic distribution of the t-statistic is the same as the distribution of
(3(WE — 1) — Wy [ Wdt)/(f W2dt — (f Wedt)?)} where W, is a standard Wiener process on
[0,1]. If & # O the usual t-tables apply (as in the first row of the table).

1y e.g. the AR(1) model is the relevant stationary alternative in the ADF test, then a = p(l- ¢1)
and ¥ = ¢ — 1, with u strongly significant in the ARMA models and ¢1 < 1 under stationarity, so
a # 0. Thus, the ADF test imposing @ = 0 may not admit the relevant alternative and may therefore

not be powerful.
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unit root is merely one way of modelling this type of behavior. A more flexible vehicle for
modelling long-term memory is provided by the class of ‘fractionally integrated’ processes.

This is where our investigation takes us next.

3.9 Fractional Integration Tests
A time series z; is said to be fractionally integrated [or, to satisfy a ‘ARFIMA’—

Autoregressive Fractionally Integrated Moving Average—model in the sense of Granger

and Joyeux (1980) and Hosking (1981)] if it can be expressed as
®(B)(1 ~ B)*(z¢ — u) = ©(B)ex , (5)

where as before B is the backshift operator, u is the mean parameter, ® and © are the
AR and MA polynomials, ¢; is white noise, and 0 < |d| < 1. The operator (1 — B)? is
the infinite order polynomial Yo, 5(d, k)(—B)* obtained via binomial expansion, using
the binomial coefficients b(d, k) = I'(d +1)/(I(d — k + 1)I'(k + 1)) = [To_, (d + 1 —1)/i, s0
that (1-B)! =1~dB+1d(d—1)B?> — }d(d-1)(d-2)B*+.... Hd < 1 the series
{z} is stationary!? and for 0 < d < 1 it exhibits long memory. We do not provide a
full exposition of fractionally integrated series here, but refer the reader to Diebold and
Rudebusch (1989), Sowell (1992a, 1992b), Cheung (1993) and Cheung and Lai (1993) for
recent discussions of such processes.

Here, we implement two statistical tests to diagnose fractional integration. The first
test is based on a procedure developed in Geweke and Porter-Hudak (1983)—henceforth
GPH. Under this procedure, the order of fractional integration d is estimated as the slope
in the regression

log[I(w;)] = ¢ — d logl4sin®(w;/2)] +v; , ()
where I(w;) is the periodogram of the time series z; at the jth Fourier frequency wj =

27j/T,j=1,2,...,q,and ¢ << T (here, we chose ¢ = 15). The test exploits the shape of

12 of course, we also need the roots of the equation Q(Z) = 0 to be outside the unit circle. This is the

usual condition for stationarity of ARMA processes.
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the spectral density s at the low frequency end. Formally, s(w) ~ w=2¢ as w — 0, so that
log(s) is proportional to dlog(w?). Table 3 presents results of the GPH test.

Point estimates of the fractional integration parameter d are 0.49 and 0.47 for the
implied and realized volatility series, respectively. These estimates are over two standard
errors away from zero and thus provide evidence that the volatility series possess long-term
memory.!3

While these results symptomize the existence of long memory in volatility, they provide
no means of assessing the relative importance of long and short run dynamics in describing
the evolution of volatility. Is there any evidence of long-run dynamics in volatility, when
short-run dynamics of the sort described in section 3.1 are accounted for? Sowell (1992a)
shows that this issue can be resolved by simultaneously estimating both the long-memory
parameter d and the short-memory ARMA parameters (¢,6). The estimation is accom-

plished by maximizing the unconditional ARFIMA log likelihood function
L($,d,6) = - log(2m) — = log(s%) — = log | B | —55(X — p1)'SF (X — 1),
2 2 2 202

where X = (z1,...,2T)', 1is a T-vector of ones, and I is the covariance matrix developed
in Sowell (1992b).’* This is the exact time domain log likelihood for the ARFIMA process,
unlike the frequency domain likelihood proposed by Fox and Taqqu (1986), which, though
computationally simpler, is only an approximation. Table 4 reports the estimates for
the implied volatility series (panel A) and the realized volatility series (panel B) under

alternative assumptions about the AR and MA structure. We also report likelihood ratio
statistics for three hypotheses of natural interest: (i) d = 0; (ii) d = 1; and (iii) (¢,8) = 0.

13 Similar conclusions emerge when testing for long-term memory using the modified rescaled range
statistic proposed by Lo (1991).

14 This formulation has two implicit assumptions. One, it assumes that {xt} is normally distributed,
which is probably justified for log volatility [see for instance French, Schwert and Stambaugh (1987)].
Second, it assumes that {zt} is stationary, which we ensure by working with the first differences of h;

and 2 in the estimation. This leads to an estimate of d — 1 and hence of d.
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Three points emerge from the analysis. First, we resoundingly reject the hypotheses
d = 0 and d = 1 for both series, with p-values well below 1%.!® That d is non-zero suggests
that the two series do possess long-term memory; d # 1 indicates that the long memory
in the series is less than that implied by a unit root. Second, the point estimates of d are
close to or even larger than -,1;; the volatility series may well be non-stationary. Finally,
observe that we fail to reject the hypothesis that the ‘short-memory’ ARMA parameters
(¢, 8) jointly vanish; p-values for this hypothesis are of the order 75%.

