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The Optimal Dynamic Investment Policy
for a Fund Manager

Compensated with an Incentive Fee

Abstract

We use martingale methods to solve the investment problem of a risk averse fund manager
who charges an incentive fee which he cannot hedge in his personal account. An incentive fee
is a share in the positive part of the returns on the client’s portfolio net of some benchmark
return. The optimal policy is a long-shot; there is always some chance of bankrupting the
client, but if the terminal fund value is nonzero, it is in the money by some strictly positive
amount. We provide explicit expressions for the optimal trading strategy with either the
riskless asset or the market portfolio as benchmark and with either comstant relative or
absolute risk aversion. Rather than trying to maximize volatility, as earlier literature suggests,
the manager dynamically adjusts volatility as the assets move in or out of the money. As the
manager accumulates profits, he moderates portfolio tisk. For example, if the manager has
constant relative risk aversion, volatility converges to the Merton constant as fund value grows
large. On the other hand, as bankruptcy approaches, portfolio volatility goes to infinity.






1 Introduction

This paper presents the optimal dynamic trading strategy for a risk averse fund man-
ager who is compensated with an asymmetric incentive fee which he cannot hedge in
his personal account. An asymmetric incentive fee is a share, a, for example, 30%, in
the positive part of the returns on the client’s portfolio net of some benchmark. Such
a fee structure is typical for hedge fund and pension fund managers. Grinblatt and
Titman (1989) study the fund manager’s investment problem under the assumption
that the manager can hedge the fee in his personal portfolio, so his objective 1s to
maximize the fee’s market value. With this objective, the manager wants to maximize
volatility and the problem has no solution. We assume, on the other hand, that the
manager cannot hedge the fee in his private account because shorting securities that
he purchases on his client’s behalf is a breach of fiduciary duty. Now the manager’s
objective is to maximize his expected utility of the incentive fee. We cast the problem
in a standard continuous-time financial market and show that there exists a unique
optimal investment policy.!

Under the optimal policy, the pqrtfolio has an all-or-nothing payoff, either in the
money or zero. The policy is also a long-shot in the sense that the probability of
bankruptcy is high, but the payoff, if in the money, is in the money by some strictly
positive amount. While this may appear to be extreme, we feel that the essence of the
solution, that the manager does not want to end up too near the money, would prevail
in a less stylized setting with market frictions or multi-period contracts.

Our martingale approach sheds light on the manager’s preference for a long-shot
by revealing that the market value of the incentive fee is an increasing function of the

probability of bankruptcy under a martingale measure.? This relationship implies that

1Starks (1987) studies the portfolio manager’s problem in a mean-variance framework and concludes
that an asymmetric incentive fee will induce the manager to choose a higher beta than he would choose
with a symmetric fee.

2Gee Cox and Ross (1976) and Harrison and Kreps (1979).



the contract is inefficient in the sense that there exist lower cost linear contracts that

give the manager greater expected utility.

We provide closed-form expressions for the optimal trading strategy for constant
relative and absolute risk averse utility functions with either the riskless asset or the
market portfolio as benchmarks. Rather than maximizing portfolio risk, the manager
dynamically adjusts leverage and volatility in response to changes in the asset value over
time. When the manager is near the money, small changes in the value of the mean-
variance efficient portfolio lead to large trades as the manager alternates between the
desire to gamble and the need to remain solvent. As the manager accumulates profits,
so that he is gambling with his own money, he moderates portfolio risk. For example,
if the manager has constant relative risk averse utility and the benchmark is riskless,
volatility converges to the Merton constant® as fund value grows large. On the other
hand, as bankruptcy approaches, portfolio volatility and leverage approach infinity.

