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Abstract

The Multiplicative Error Model introduced by Engle (2002) for positive valued
processes is specified as the product of a (conditionally autoregressive) scale factor
and an innovation process with positive support. In this paper we propose a multi-
variate extension of such a model, by taking into consideration the possibility that the
vector innovation process be contemporaneously correlated. The estimation proce-
dure is hindered by the lack of probability density functions for multivariate positive
valued random variables. We suggest the use of copula functions and of estimating
equations to jointly estimate the parameters of the scale factors and of the correla-
tions of the innovation processes. Empirical applications on volatility indicators are
used to illustrate the gains over the equation by equation procedure.
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1 Introduction

The study of financial market behavior is increasingly based on the analysis of the dy-
namics of nonnegative valued processes, such as exchanged volume, high–low range, ab-
solute returns, financial durations, number of trades, and so on. Generalizing the GARCH
(Bollerslev (1986)) and ACD (Engle and Russell (1998)) approaches, Engle (2002) reck-
ons that one striking regularity of financial time series is that persistence and clustering
characterizes the evolution of such processes. As a result, the process describing the dy-
namics of such variables can be specified as the product of a conditionally deterministic
scale factor which evolves according to a GARCH–type equation and an innovation term
which is i.i.d. with unit mean. Empirical results (e.g. Chou (2005); Manganelli (2002))
show a good performance of these types of models in capturing the stylized facts of the
observed series.

More recently, Engle and Gallo (2006) have investigated three different indicators of
volatility, namely absolute returns, daily range and realized volatility in a multivariate
context in which each lagged indicator was allowed to enter the equation of the scale
factor of the other indicators. Model selection techniques were adopted to ascertain the
statistical relevance of such variables in explaining the dynamic behavior of each indi-
cator. The model was estimated assuming a diagonal variance covariance matrix of the
innovation terms. Further applications along the same lines may be found in Gallo and
Velucchi (2005) for different measures of volatility based on 5-minute returns, Brownlees
and Gallo (2005) for hourly returns, volumes and number of trades, Engle et al. (2005)
for volatility transmission across financial markets.

Estimation equation by equation ensures consistency of the estimators in a quasi-maximum
likelihood context, given the stationarity conditions discussed by Engle (2002). This sim-
ple procedure is obviously not efficient, since correlation among the innovation terms
is not taken into account: in several cases, especially when predetermined variables are
inserted in the specification of the conditional expectation of the variables, it would be
advisable to work with estimators with better statistical properties, since model selection
and ensuing interpretation of the specification is crucial in the analysis.

In this paper we investigate the problems connected to a multivariate specification and
estimation of the MEM. Since joint probability distributions for nonnegative–valued ran-
dom variables are not available except in very special cases, we resort to two different
strategies in order to manage vector-MEM: the first is to adopt copula functions to link
together marginal probability density functions specified as Gamma as in Engle and Gallo
(2006); the second is to adopt an Estimating Equation approach (Heyde (1997), Bibby
et al. (2004)). The empirical applications performed on the General Electric stock data
show that there are some numerical differences in the estimates obtained by the three
methods: copula and estimating equations results are fairly similar to one another while
the equation–by–equation procedure provides estimates which depart from the system–
based ones the more correlated the variables inserted in the analysis.
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2 The Univariate MEM Reconsidered

Let us start by recalling the main features of the univariate Multiplicative Error Model
(MEM) introduced by Engle (2002) and extended by Engle and Gallo (2006). For ease of
reference, some characteristics and properties of the statistical distributions involved are
detailed in appendix A.

2.1 Definition and formulations

Let us consider xt, a non–negative univariate process, and let Ft−1 be the information
about the process up to time t− 1. Then the MEM for xt is specified as

xt = µtεt, (1)

where, conditionally on the information Ft−1: µt is a nonnegative conditionally deter-
ministic (or predictable) process, that is the evolution of which depends on a vector of
unknown parameters θ,

µt = µt(θ); (2)

εt is a conditionally stochastic i.i.d. process, with density having non–negative support,
mean 1 and unknown variance σ2,

εt|Ft−1 ∼ D(1, σ2). (3)

The previous conditions on µt and εt guarantee that

E(xt|Ft−1) = µt (4)
V (xt|Ft−1) = σ2µ2

t . (5)

To close the model, we need to adopt a parametric density function for εt and to specify
an equation for µt.

For the former step, we follow Engle and Gallo (2006) in adopting a Gamma distribution
which has the usual exponential density function (as in the original Engle and Russell
(1998) ACD model) as a special case. We have

εt|Ft−1 ∼ Gamma(φ, φ), (6)

with E(εt|Ft−1) = 1 and V (εt|Ft−1) = 1/φ. Taken jointly, assumptions (1) and (6) can
be written compactly as (see appendix A)

xt|Ft−1 ∼ Gamma(φ, φ/µt). (7)

Note that a well-known relationship (cf. Appendix A) between the Gamma distribution
and the Generalized Error Distribution (GED) suggests an equivalent formulation which
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may prove useful for estimation purposes. We have:

xt|Ft−1 ∼ Gamma(φ, φ/µt) ⇔ xφ
t |Ft−1 ∼ Half −GED(0, µφ

t , φ). (8)

Thus the conditional density of xt has a correspondence in a conditional density of xφ
t ,

that is
xφ

t = µφ
t νt (9)

where
νt|Ft−1 ∼ Half −GED(0, 1, φ). (10)

This result somewhat generalizes the practice, suggested by Engle and Russell (1998), to
estimate an ACD model by estimating the parameters of the second moment of the square
root of the durations (imposing mean zero) with a GARCH routine assuming normality
of the errors. The result extends to any estimation carried out on observations xφ

t (with φ
known)1 assuming a GED distribution with mean zero and dispersion parameter µφ

t .

As per the specification of µt, following, again, Engle (2002) and Engle and Gallo (2006),
let us consider the simplest GARCH–type of order (1,1) formulation, and, for the time
being, let us not include predetermined variables in the specification.

