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Abstract

Performance-sensitivity of compensation schemes for portfolio managers is well ex-

plained by classic principal-agent theory as a device to provide incentives for managers

to exert effort or bear the cost of acquiring information. However, the majority of

compensation packages observed in reality display in addition a fair amount of con-

vexity in the form of performance-related bonus schemes. While convex contracts may

be explained by principal-agent theory in some rather specific situations, they have

been criticized, both by the financial press as well as the academic literature, on the

grounds that they may lead to excessive risk-taking. In this paper, we show that con-

vex compensation packages, though likely to be myopically not optimal, may serve as a

device to extract information about the ex-ante uncertain type of portfolio managers.

Optimal contracts are thus determined by the trade-off between maximizing short-run

expected returns on one hand, and long-run informational benefits on the other. In

a discrete-time model, combining dynamic principal-agent theory with the theory of

learning by experimentation, we characterize optimal incentive schemes and optimal

retention rules for fund managers, consistent with empirical observations.

JEL Classification: C61, D82, D83, G11

Keywords: Fund Manager Compensation, Portfolio Choice,

Asymmetric Information, Learning by Experimentation



1 Introduction

Compensation contracts between investment funds or banks and their portfolio managers in

recent years have become a focus of attention for both academic research as well as public

interest. Principal-agent theory addresses the design of optimal compensation contracts in

the context of the moral hazard or adverse selection problems that result from the non-

verifiability of the actions taken by the agent or the unobservability of the agent’s type.

Compensation contracts serve as mechanisms to provide incentives for the agent to exert

effort or to acquire costly information. Therefore, the compensation received by the agent

must depend on some verifiable measure of performance which, in the case of portfolio

management, is typically given by the return achieved on the managed portfolio.

However, the overwhelming majority of compensation packages observed in reality consist

of a flat base salary plus an optional bonus which is paid only if the manager’s performance

exceeds some given benchmark. In other words, the compensation received by the manager

is typically a (weakly) convex function of the performance measure, much like the pay-off

of a call option, see for example Oyer (1998). In the existing principal-agent literature,

there are essentially two situations in which optimal compensation contracts may turn out

to be convex: First, if the agent’s preferences exhibit a higher level of risk-aversion than

the principal’s, convexity may be required to align the agent’s preferences with those of

the principal. Second, if the agent incurs increasing marginal dis-utility of exerting effort,

(or increasing marginal cost of acquiring information,) optimal contracts may be convex to

provide appropriate incentives. For example, in a model in which the dis-utility of effort

is given by a convex function, Stoughton (1993) shows that optimal contracts are in fact

quadratic. However, in cases where the agent’s actions affect both the mean and the variance
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of outcomes, convex incentive schemes will most likely induce excessive risk-taking. For

example, in a model in which the agent can choose among investment projects of different

risk, Lambert (1986) shows that contracts designed to extract effort in fact lead to over-

investment in the risky project.

In this paper, we take a different approach to determining the structure of optimal compen-

sation contracts for portfolio managers. Rather than viewing compensation schemes merely

as devices to extract effort, we focus on their informational aspects. In doing so, we com-

bine the principal-agent literature with the theory of learning by experimentation. More

specifically, we show how convex compensation contracts may serve as devices to extract

information about the agent’s ex-ante uncertain type, despite the fact that such contracts

may lead to excessive risk-taking and thus may not be optimal myopically.

Evidence for persistent differences in relative fund performance has been found, among

others, by Goetzmann and Ibbotson (1994), Brown and Goetzmann (1995), and Gruber

(1996). Moreover, Chevalier and Ellison (1998) find significant differences in performance

even on the level of individual managers. In other words, certain portfolio managers seem

to possess superior skill in selecting optimal portfolios, or have better access to private

information. In our model, such differences in skill or information will be reflected in the

manager’s type. We postulate that the effect of type on performance will be stronger the

higher the level of risk involved. The intuition is that private information obviously plays a

stronger role when investing in high-risk stocks rather than, say, Treasury securities. One

might argue that at the same time as higher risk increases the effect of the agent’s type on

performance, it also makes the information contained in observed performance more noisy.

While this certainly creates an interesting trade-off for the principal, it will not be the focus of

the analysis developed here. In this paper, we show how compensation schemes can be used
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to make portfolio managers reveal their true type by inducing them to invest aggressively.

Obviously, this informational benefit comes at a cost, since the portfolios chosen by managers

under such incentive schemes may not be optimal in the short run. Thus, the long-run

informational benefits of compensation schemes are traded off against the loss incurred by

deviations from short-run optimality. This type of trade-off is the characterizing feature of

the literature on “learning by experimentation”; see for example Aghion, Bolton, Harris,

and Jullien (1991) or Keller and Rady (1999). It is worth noting that the results developed

in this paper do not only apply to portfolio management. In any principal-agent situation

in which agents’ types have an effect of performance that becomes more pronounced with

the risk taken, the principal faces the same type of trade-off between the benefits and the

cost of experimentation.

Casual observations made on the trading floors of large banks seem to suggest that these

banks indeed offer extremely aggressive bonus schemes especially to more junior portfolio

managers. While this may seem irrational at first, this paper offers the explanation that such

bonus schemes may be used as screening devices to separate the “good” portfolio managers

from the “bad” ones. Empirical evidence in support of this explanation is manifold: Both

Benston (1985) and Khorana (1996) report a significantly negative relationship between

performance and management turnover, which indicates that performance is indeed used

as a screening device. Moreover, Khorana (1996) finds that return risk increases prior to

the replacement of a manager. While most authors attribute this observation to “window

dressing” or “herd behaviour” as studied by Lakonishok, Shleifer, Thaler, and Vishny (1991)

and Scharfstein and Stein (1990), our paper reverses the direction of causality: It is not the

impending threat of dismissal that causes managers to take on more risk, but instead the

increase in risk makes dismissal more likely.
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We develop a disctrete-time, infinite-horizon model in which risk-neutral agents (portfolio

managers) may be hired by a single, risk-averse principal to manage the principal’s invest-

ment funds. Contracts between an agent and the principal last for one period and specify

the compensation that the agent receives, contingent on the return achieved. Agents are of

different types according to their ability to forecast returns, but types are not observable by

the principal ex ante. Instead, the principal forms beliefs about the agent’s type, conditional

on observed returns. Based on these beliefs, the principal may decide to fire and replace

the agent at the end of any period. In other words, management turnover is endogenously

determined on the basis of performance. This adds to the existing literature on learning

by experimentation, where the environment in which learning takes place is either fixed or

changes exogenously. To keep this paper short, we restrict the analysis to the case in which

the compensation scheme is fixed over time. The implications of allowing the principal to

adjust the contract according to the evolution of beliefs is dealt with in a second, forthcom-

ing paper. We will however mention the corresponding results whenever we believe them

to be of interest. While hired by the principal, agents will choose a portfolio strategy such

as to maximize expected future compensation, taking into account the possibility of being

fired. The principal on the other hand chooses a compensation scheme and firing rule such

as to maximize expected utility.