Consistent with these dynamics, Brown, Harlow, and Starks (1994) find evidence in
the mutual fund industry that managers with relatively poor performance in the first
half of their performance evaluation period increase fund volatility in the second half of
the period more than managers who have done well. While, in a given year, mutual fund
managers typically earn a fixed proportion of initial asset value, Sirri and Tufano (1992)
show that new money tends to flow into winning funds faster than old money flows out
of losers. Mutual fund mapagers’ long run compensation may therefore still be convex
in fund performance even though there is no explicit incentive fee. Indeed, Chevalier
and Ellison (1995) estimate a nonlinear relationship between one year’s performance
and the next year’s flow of new money for a large set of mutual funds and find that,
for young funds, the function is relatively flat for moderately poor performance and
then increasing for better performance. They conclude that this provides incentives
for funds with moderately poor performance to gamble to recover losses. Then they

study the relationship between performance from January to September and changes in

3See Merton (1969) and (1971).



portfolio riskiness from September to December and find that funds that are somewhat
behind do tend to increase risk.

Our paper proceeds as follows. §2 describes the manager’s preferences and oppor-
tunity set. §3 uses martingale methods to transform the manager’s dynamic trading
problem strategy into a static problem of choosing an optimal random terminal portfo-
lio value. §4 solves the transformed problem. §5 gives examples of the optimal trading

strategy. §6 explores implications of our results for contract theory.

2 Assumptions

At time zero, the client hires the manager for a fixed length of time T, and agrees to pay
him an incentive fee. The manager’s total terminal wealth, Y, is equal to his incentive
fee plus a constant, K, that includes any fixed fees and personal wealth. Letting X

represent fund value and B represent the value of a benchmark portfolio at time ¢,
Y =a(Xr-Br)T+ K, (D)

where 0 < a < 1.

The manager chooses an investment policy to maximize his expected utility of ter-
minal wealth. His utility function U is strictly increasing, strictly concave, at least
twice continuously differentiable, and defined on a domain containing (0,00). U" is
nondecreasing and U’(W) approaches zero as W approaches infinity. Consequently,
the function I = U'™! is a well-defined, strictly decreasing, convex, continuously dif-
ferentiable function from (0,c0) onto a range containing (0, 00). For example, both

the constant absolute and relative risk averse classes of utility functions satisfy these

hypotheses.

The financial market consists of a riskless asset with interest rate r, and n risky-
assets. The risky asset prices, P;,2 = 1,...,n are diffusion procesées governed by the
equations

dP;:

——'—:(r+,u,-)dt+0':-dI/Vt ,



where p; € R and o; € R™ are constants and W is standard n-dimensional Brownian
motion defined on a complete probability space (Q2,F,P). Let p = (B1,- -5 ) ER",
let o be the matrix whose ith row is o, and assume that o is nondegenerate. Let
{F.} denote the P-augmentation of the filtration generated by the Brownian motion;
F. represents the manager’s information at time t.

A trading strategy for the manager is an n-dimensional process {r,:0<t < T}
whose ith component, 7;;, is the value of the holdings of risky asset z in the portfolio
at time ¢. An admissible trading strategy, 7, must be progressively measurable with
respect to {F;}, must prevent fund value from falling below zero, and must satisfy
JT||7e||? dt < o0, a. s. Under an admissible trading strategy =, portfolio value evolves

according to

dX; = (rX, + mp)dt + o dW; . (2)

The benchmark portfolio value, B, is a geometric Brownian motion that can be

replicated with a self-financing trading strategy involving the market securities:

dB;

— = (r+7wgp)dt + mgo dWt ,
Bt B B

where 7wpg is a constant.

3 The Manager’s Investment Problem

The manager’s dynamic problem is to choose an admissible trading strategy for the

fund to maximize his expected utility of terminal wealth:

max EU(a(XT — Br)t + K)
subject to  dX; = (rX; + mp) dt + w0 dW,
and X, >0Vtel[0,T]. (3)

Using martingale methods, we recast (3) as a static problem of choosing an optimal



terminal fund value:*

n‘)l{a.x EU(O!(XT - BT)+ + K)
T

subject to  E{rX7 < Xo

and XT Z 0. (4)

where (; = et Well0l*t/2 and 6 = o~ 4.