The base (1, 1) specification of µt is

µt = ω + αxt−1 + βµt−1, (11)

which is appropriate when, say, xt is a series of positive valued variables such as finan-
cial durations or traded volumes. An extended specification is appropriate when one can
refer to the sign of financial returns as relevant extra information: well-known empirical
evidence suggests a symmetric distribution for the returns but an asymmetric response of
conditional variance to negative innovations (so–called leverage effect). Thus, when con-
sidering volatility related variables (absolute or squared returns, realized volatility, range,
etc.), asymmetric effects can be inserted in the form:

µt = ω∗ + α(x
1/2
t−1 sign(rt−1) + δ∗)2 + γxt−1 I(rt−1 < 0) + βµt−1, (12)

where δ∗ and γ are parameters that capture the asymmetry. Following Engle and Gallo
(2006), we have inserted in the model two variants of existing specifications for including
asymmetric effects in the GARCH literature: an APARCH-like asymmetry effect (the
squared term with δ∗ – see Ding et al. (1993)) and a GJR-like asymmetry effect (the last
term with γ – see Glosten et al. (1993)). Computing the square, expression (12) can be
rewritten as

µt = ω + αxt−1 + γx
(−)
t−1 + δx

(s)
t−1 + βµt−1, (13)

where x(s)
t = x

1/2
t sign(rt), x

(−)
t = xt I(rt < 0), ω = ω∗ + αδ∗2 and δ = 2αδ∗.

1In raising the observations xt to the φ makes the ensuing model more similar to the Ding et al. (1993)
APARCH specification except that the exponent parameter appears also in the error distribution.
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Both specifications can be written compactly as

µt = ω + x∗′t−1α
∗ + βµt−1. (14)

where, if we assume x∗t = (xt;x
(−)
t ;x

(s)
t ) and α∗ = (α; γ; δ) we get the asymmetric

specification (13)2. The base specification (11) can be retrieved more simply taking x∗t =
xt and α∗ = α.

The parameter space for θ = (ω;α∗; β) must be restricted in order to ensure that µt ≥ 0
for all t and to ensure stationary distributions for xt. However restrictions depend on the
formulation taken into account: we consider here formulation (13). Sufficient conditions
for stationarity can been obtained taking the unconditional expectation of both members
of (14) and solving for E(xt) = µ. This implies xt stationary if

α+ β + γ/2 < 1.

Sufficient conditions for non–negativity of µt can be obtained taking β ≥ 0 and imposing
ω + αxt + γxt I(rt < 0) + δx

1/2
t sign(rt) ≥ 0 for all xt’s and rt’s. Using proposition 1,

one can verify that these conditions are satisfied when

β ≥ 0, α ≥ 0, α+ γ ≥ 0,

if α = 0 then δ ≥ 0; if α+ δ > 0 then δ ≤ 0,

ω − δ2

4

[
I(δ < 0) I(α > 0)

α
+

I(δ > 0) I(α+ γ > 0)

α+ γ

]
≥ 0.

(15)

2.2 Estimation and Inference

Let us introduce estimation and inference issues by discussing first the role of a generic
observation xt. From (7), the contribution of xt to the log–likelihood function is

lt = lnLt = φ lnφ− ln Γ(φ) + (φ− 1) lnxt − φ(lnµt + xt/µt).

The contribution of xt to the score is st =

(
st,θ

st,φ

)
with components

st,θ = ∇θlt = φ∇θµt

(
xt − µt

µ2
t

)
st,φ = ∇φlt = lnφ+ 1− ψ(φ) + ln

(
xt

µt

)
− xt

µt

,

where ψ(φ) =
Γ′(φ)

Γ(φ)
is the digamma function and the operator∇λ denotes the derivatives

2The following notation applies: by (x1; . . . ;xn) we mean that the matrices xi, all with the same
number of columns, are stacked vertically; by (x1, . . . ,xn) we indicate that the matrices xi, all with the
same number of rows are stacked horizontally



2 THE UNIVARIATE MEM RECONSIDERED 8

with respect to (the components of) λ.

The contribution of xt to the Hessian is Ht =

(
Ht,θθ′ Ht,θφ

H′
t,θφ Ht,φφ

)
with components

Ht,θθ′ = ∇θθ′lt = φ

(
−2xt + µt

µ3
t

∇θµt∇θ′µt +
xt − µt

µ2
t

∇θθ′µt

)
Ht,θφ = ∇θφlt =

xt − µt

µ2
t

∇θµt

Ht,φφ = ∇φφlt =
1

φ
− ψ′(φ),

where ψ′(φ) is the trigamma function.

Exploiting the previous results we obtain the following first order conditions for θ and φ:

1

T

T∑
t=1

∇θµt
xt − µt

µ2
t

= 0 (17)

lnφ+ 1− ψ(φ) +
1

T

T∑
t=1

[
ln

(
xt

µt

)
− xt

µt

]
= 0 (18)

As noted by Engle and Gallo (2006), first–order conditions for θ do not depend on φ. As
a consequence, whatever value φ may take, any Gamma-based MEM or any equivalent
GED-based power formulation will provide the same point estimates for θ. The ML
estimation of φ can then be performed after θ has been estimated.

Furthermore, so long as µt = E(xt|Ft−1), the expected value of the score of θ evaluated
at the true parameters is a vector of zeroes even if the density of εt|Ft−1 does not belong
to the Gamma(φ, φ) family.

Altogether, these considerations strengthen the claim (e.g. Engle (2002) for the case
φ = 1) that, whatever the value of φ, the log–likelihood functions of any one of these
formulations (MEM or equivalent power formulation) can be interpreted as Quasi Likeli-
hood functions and the corresponding estimator θ̂ is a QML estimator.

After some computations we obtain the asymptotic variance–covariance matrix of the ML
estimator

V∞ =

φ lim
t→∞

1

T

T∑
t=1

1

µ2
t

∇θµt∇θ′µt 0

0 ψ′(φ)− 1

φ


−1

.

Note that even if φ is not involved in the estimate of θ the variance of θ̂ is proportional to
1/φ. We note also that the ML estimators θ̂ and φ̂ are asymptotically uncorrelated.

Alternative estimators of φ are available, which exploit the orthogonal nature of the pa-
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rameters θ and φ. As an example, by defining ut = xt/µt−1, we note that3 V (ut|Ft−1) =
φ−1. Therefore, a simple method of moment estimator is

φ̂−1 =
1

T

T∑
t=1

û2
t . (19)

In view of (18), this expression has the advantage of not being affected by the presence of
xt’s equal to zero (cf. also the comments below).

Obviously, the inference about (θ, φ) must be based on estimates of V∞, that can be
obtained evaluating the average Hessian or the average outer product of the gradients
evaluated at the estimates (θ̂, φ̂). The sandwich estimator

V̂∞ = Ĥ
−1

T ÔPGT Ĥ
−1

T ,

where ĤT =
1

T

T∑
t=1

Ĥt and ÔPGT =
1

T

T∑
t=1

ŝtŝ
′
t, get rid of the dependence of the

submatrix relative to θ on φ altogether.