There have been numerous studies that focus on principal-agent interactions in dynamic

environments, for example Radner (1985), Fudenberg, Holmstrom, and Milgrom (1986), or

Laffont and Tirole (1988), to name but a few. However, the majority of these analyze

the design of optimal compensation contracts in the presence of moral hazard or adverse

selection problems, without addressing the principal’s decision whether to retain or replace

agents. The latter in turn has been studied in Radner (1986), and Banks and Sundaram
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(1998). However, in these models the compensation contract is taken as exogenously given,

and the focus lies entirely on the optimal retention rule. In particular, the only incentive

mechanism is the threat of being fired, which plays only a marginal role in our paper. To the

best of our knowledge, our paper is the first to combine dynamic adverse selection with the

theory of learning by experimentation to simultaneously address the questions of optimal

contract design and optimal retention. We thus add to the existing literature by showing

how the principal can use compensation contracts not only as incentive mechanisms but

also to control the informativeness of observed outcomes. Optimal contracts are determined

by the trade-off between maximizing the efficiency of the retention rule on one hand, and

maximizing short-run expected returns on the other.

We classify compensation schemes according to the risk of the portfolio chosen by the agent.

More specifically, by an “aggressive” contract we mean one that induces agents to select

high-risk portfolios, while a “conservative” contract induces agents to invest in lower-risk

assets. In the context of the compensation packages observed in reality, the more convexity

is contained in a contract, the more aggressive it is. Myopically, in the absence of any long-

run benefits from learning, the optimal contract will most likely be conservative. In other

words, aggressive schemes can be optimal only on grounds of their potential informational

advantages, despite their myopic inferiority.

In our model, the problem of moral hazard is largely eliminated, since the assumed return

distribution permits writing contracts that determine the agent’s actions unambiguously.

However, the principal faces a problem of adverse selection since the agent’s type is ex-ante

unknown. We show that “separating” contracts, which are accepted only by good agents and

rejected by bad ones, are generally not feasible. In other words, any contract designed to be

accepted by good agents will necessarily also be attractive to bad ones. Thus, the first-best
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outcome for the principal is generally not implementable. In fact, while in equilibrium good

agents will receive no more than their reservation utility, bad agents may extract additional

rents. In other words, to ensure that good agents are willing to accept the contract, the

principal faces agency costs in form of paying “too much” to bad agents.

As a consequence, good agents act myopically , despite the risk of being fired. We believe

this to be an accurate albeit slightly stylized description of the observation that investment

funds or banks are known to be very reluctant to disclose the reasons for replacing a portfolio

manager, since this would cast a bad light on their own reputation. Indeed, Jensen and

Murphy (1990) report that “penalties associated with dismissals are very small”. However,

since bad agents can extract extra rents from being employed by the principal, the threat

of being fired creates an incentive for bad agents to mimic good ones. In order to deter bad

agents from doing so, they must be compensated for the loss they incur when fired. This

constitutes additional agency costs the principal will have to bear.

Due to the informational asymmetry between good and bad agents, the behaviour of bad

agents will be more sensitive with respect to the type of compensation package offered. More

specifically, an aggressive contract is most likely to make bad agents take on excessive risk,

while the behaviour of good agents is largely unaffected. But bad agents, by definition, are

the ones most likely to produce inferior returns when investing aggressively. Therefore, if

it was not for any potential informational benefits, the principal would always be better off

choosing a conservative contract. On the other hand however, bad agents are more likely to

reveal their type when they invest aggressively. In fact we show that the more severe the

myopic inferiority of aggressive contracts, the higher their informational advantage. Thus,

the principal must trade off short-run utility maximization against long-run informational

benefits.
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We show that the dynamics of the agent’s type and the principal’s beliefs can be described

by a Markov process on a discrete state space. This enables us to quantify explicitly the

informational benefits of different contracts, and to establish necessary and sufficient con-

ditions for certain types of contracts to be optimal. We derive comparative statics results

relating the type of optimal contract to various parameters of the model: First, aggressive

contracts are more likely to be optimal the higher the unconditional expected return on the

risky assets, since this makes the aggressive scheme “less costly” in terms of expected utility,

while its informational content remains unchanged. Second, aggressive contracts are less

likely to be optimal the higher the level of the principal’s risk-aversion, since risk-aversion

increases the utlity loss of aggressive contracts. Finally, aggressive contracts are more likely

to be optimal the higher the likelihood of picking a good agent at random. In other words,

if it is easy to find good agents, it is worth bearing the cost of experimentation to detect

and fire bad agents as soon as possible.

Although a formal treatment of the dynamic case in which the principal is allowed to change

the offered contract is deferred to a subsequent paper, we believe some of the the results

to be worth mentioning here. As discussed earlier, aggressive contracts are more useful

when the uncertainty about the agent’s true type is high. Therefore, the optimal dynamic

compensation scheme typically starts off with an aggressive contract and becomes more

conservative as the principal grows more confident regarding the agent’s type.

The predictions of this paper are consistent with the empirical evidence: First, our results

suggest that compensation schemes should be more aggressive in market segments in which

returns are more risky. Also, compensation packages should be more aggressive whenever

there is higher uncertainty regarding portfolio managers’ true ability. This argument may in

fact be reversed to estimate the level of uncertainty perceived by market participants from
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the types of contracts observed. Finally, our results suggest that compensation schemes

should be more aggressive for more junior portfolio managers and become increasingly con-

servative with increasing seniority. This is consistent with the observation that bonuses make

up a much higher fraction of total salary packages for younger portfolio managers, while se-

nior managers often receive very high base salaries and their bonuses are often guaranteed.

Moreover, consistent with the predictions of our paper, turnover is much higher amongst

junior portfolio managers.

The remainder of this paper is organized as follows; Section 2 outlines the model and in-

troduces the notation. In Section 3, we characterise the dynamics of the principal’s beliefs

under different assumptions regarding the agent’s strategies. Conditions under which these

types of strategies are indeed optimal are derived in Section 4. Combining the results of the

two preceding sections, we characterize optimal first-best and second-best contracts in Sec-

tion 5, and establish conditions under which experimentation (deviations from the myopic

optimum) is optimal. Section 6 concludes.