One final transformation illuminates the key difference between the manager’s prob-
lem and the standard terminal wealth problem. Observe that under an optimal policy,
Xr € {0} U (Br, o), a.s.; whenever Xr takes on values in (0, Br], it uses resources
without adding to utility, so an optimal choice cannot do so with positive probability.
Consequently, the manager’s terminal wealth ¥ is invertible for the terminal fund value

Br from (1), so we may treat Y as the choice variable.

In addition, when the assets have the all-or-nothing terminal distribution described
above, the market value of the incentive fee is a(Xo — Bo+ ByP{Xr = 0}), where P is
the measure defined by j—;:— = eTTCT%f. For instance, if the benchmark is riskless, then
D is the usual risk-neutral martingale measure. If the benchmark is the reciprocal of
the pricing kernal (7, then P = P, the true probability measure. Now the manager’s

problem is
max EU(Y)
subject to  E(TY < o(Xo — Bo+ BoP{Y = K}) + K
and Y>K. (5)

So the manager’s problem is like the standard terminal wealth problem except that

his budget, a(Xo— Bo+BoP{Y = K})+K is a function of his strategy-a “longer-shot”

4See, for example, Harrison and Kreps (1979), Harrison and Pliska (1981), Pliska (1986), Karatzas;
Lehoczky, and Shreve (1987), and Cox and Huang (1989) for the development of these methods and

their application to optimal portfolio choice. See also the review article Karatzas (1989) for these and

additional applications.



has more value. We know from first principles that the convexity of the incentive fee
makes risky strategies relatively more attractive to the manager, and budget constraint

in problem (5) quantifies exactly how.

4 The Optimal Terminal Portfolio Value

We solve the problem by concavifying the objective function.’ Define u : R x (0, 00) —
R by u(z,b) = U(a(z — b)* + K), for £ > 0, and u(z, b) = —oo, otherwise. In terms

of u, the manager’s problem is
max Eu(Xr, Br) subject to E¢r Xt < Xo . (6)
T
Let u/(z,b) = 2428 for z > b, and let f(g,b) = u(z,b) — u(0,b) — zu/(z,b), for all
b>0and z >b.

Lemma For every b, there ezists a unique = > b such that f(z,b) = 0.

Proof Fizb andletz >b. f(z,b) = U(ae(z—b)+ K)—U(K) —azU'(a(z—b)+ K) is
strictly increasing in z, for its derivative with respect to x is —a?zU"(a(z—b)+ K) > 0.
Asz — b, f(z,b) = —azU'(K) < 0. As z — oo, f(z, b) approaches a strictly positive

limit, possibly infinity. To see this, rewrite f as
f(z,b) = [U(a(z —b)+ K) —U(K) — oz — B)U' (a(z — b) + K)] — abU'(a(z — b) + K) .

The term in brackets above is strictly positive and increasing for all z > b, while the
remaining term above approaches zero as T approaches oo. Therefore, f(-,b) has a

unique zero on (b,00).

Let #(b) be the unique z > b such that f(z,b) = 0. Then @ : R x (0,00) — R defined
by -

i(z,b) = —00 for z <0

5See Aumann and Perles (1965).



w(0) + u/(2(b),b)z for 0 < z < 2(b)

u(z, b) for z > Z(b)

is concave in z. Furthermore, (z, b) > u(z,d) for all (z,b) € R x (0,00) and i(z,b) =
u(z, b) for z = 0 and for all z > Z(b).

Now define the set-valued function %' on [0, 00) x (0, 00) by

#'(z,b) = (oc0,w(£(b),b)] forz =0
{u/(3(b),b)} for 0 <z < 2(b)
{u'(z,b)}  for z > Z(b) .