These results strongly suggest that the dynamics of volatility follow neither low-order
ARMA nor unit root processes, but are best characterized by long-memory fractionally
integrated processes. In addition, we emphasize the finding that the dynamics of the
two volatility series are similar in all aspects of the analysis, suggesting that there is
considerable hope of finding a link between the two series in the analysis to follow.

Are the series non-stationary? In fact, while the rejections of ARMA and unit root
processes are clear-cut, we cannot resolve the stationarity issue unambiguously based on
the available data, as the point estimates of d are too close to 1 to get a significant
difference. The evidence does however suggest that the possibility of non-stationarity be

taken into account in assessing the relationship between the two series; we do so, in what

follows next.

4. The Relationship between Implied and Realized Volatility
This section is organized into four parts, each of which uses a different approach
to analyze the implied-realized volatility relationship. We demonstrate that the different
approaches lead to similar conclusions, hence underscoring the robustness of our findings.
We begin in section 4.1 with a single equation specification in which ez-post realized

volatility is modelled as a function of ez-ante implied volatility. This is the approach taken

15 Duye to the non-standard setting, the asymptotic X% distribution should be modified somewhat, but

the statistics (of the order 15 to 85) would clearly be extreme draws.
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in all previous work in this area. Section 4.2 adds a second equation, in which implied
volatility is modelled as a function of the history of the two volatility series. The resulting
structure is estimated as a bivariate simultaneous equation system. Section 4.3 carries
out inference within a VAR framework and examines causal relationships between the two
volatility series. Finally, section 4.4 examines the properties of the residuals from the

regression of realized volatility on implied volatility.

4.1 A Single Equation Analysis
We first analyze the information content of implied volatility within a single equation
framework of the type employed in all previous literature. We estimate a specification of
the type
he = g + aiis + e (9)

where h; and i; are defined in section 1. If implied volatility is an efficient predictor of
realized volatility, we should find a9 = 0 and a; = 1.

Panel A of table 5 presents estimates from (9). The estimated regression coefficient
a; takes the value 0.65 and is significant. Though less than 1.0, it is much larger than
comparable numbers (0.14, 0.22) reported in CF.

Does implied volatility subsume the information contained in past realized volatility?

To address this question, we estimate the specification

hi = ag + ajt¢ + aphe—y + € . (10)

The results are presented in panel B of table 5. Lagged historical volatility h,—; in isolation
does explain future volatility h, (first row in panel B). However, once implied volatility
is added as an explanatory variable (second row in panel B), lagged historical volatility
is no longer significant. That is, implied volatility subsumes the information contained in

historical volatility.!®

16 Adding more lags and correcting for heteroskedasticity following White (1980) does not alter the
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These results are again quite different from comparable results reported by CF. The
point estimate of «; (0.51) is much larger (comparable numbers for this specification in CF
are 0.04 and 0.08). CF find that historical volatility subsumes the information content of
implied volatility, whereas we find that it is implied volatility that subsumes the information

content of historical volatility.

4.2 A Structural Simultaneous Equation System

In specifications such as (9) and (10), implied volatility is implicitly assumed to be
exogenous, an assumption that may be incorrect. One view of implied volatility is that it is
a summary measure of an option’s price, controlling for option specific factors such as term
to expiration, the extent to which it is in or out of the money, and so on. In its capacity
as an option’s price, implied volatility may well be an endogenously determined function
of the past option prices (i.e. past implied volatility) as well as past realized volatility.

Motivated by this reasoning, we propose the following simultaneous equation system

for the two volatility series:

h: = ag + ity + aphe—1 + €ny (11)

it = Bo + Bite—1 + Brhi—1 + e (12)

Note that equation (11) is in effect a restatement of (10), but that it is now incorporated
in a system. Specifications (11)-(12) exploit the structure that implied volatility ¢, which
is measured at the beginning of month ¢, cannot be a function of h,, the ‘after-the-fact’
volatility for month ¢. The structural model accounts completely for the potential endo-
geneity of ¢4, including that part (but of course not all) of the contemporaneous shock e to

realized volatility measurable with respect to the market’s information set at the beginning

nature of these results. Further, the Durbin-Watson statistic (2.14) indicates that the standard errors

require no adjustment for autocorrelation.
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of month ¢.17 A bivariate normal distribution is assumed for (ent, €it), but the correlation
coefficient is not restricted to zero, so the system is non-recursive and full simultaneous
estimation is called for.

Maximum likelihood estimates for (11)-(12) are presented in table 6. The central
question of interest, of course, relates to the sign and significance of «; in equation (11),
which we report in the first row of the table. The point estimate of a; is 0.90, consider-
ably larger than that obtained in the single equation specification in table 5 (0.51), and
also much larger than the comparable CF estimates (0.04 to 0.08). Equally interesting is
the fact that ap, the coefficient for historical volatility, remains economically and statisti-
cally insignificant. Once again, implied volatility subsumes the information content of the
history of realized volatility.

In fact, observe that our estimate of coefficient a; for implied volatility (0.90) is not
significantly different from 1.0 (the t-statistic for the hypothesis a; = 1 takes the value
—0.32, with a p-value of 37% in a one-sided test). Further, we also fail to reject the joint
hypothesis that ag = 0,a; = 1 (the F-statistic takes the value 1.73, corresponding to a
p-value of 18%). Thus, implied volatility passes at least one test for being considered an
efficient predictor of realized volatility.