2 The Model

Trading takes place at discrete times t = 0, 1, 2, . . . . By “period t” we mean the time

interval from time t up to time t+ 1. Two assets are traded, a risk-free “bond” which yields

a deterministic gross return R0 per period, and a risky asset. In any given period t, the risky

asset yields a random return R(t) which is realized at the end of the period. The distribution

of R(t) depends on the outcome of some exogenous factor S(t). While S(t) might be known

to some agents at time t, it is not publically observable and cannot be contracted upon.
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Since S(t) conveys information about the distribution of R(t), we will refer to it also as

the period-t “signal”. For expositional clarity, we will consider a very simple specification

of the return distribution and information structure. While the results developed in this

paper can be shown to hold even in much more general scenarios, we believe that the simple

specification outlined below allows better insight into the mechanisms behind those results.

2.1 Information Structure and Return Distribution

In any given period t, the gross return R(t) on the risky asset takes on one of three given

values, R−, R0, or R+, with R− < R0 < R+. The signal S(t) on the other hand is assumed

to take on either of two values, S− or S+. We call S− the “bad signal” and S+ the “good

signal”. For k ∈ {−,+} denote by qk the unconditional probability that S(t) = Sk, and for

j ∈ {−, 0,+} let qkj be the probability that R(t) = Rj, conditional on S(t) = Sk. To simplify

matters further, we make the

Assumption 2.1 A good outcome can only occur following a good signal, while a bad out-

come is only possible when the signal was bad. Formally,

q+
− = 0, and q−+ = 0.

Consequently, we can represent the distribution of returns by a simple two-stage binomial

lattice (Figure 1). This assumption in particular implies that observing either R(t) = R− or

R(t) = R+ reveals the signal with certainty. Although this is a somewhat “extreme” feature

of the model, preliminary results using “trinomial” branching indicate that the qualitative

conclusions of this paper remain true also in more general scenarios.
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Figure 1: Binomial Model of Return Distribution

To conclude this section, let q∗j for j ∈ {−, 0,+} denote the unconditional probability of

outcome R(t) = Rj. Evidently,

q∗+ = q+ · q+
+, q∗0 = q+ · q+

0 + q− · q−0 , and q∗− = q− · q−−.

Let ER(t) denote the unconditional expected return in period t. Note that we do not

necessarily assume ER(t) > R0. In other words, we do not require a risk-premium on

“unhedged” returns. The intuition for this is that the downside risk inherent in R(t) can be

avoided by informed agents upon observing S(t).
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2.2 Agents

There is a continuum of risk-neutral agents, and any given agent can be either of type θb or

of type θg. We refer to agents of type θg as “good” agents and to those of type θb as “bad”

agents. Denote by π0 the unconditional probability that any randomly chosen agent is of

type θg. The difference in agents’ types concerns their skill in acquiring information about

the return on the risky asset. We think of good agents as having better access to private

information or as possessing superior skills in interpreting public information. We model

this by making the

Assumption 2.2 Good agents observe the signal S(t) at the beginning of each period t,

while bad agents do not possess any additional information.

Consequently, good agents base their investment decisions on the conditional return distribu-

tion qkj , given the observed signal S(t) = Sk, while bad agents “know” only the unconditional

distribution q∗j . While this assumption again may seem extreme, relaxing it makes the model

far less tractable. Numerical simulations seem to indicate however that the results of this

paper remain true under more general specifications, as long as good agents possess some

informational advantage in forming return predictions.

Agents may be hired by the principal to manage the principal’s investment portfolio. If

employed in any given period t, an agent chooses a portfolio by investing a fraction α(t) of

the available funds in the risky asset and the remaining 1− α(t) in the risk-free asset. We

restrict α(t) to take values in [0, 1], that is we do not allow short sales. The portfolio return
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realized at the end of the period is hence

Z(t) = R0 + α(t) (R(t)−R0) . (1)

We assume that the agent’s choice α(t) is not verifyable, so that compensation contracts

can be written on returns only. This is consistent with the majority of contracts observed in

reality, where compensation schemes for portfolio managers typically consist of a flat base

salary plus an optional return-dependent bonus. More specifically, a compensation contract

is a non-negative, non-decreasing function w : IR−→IR, so that the compensation received

by the agent in period t is given by w (Z(t)). Let U i
0 denote the value of the outside option

for an agent of type θi. Since agents are risk-neutral, they will choose a strategy α(t) such

as to maximize expected future income,

U i = E

[ T−1∑
t=0

βtw (Z(t)) + βTU i
0

]
, (2)

where β is the agent’s co-efficient of time preference, and T is the number of periods the agent

remains employed (we do not rule out the case T = ∞). Note that T is ex-ante random,

since the principal’s decision whether or not to replace the agent depends on realized returns.

2.3 Principal

Denote by θ(t) the true type of the agent hired by the principal during period t. The principal

cannot directly observe θ(t), but forms beliefs π(t) based on the available information. More

specifically, π(t) is the subjective probability that θ(t) = θg. At the end of period t, the

principal observes the portfolio return generated by the agent, Z(t), and updates beliefs

accordingly. The principal may then choose to fire and replace the agent.
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The principal’s preferences are given by a time-separable, non-decreasing, weakly concave

von Neumann-Morgenstern utility function v : IR−→IR. In other words, the principal will

choose a compensation scheme and a firing rule such as to maximize expected utility

V = E

[ ∞∑
t=0

βtv (Z(t))
]
, (3)

where β is the principal’s co-efficient of time-preference. Note that in a slight abuse of

notation, we use the same symbol β for both agent and principal, without postulating that

they be necessarily equal. Note also that we do not require the utility function v to be

strictly concave, that is we do not rule out the case where the principal is risk-neutral.

3 Dynamics of Beliefs

In this section, we will characterize the dynamics of the principal’s beliefs, π(t), under various

assumptions regarding the strategies chosen by agents of either type. More specifically, for

i ∈ {b, g} and k ∈ {−,+} let αik denote the portfolio that would be chosen by an agent of

type θi after having observed signal Sk. Obviously, since only good agents observe the signal,

we have to impose the restriction αb+ = αb− =: αb on bad agents’ strategies. Throughout

this section, we will take the agent’s strategies as given and analyze the resulting dynamics

of beliefs. The circumstances under which certain strategies are in fact optimal will be

addressed in the next section. We begin by classifying possible strategy combinations.
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Definition 3.1 (Classification of Strategies) A good agent’s strategy (αg+, α
g
−) is called

“normal” if αg+ > αg−, and “standard normal” if αg+ = 1 and αg− = 0. Moreover, a bad

agent’s strategy αb is called . . .