2.3 Some Further Comments

2.3.1 MEM as member of a more general family of models

The MEM defined in section 2.1 belongs to the Generalized Linear Autoregressive Mov-
ing Average (GLARMA) family of models introduced by Shephard (1995) and extended
by Benjamin et al. (2003)4. In the GLARMA model, the conditional density of xt is
assumed to belong to the same exponential family, with density given by5

f(xt|Ft−1) = exp [φ (xtϑt − b(ϑt)) + d(xt, φ)] . (20)

ϑt and φ are the canonical and precision parameters respectively, whereas b(·) and d(·)
are specific functions that define the particular distribution into the family. The main
moments are

E(xt|Ft−1) = b′(ϑt) = µt

V (xt|Ft−1) = b′′(ϑt)/φ = v(µt)/φ.

Since µt may have a bounded domain, it is useful to define its (p, q) dynamics through
a twice differentiable and monotonic link function g(·), introduced in general terms by

3We thank Neil Shephard for pointing this out to us.
4For other works related to GLARMA models see, among others, Li (1994), Davis et al. (2002).
5We adapt the formulation of Benjamin et al. (2003) to this work.
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Benjamin et al. (2003) as

g(µt) = z′tγ +

p∑
i=1

αiA(xt−i, zt−i,γ) +

q∑
j=1

βjM(xt−j, µt−j),

where A(·) and M(·) are functions representing the autoregressive and moving average
terms. Such a formulation, admittedly too general for practical purposes, can be replaced
by a more practical version:

g(µt) = z′tγ +

p∑
i=1

αi

[
g(xt−i)− z′t−iγ

]
+

q∑
j=1

βj [g(xt−j)− g(µt−j)] . (21)

In this formulation, for certain functions g it may be necessary to replace some xt−i’s by
x∗t−i to avoid the nonexistence of g(xt−i) for certain values of the argument (e.g. zeros,
see Benjamin et al. (2003) for some examples).

Specifying (20) as a Gamma(φ, φ/µt) density (in this case v(µt) = µ2
t ) and g(·) as the

identity function, after some simple arrangements of (21) it is easily verified that the MEM
is a particular GLARMA model.

2.3.2 Exact zero values in the data

In introducing the MEM for modelling non–negative time series, Engle (2002) states that
the structure of the model avoids problems caused by exact zeros in {xt}, problems that,
instead, are typical of log(xt) formulations. This needs to be further clarified here.

Considering the MEM as defined by formula (1), in principle an xt = 0 can be caused by
εt = 0, by µt = 0 or by both. We discuss these possibilities in turn.

• As the process µt is supposed deterministic conditionally to the information Ft−1

(section 2.1), the value of µt cannot be ’altered’ from any of the observations after
time t − 1: in practice it is not possible to take µt = 0 if xt = 0. Hence: or µt is
really 0 (very unlikely!) or an xt = 0 cannot be a consequence of µt = 0. As a
second observation, a possible µt = 0 causes serious problems to the inference, as
evidenced by the first–order conditions (17).

• The only possibility is then εt = 0. However, as we assumed εt|Ft−1 ∼ Gamma(φ, φ),
this distribution cannot be defined for 0 values when φ < 1. Furthermore, even re-
stricting the parameter space to φ ≥ 1, the first order condition for φ in (18) requires
the computation of ln(xt), not defined for exact zero values. In practice the ML es-
timation of φ is not feasible in presence of zeros which enforces the usefulness of
the method of moments estimator introduced above.

The formulation of the MEM considered by Engle (2002) avoid problems caused by exact
zeros because it assume εt|Ft−1 ∼ Exponential(1), the density of which, f(εt|Ft−1) =
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e−εt , can be defined for εt ≥ 0. Obviously, any MEM with a fixed φ ≥ 1 shares this
characteristic. We guess that, despite the QML nature of the θ̂ estimator in section 2.2,
when there are many zeros in the data, more appropriate inference can be obtained if we
structure the conditional distribution of εt as a mixture between a discrete component (at
0) and an absolutely continuous component (on (0,∞)).

3 The vector MEM

As introduced in Engle (2002), a vector MEM is a simple generalization of the univariate
MEM. It is a suitable representation of non–negative valued processes which have dy-
namic interactions with one another. The application in Engle and Gallo (2006) envisages
three indicators of volatility (absolute returns, daily range and realized volatility), while
the study in Engle et al. (2005) takes daily absolute returns on seven East Asian markets
to study contagion. In all cases, the model is estimated equation by equation.

3.1 Definition and formulations

Let xt a K–dimensional process with non–negative components;6 a vector MEM for xt

is defined as
xt = µt � εt = diag(µt)εt, (22)

where � indicates the Hadamard (element–by–element) product. Conditional on the in-
formation Ft−1, µt is defined as in (2) except that now we are dealing with a K– dimen-
sional vector depending on a (larger) vector of parameters θ. The innovation vector εt is a
conditionally stochastic K–dimensional i.i.d. process. Its density function is defined over
a [0,+∞)K support, with unit vector 1 as expectation and a general variance–covariance
matrix Σ,

εt|Ft−1 ∼ D(1,Σ). (23)

The previous conditions guarantee that

E(xt|Ft−1) = µt (24)
V (xt|Ft−1) = µtµ

′
t �Σ = diag(µt)Σ diag(µt), (25)

which is a positive definite matrix by construction, as emphasized by Engle (2002).

3.2 Specifications for εt

In this section we consider some alternatives about the specification of the distribution
of the error term εt|Ft−1 of the vector MEM defined above. The natural extension to

6In what follows we will adopt the convention that if x is a vector or a matrix and a is a scalar, then the
expressions x ≥ 0 and xa are meant element by element.
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be considered is to limit ourselves to the assumption that εi,t|Ft−1 ∼ Gamma(φi, φi),
i = 1, . . . , K.