The results also indicate that the single equation analysis is afflicted by classical
simultaneous equation bias. Indeed, the cross-equation correlation corr(eps, e;¢) is about
-0.30 and is significant, underscoring the relevance of adding the simultaneous systems
perspective to the single equation viewpoint adopted in previous literature.

Another feature of interest relates to the estimates from equation (12), reported in
the second row of table 6. It is evident from the significance and magnitude of both §;
and f,, that implied volatility 7; depends heavily on lagged implied and realized volatility.

This is consistent with our view of implied volatility as an option’s price, in which capacity

17 We can without loss of generality let epy = €x¢ + pe€ir where cov(eht, eit) = 0. Thus, pe;¢ is the

portion of the realized volatility shock picked up by the market at the time 14 is determined.
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it may depend on past values of both realized and implied volatility. The dependence is

quite sharply captured here, as indicated by the relatively high R? (61%).

4.8 VAR Analysis and Causality Tests

The previous subsection exploited the structure that beginning-of-month ¢ implied
volatility i; cannot be a function of ez-post realized volatility for month ¢ (h), yet allowed
simultaneity through the dependence of h; on its own ‘forecasted’ value i;. Of course, the
structural simultaneous system has a reduced-form counterpart, wherein each of A; and 1;
are functions of lagged variables, only. Turning next to this vector-autoregressive (VAR)
form of the model, we now obtain a framework appropriate for examining the direction of
causality between the two volatility series.

Accordingly, consider the bivariate vector-autoregression (VAR) specification

L L
ht = a0 + E aprhi—r + Z Qiklt—k + Uht (13)
k=1 k=1
L L
i = Po + Z Brihi—k + Z Bikte—k + Vit (14)
k=1 k=1

where L denotes the maximum number of lags and the v’s are error terms. We found
VAR coefficients a, B associated with lag lengths in excess of k = 1 to be economically
and statistically insignificant!® and the residuals 9 associated with one-lag specifications
to display virtually no serial correlation. Hence, we used L = 1 in implementing the VAR.

Results are reported in table 7-1. Panel A presents estimates of specification (13),
where the dependent variable is realized volatility h;. Panel B presents estimates of spec-
ification (14), where the dependent variable is implied volatility ;. Note that even if the
data were generated by the structural model of the previous subsection, the OLS estimates

in table 7-1 are not subject to the simultaneous equation bias, since the VAR specification

18 1p, absolute terms, two-lag coefficients are a third to a twentieth of the first-order lag coefficients, and

associated {-statistics range from 0.25 to 0.65.
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with L = 1 is exactly the reduced form of the structural model and the regressors are

cominon.

In the VAR system, Granger (1969) causality tests may be used to examine whether ¢,
causes h;, and similarly whether h, causes ¢;. For instance, the hypothesis that z; Granger-
causes h;, may be examined by testing whether the coefficients a;i are all zero (for L =1,
whether a;; = 0). A rejection would indicate that implied volatility i, Granger-causes

realized volatility h;.

Consider first the results in panel A. The null hypothesis that implied volatility does
not Granger-cause future realized volatility is rejected, as evidenced by the significant
t-statistic for a;;. This result may appear even more striking when we note that the
relevant independent variable in (13) is ¢;—;, the one month lagged implied volatility. In
other words, even a stale, one month old implied volatility has non-trivial information
content in predicting future realized volatility. The stale implied volatility i;—; and the
more recent realized volatility h;—; have roughly the same coefficient in explaining realized

volatility hy.

Further, it is easily seen that the estimates simply represent additional evidence in
favor of the structural simultaneous equation model of section 4.2. From table 6, aug-
menting the 2 x 2 identity matrix by a (1,2) entry of —0.90 yields the coeﬂ'icieht matrix
for contemporaneous variables. Inverting this and multiplying the result onto the coeffi-
cients of the lagged variables produces the expected estimates for the reduced form VAR
model. In particular, we may anticipate from the structural estimates a coefficient of
0.90 x 0.44 = 0.40 for i;—; in table 7-1, panel A. This is within the bounds of estimation
error from the actual estimate of 0.33. Similar conclusions hold for other estimates in table
7-1, so the VAR analysis proves to be a useful diagnostic confirming the structural model
findings. Essentially, the structural analysis provides an explanation, for instance, of the
role of the stale lagged implied volatility in Granger-causing future realized volatility in
the VAR model.
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Next, consider the panel B results. Based on the significant ¢-statistic for 31, we re-
soundingly reject the hypothesis that realized volatility h; does not Granger-cause implied
volatility 7,. Thus, causality between the two series runs in both directions, consistent
with the structural model.1®

A second notion of causality due to Sims (1972) may also be examined within the VAR
framework. Causality in the Sims sense may be detected by regressing implied volatility
on future realized volatility. Since future realized volatility cannot cause past implied
volatility, a significant coefficient in this regression would indicate that implied volatility
Sims-causes realized volatility.