Then, for every ' € R and every m € @(z,b), @(z',b) — i(z,b) < m(z' — x). Strict
inequality holds whenever z > £(b) and 2’ # z. For each b, @'(+, b) is the subdifferential
of (-, b).°

Next, define 7 : (0, 00) x (0,00) — [0, 00) by

i(y,b) = [(I(y/e) — K) /e + bl {y<uw(2(6) )}

where 14 is the indicator function of the set A. Then y € @'(i(y,b), b) for all b> 0.
Finally, let X(\) = E{ri(Mr, Br) for A > 0. Assume that

X()\) < oo forall A . (7)

This will hold for constant absolute and relative risk aversion with the choices of
benchmarks we make below. Then X()) is continuous and strictly decreasing, & (A) —
o0 as A — 0, and X()\) — 0 as A — oo. Therefore, there exists a unique A* > 0 such

Proposition 1 Under assumption (7), X7 = #(\*(r, Br) is the unique optimal solu;

tion to problem (6).

6See Rockafellar (1970, p.214-215).



Proof If X' is any other feasible strategy that is not almost surely equal to X7, then

E{u(X', Br) — w(X7, Br)} E{u(X', Br) — @(X7, Br)}

< E{a(X', Br) — u(X7, Br)}
< E{N@(X' - X7)}
< M(EB{rX —Xo) L0

Notice that under the optimal policy, the incentive fee is either out of the money, or
else it is in the money by at least a(2(Br) — Br) > 0. It does not pay for the manager
to be just marginally in the money, since he must expend substantial resources to bring

fund value into the money at all.

One typical benchmark is a constant, or, in other words, a riskless portfolio. An-
other is a market index such as the S&P 500. A representation for a market index in
this model is the portfolio M; = 1/, since risk averse investors solving standard in-
vestment /consumption problems in this framework will always divide their investments
between M and the riskless asset. In both cases, the manager’s optimal terminal fund
value will be a simple function of the pricing kernal. |

If the manager is measured against a riskless benchmark, By = Boe’?, the man-

ager’s optimal terminal fund value is
X3 = [((I(Mlr/e) — K)/a+ Boe™ 1i¢r<a) »

where A; solves ECTi()\(T,Boe"T) = Xp and z; = aU’(a(a‘c(BoerT) — Boe'T)/ A1, A
sketch of the optimized incentive fee appears in Figure 1. Notice that the manager’s
payoff is a discontinuous function of the pricing kernal, (7.

With Bo/({r as the benchmark, the form of the optimal policy is similar. Let A2
solve ECri(ACr, Bo/Cr) = Xo and let g(¢1) = v/(£(Bo/(1), Bo/(r) — A1

Proposition 2 Under assumption (7), the optimal policy for problem (6) with bench-"
mark By = Bo/(T is

X’%‘ = [(I(’\2CT/Q) - K)/a + BO/CT]I{CT<25} )

8



where zy is the unique zero of g.

Proof Given proposition (1), it remains only to show that g((r) >0 <= (1 < zy,
for some constant z,. g cannot be nonpositive everywhere, by construction of Az, and

g(¢r) = —o0 as (g — oo, so, by continuity, g must have a zero.

Bo/(/ ~ Ag(1 _Bo/ér_

g(¢r) = glér) ik

(Bo/¢r)

so, whenever ¢ < 0, g is decreasing. Therefore, g has a unique zero, 2z, and g({1) >

0 < (r<a2z.

5 Examples of Optimal Trading Strategies

We now take the benchmark to be either the riskless asset or the market portfolio and
derive closed-form expressions for the manager’s optimal trading strategy in the cases
of constant absolute and relative risk aversion. At issue is whether or not we may
use Ito’s lemma to obtain a stochastic differential equation for the optimal portfolio
value process, X;, despite the fact that X7 is a discontinuous function of (r. With
both benchmarks, final portfolio value X3 = ¥({r) for some function ¢ : (0, o) — R,
so intermediate portfolio value, X; = E(((r/(:)X5|F:), is equal to 2*(t,(;) for some
function z* : [0,T) x (0,00) — R, because ( is a Markov Process. Set z*(T,¢) = %(¢).
If the function z* : [0,7T] x (0,00) — R were continuous on [0, 7] X (0,00) and C*?
on [0,T) x (0,00), then we could apply Ito’s lemma to get an expression for dz* and
equate the resulting diffusion coefficient with the quantity 7o from (2) to arrive at the

equation

7‘(; = p(t7<t) = —CtCCZ(t’Ct)Z—l# ) (8)

where p : [0,T) x (0,00) — R", z} is the partial derivative of z” with respect to its-

second argument, and the matrix ¥ = oo’ is the covariance matrix of instantaneous



stock returns.”