3.2.1 Multivariate Gamma distributions

Johnson et al. (2000, chapter 48) describe a number of multivariate generalizations of the
univariate Gamma distribution. However, many of them are bivariate versions, not suffi-
ciently general for our purposes. Among the others, we do not consider here distributions
defined via the joint characteristic function, as they require numerical inversion formulas
to find their pdf’s. Hence, the only useful versions remain the multivariate Gammas of
Cheriyan and Ramabhadran (in their more general version, henceforth GammaCR, see
appendix C.1 for the details), of Kowalckzyk and Trycha and of Mathai and Moschopou-
los (Johnson et al. (2000, 454–470)). If one wants the domain of εt to be defined on
[0,+∞)K , it can be shown that the three mentioned versions are perfectly equivalent.7

As a consequence, we will consider the following multivariate Gamma assumption for
the conditional distribution of the innovation term εt

εt|Ft−1 ∼ GammaCR(φ0,φ,φ),

where φ = (φ1; . . . ;φK) and 0 < φ0 < min(φ1, . . . , φK). As described in the appendix,
all univariate marginal probability functions for εi,t are, as required,Gamma(φi, φi), even
if the multivariate pdf is expressed in terms of a complicated integral. The conditional
variance matrix of εt has elements

C(εi,t, εj,t|Ft−1) =
φ0

φiφj

(26)

so that the correlations are

ρ(εi,t, εj,t|Ft−1) =
φ0√
φiφj

. (27)

This implies that the GammaCR distribution admits only positive correlation among its
components and that the correlation between each couple of elements is strictly linked
to the corresponding variances 1/φi and 1/φj . These various drawbacks (the restrictions
on the correlation, the very complicated pdf and the constraint φ0 < min(φ1, . . . , φK)),
suggest to investigate better alternatives.

3.2.2 The Normal copula-Gamma marginals distribution

A different way to define the distribution of εt|Ft−1 is to start from the assumption that all
univariate marginal probability density functions are Gamma(φi, φi), i = 1, . . . , K and
to use copula functions.8 Adopting copulas, the definition of the distribution of a multi-

7The proof is tedious and is available upon request.
8The main characteristics of copulas are summarized in appendix B.
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variate r.v. is completed by defining the copula that represents the structure of dependence
among the univariate marginal pdf’s. Many copula functions have been proposed in the-
oretical and applied works (see, among others, Embrechts et al. (2001) and Bouyé et al.
(2000)). In particular, the Normal copula possesses many interesting properties: the ca-
pability of capture a broad range of dependencies9, the analytical tractability, the easy of
simulation. For simplicity, we will assume

εt|Ft−1 ∼ N(R)−
K∏

i=1

Gamma(φi, φi). (28)

where in the distribution, the first part refers to the copula (R is a correlation matrix) and
the second part to the marginals. As detailed in appendix C.2, this distribution is a special
case of multivariate dispersion distributions generated from a Gaussian copula discussed
in Song (2000). The conditional variance–covariance matrix of εt has a generic element
which is approximately equal to

C(εi,t, εj,t|Ft−1) '
Rij√
φiφj

.

so that the correlations are, approximately,

ρ(εi,t, εj,t|Ft−1) ' Rij.

The advantages of using copulas over a multivariate Gamma specification are apparent
and suggest their adoption in this context: the covariance and correlation structures are
more flexible (also negative correlations are permitted); the correlations do not depend on
the variances of the marginals; there are no complicated constraints on the parameters;
the pdf is more easily tractable. Furthermore, by adopting copula functions, the frame-
work considered here can be easily extended to different choices of the distribution of the
marginal pdf’s (Weibull for instance).

3.3 Specification for µt

The base (1, 1) specification for µt can be written as

µt = ω +αxt−1 + βµt−1, (29)

where ω, α and β have dimensions, respectively, (K, 1), (K,K) and (K,K).

The enlarged (1, 1) multivariate specification will include lagged cross-effects and may
include asymmetric effects, defined as before. For example, when the first component of
xt is x1,t = r2

t and the conditional distribution of rt = x
1/2
1,t sign(rt) is symmetric with

9The bivariate Normal copula, according to the value of the correlation parameter is capable of attaining
the lower Frechèt bound, the product copula and the upper Frechèt bound.
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zero mean, generalizing formulation (13) we have

µt = ω +αxt−1 + γx
(−)
t−1 + δx

(s)
t−1 + βµt−1, (30)

where x
(−)
t = xt I(rt < 0), x(s)

t = x
1/2
t sign(rt). Both parameters δ and γ have dimension

(K,K), whence the others are as before.

Another specification can be taken into account when the purpose is to model contagion
among volatilities of different markets (Engle et al., 2005). For example, we consider
the case in which each component of µt is the conditional variance of the corresponding
market index, so that xi,t = r2

i,t. If we assume that the conditional distribution of each
market index ri,t = x

1/2
i,t sign(ri,t) is symmetric with zero mean, the ’contagion’ (1,1)

formulation can be structured exactly as in (30) where x(−)
i,t = xi,t I(rit < 0) and x(s)

i,t =

x
1/2
i,t sign(ri,t).

The base, the enlarged and the contagion (1, 1) specifications can be written compactly as

µt = ω +α∗x∗t−1 + βµt−1. (31)

Taking x∗t = xt and α∗ = α we have (29); considering x∗t = (xt;x
(−)
t ;x

(s)
t ) (of dimen-

sion (3K, 1)) and α∗ = (α;γ; δ) (of dimension (K, 3K)), we obtain (30).

Considering formulation (31), we have θ = (ω;α∗;β). The parameter space of θ must
be restricted to ensure µt ≥ 0 for all t and to ensure stationary distributions for xt. To
discuss these, we consider formulation (30).

Sufficient conditions the stationarity of µt are a simple generalization of those showed
in section 2.1 for the univariate MEM and can be obtained in an analogous way: xt is
stationary if all characteristic roots of A = α + β + γ/2 are smaller than 1 in modulus.
We can think of A as the impact matrix in the expression

µt = Aµt−1. (32)

Sufficient conditions for non–negativity of the components of µt are again a generaliza-
tion of the corresponding conditions of the univariate model, but the derivation is more
involved. As proved in appendix E, the vector MEM defined in equation (30) givesµt ≥ 0
for all t if all the following conditions are satisfied for all i, j = 1, . . . , K:

1. βij ≥ 0, αij ≥ 0, αij + γ2ij ≥ 0 for all j;

2. if αij = 0 then δij ≥ 0; if αij + γij = 0 then δij ≤ 0;

3. ωi −
1

4

K∑
j=1

δ2
ij

[
I(δij < 0) I(αij > 0)

αij

+
I(δij > 0) I(αij + γij > 0)

αij + γij

.