The idea becomes more transparent when examining the econometric specifications
it = ag + arprherr + ap—rhioy + aicgti-y +vie (15)

hi = Bo + Bi+1tt+1 + Br-1he—1 + Bi=1%t—1 + Ve , (16)

including both leads and lags on the right hand side. If, for instance, aj4; were statistically
significant in (15), the indication would be that implied volatility Sims-causes future volatil-
ity. Similarly, a significant value of 5;;; would indicate that realized volatility Sims-causes
implied volatility. The inclusion of lagged dependent variables was proposed by Geweke,
Meese and Dent (1983) to reduce the serial correlation in the error terms v and is related
to the conditions for equivalence of Granger and Sims causality [Chamberlain (1982)].
Results of the Sims-causality tests are presented in table 7-2. The relevant t-statistics
(for ap41 and Biyy) are significant with p-values of about 5% or less, again indicating
causality between the two series in both directions. The evidence that implied volatility
Sims-causes realized volatility (panel A) is not strong, but it is significant, and one should

bear in mind that a relatively ‘stale’ implied volatility is being related to a future realized

19 Thus, we cannot reject the hypothesis that both series are endogeneous. Of course, we do reject
strong exogeneity of either series, which requires weak exogeneity as well as Granger non-causality [Engle,

Hendry and Richard (1983)].
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volatility here: variable i; is measured about a month before the very first observation used
in calculating hy4+;. Even so, implied volatility has non-trivial information content.

In broad terms, the results of this and the previous two subsections indicate the exis-
tence of a significant causal relationship in both directions, between implied and realized
volatility. Not only the most recent implied volatility, but also a lagged, one month old
implied volatility bears statistically significant information about future return volatility
—even when examined in conjunction with more current history of realized volatility.

This summarizes the statistical inference on the implied-realized volatility relation-
ship in the conventional stationary process framework. Residual analysis provides both
diagnostic checks on the framework and a vehicle for addressing non-stationarity issues,

and this is where we turn next.

4.4 Residual Analysis: Cointegration, Predictability, and Error Correction

In this subsection, we examine the time series properties of the residuals from the
regression of realized volatility on implied volatility.

This analysis is motivated by two issues. First, the results of section 3 suggest that the
individual volatility series might be non-stationary. Following Engle and Granger (1987)—
henceforth EG—a finding that the regression residuals are stationary even when the two
volatility series considered individually are not would indicate that the volatility series
are cointegrated, i.e. they move together across time. Second, we argue that if implied
volatility does efficiently predict future volatility, the time series of regression residuals
should be white noise. In other words, the regression residuals should exhibit no short
or long-term predictability, under the null of efficiency. Our analysis serves to test this

proposition.??

20 gtationarity tests for residuals are commonly employed when the individual time series are (non-
stationary) unit root processes (see EG) or fractionally integrated processes with d > % [Cheung and

Lai (1993)] and effectively detect any Jong-term residual dependence. Our economic context requires an
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We begin by estimating (9), restated as
ht = Qp + a,-it + €. (17)

We then analyze the time-series properties of the estimated residuals {€:} to draw inference

on the implied-realized volatility relationship.

4.4.1 Cointegration of Implied and Realized Volatility
We first test whether the implied and realized volatility series are cointegrated. The
formal test is based on the ADF regression considered in section 3.2, but now applied to

the residual series {é;} from (17). That is, we test for the significance of v in

k
Aéy = a+ Y€1 + Z BilDdés—i + & - (18)

i=1
A significantly negative value of 4 would imply that we fail to reject the null that implied
and realized volatility are cointegrated (see EG). The results are presented in panel A of
table 8. We find that 4 is economically and statistically significant.?’ The implication
is that if we maintain that h; and i, are unit root processes, the two volatility series are
cointegrated, and (17) is interpreted as the cointegrating regression.??
Cointegration of the two volatility series indicates that they move together across

time. Equivalently, the error process {e;} in (17) is stationary and reverts to mean zero,

and thereby ensures that the two volatility series do not diverge from each other. However,

additional diagnostic for short-term residual dependence; there should not be any, if implied volatility
aggregates volatility information efficiently. This ‘white noise’ test clearly has a meaningful economic

interpretation whether or not the individual time series are stationary.

21 The results are invariant to the inclusion of a drift term since the time series average of €; is zero (as
(17) includes an intercept).

22 Following Sargan and Bhargava (1983), these results are also consistent with the Durbin-Watson

(1.94) from table 5 (the 5% critical value when hi¢, 1 possess unit roots is 0.39).
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this does not complete the analysis of the efficiency of implied volatility as a predictor of
future volatility. If implied volatility does in fact aggregate volatility information efficiently,
the error series {e;} should not only be a stationary process (as suggested by the ADF
test above)—but indeed just white noise. Such a finding would indicate that the entire
predictable portion of future volatility is efficiently summarized by implied volatility. An

empirical investigation of this issue follows next.

4.4.2 Predictability of Regression Residuals and Efficiency

If the regression residuals are in fact white noise, there should be no short or long-
memory components in the time series of residuals. In this section, we implement statistical
tests to examine this proposition.

We begin by testing for long-memory components in the residuals. Along the lines of
Section 3.3, we first use the GPH procedure to estimate the fractional integration parameter
d of the series {¢;}. Under the null that long-term memory is absent, d should be zero. The
GPH results are presented in panel B of table 8. The point estimate of d is 0.11 and is not
significantly different from zero, in line with the hypothesis of no long-term predictability
of the residuals.

While the GPH analysis does indicate absence of long-term memory, it does not impose
enough structure to address the issue of short-term memory in the residuals. To test for
this possibility, we first fit ARFIMA(p,d,q) models to the residual series. We then test
whether the (short memory) ARMA parameters (4,0) and the (long memory) fractional
integration parameter d all jointly vanish; they should, under the null of efficiency. Results
for alternative parametrizations of the underlying AR and MA structures are presented in
panel C of table 8.