(a) “aggressive mimicking” if αb = αg+ 6= αg−, and

(b) “conservative mimicking” if αb = αg− 6= αg+.

Finally, we call a bad agent’s strategy “separating” if it is not mimicking.

In other words, a good agent’s strategy is normal if a larger fraction of the avialable funds

is invested in the risky asset upon receiving a good signal than in the case of a bad signal.

The distinction of bad agents’ strategies determines the informativeness of observed returns,

which we will discuss in greater detail in the following sections.

3.1 Bayesian Updating of Beliefs

For the remainder of this section we will assume that good agents always play the standard

normal strategy, while bad agents follow either of the mimicking strategies. More specifically,

by the “Aggressive Regime” we mean the case in which the good agent follows a standard

normal and the bad agent an aggressive mimicking strategy, and by “Conservative Regime”

the analogous case with conservative mimicking. We will discuss later (see Section 4) the

circumstances under which these strategies are indeed optimal. Note that in either regime,

the only possible return outcomes are the “primitive” returns, i.e. Z(t) ∈ {R−, R0, R+}. For

i ∈ {b, g} and j ∈ {−, 0,+} denote by pij the probability of observing outcome Z(t) = Rj

14



conditional on the agent being of type θi. Tables 1 and 2 list these probabilities for the two

regimes.

Proposition 3.2 (Belief Updating) Suppose the principal’s beliefs at the beginning of pe-

riod t are π(t). The Bayesian posterior, conditional on observing outcome Z(t) = Rj, is then

given by Tjπ(t), where the updating operator Tj is defined as

Tjπ :=
π

π + κj(1− π)
,

with κj := pbj/p
g
j , and κj = +∞ whenever pgj = 0.

Proof: Bayes’ Rule.

Remark: The likelihood ratio κj determines the direction in which beliefs are updated.

More specifically, κj > 1 implies Tjπ < π, while κj < 1 implies Tjπ > π. Intuitively, κj > 1

corresponds to a return outcome which is more likely to be generated by a bad agent rather

than a good agent (pbj > pgj ). Hence, observing such an outcome makes it less likely that the

agent is of the good type, so that beliefs are corrected downwards (Tjπ < π). The converse

is true for κj < 1. Also note that κj = 0 implies Tjπ = 1, and κj = +∞ implies Tjπ = 0.

These cases correspond to outcomes which reveal the agent’s type with certainty. Tables 1

and 2 summarize the updating mechanics for the two regimes.

3.2 Markovian Dynamics of Beliefs and Types

We wish to describe the dynamics of the system in terms of a Markov process. From Tables

1 and 2 we see that the transition probabilities of beliefs depend not only on current beliefs,
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j pgj pbj κj Tjπ

+ q+ · q+
+ q+ · q+

+ = 1 = π

0 q+ · q+
0 + q− q+ · q+

0 + q− · q−0 < 1 > π

− 0 q− · q−− +∞ = 0

Table 1: Belief Updating, Aggressive Regime

j pgj pbj κj Tjπ

+ q+ · q+
+ 0 = 0 = 1

0 q+ · q+
0 + q− 1 > 1 < π

− 0 0 — —

Table 2: Belief Updating, Conservative Regime

π(t), but also on the agent’s true type, θ(t). Since therefore we cannot expect the process

of beliefs alone, π(t), to be markovian, we have to consider instead the bivariate process of

types and beliefs, (θ(t), π(t)). To characterize the dynamics of this process, we will proceed

in two steps: First, we consider the case in which the principal hires an agent once and for

all, i.e. θ(t) ≡ θ(0) for all t. Second, we determine the principal’s optimal policy of firing

and replacing agents and analyse the manner in which this affetcs the dynamics of beliefs

and types.

From Tables 1 and 2 we see that any outcome other than Z(t) = R0 either produces no

information at all (Tjπ = π), or reveals the agent’s type with certainty (Tjπ ∈ {0, 1}).

Hence, starting from any arbitrary belief π, the only possible values for the updated beliefs

are π itself, T0π or the extreme values zero and one. Motivated by this observation, we define

πn := T n0 π0 =
π0

π0 + (κ0)n(1− π0)
for n = 0, 1, . . .

16



A suitable state space on which beliefs “live” is hence given by E := {0, 1} ∪ {π0, π1, . . . }.

Note that the πn will be different in the two regimes. More precisely, we find that πn+1 > πn

in the aggressive regime, while πn+1 < πn in the conservative regime. The intuition behind

this is straight-forward: In the conservative regime, outcome Z(t) = R0 is more likely to

come from a bad agent, hence beliefs are shifted towards the bad type. Conversely, in the

aggressive regime, outcome Z(t) = R0 is more likely to be produced by a good agent, and

beliefs are accordingly adjusted upwards.

We show in the appendix (Proposition A.1) that the process (θ(t), π(t)) of types and beliefs

is indeed a Markov process on the state space {θb, θg} × E. The transition probabilities

are depicted in Figures 2 and 3. Evidently, the most informative event in the conservative

regime is observing a high return Z(t) = R+. This is so because in this regime bad agents

invest conservatively and will hence always produce a portfolio return of R0. Thus, observing

a high return reveals with certainty that the agent is of the good type. Conversely, in the

aggressive regime, observing a low return Z(t) = R− is most informative because a good

agent would never have invested in the risky asset upon receiving a bad signal. In other

words, in the conservative regime it is the good agents who reveal their type by producing

high returns, while in the aggressive regime it is the bad agents revealing their type through

poor performance.

It should be noted that although revelation with certainty is a consequence of the discrete

return distribution, the qualitative properties of different regimes will remain the same even

under a continuous distribution: it will always be the case that high returns in a conservative

regime indicate a good agent, while low returns in an aggressive regime indicate a bad one.

However, we view the existence of separating regimes as a pure artifact of the discrete

distribution which is not only extremely unrealistic but also not robust with respect to
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Figure 2: Dynamics of Beliefs and Types, Aggressive Regime

different distributional assumptions. Therefore, we discard the separating regimes and focus

entirely on the mimicking regimes.

3.3 Hiring and Firing

In either regime, returns generated by good agents are always at least as high as those

generated by bad agents. Therefore, we expect the principal’s value function to be increasing

in current beliefs π(t), (for a formal proof, see Proposition 5.4.) On the other hand, whenever

a new agent is hired, beliefs will be reset to the initial prior, π0. Therefore, it is optimal for

the principal to fire and replace the agent if and only if the posterior belief after observing

the most recent return falls below π0.