]
≥ 0
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3.4 Maximum likelihood inference

Given the assumptions about the conditional distribution of εt (section 3.2.2), we have
that εt|Ft−1 has a pdf

f(εt|Ft−1) = c(F1(ε1,t), . . . , FK(εK,t))
K∏

i=1

fi(εi,t)

where fi(.) and Fi(.) indicate, respectively, the conditional pdf and cdf of the i-th com-
ponent of εt, c(.) is the density function of the chosen copula. In the case considered
here,

fi(εi,t) =
φφi

i

Γ(φi)
εφi−1

i,t exp(−φiεi,t)

Fi(εi,t) = Γ(φi;φiεi,t)

c(ut) = |R|−1/2 exp

[
−1

2
q′t(R

−1 − I)qt

]
where Γ(ζ;x) indicates the incomplete Gamma function with parameter ζ computed at x
(or, in other words, the cdf of a Gamma(ζ, 1) r.v. computed at x),

qt = (Φ−1(F1(ε1,t)); . . . ; Φ
−1(FK(εK,t))),

Φ−1(x) indicates the quantile function of the standard normal distribution computed at x.

Hence, xt|Ft−1 has pdf

f(xt|Ft−1) = c(F1(x1,t/µ1,t), . . . , FK(xK,t/µK,t))
K∏

i=1

fi(xi,t/µi,t)

µi,t

,

where

fi(xi,t/µi,t)

µi,t

is the pdf of a Gamma(φi, φi/µi,t).
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3.4.1 The log–likelihood

The log–likelihood of the model is then

l =
T∑

t=1

lt =
T∑

t=1

ln f(xt|Ft−1),

where

lt = ln c(F1(x1,t/µ1,t), . . . , FK(xK,t/µK,t)) +
K∑

i=1

(ln fi(xi,t/µi,t)− lnµi,t)

=
1

2
ln |R−1| − 1

2
q′tR

−1qt +
1

2
q′tqt

+
K∑

i=1

[
φi lnφi − ln Γ(φi)− lnxi,t + φi

(
lnxi,t − lnµi,t −

xi,t

µi,t

)]
.

= (copula contribution)t + (marginals contribution)t.

The contribution of the t-th observation to the inference can then be decomposed in the
contribution of the copula plus the contribution of the marginals. The contribution of the
marginals depends only on θ and φ, whereas the contribution of the copula depends on
R, θ, φ. This implies

∂l

∂R−1
=

1

2
(TR− q′q) ⇒ R̂ =

q′q

T
,

where q = (q′1; . . . ;q
′
T ) is a T ×K matrix. Hence the unconstrained ML estimator of R

has an explicit form.

Replacing the estimated R in the log-likelihood function we obtain a concentrated log-
likelihood

lc = −T
2

ln |R̂| − 1

2

T∑
t=1

q′t(R̂
−1 − I)qt + (marginals contribution)

= −T
2

ln |R̂| − T

2

[
K − trace(R̂)

]
+ (marginals contribution)

In deriving the concentrated log–likelihood, R is estimated without imposing any con-
straint relative to its nature as correlation matrix (diag(R) = 1 and positive definiteness).
Computing directly the derivatives with respect to the off–diagonal elements of R we
obtain, after some algebra, that the ML estimate of R satisfies the following equations:

(R−1)ij − (R−1)i.
q′q

T
(R−1).j = 0

for i 6= j = 1, . . . , K, where Ri. and R.j indicate, respectively, the i–th row and the j–th
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column of the matrix R. Unfortunately, these equations do not have an explicit solution.10

An acceptable compromise which should increase efficiency, although formally it cannot
be interpreted as an ML estimator, is to adopt the sample correlation matrix of the qt’s as
a constrained estimator of R, that is

R̃ = D
− 1

2
Q QD

− 1
2

Q .

where

Q =
q′q

T
DQ = diag(Q11, . . . , QKK).

This solution can be justified observing that the copula contribution to the likelihood de-
pends on R exactly as if it were the correlation matrix of i.i.d. r.v. qt normally distributed
with mean 0 and correlation matrix R. Using this new estimate of R, the trace of R̃ is
now constrained to K and the concentrated log-likelihood simplifies to

lc = −T
2

ln |R̃|+ (marginals contribution)

= −T
2

[
ln |q′q| −

K∑
i=1

ln(q′.iq.i)

]
+ (marginals contribution).

3.4.2 Derivatives of the concentrated log-likelihood

In what follows, let us consider λ = (θ;φ). As

∇λ ln |q′q| = 2

T

T∑
t=1

∇λq′tQ−1qt

∇λ
K∑

i=1

ln(q′.iq.i) =
2

T

T∑
t=1

∇λq′tD−1
Q qt

the derivative of lc is given by

∇λlc =
T∑

t=1

[
∇λq′t[D−1

Q −Q−1]qt +∇λ(marginals contribution)t

]
.

10Even when R is a (2, 2) matrix, the value of R12 has to satisfy a cubic equation as the following:

R3
12 −R2

12

q′1q2

T
+ R12

[
q′1q1

T
+

q′2q2

T
− 1
]
− q′1q2

T
= 0.
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To develop further this formula we need to distinguish the derivatives∇λq′t and∇λ(marginals contribution)t

with respect to θ (the parameters of µt) and φ. After some algebra we obtain

∇θq′t = −∇θµ′tD1t

∇θ(marginals contribution)t = ∇θµ′tv1t

∇φq′t = D2t

∇φ(marginals contribution)t = v2t,

where

D1t = diag

(
fi(ε̂i,t)ε̂i,t

φ(qi,t)µi,t

: i = 1, . . . , K

)
v1t =

(
φi
ε̂i,t − 1

µi,t

: i = 1, . . . , K

)
D2t = diag

(
1

φ(qi,t)

∂Fi(ε̂i,t)

∂φi

: i = 1, . . . , K

)
v2t = (lnφi − ψ(φi) + ln(ε̂i,t)− ε̂i,t + 1 : i = 1, . . . , K) .

and ε̂i,t = xi,t/µi,t. Then

∇θlc =
T∑

t=1

∇θµ′t
[
−D1t(D

−1
Q −Q−1)qt + v1t

]
∇φlc =

T∑
t=1

[
D2t(D

−1
Q −Q−1)qt + v2t

]
We remark that the derivatives

∂Fi(ε̂i,t)

∂φi

must be computed numerically.

3.4.3 Details about the estimation of θ

The estimation of the parameter θ involved in the equation of µt requires further details.
We explain them considering the more general version of µt defined in section 3.3

µt = ω +αxt−1 + γx
(−)
t−1 + δx

(s)
t−1 + βµt−1

= ω +α∗x∗t−1 + βµt−1

(see the cited section for details and notation). Such a structure for µt depends in the gen-
eral case from K + 4K2 parameters. For instance, when K = 3 there are 39 parameters.
We think that, in general, data do not provide enough information to capture asymme-
tries of both types (x(s)

t−1 and x
(−)
t−1) but even removing one of these two components the

parameters become K + 3K2 (30 when K = 3).