Before discussing the efficiency test, three observations are in order. First, the point
estimates of d for the residual series are considerably smaller than corresponding estimates
for the individual series (which are 0.40 or higher; see table 4). Second, estimates of d

are approximately equal to those obtained via the GPH procedure. Finally, we reject the
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hypothesis d > 1 for the residual series at a p-value well below 1% (the likelihood ratio
statistic (~ x2) takes the value 19.20). Maintaining d > ; for the individual volatility
series, the result suggests that implied and realized volatility are ‘fractionally cointegrated.’
This verifies the robustness of the cointegration finding of section 4.4.1.

Turning to the efficiency issue, is there any evidence of predictability in the residual
series? More precisely, can we reject the null hypothesis of neither short nor long term
predictability, viz. (¢,d,6) = 07 Panel C of table 8 displays the likelihood ratio statis-
tics for testing this ‘white noise’ hypothesis against each of the fitted ARFIMA models.
Nowhere can we reject the null hypothesis that all ARFIMA parameters jointly vanish,
consistent with the view that implied volatility efficiently aggregates information about

future volatility.23

4.4.8 A Dynamic Adjustment Mechanism

The evidence from sections 4.4.1-2 indicates that implied and realized volatility move
together across time. It is thus plausible that there exists a dynamic adjustment mechanism
which keeps the two series in tandem. EG show that cointegrated series may be represented
in terms of exactly such an adjustment mechanism—an error correction mechanism (ECM).
It is useful to assess the existence and relevance of such a mechanism in the context of the
two volatility series.

Accordingly, we estimate an ECM for the two volatility series, represented as

Aht = bo + b.‘Ait + bECMét-l + ug . (19)

Using lagged residuals é;—; from (17), the ECM (19) may be estimated as a simple regres-
sion. We expect by, < 0 for the past ‘errors’ é;—; to be ‘corrected.” Thus, if é&:—1 > 0,
then h;—; is above its long-run path indicated by ag + aiii—1 (see (17)), so bygy < 0

provides the negative pull needed to get the h; series back to the path.

23 Jdentical conclusions emerge from fitting conventional Box-Jenkins models to the residual series.
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We report the estimated ECM (19) in panel D of table 8. The point estimate of bgcy
is indeed negative, and is both economically and statistically significant. This indicates
the existence of a strong dynamic adjustment mechanism that draws the implied and
realized volatility series towards each other—precisely what we would expect under the

null hypothesis of option market efficiency.

5. Conclusion

The fundamental question addressed in this study is: Does the volatility implied in
option prices predict ez post realized volatility? Recent literature indicates that implied
volatility adds little information beyond that contained in the history of realized volatility,
when the two series are sampled on a day-to-day or weekly basis. Such results have been
construed as a vote against the joint hypothesis that (i) option markets aggregate volatility
information efficiently; and (i) the Black-Scholes option pricing formula is valid.

This study introduces a new research design to examine the relationship between im-
plied and realized volatility. Our analysis employs a lower (monthly) sampling frequency,
and employs non-overlapping data, so that exactly one implied and one realized volatility
estimate pertain to every month under consideration. The results are significantly different
from those of previous literature, and the difference is robust to variations in the economet-
ric approach: we find that implied volatility does predict future volatility, in isolation as
well as in conjunction with the history of past realized volatility. In particular, it subsumes
the information contained in past realized volatility, in contrast to the findings of previous
research.

We attribute the difference in the results to differences in the research design. One
obvious difference is the lower sampling frequency employed here, and our study highlights
an important tradeoff in this context: A low sampling frequency results in fewer data points
and thereby a potential loss of estimation efficiency and testing power. On the other hand,
with high frequency (e.g. daily) sampling, the individual observations are less informative

because of added noise in the system—noise due to bid-ask spreads, non-synchronicities
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and other frictions, as well as any potential noise from misspecification of the underlying
pricing model. In the specific case of options markets, with the accompanying non-linear
pricing models, such issues assume first-order importance, and the economic conclusions
often depend crucially on the research design adopted.

We favor the particular structure adopted in this paper for three reasons. First,
the monthly sampling frequency roughly corresponds to the frequency of most important
economic news releases. Second, the non-overlapping sample that results is consistent
with the underlying pricing model—the Black-Scholes option pricing model that has been
used in every previous study in the literature. Third, the analysis explicitly recognizes
the potential endogeneity of implied volatility by incorporating the conventional single
equation for the volatility relationship in a complete simultaneous system. We argue
that the resulting bivariate time series framework provides the most useful perspective for
analyzing the implied-realized volatility relationship.

Our analysis highlights the importance of accounting for these issues and demonstrates
that doing so leads to substantial differences in the economic conclusions that emerge. In
the particular context here, our results provide much stronger support than previous studies

for the null of option market efficiency.
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Table 1t
ARMA(p,q) Models For Implied and Realized Volatility

Panel A
Implied Volatility {i;}

Box-Pierce  Degrees of

Fitted Model U & &2 6 Statistic @12  Freedom
ARMA(1,0) | -1.92¢ 0.65% 9.52 11

(-31.82) (9.09)
ARMA(1,1) | -1.94¢ 0.832 0.34 3.60 10

(-23.50) (10.99) (2.66)
ARMA(2,0) -1.93° 0.51¢ 0.21¢ 4.46 10

(-25.70) (5.61) (2.25)

 pvalue < 0.01; ° p-value = 0.05
Panel B
Realized Volatility {h;}
Box-Pierce  Degrees of

Fitted Model U 1 o2 6, Statistic ¢);2  Freedom
ARMA(1,0) | -1.99* 0.48° 17.56° 11