We show in the appendix (Proposition A.2) that if the principal follows this firing strategy,

the process (θ(t), π(t)) of types and beliefs is indeed a Markov process. The transition
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Figure 3: Dynamics of Beliefs and Types, Conservative Regime

probabilities are depicted in Figures 4 and 5.

We are now ready to state the main result of this section, which characterizes the dynamics

of expected beliefs. Throughout the remainder of the paper, we will use an index m ∈ {a, c}

to indicate either the aggressive (m = a) or the conservative (m = c) regime, respectively.

Theorem 3.3 In regime m, the unconditional expectation of the principal’s beliefs can be

expressed in the form E [ π(t) ] = 1− λtm (1− π0), where

λa = 1− q∗−π0 in the aggressive regime, and

λc = 1− q∗+π0 in the conservative regime.

Proof: See Appendix A.1.
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Figure 4: Dynamics of Beliefs and Types, Aggressive Regime with Firing/Hiring

Corollary 3.4 Since π(t) is the conditional distribution of θ(t) given the principal’s infor-

mation, the law of iterated expectations implies P [ θ(t) = θg ] = 1− λtm (1− π0).

The co-efficient λm measures the benefit from learning: the lower λm, the shorter the average

time it takes the principal to find a good agent. From the definition of λm, we can identify two

distinct effects: First, λm is lower the higher the probability of hiring a good agent, π0. This

simply reflects the fact that it is easier to pick a good agent by chance the higher the fraction

of good agents is in the total population. Second, λm is also lower the higher the probability

of the event that reveals the agent’s type with certainty, (q∗− in the aggressive regime, and q∗+
in the conservative regime.) In other words, the aggressive regime performs better in finding

a good agent whenever q∗− is large in comparison with q∗+, that is whenever low returns

are more likely than high returns. On the other hand, the higher the probability of low

returns, the higher the principal’s loss of expected per-period utility when bad agents invest

aggressively. Thus, the principal must trade off the informational advantage of the aggressive
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Figure 5: Dynamics of Beliefs and Types, Conservative Regime with Firing/Hiring

regime against its inferiority in terms of myopic utility maximization. This fundamental

trade-off, typical for models of learning by experimentation, will determine which type of

regime is optimal.

4 Compensation Contracts and Portfolio Selection

In this section, we characterize the optimal strategies for agents of either type. We will es-

tablish necessary and sufficient conditions regarding the compensation scheme offered by the

principal which ensure that certain strategy combinations are optimal. From the preceding

section, we know that for a fixed compensation scheme, the probability of being fired does

not depend on the principal’s beliefs. Therefore, we can restrict our analysis to stationary

strategies, i.e. those which depend only on the agent’s type and the observed signal. In

other words, a good agent’s strategy is entirely characterised by the pair (αg+, α
g
−) of port-
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folio choices conditional on the observed signal, while a bad agent’s strategy is simply given

by the unconditional portfolio choice αb. For what follows, we fix a given compensation

scheme w. For k ∈ {−,+}, denote by wk(α) the expected compensation if the agent chooses

portfolio α, conditional on signal Sk. Evidently,

wk(α) = qkk · w (R0 + α(Rk −R0)) + qk0 · w (R0) .

Finally, denote by w(α) the unconditional expected compensation,

w(α) = q+ · w+(α) + q− · w−(α).

4.1 Good Agents

Let us fix a given strategy αb followed by the bad agent. We wish to characterize the optimal

strategy for the good agent, given the compensation scheme offered by the principal. Denote

by U g(α+, α−) the good agent’s value function for a given strategy (α+, α−), and let U g
0

denote the value of the good agent’s “outside option”.

Proposition 4.1 The good agent’s value function solves the functional equation

U g(α+, α−) = q+ · w+(α+) + q− · w−(α−) + β {νU g
0 + (1− ν)U g(α+, α−)} , (4)

where ν denotes the probability of being fired in any given period.

Remark: The firing probability ν depends of course also on the strategies chosen by both

types of agent. More specifically, ν = pg0 whenever α+ = αb, and ν = 0 otherwise.
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Obviously, the agent will only be willing to work for the principal if the expected utility of do-

ing so is at least as high as the agent’s outside option, U g
0 . In other words, the compensation

scheme offered by the principal must satisfy the participation constraint

sup
α+,α−

U g(α+, α−) ≥ U g
0 . (5)

On the other hand, the principal will seek to find the “cheapest” contract which satisfies

this constraint, so that the constraint will be binding at the optimum. In other words, in

equilibrium good agents will be indifferent between the outside option and working for the

principal. We are now ready to characterize the good agent’s optimal strategy.

Theorem 4.2 Suppose the compensation scheme is chosen such that

q+ sup
α+

w+(α+) + q− sup
α−

w−(α−) ≡ (1− β)U g
0 . (6)

Then the participation constraint (5) is satisfied with equality, and any α∗+ and α∗− that attain

the suprema in the above expression are optimal, i.e.

U g(α∗+, α
∗
−) = sup

α+,α−

U g(α+, α−) = U g
0 .

Proof: See Appendix A.2.

This theorem simply states that good agents will act myopically , i.e. choose a strategy

(α+, α−) such as to maximize the expected per-period compensation. In other words, the

threat of being fired is irrelevant for choosing an optimal strategy. While this is not critical

for our analysis, we believe it to be an accurate albeit somewhat stylized description of the

real world, where banks or investment funds are known to be extremely reluctant to disclose

the reasons for replacing a portfolio manager. Indeed, Jensen and Murphy (1990) report

that “penalties associated with dismissals are very small”.
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4.2 Bad Agents

Analogous to the preceding section, we fix an arbitrary strategy (α+, α−) for the good agent,

and denote by U b(α) the bad agent’s value function, and by U b
0 the value of a bad agent’s

outside option. The first result is similar to the one obtained for good agents:

Proposition 4.3 The bad agent’s value function satisfies the functional equation

U b(α) = w(α) + β
{
νU b

0 + (1− ν)U b(α)
}
,

where ν is the probability of being fired.

Remark: As for the good agent, the firing probability ν depends on the strategies chosen

by both types of agent. More specifically, ν = pb− whenever α = αg+, and ν = 1 otherwise.