A reduction in the number of parameters can obtained estimating ω from stationary con-
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ditions. Imposing that µt is stationary we have

ω = [I− (α+ β + γ/2)]µ,

where µ = E(xt), and then

(µt − µ) = α(xt−1 − µ) + γ(x
(−)
t−1 − µ/2) + δx

(s)
t−1 + β(µt−1 − µ).

Replacing µ with its natural estimate, that is the unconditional average x, we obtain

µ̃t = αx̃t−1 + γx̃
(−)
t−1 + δx̃

(s)
t−1 + βµ̃t−1

= α∗x̃∗t−1 + βµ̃t−1

(33)

where the symbol x̃ means the demeaned version of x. This solution save K parameters
in the iterative estimation and provides better performances than direct ML estimates of
ω in simulations.

To save time it is also useful take into account analytic derivatives of µ̃t with respect to
parameters. To this purpose rewrite (33) as

µ̃t = B̃′
t−1 vec(β′) + Ã∗′

t−1 vec(α∗′),

where

B̃t =


µ̃t 0 . . . 0
0 µ̃t . . . 0
...

... . . . ...
0 0 . . . µ̃t

 Ã∗
t =


x̃∗t 0 . . . 0
0 x̃∗t . . . 0
...

... . . . ...
0 0 . . . x̃∗t


and the operator vec(.) stacks the columns of the matrix inside brackets. Taking deriva-
tives with respect to vec(β′) and vec(α∗′) and arranging results we obtain

∂µ̃t

∂ vec(θ)
=

(
B̃t−1

Ã∗
t−1

)
+

∂µ̃t−1

∂ vec(θ)

where vec(θ) = (vec(β′); vec(α∗′)).

3.5 Estimating Functions inference

A different approach to estimation and inference of a vector MEM is provided by Esti-
mating Functions (Heyde, 1997) which has less demanding assumptions relative to ML:
in the simplest version, Estimating Functions require only the specification of the first two
conditional moments of xt, as in (24) and (25). The advantage of not formulating assump-
tions about the shape of the conditional distribution of xt is balanced by a loss in efficiency
with respect to Maximum likelihood under correct specification of the complete model.
Given that even in the univariate MEM we had interpreted the ML estimator as QML, the
flexibility provided by the Estimating Functions (henceforth EF) seems promising.
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3.5.1 Framework

We consider here the EF inference of the vector MEM defined by (22) and (23) or,
equivalently, by (24) and (25). In this framework the parameters are collected in the
p∗−dimensional vector λ = (θ; upmat(Σ)), with p∗ = p + K(K + 1)/2: θ includes
the parameters of primary interest involved in the expression of µt; upmat(Σ) includes
the elements inside and above the main diagonal of the conditional variance–covariance
matrix Σ of the multiplicative innovations εt and represents a nuisance parameter with
respect to θ. However, to simplify the exposition, from now on we denote the parameters
of the model as λ = (θ;Σ), instead of λ = (θ; upmat(Σ))).

Following Bibby et al. (2004), an estimating function for the p∗-dimensional vector λ
based on a sample x(T ) is a p∗−dimensional function denoted as

g(λ;x(T )) in short g(λ).

The EF estimator λ̂ is defined as the solution to the corresponding estimating equation:

λ̂ such that g(λ̂) = 0. (34)

To be an useful estimating function, regularity conditions on g are usually imposed. Fol-
lowing Heyde (1997, sect. 2.6) or Bibby et al. (2004, Theorem 2.3), we consider zero
mean and square integrable martingale estimating functions that are sufficiently regular
to guarantee that a WLLN and a CLT applies. The martingale restriction is often moti-
vated observing that the score function, if it exists, is usually a martingale: so it is quite
natural to approximate it using families of martingales estimating functions. Furthermore,
in modelling time series processes, estimating functions that are martingales arise quite
naturally from the structure of the process. We denote asM the class of EF satisfying the
asserted regularity conditions.

Following the decomposition of λ into θ and Σ, let us decompose the estimating function
g(λ) as

g(λ) =

(
g1(λ)
g2(λ)

)
: (35)

g1 has dimension p and refers to θ; g2 has dimension K(K + 1)/2 and refers to Σ.

3.5.2 Inference on θ

From (24) and (25) we obtain immediately that “residuals” ut = xt � µt − 1, where �
denotes the element by element division, have the property to be martingale differences
with a constant conditional variance matrix: in fact

ut|Ft−1 ∼ [0,Σ]. (36)
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Using these as basic ingredient, we can construct the Hutton–Nelson quasi-score function
(Heyde (1997, p. 32)) as an estimating function for θ:

g1(λ) = −
T∑

t=1

E [∇θu′t|Ft−1]V [ut|Ft−1]
−1 ut

=
T∑

t=1

∇θµ′t[diag(µt)Σ diag(µt)]
−1(xt − µt). (37)

Transposing to the vector MEM considered here the arguments in Heyde (1997), (37) is
(for fixed Σ) the ”best” estimating function for θ in the subclass of M composed by all
estimating functions that are linear in the residuals ut = xt � µt − 1. In fact, more
precisely, the Hutton–Nelson quasi score function is optimal (both in the asymptotic and
in the fixed sample sense – see Heyde (1997, ch. 2) for details) in the class of estimating
functions

M(1) =

{
g ∈M : g(λ) =

T∑
t=1

at(λ)ut(λ)

}
,

where ut(λ) are (K, 1) martingale differences and at(λ) are (p,K) Ft−1–measurable
functions.

Very interestingly, in the 1-dimensional case (37) specializes to

g1(λ) = σ−2

T∑
t=1

∇θµt
xt − µt

µ2
t

,

which provides exactly the first order condition of the univariate MEM. Hence, formula
(17) can be also justified from an EF perspective. The main substantial difference from
the multivariate case, is that in the vector MEM explicit dependence from the nuisance
parameter Σ cannot be suppressed. About this point, however, we claim that EF infer-
ences of vector MEM are not too seriously affected by the presence of Σ, as stated in the
following section.

3.5.3 Inference on Σ

A clear discussion of inferential issues with nuisance parameters can be found, among
others, in Liang and Zeger (1995). The main inferential problem is that, in presence
of nuisance parameters, some properties of estimating functions are no longer valid if
we replace parameters with the corresponding estimators. For instance, unbiasedness of
g1(λ) is not guaranteed if Σ is replaced by an estimator Σ̂. By consequence, optimality
properties also are not guaranteed.