In the case of the manager’s optimal policy, z*(T, -) is not continuous. Nevertheless,
in the cases of constant absolute and relative risk aversion, z* is C** on [0, T') x (0, ),
o (2) holds, with X = X* and 7~ defined by (8), for all t < T. In addition, for
all values of ¢ # z, ¢ = 1 for the riskless benchmark and + = 2 for the market
benchmark, z*(-,¢) is continuous on [0,7]. Furthermore, p(-,¢) defined by (8) has a
continuous extension to [0,T]. Letting 7* be given by this extension, we have X7 =
Xo+ [T(rX> +7¥'u)ds + JT 2% dW, a.s. because the equality holds forallt < T and

both the wealth process and the integrals are almost surely path-continuous.

5.1 Constant Relative Risk Aversion

Let U(X) = £=" where A> 0 and A # 1.

5.1.1 The Riskless Portfolio as Benchmark

For this section, set By = Boe’T. Then portfolio value is the process

1 _ = (T-t)( K e T 1A 8P (T~t)(1-4)/247 ~1/A
X, =e¢ (Br — Z)N(dl,t) +(———)"""e (A1le) VAN (dayt)

«

and the manager’s optimal trading strategy is

e L R CW)

—r(T-1) (Mz/a)™ VA - K N'(dy4) 51y
A e TV e

where N is the standard cumulative normal distribution, dy; = ln(ZI/Ct)JIrIE)TI_\-/l%/Z)(Tﬁ,

and dgyt = dl,t -+ ||0||\/T - t/A
We can show that as (; — 0, X} — 400, H7rtH — 400, and —% — 2—:—“. On the

other hand, as (; — 400, X} — 0, 7} — 0, but ||z ]|——>oo

7Similar arguments appear in Harrison and Pliska (1981, Subsection 5.3), Pliska (1986, Section 3),
Karatzas, Lehoczky, and Shreve (1987, Section 7), and Karatzas (1989, Example 5.6).

10



5.1.2 The Market Portfolio as Benchmark

Now set By = Bo/(r. Then portfolio value is the process
(-t K e T~ 1A olR(T—t)(1-4)/24 ~1/A
X} = (Bo/G:)N(ds,e)—e ™I —N(da)+(——)"""e (A2€e) T N (dyyr)

and the manager’s optimal trading strategy is

e (X (BafCIN () + TN ()
o—(T=1) (Maz2/e) M — K p N'(ds,) -1
+ ( a + Bo/ 2)||9||\/_— + (Bo/C)N(ds,)}E™ 4

Where'dS,t = In(z/Co)+(r—JII/2)(T~ t) dyy = ds;: + HGH\/—_—/A and ds: = dz: +

HeNvT -t
161|vT —t.
As (; — 0, X? = 400, ||7?|| = +o0, and —% goes either t

if A>1. Yetas (; — 400, X2 — 0, 77 —= 0, but HY%H — 0.

5.2 Constant Absolute Risk Aversion

Now let U(W) = —e~4" where 4 > 0.