Obviously, a given contract will be accepted by bad agents if and only if it satisfies the

corresponding participation constraint ,

sup
α
U b(α) ≥ U b

0 . (7)

However, while any contract must necessarily satisfy the participation constraint for good

agents, this is not the case for bad agents. In fact, the principal would prefer to write a

contract which is accepted only by good agents but rejected by bad ones. However, it is

a priori not clear whether such contracts always exist. In fact we will show that if the

values of the agents’ outside options are sufficiently different across types, then the only

feasible contracts are those which are accepted by both types. Moreover, in this case only

the participation constraint for good agents will be binding. Conversely, if the participation

constraint for bad agents is binding, the contract would not be acccepted by good agents.
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In other words, the principal incurs agency costs due to the problem of adverse selection.

Before addressing this issue in more detail in the next section (Theorem 5.2), we need to

characterize bad agents’ optimal strategies:

Theorem 4.4 Suppose the compensation scheme is chosen such that

sup
α
w(α) ≥ (1− β)U b

0 . (8)

Then the participation constraint (7) for bad agents is satisfied, and any α∗ that attains the

supremum is optimal if and only if

w(α∗) ≥ w(αg+) + β(1− pb−)
{
w(α∗)− (1− β)U b

0

}
. (9)

Otherwise, αg+ is optimal.

Proof: See Appendix A.3.

Note that the last term in (9) can be interpreted as the loss the bad agent incurs by choosing

not to mimic the good agent and thus reducing the chance of remaining employed. In other

words, to deter bad agents from mimicking good ones, they have to be compensated for the

utility loss associated with the threat of being fired. This constitutes additional agency costs

that have to be borne be the principal.

We have seen that agents’ optimal strategies are entirely determined by the conditional

expected compensations wk(α). Conversely, it is easy to see that for any arbitrary functions

fk(α), a contract w can be constructed such that wk(α) ≡ fk(α). Figures 6 and 7 show

examples of contracts that implement the aggressive respectively conservative regime. Note

however that the depicted contracts need not represent the best possible way to implement
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the respective regime. In fact, the principal will choose contracts that implement the optimal

regime while minimizing the expected cost. To relate our results to the types of compensation

schemes observed in reality, we broadly classify these schemes into

affine w(z) = a0 + a1z can be either (typically conservative)

simple bonus w(z) = a0 + b(z − z0)+ always aggressive

mixed w(z) = a0 + a1z + b(z − z0)+ can be either (typically aggressive)

In particular, affine contracts are aggressive if and only if ER(t) > R0, and conservative

otherwise. Mixed contracts on the other hand can only be conservative if ER(t) < R0. In

other words, a substantial fraction of the bonus-based compensation schemes observed in

reality classify as aggressive in the context of our model.

5 Optimal Contracts

In this section, we will study the circumstances under which certain types of contracts

are optimal from the principal’s vantage point. As discussed earlier, we believe separating

regimes to be an artifact of the discrete return distribution and as such neither realistic nor

robust with respect to changes in the distribution. Therefore, we will discard these regimes

and focus entirely on the two mimicking regimes. As before, we use an index m ∈ {a, c} to

indicate either the aggressive (m = a) or the conservative (m = c) regime, respectively. For

i ∈ {b, g} and m ∈ {a, c}, let vim denote the principal’s expected per-period utility in regime

m, given that the agent is of type θi. Evidently,

vgm = q∗+v(R+) + (1− q∗+)v(R0) =: vg for both m = a and m = c, while

vba = q∗+v(R+) + q∗0v(R0) + q∗−v(R−), and vbc = v(R0).
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Figure 6: Example of an Aggressive Contract

Note that it will always be the case that vg > vbm for either regime m. Moreover, if the

principal is sufficiently risk-averse, or if ER(t) < R0, we will also have vba < vbc. This is in

fact the most interesting case, since it implies that myopically, conservative contracts are

always optimal. In other words, in this case aggressive contracts may be optimal on grounds

of their informational benefits only, despite their myopic inferiority.
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Figure 7: Example of a Conservative Contract

5.1 First-Best

Before characterizing the optimal second-best contract, it is helpful to analyse the principal’s

value function in the first-best scenario.

Proposition 5.1 Suppose the principal can observe the agent’s type ex-ante. In this case,

only good agents are hired, and the principal’s value function is given by

V ∗ =
vg

1− β
. (10)
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We will investigate below the circumstances under which it is possible to implement the

first-best outcome even if the agent’s type is not observable. More specifically, we will see

that in some cases contracts may be written that are accepted by good agents but rejected

by bad ones. In general however, we cannot expect such contracts to be always feasible.

More specifically,

Theorem 5.2 The first-best outcome can be implemented if and only if

U g
0 < (1 + q−)U b

0 . (11)

Proof: See Appendix A.4.

In other words, if the value of agents’ outside option is sufficiently different across types,

only second-best contracts are feasible. More specifically, if (11) is violated, any non-negative

compensation scheme which satisfies the participation constraint for good agents, (5), nec-

essarily also satisfies that for bad agents, (7). In fact, in equilibrium the participation

constraint will be binding only for good agents, so that bad agents can extract additional

rents at the expense of the principal. The key assumption here is non-negativity: If the

principal was allowed to write contracts that specify negative compensation at least in some

cases, the first-best outcome could always be implemented. However, since compensation

packages that require employees to pay the employer are rarely observed in reality, we main-

tain the non-negativity restriction. It is therefore essential to ask what types of second-best

contracts are optimal in cases where the first-best contract is not feasible.
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5.2 Second-Best

We begin our analysis of the second-best case by characterizing the principal’s value function

in the absence of learning. In this case, the principal faces the agency cost associated with

the unobservability of the agent’s type, without making use of the information contained in

observed returns to lower these cost.

Proposition 5.3 Without learning, the principal’s total expected utility in regime m is

V 0
m = V ∗ − A0

m with A0
m =

1− π0

1− β
{
vg − vbm

}
. (12)

In particular, the optimal contract in this case is aggressive if and only if vba ≥ vbc, and

conservative otherwise.

Thus, the principal’s value function in the second-best case can be decomposed into the

first-best value function, V ∗, minus the term A0
m, which we may interpret as agency cost .

Note first that A0
m is always positive in either regime, so that the first-best outcome indeed

dominates the second-best. Intuitively, learning should reduce agency cost; indeed we find

Proposition 5.4 With learning, the principal’s total expected utility in regime m is

Vm = V ∗ − Am with Am =
1− π0

1− βλm
{
vg − vbm

}
, (13)

where λa = 1− q∗−π0 and λc = 1− q∗+π0 are defined as in Theorem 3.3.