(-35.73) (5.75)
ARMA(1,1) -2.00° 0.83¢ 0.49° 8.10 10

(-23.80) (9.01) (3.37)
ARMA(2,0) [ -1.99° 0.37¢ 0.22° 11.09 10

(-28.78) (4.03) (2.37)

¢ p-value < 0.01; ® p-value = 0.05

t Table 1 reports estimates of ARMA(p,¢) models of the form ‘
@(B)(z: — p) = O(B)ey

fitted to the time series {x;}, with z; = i; (panel A) or z; = h; (panel B), where i; denotes the natural
logarithm of the Black-Scholes implied volatility for at-the-money call options on the S&P 100 index; h;
denotes the natural logarithm of the ez-post daily return volatility of the index; ; is white noise; ®(B)
denotes the AR polynomial 1 — ¢; B — ¢, B%; ©(B) denotes the MA polynomial 1+ 8; B; and B denotes the
backshift operator. The data consist of T = 115 monthly observations on each volatility series, covering the
period November 1983 to May 1993. Asymptotic t-values in parentheses.

The Box-Pierce statistics are Q12 = Tz,lml 2p2 where p; are the sample autocorrelations of the esti-
mated residuals £;. Asymptotically Q12 ~ x?,f where the degrees of freedom df are given in the table. The
related misspecification diagnostic Q12 = T(T + 2) E}‘?__l pi/(T — k) proposed by Ljung and Box (1978)

produces similar results.



Table 2t
Augmented Dickey-Fuller Tests

Panel A
Implied Volatility i,
Dependent variable: Ai,

Independent Variables Adj.
Intercept 1, Aii_y  Ai_o | R? | DW
-0.003 -0.37 -0.16 | 12% | 2.08

(-0.30) (-4.02) (-1.76)

-0.47 -0.25* -0.22 -0.07 | 18% | 2.04
(-3.00) (-3.02) (-2.20) (-0.78)
¢ Significant with p-value = 0.05

Panel B
Realized Volatility h;
Dependent variable: Ah,

Independent Variables Adj.
Intercept  hy-y  Ahyy  Ahi—g | R?2 | DW
-0.004 -0.54 -0.28 [ 23% | 1.98

(-0.28) (-5.84) (-3.06)

-0.66 -0.33* -0.33 -0.17 | 29% | 1.95
(-3.20) (-3.21) (-2.95) (-1.73)
¢ Significant with p-value = 0.05

! Table 2 reports results of augmented Dickey-Fuller (ADF) tests for the time series z; = i, (panel A) and
z; = h, (panel B), where i, denotes the natural logarithm of the Black-Scholes implied volatility, for at-the-
money call options on the S&P 100 index, and h, denotes the natural logarithm of the ez-post daily return
volatility of the index. The data consist of 115 monthly observations on each volatility series, covering the
period November 1983 to May 1993.

Numbers in parentheses denote t-statistics for significance tests. The null hypothesis viz. non-stationarity
of {z:} is rejected if the coefficient on z,_; is significant. The 5% critical value for the t-statistics in the
regressions without intercept is —1.95 [Dickey and Fuller (1979)]. The usual t-tables may be employed for
the regressions with intercept if the true value of the intercept is assumed non-zero, i.e. the 5% critical value
is —1.66. If the regression includes an intercept but the true intercept is known to be zero, the 5% critical
value for t-statistic is —2.89 [Dickey and Fuller (1979)].
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Table 3t
GPH Test for Fractional Integration

Geweke and Porter-Hudak (1981) Test
Dependent Variable: log[I(w;)], with I(w;) the periodogram at frequency w;

Implied Volatility (i,) | Realized Volatility (h;)
Independent Variable | Coefficient t-statistic | Coefficient t-statistic
Intercept -5.04° -8.79 —4.98° -8.69
— log[4 sin%(w; /2)] 0.49° 2.21 0.47* 2.13
2 p-value < 0.01; ® p-value = 0.05

t Table 3 presents estimates from the regression
log[I(w;)] = ¢ — d log[4 sin*(w; /2)] + v;

where I(w;) is the periodogram of the time series {2} (z; = i\, h;) at the jth Fourier frequency w;j =2mj/T
(4 =12,...,9), and ¢ << T (here, ¢ = 15). The regression coefficient d is an estimate of the order of
fractional integration of the series {z;}. The data consist of T = 115 monthly observations (covering the
period November 1983 to May 1993) on each of the series {i;} and {h;}, where i; denotes the natural
logarithm of the Black-Scholes implied volatility for at-the-money call options on the S&P 100 index, and A;
denotes the natural logarithm of the ez-post daily return volatility of the index. The t-statistics are estimated

using that var(v;) ~ 72/6 in the GPH regression.
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Table 4t
ARFIMA(p,d,q) Models for Implied and Realized Volatility

Panel A
Implied Volatility i,

Model d o 6, LRTy—9 LRT;=y LRTyp4-

(0,d,0) || 0.55 66.03% 23.14°
(1,d,0) { 0.60 0.07 75.14° 18.29¢ 0.48
(0,d, 1) [f 0.59 -0.06 | 75.40° 18.61* 0.40