5.2.1 The Riskless Portfolio as Benchmark

For this section, set By = Boe'T. Then portfolio value is the process

ol VT =% 0,

X} =i ‘{[ (ln/\—,5+(r—llf9ll [2)(T—t)+Br—K/a]N(dy )+~ ———

and the manager’s optimal trading strategy is

71‘1, — e—r(T—t){N(d;.,t) Nl(dll t) 1 A
‘ aA 1611W/(T aA "Nz

_ In(=/¢)+(r=11012/2)(T 1)
where d; , = == .
o-lu

. ' v .
In this case, as (; — 0, X}’ — 400, 7} — =7*, and )—’;ﬁv — 0, while as {; — -+o0,
t

1
X' = 0,7 =0, but ||—}%—,|| — oo.

11



5.2.2 The Market Portfolio as Benchmark
Now set Br = By/(r. Portfolio value is the process

X¥= TS (r = OIF/2)(T ~ )+ ~K/a]N(d,)

2e
—r(T—t) —
HBofGNd) + VT

N'(d3,,),

and the manager’s optimal trading strategy is
2 _ 6"‘T")N(d'1,t) TON(dy, t)

T, = oA ( O/Ct) ,t WH /——t aAl /\/

In(z r—|10]12/2)(T-
where d; = SSLAEIAEN and by, = &+ VT 7.

Here, as (; — 0, X¥ — +oo, [|[7¥|| — oo, and =% 2, — 1, while as {; — +oo,

K/CH'C/Zz]}E Ky

' ’ 2!
X? =0, 77 — 0, but || 5
¢t

In all cases, when the portfolio value is very high so that the manager is deep in the

|| — oo.

money, his portfolio choice looks like the choice he would make if the performance fee
were linear, that is, if he were maximizing EU[a(X7 — Br) + K|. For instance, with

the riskless asset as benchmark and constant relative risk aversion, the proportional

The effect of the convexity of the incentive fee becomes dramatic as wealth level
falls to zero. As the manager gets farther out of the money, he takes on as much risk

as possible, subject to the constraint that wealth must be nonnegative (in all cases,

l T

zy)
function of asset value for the case of constant relative risk aversion and the riskless

— 00, even though 77 — 0). To illustrate, Figure 2 plots asset volatility as a

benchmark.

The manager’s trading position becomes very unstable if he is near the money as the
evaluation date draws near. As (; vibrates around the critical point z;, the manager’s,
portfolio 7™ oscillates between zero and a strictly positive value. Thus, small changes
in the value of the market portfolio precipitate large trades as the manager alternates

between the desire to gamble and the need to remain solvent.

12



6 Inefficiency of the Incentive Fee Contract

Though we focus primarily on the manager’s investment problem, our results have
some implications for contract theory. We show below that the incentive fee is an
expensive way to provide the manager with a given level of expected utility because it
forces the manager to bear substantial risk in order to extract value from the contract.
If the client is a profit-maximizer, a simple linear fee would be more efficient. This
raises the question of why corporate shareholders so commonly compensate executives
with options instead of restricted shares of stock. Although the principal-agent litera-
ture does not say that convex sharing rules are necessarily best,® the wide-spread use
of option-like compensation suggests that options have an advantage over stock that
outweighs this inefficiency. Perhaps they better motivate the manager to exert effort

on the client’s behalf.

Corollary There ezists a linear performance fee that has lower cost to the client than

the incentive fee and gives the manager greater expected utility.

Proof Letp = P{X; > 0}and let o = a — pBy/Xo. Under any investment policy,
the linear fee o’ X1, has the same market value as the optimized incentive fee. Under
the optimal policy, this fee gives the manager strictly greater expected utility. Indeed,
letting y = o’ X1 + K, the manager’s problem is

max EU(y)
subject to  E(ry < o(Xo — pBo) + K
and y>K. (9)
This is just like the incentive fee problem, (5), without the constraint on the probability

of bankruptcy. Relazing that constraint allows the manager to achicve a better policy.

Reducing o just slightly will still leave the manager better off than he is under the

incentive fee and will cost the client less.

8The optimal shape of the sharing rule can be arbitrary. See Holmstrom and Hart (1987).
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Figure 1

The Optimal Policy for the Manager’s Problem
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Figure 2

Asset Volatility vs. Asset Value
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