Proof: See Appendix A.5.
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Note that the agency cost in this case, Am, differ from the agency cost in the case without

learning, A0
m, only by the co-efficient λm. From Section 3 we know that λm measures the

benefit from learning: the higher the speed of learning, the lower λm, and the greater the

reduction of agency cost. In particular, λm = 1 corresponds to no learning at all. The size of

the agency cost is hence determined by trading off the myopic utility cost, vg − vbm, against

the benefits from learning measured by λm.

A given regime m is said to be myopically optimal if it minimizes A0
m, and optimal if it

minimizes Am. Since the speed of learning varies across regimes, it is possible that the

overall optimal regime is different from the myopically optimal one. In other words, it may

be optimal for the principal to deviate from the myopic optimum whenever the cost of doing

so is outweighed by the long-run informational benefits. Such cases are referred to as optimal

experimentation. Obviously, the optimal second-best contract will be aggressive if and only

if Va > Vc, and conservative otherwise. Using Proposition 5.4, we find

Theorem 5.5 The optimal second-best contract is aggressive if and only if

1− βλa
1− βλc

>
vg − vba
vg − vbc

, (14)

and conservative otherwise. The principal’s value function is given as in Proposition 5.4.

Note first that the right-hand side of (14) is greater than one if and only if the conservative

regime is myopically optimal (vbc > vba), and smaller than one otherwise. Conversely, the

left-hand side of (14) is greater than one if and only if aggressive contracts possess an infor-

mational advantage over conservative ones (λa < λc), and smaller than one otherwise. The

intuitive interpretation of condition (14) is straight-forward: Suppose for example that the

conservative contract is myopically optimal. In this case the right-hand side of (14) measures
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the relative utility loss incurred by deviating from the myopic optimum, while the left-hand

side measures the informational benefits from doing so. In other words, aggressive contracts

are optimal if and only if the informational gain outweighs the cost of experimentation.

Obviously, as the principal’s level of risk-aversion increases, the right-hand side of (14)

becomes larger, so that aggressive contracts are less likely to be optimal. Intuitively, risk-

aversion increases the utility loss incurred when bad agents invest aggressively, while leaving

the informational aspects unchanged. Moreover, an increase in the proportion π0 of good

agents in the total population will widen the gap between the co-efficients of informativeness,

λm. In particular, if aggressive contracts do possess an informational advantage, an increase

in π0 would amplify this advantage, thus making aggressive contracts more likely to be

optimal. On the other hand, the effects of changes in the distribution of returns are not

quite so clear cut. For example, a shift in probability from q∗− to q∗+, (increasing the expected

return on the risky asset,) will causes both sides of (14) to decrease. Whether this change

goes in favour of aggressive or conservative contracts depends on the other parameters of the

model. However, increasing the expected return on the risky asset by raising the primitive

returns Rj, has no effect on the informativeness of different regimes while reducing the cost

of experimentation, thus making the aggressive regime more likely to be optimal.

6 Conclusion and Outlook

We show how the bonus-based compensation schemes for portfolio managers observed in

reality can be justified theoretically, despite the fact that they are known to induce excessive

risk-taking. More specifically, we characterize such bonus schemes endogenously as opti-
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mal contracts in an infinite-horizon principal-agent model in which the principal may learn

about the agent’s ex-ante uncertain type by means of “optimal experimentation”. The type

of optimal contract is determined by the fundamental trade-off between short-run utility

maximization and long-run informational benefits, which is typical for models in the theory

of learning by experimentation.

The results we derive are consistent with many of the empirical findings in the area of fund

management compensation. In particular, we provide an alternative theoretical explanation

for the surprising amount of convexity contained in most compensation packages observed

in reality that is not based on agents’ risk-aversion or dis-utility of effort. Our explanation

is consistent with the observation that management turnover is inversely related to perfor-

mance, and that the variance of returns is increased in the period prior to the dismissal.

As an obvious and important extension to the work presented in this paper, we address in

a forthcoming paper the case in which the principal is allowed to change the compensation

package offered to managers according to the evolution of the principal’s beliefs. Prelim-

inary results indicate that in addition to the static regimes considered here, there will be

a “switching regime” in which the optimal contract is aggressive at first and becomes in-

creasingly conservative as the principal becomes sufficiently confident regarding the agent’s

type. These results explain why compensation contracts are increasingly conservative as

fund managers become more senior, and why management turnover is higher amongst more

junior managers. Furthermore, we will study the case in which the principal can decide what

fraction of the available funds to allocate to the agent. Intuitively, the possibility of reducing

the stakes during the experimentation phase should reduce the cost of experimentation, thus

making aggressive contracts even more attractive.
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A Mathematical Appendix

On some suitably chosen probability space, let (S(t), R(t))t=0,1,... be a sequence of serially

independent bivariate random variables, taking values in {S−, S+} × {R−, R0, R+}, with

Prob (S(t) = Sk;R(t) = Rj) = qk · qkj ; for k ∈ {−,+} and j ∈ {−, 0,+};

and let (ϑ(t))t=0,1,... be a sequence of serially independent random variables, taking values in

{θb, θg}, with Prob (ϑ(t) = θg) = π0.

Proposition A.1 Let S(t), R(t), and ϑ(t) be defined as above. Set π(0) = π0 and θ(0) =

ϑ(0). For θ(t) and π(t) given, we define recursively:

Let α(t) = αik, where i ∈ {b, g} and k ∈ {−,+} are such that θ(t) = θi and S(t) = Sk.

Define Z(t) = R0 + α(t) (R(t)−R0) and choose j ∈ {−, 0,+} such that Z(t) = Rj. Let

π(t+ 1) = Tjπ(t),

θ(t+ 1) = θ(t).

Then (θ(t), π(t))t=0,1,... is a Markov process on the state space {θb, θg} × E. The transition

probabilities are as depicted in Figure 2 for the aggressive regime, and Figure 3 for the

conservative regime.

Proof: Trivial.

Proposition A.2 Let S(t), R(t), and ϑ(t) be defined as above. Set π(0) = π0 and θ(0) =

ϑ(0). For θ(t) and π(t) given, we define recursively:

34



Let α(t) = αik, where i ∈ {b, g} and k ∈ {−,+} are such that θ(t) = θi and S(t) = Sk.

Define Z(t) = R0 + α(t) (R(t)−R0) and choose j ∈ {−, 0,+} such that Z(t) = Rj. Let

π(t+ 1) =

 π0 if Tjπ(t) < π0, and

Tjπ(t) otherwise.

θ(t+ 1) =

 ϑ(t+ 1) if Tjπ(t) < π0, and

θ(t) otherwise.

Then (θ(t), π(t))t=0,1,... is a Markov process on the state space {θb, θg} × E. The transition

probabilities are as depicted in Figure 4 for the aggressive regime, and Figure 5 for the

conservative regime.