(1,d,1) [{ 0.60 0.24 0.18 | 73.39° 19.26° 0.57
¢ p-value < 0.01

Panel B
Realized Volatility h,

Model d QS] 01 LRTd=0 LRTd_—_] LRTQS,G:O

(0,4, 0) || 0.40 34.34° 37.70°
(1,d,0) || 0.47 0.11 46.84° 28.74° 1.33
(0,d,1) || 0.48 —-0.12 || 49.04° 27.88¢ 1.58

(1,d,1) || 048 0.04 0.08 || 48.63%  28.08° 1.50
¢ p-value < 0.01

% Fable 4 reports estimates of ARFIMA(p, d, ¢) models of the form
®(B)(1 - B)%z, = ©(B)e,

fitted to the time series {z,}, z; = i; (panel A) or z, = h, (panel B), where i; denotes the natural logarithm
of the Black-Scholes implied volatility for at-the-money call options on the S&P 100 index; h; denotes the
natural logarithm of the ez-post daily return volatility of the index; ¢; is white noise; ®(B) denotes the AR
polynomial 1—¢; B— ¢,B%; ©(B) denotes the MA polynomial 146, B; and B denotes the backshift operator.
The data consist of 115 monthly observations on each volatility series, covering the period November 1983
to May 1993.

We also report likelihood ratio statistics (columns labelled LRT) for testing three null hypotheses, viz.
d=10,d=1 and (¢,0) = 0. Under the null, the test statistics are approximately distributed as x? for the
first two hypotheses and as xﬁ, for the last hypothesis, where df denotes the number of restrictions (df =1,

1, and 2, respectively, in the cases considered).



Table 5t
Single Equation Analysis of Implied-Realized Volatility Relationship
Dependent Variable: Realized Volatility h;

Panel A

Independent Variables | Adj.
Intercept i hi-1 | R* | DW
-0.74*  0.65° 30% | 1.91
(—4.10)  (7.01)
¢ Significant with p-value < 0.01

Panel B

Independent Variables | Adj.
Intercept i hi-y | R* | DW
-1.03¢ 0.48% | 22% | 2.20
(-6.12) (5.76)
-0.67* 051  0.17 | 31% | 2.14
(-3.65) (3.84) (1.52)
¢ Significant with p-value < 0.01

t Table 5 reports estimates of the single equation specification
hy = ag + ity + aphioy +er .

Here, i, denotes the natural logarithm of the Black-Scholes implied volatility for at-the-money call options
on the S&P 100 index, measured at the beginning of month ¢; h; denotes the natural logarithm of the ez-post
daily return volatility of the index, over the life of the option whose log implied volatility is ¢;. The data
consist of 115 monthly observations on each volatility series, covering the period November 1983 to May

1993. Asymptotic ¢{-values in parentheses.



Table 6t
Simultaneous Equations System for Implied-Realized Volatility Relationship

Dependent Independent Variables Adj.
Variable [ Intercept i hi_1 w1 | R* | DW
h; -0.40 0.90° -0.07 27% | 1.98
(-147) (2.91) (-0.32)
i -0.34¢ 0.44* 0.38* | 61% | 2.16
(-2.77) (7.31) (5.23)
@ p-value < 0.01; ® p-value = 0.05

t Table 6 reports full information maximum likelihood (FIML) estimates of the bivariate system
he = ao + aiis + aphi_1 + ene

ty = o + Bitt—1 + Prhi-1 + €5

Here, i; denotes the natural logarithm of the Black-Scholes implied volatility for at-the-money call options
on the S&P 100 index, measured at the beginning of month ¢; h; denotes the natural logarithm of the ez-post
daily return volatility of the index, over the life of the option whose log implied volatility is #;. The data
consist of 115 monthly observations on each volatility series, covering the period November 1983 to May

1993. Asymptotic t-values in parentheses.
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Table 7-11
Causality Tests Within VAR Framework
Granger Causality Tests

Panel A
Dependent Variable: Realized Volatility h,

Independent Variables | Adj.
Intercept  hiy 141 R? | DW
-0.70°  0.33* 0.33* | 27% | 2.02
(-3.56) (3.38) (2.91)
¢ p-value < 0.01

Panel B
Dependent Variable: Implied Volatility 1.

Independent Variables | Adj.
Intercept hy—y 411 | R? | DW
-0.34° 0.44* 0.37° | 61% | 2.10
(-2.714) (7.21) (5.16)
¢ p-value < 0.01

t Table 7-1 reports estimates of the VAR specification
ht = ag + anrhioy + @irie—1 + vpe

it = Bo + Prrhi—1 + Birti-1 + viy

where i; denotes the natural logarithm of the Black-Scholes implied volatility for at-the-money call options
on the S&P 100 index, measured at the beginning of month t; h; denotes the natural logarithm of the ez-post
daily return volatility of the index, over the life of the option whose log implied volatility is #;. The data
consist of 115 monthly observations on each volatility series, covering the period November 1983 to May
1993.

A statistically significant value of a;; (Bs1) indicates that implied (realized) volatility Granger-causes

realized (implied) volatility. Asymptotic {-values in parentheses.

VII



Table 7-21
Causality Tests Within VAR Framework
Sims Causality Tests

Panel A
Dependent Variable: Implied Volatility 1,

Independent Variables Adj.
Intercept  hiys hi—q 11 R? | DW
-0.21 0.13* 0.40* 0.34% | 61% | 2.12
(-1.57)  (2.47) (6.39) (4.79)

¢ p-value < 0.01

Panel B
Dependent Variable: Realized Volatility h,

Independent Variables Adj.