An interesting statistical handling of nuisance parameter in the estimating functions frame-
work is provided in Knudsen (1999) and Jørgensen and Knudsen (2004). Their handling
parallels in some aspects the notion of Fisher-orthogonality or, shortly, F-orthogonality,
in ML estimation. F-orthogonality is defined by block diagonality of the Fisher informa-
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tion matrix for λ = (θ;Σ). This particular structure guarantees the following properties
of the ML estimator (see the cited reference for details):

1. asymptotic independence of θ̂ and Σ̂;

2. efficiency-stable estimation of θ, in the sense that the asymptotic variance for θ is
the same whether Σ is treated as known or unknown;

3. simplification of the estimation algorithm;

4. θ̂(Σ), the estimate of θ when Σ is given, varies only slowly with Σ.

Starting from this point, Jørgensen and Knudsen (2004) extend F-orthogonality to EFs
introducing the concepts of nuisance parameter insensitivity (henceforth NPI). NPI is an
extended parameter orthogonality notion for estimating function, that guarantees proper-
ties 2-4 above. Among these, Jørgensen and Knudsen (2004) state that efficiency stable
estimation is the crucial property and prove that, in a certain sense, NPI is a necessary
condition for this.

Here we emphasize two major points concerning the vector MEM:

1. Jørgensen and Knudsen (2004) define and prove properties connected to NPI within
a fixed sample framework. However definitions and theorems can be easily adapted
and extended to the asymptotic framework, that is the typical reference when stochas-
tic processes are of interest.

2. The estimating function (37) for estimating θ can be proved nuisance parameter
insensitive.

About the first point, key quantities for inferences on estimating functions estimators
within the fixed sample framework are the variance–covariance matrix V (g) and the
sensitivity matrix E(∇λg′) of the EF g. These quantities are replaced in the asymptotic
framework by their ’estimable’ counterparts: the quadratic characteristic

〈g〉 =
T∑

t=1

V (gt|Ft−1),

and the compensator,

g =
T∑

t=1

E (∇λ′gt|Ft−1) ,

of g, where the martingale EF g is represented as sum of martingale differences gt:

g =
T∑

t=1

gt. (38)

As pointed by Heyde (1997, p. 28), there is a close relation between V (g) and 〈g〉 and
between E(∇λ′g) and g. But, above all, the optimality theory within the asymptotic
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framework parallels substantially that within the fixed sample framework because these
quantities share the same essential properties. These properties can be summarized taking
into account two points. The first one: under regularity conditions (see Heyde (1997),
Bibby et al. (2004) and Jørgensen and Knudsen (2004) for details) we have,

E(∇λ′g) = C(g, s)

and

g =
T∑

t=1

C(gt, st|Ft−1),

where s =
T∑

t=1

st is the score function expressed as a sum of martingale differences. The

second one: both the covariance and the sum of conditional covariances of the martingale
difference components share the bilinearity properties typical of a scalar product. Just
by virtue of these common properties, it is possibile to show that NPI can be defined and
guarantees properties 2–4 above also in the asymptotic framework. Hence, we sketch here
only the main points and we remind to Jørgensen and Knudsen (2004) for the original full
treatment.

We partition the compensator and the quadratic characteristic conformably to g as in (35),
that is

g =

(
g11 g12

g21 g22

)
and

〈g〉 =

(
〈g〉11 〈g〉12
〈g〉21 〈g〉22

)
,

and we consider Heyde information

I = g′〈g〉−1g (39)

as the natural counterpart, within the asymptotic framework, of the Godambe information

J = E(∇λg′)V (g)−1E(∇λ′g),

that instead is typical of the fixed sample framework. We remember that each of these ver-
sions of information, in the respective framework, provides the inverse of the asymptotic
variance covariance matrix of the EF estimator.

We say that the marginal EF g1 is nuisance parameter insensitive if g12 = 0. Using block–
matrix algebra, we check easily that NPI of g1 implies that the asymptotic variance–
covariance matrix of the EF estimator of θ is given by

g−1′
11 〈g〉11g−1

11 . (40)

Employing concepts and definitions above is possible to show, exactly using the same
devices, that the whole theory in Jørgensen and Knudsen (2004), and in particular their
insensitivity theorem, preserves substantially unaltered.
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Returning now to the vector MEM, we can discuss the second point above: the EF (37) for
estimating θ is Σ–insensitive. In fact, expressing (37) as sum of martingale differences
g1,t = ∇θµ′t(diag(µt)Σ diag(µt))

−1(xt − µt) as in (38), we have

∇σij
g1,t(λ) = −∇θµ′t diag(µt)

−1Σ−1∇σij
ΣΣ−1 diag(µt)

−1(xt − µt),

whose conditional expected value is 0. This implies g12 = 0 and hence Σ-insensitivity of
the EF g1 in (37). As a consequence, the asymptotic variance–covariance matrix of θ is
given by (40), that for the model considered becomes

g−1′
11 〈g〉11g

−1
11 = 〈g〉−1

11 =

[
T∑

t=1

∇θµ′t[diag(µt)Σ diag(µt)]
−1∇θ′µt

]−1

. (41)

Expressions (37) and (41) require values for Σ. Considering the conditional distribution
of the “residuals” ut = xt � µt − 1 in (36), Σ can be estimated using the estimating
function:

g2(λ) =
T∑

t=1

(utu
′
t −Σ). (42)

This implies

Σ̂ =
1

T

T∑
t=1

utu
′
t.

This estimator generalizes (19) to the multivariate model. We note that the EF (42) is
unbiased, but in general does not satisfy optimality properties: improving (42) is possible
but at the cost of adding further assumptions about higher order moments of xt|Ft−1, and
will not be pursued here.

4 Empirical Analysis

The multivariate extension of the MEM model is illustrated on the GE stock for which the
three variables are available as in Engle and Gallo (2006), namely absolute returns |rt|,
high-low range hlt and realized volatility rvt derived from 5-minutes returns as in Ander-
sen et al. (2003). The observations were rescaled so as to have the same mean as absolute
returns.

In Table 1 we report a few descriptive statistics relative to the variables employed. As one
may expect, daily range and realized volatility have high maximum values and there are
a few zeroes in the absolute returns. We also report the unconditional correlations across
the whole sample period showing that daily range has a relatively high correlation with
both absolute returns and realized volatility (which are less correlated with one another).
Finally, the time series behavior of the series is depicted in Figure 1.
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Figure 1: Time series of the indicators |rt|, hlt, rvt – GE stock, 01/03/1995-12/29/2001.