Proof: Trivial.

A.1 Proof of Theorem 3.3

We consider the two regimes separately, omitting the index m = a, c.

Aggressive Regime: Let θ(t) be defined as in Proposition A.2. From Figure 4 it is evident

that in the aggressive regime, θ(t) is itself Markov on {θb, θg}, with transition matrix λ 1− λ

0 1

 ,

where λ = 1− π0p
b
−. Let Q be the transpose of the transition matrix. It is easy to see that

Qt =

 λt 0

1− λt 1

 .
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Let µ(t) denote the distribution of θ(t) on {θb, θg}. Obviously, µ(0) = (1 − π0, π0)′, and

µ(t) = Qtµ(0) = (λt(1 − π0), 1 − λt(1 − π0))′. Since by definition, π(t) is the conditional

distribution of θ(t) given the principal’s information, the law of iterated expectations gives

E [ π(t) ] = P [ θ(t) = θg ] = 1− λt(1− π0),

which was to be shown.

Conservative Regime: Let π(t) defined as in Proposition A.2. From Figure 5 it is evident

that in the conservative regime, π(t) is itself Markov on {π0, 1}, with transition matrix λ 1− λ

0 1

 ,

where λ = π0p
g
0 + (1 − π0)pb0. Note that in the conservative regime, pb0 ≡ 1, so that we can

simplify λ = 1−π0(1−pg0) = 1−π0p
g
+. Let Q denote the transpose of the transition matrix.

Analogous to the aggressive regime, we find

Qt =

 λt 0

1− λt 1

 .

Denote by µ(t) the distribution of π(t) on {π0, 1}. Obviously, µ(0) = (1, 0)′, and µ(t) =

Qtµ(0) = (λt, 1− λt)′. Consequently,

E [ π(t) ] = λt · π0 + (1− λt) · 1 = 1− λt · (1− π0),

which was to be shown.
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A.2 Proof of Theorem 4.2

Fix any arbitrary α+ and α−. Using Proposition 4.1 we find

U g(α+, α−) = q+w+(α+) + q−w−(α−)︸ ︷︷ ︸
≤ (1− β)U g

0

+β {νU g
0 + (1− ν)U g(α+, α−)} .

Hence, (1− β(1− ν)) · (U g(α+, α−)− U g
0 ) ≤ 0, with equality if and only if

q+w+(α+) + q−w−(α−) = (1− β)U g
0 .

This implies the desired result since β(1− ν) < 1.

A.3 Proof of Theorem 4.4

Using Proposition 4.3, we find

U b(α∗) = w(α∗)︸ ︷︷ ︸
≥ (1− β)U b

0

+ β
{
νU b

0 + (1− ν)U b(α∗)
}
.

Hence, (1−β(1− ν)) · (U b(α∗)−U b
0) ≥ 0, which implies U b(α∗) ≥ U b

0 since β(1− ν) < 1. To

prove the optimality condition, observe first that ν is the same for all α 6= αg+. It is hence

sufficient to compare U b(α) with U b(αg+) for α 6= αg+. Using Proposition 4.3 again, we find

(1− β(1− pb−)) ·
(
U b(αg+)− U b(α)

)
= w(αg+) + βpb−U

b
0 + (1− β(1− pb−))

{
w(α)− βU b

0

}
.

In other words, U b(αg+) ≥ U b(α) if and only if

w(αg+) ≥ (1− β(1− pb−))w(α) + β(1− pb−)(1− β)U b
0 .

Note that the right-hand side of the above inequality is just a convex combination of w(α)

and (1−β)U b
0 . Hence, if α∗ = αg+, the above inequality is clearly satisfied and αg+ is optimal.

Otherwise, for α = α∗ 6= αg+ the above inequality is the contraposition of (9).
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A.4 Proof of Theorem 5.2

We must have w−(1) < w(0) < w+(1) if good agents are to follow the standard normal

strategy. Due to the non-negativity assumption, we may without loss of generality assume

w−(1) = 0. We will show that if U g
0 ≥ (1 + q+)U b

0 , then the participation constraint for good

agents, (5), implies that for bad agents, (7). We hence assume

q+w+(1) + (1− q+)w(0) ≥ (1− β)U g
0 .

From Theorem 4.4 we know that (7) is satisfied at α = 0 when w(0) ≥ (1−β)U b
0 . Conversely,

if w(0) < (1− β)U b
0 , we find

q+w+(1) ≥ (1− β)U g
0 − (1− q+)w(0)

≥ (1 + q+)(1− β)U b
0 − (1− q+)(1− β)U b

0 = (1− β)U b
0 ,

so that the participation constraint for bad agents is satisfied at α = 1.

Conversely, it is easy to see that if U g
0 < (1 + q+)U b

0 , a non-negative contract can be con-

structed that satisfies the participation constraint for good agents, (5), but violates that for

bad agents, (7). This completes the proof.

A.5 Proof of Proposition 5.4

We consider the two regimes separately, omitting the index m = a, c.

Aggressive Regime: From the proof of Theorem 3.3 we know that in the aggressive

regime, the system is entirely described by the agent’s current type, θ(t). Denote by V (θg)
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respectively V (θb) the principal’s value function in either state. Using the Markov transition

matrix derived in the proof of Theorem 3.3 we find

V (θg) = vg + βV (θg)

V (θb) = vb + β {λV (θb) + (1− λ)V (θg)}

Combining these two equations it is easy to see that

V (θb)− V (θg) =
vb − vg

1− βλ
.

Since initially, the distribution of the agent’s type is given by π0, the principal’s overall value

function is hence given by

V (θg) + (1− π0) (V (θb)− V (θg)) =
vg

1− β
+

1− π0

1− βλ
(
vb − vg

)
,

which was to be shown.

Conservative Regime: From the proof of Theorem 3.3 we know that in the conservative

regime, the system is entirely described by the principal’s belief, π(t), which can only take

on the values π0 or one. Denote by V (π0) respectively V (1) the principal’s value function in

either state. Analogous to the aggressive case we find

V (1) = vg + βV (1)

V (π0) = π0v
g + (1− π0)vb + β {λV (π0) + (1− λ)V (1)}

Combining these two equations it is easy to see that

V (π0)− V (1) =
(1− π0)(vb − vg)

1− βλ
.

Since initially, the distribution of the agent’s type is given by π0, the principal’s overall value

function is simply given by

V (π0) = V (1) + (V (π0)− V (1)) =
vg

1− β
+

1− π0

1− βλ
(
vb − vg

)
,
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which is what had to be shown.
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