Intercept 4441 hior G- R? | DW

-0.21 0.76° 0.13 0.05 | 53% { 2.00

(-1.20) (7.82) (1.55) (0.47)
¢ p-value < 0.01

 Table 7-2 reports estimates of the specifications
it = Po+ Brerherr + Bu—rhiy + Bicriiy + vie

he = ag + ajg1841 + aporheo s + o181 + v

where #; denotes the natural logarithm of the Black-Scholes implied volatility for at-the-money call options
on the S&P 100 index, measured at the beginning of month ¢; h, denotes the natural logarithm of the ez-post
daily return volatility of the index, over the life of the option whose log implied volatility is #;. The data
consist of 115 monthly observations on each volatility series, covering the period November 1983 to May
1993.

A statistically significant value of Bh41 (@i4+1) indicates that implied (realized) volatility Sims-causes

realized (implied) volatility. Asymptotic t-values in parentheses.
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Table 8
Dynamics of the Residual Series

Panel A'
Augmented Dickey-Fuller Tests
Dependent Variable: Aé,

Independent Variables Adj.
Intercept €:1 Aé;q R? | DW
0.00 -0.96° 47% | 2.00
(0.02) (-10.16)
-0.00 -0.82° 0.14 | 48% | 2.03
(-0.03) (-6.31) (-1.52)
¢ p-value < 0.01

Panel Bt
Geweke and Porter-Hudak Test
Dependent Variable: log[I(w;)], with I(w;) the periodogram of {é,} at w;

Independent Variable || Coefficient t-statistic
Intercept -4.21¢ -4.89
— log[4sin(w;/2)] 0.11 0.52
¢ p-value < 0.01

Panel Cttt
ARFIMA(p,d,q) Models for series {é;}

| Model | d &1 6 [ LRTu40-0 df |

(0, 2, 0) || 0.07 0.86 1
1, d,0) || 0.16 0.11 1.49 2
(0,d,1) || 0.13 -0.09 1.25 2
(1,d,1) || 012 025 0.14 1.58 3

Panel Dttt
Error Correction Mechanism
Dependent Variable: Ah,

Independent Variables Adj.
Intercept  Aiy é1-1 R?> | DW
-0.00 0.39° -0.84° | 34% | 2.00
(-0.02) (3.06) (-7.73)
¢ p-value < 0.01
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! Panel A reports results of augmented Dickey-Fuller (ADF) tests conducted on the cointegrating regression
residual series {€;}, obtained by regression of h; on i;. Here, i; denotes the natural logarithm of the Black-
Scholes implied volatility for at-the-money call options on the S&P 100 index, measured at the beginning
of month ¢; h; denotes the natural logarithm of the ez-post daily return volatility of the index, over the life
of the option whose log implied volatility is #,. The data consist of 115 monthly observations each volatility
series, covering the period November 1983 to May 1993. The null hypothesis of non-stationarity of {¢;} is
rejected (and so cointegration of h; and i; supported) if the coefficient on é;_1 is significant; the 1% and 5%
critical values for the relevant t-statistic are —3.98 and -3.42, respectively.
1 Panel B presents estimates of the regression

log[I(w;)] = ¢ — d log[4 sin®(w; /2)] + v;

where I(w;) is the periodogram of the cointegrating regression residual series {é;} defined in relation to
panel A, evaluated at the jth Fourier frequency w; = 27j/T (j = 1,---,q), ¢ << T (here, ¢ = 15 and
T = 115). The coefficient d is an estimate of the order of fractional integration of {é;}. The critical values
for the t-statistic are close to those from the standard normal table [Cheung and Lai (1993)].

1! Panel C reports estimates of ARFIMA(p, d,q) models of the form

®(B)(1 - B)%¢, = ©(B)e,

fitted to the cointegrating regression residual series {é;} defined in relation to panel A; ®(B) denotes the
AR polynomial 1 — ¢; B; O(B) denotes the MA polynomial 1+ 6; B; and B denotes the backshift operator.
The table also reports likelihood ratio test (LRT) statistics for the null hypothesis ¢,6,d = 0, for each of
the fitted ARFIMA models. Under the null, the test statistics are asymptotically distributed as xﬁ, where
the degrees of freedom df are given in the table.

"11In panel D we estimate an error correction mechanism (ECM) of the form

Ahy = by + biAdy + bpcmér—1 + U,

where the cointegrating regression residuals é; are defined in relation to panel A and A = 1 — B is the

first-difference operator. Asymptotic ¢-values in parentheses.
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Fig. la. Sample autocorrelation function for the time series {7;}, where i; denotes the natural
logarithm of the Black-Scholes implied volatility for at-the-money call options on the S&P 100 index.
The data consist of 115 monthly observations, covering the period November 1983 to May 1993.
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Fig. 1b. Sample autocorrelation function for the time series {h;}, where h; denotes the natural
logarithm of the ez-post daily return volatility of the S&P 100 index. The data consist of 115

monthly observations, covering the period November 1983 to May 1993.
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Fig. 2a. Shape of sample spectral density for the time series {i;}, where i; denotes the natural
logarithm of the Black-Scholes implied volatility for at-the-money call options on the S&P 100 index.
The data consist of 115 monthly observations, covering the period November 1983 to May 1993.
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Fig. 2b. Shape of sample spectral density for the time series {h;}, where h; denotes the natural
logarithm of the ez-post daily return volatility of the S&P 100 index. The data consist of 115
monthly observations, covering the period November 1983 to May 1993.