(a) |rt|

(b) hlt (c) rvt
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Table 1: Some descriptive statistics of the indicators |rt|, hlt, rvt – GE stock, 01/03/1995-
12/29/2001 (1515 obs.)

Indicator
Statistics |rt| hlt rvt

min 0 0.266 .429
max 11.123 6.318 6.006

mean 1.194 1.194 1.194
standard deviation 1.058 0.614 0.424

skewness 2.20 2.03 2.65
kurtosis 12.42 10.97 18.69

n. of zeros 60 0 0
correlations |rt| hlt rvt

|rt| 0.767 0.440
hlt 0.757

We applied the three estimators, namely, the Maximum Likelihood estimator with the
Normal Copula function (labelled ‘ML–R’), the Estimating Equations-based estimator
(labelled ‘EE’) and the Maximum Likelihood estimator equation by equation (labelled
‘ML–I own’). For each method a general–to–specific model selection strategy was fol-
lowed to propose a parsimonious model. The first table (4 compares single coefficients
(with their robust standard errors) by estimation method. ML–R and EE give the same
specification for both stocks, while consistently ML–I gives a different result. For com-
parison purposes, we added an extra column by variable to include the results of the
equation–by–equation estimation imposing the specification found with the system meth-
ods (labelled ‘ML-I’).

We can note that the selected model for GE is in line with the findings of Engle and Gallo
(2006) for the S&P500, in that the daily range has significant lagged (be they overall or
asymmetric) effects on the other variables, while it is not affected by them.11 A synthetic
picture of the total influence of variables can be measured by means of an Impact Matrix
A, previously defined in (32). We propose a comparison of the estimated values of the
non–zero elements of the matrix A in Table 3.

Overall, the estimated coefficient values do not differ too much between the system esti-
mation with copulas and with estimating equations. The estimates equation by equation
are quite different even when derived from the same specification and even more so when
derived from the own selection.

Similar comments can be had for the estimated characteristic roots of the impact matrix
ruling the dynamics of the system: in this particular case, the estimated persistence is
underestimated by the equation–by–equation estimator relative to the other two methods.

A comment on the shape of the distribution as it emerges from the estimation methods

11This is not to say that one should expect the same result on other assets. An extensive analysis of what
may happen when several stocks are considered is beyond the scope of the present paper.
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based on the Gamma distribution is in order (cf. Table 5). The estimated φ parameters are
quite different from one another (there is no major difference according to whether the
system is estimated equation–by–equation or jointly) reflecting the different characteris-
tics of each variable (with a decreasing skewness passing from absolute returns to realized
volatility).

5 Conclusions

In this paper we have presented a general discussion of the vector specification of the
Multiplicative Error Models introduced by Engle (2002): a positive valued process is
seen as the product of a scale factor which follows a GARCH type specification and a
unit mean innovation process. Engle and Gallo (2006) estimate a system version of the
MEM by adopting a dynamically interdependent specification for the scale factors (each
variable enters other variables’ specifications with a lag) but keeping a diagonal variance–
covariance matrix for the Gamma–distributed innovations. The extension to a multivariate
process requires interdependence among the innovation terms. The specification in a mul-
tivariate framework cannot exploit multivariate Gamma distributions because they appear
too restrictive. The maximum likelihood estimator can be derived by setting the multivari-
ate innovation process in a copula with Gamma marginals framework. As an alternative,
which provides estimators which are not based on any distributional assumptions, we also
suggested the use of estimating equations. The empirical results with daily data on the
GE stock show the feasibility of both procedures: both system estimators provide fairly
similar values, and at the same time show deviations from the equation by equation ap-
proach.
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A Useful univariate statistical distributions

In this section we summarize the properties of the statistical distributions employed in the
work.

A.1 The Gamma distribution

A r. v. X follows a Gamma(φ, β) distribution if its pdf if given by

f(x) =
βφ

Γ(φ)
xφ−1e−βx

for x > 0 and 0 otherwise, where φ, β > 0. The main moments are

E(X) = φ/β

V (X) = φ/β2.

An useful property of a Gamma r.v. is the following:

X ∼ Gamma(φ, β) and c > 0 ⇒ Y = cX ∼ Gamma(φ, β/c).

Some interesting special cases of a Gamma distributions are the Exponential distribution
and the χ2 distribution:

Exponential(β) = Gamma(1, β)

χ2(n) = Gamma(n/2, 1/2).

In this work we often employGamma distributions restricted to have mean 1, that implies
β = φ.

A.2 The GED distribution

The Generalized Error distribution (GED) is also known as Exponential Power distribu-
tion or as Subbotin distribution.

A random variable X follow a GED(µ, σ, φ) distribution distribution if its pdf if given
by

f(x) =
φφ−1

2Γ(φ)σ
exp

(
−φ
∣∣∣∣x− µ

σ

∣∣∣∣1/φ
)
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for x ∈ R, where µ ∈ R, σ, φ > 0. The main moments are

E(X) = µ

V (X) =
Γ(3φ)

φ2φΓ(φ)
σ2.

An useful property of a GED r.v. is the following:

X ∼ GED(µ, σ, φ) and c1, c2 ∈ R ⇒ Y = c1 + c2X ∼ GED(c1 + c2µ, |c2|σ, φ).

This property qualifies the GED as a location–scale distribution.

Some interesting special cases of a GED distributions are the Laplace distribution and
the Normal distribution:

Laplace(µ, σ) = GED(µ, σ, 1)

N(µ, σ) = GED(µ, σ, 1/2).

In the work we consider in particular GED distributions with µ = 0.

A.3 Relations GED–Gamma

The following relations links the GED and Gamma distributions:

X ∼ GED(0, σ, φ) ⇒ Y =

∣∣∣∣X − µ

σ

∣∣∣∣1/φ

∼ Gamma(φ, φ)

Useful particular cases are:

X ∼ GED(0, 1, φ) ⇒ Y = |X|1/φ ∼ Gamma(φ, φ)

X ∼ Laplace(0, 1) ⇒ Y = |X| ∼ Exponential(1)

X ∼ N(0, 1) ⇒ Y = X2 ∼ χ2(1).

B A summary on copulas

In this section we summarize main concepts and properties of copulas in a rather informal
way and without proofs. For a more detailed and rigorous exposition see, among others,
Embrechts et al. (2001) and Bouyé et al. (2000). For a simpler treatment, we assume that
all r.v. considered in this section are absolutely continuous.
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B.1 Definitions

Copula. Defined ”operationally”, a K–dimensional copula C is the cdf of a continuous
uniform r.v. defined on the unit hypercube [0, 1]K , in the sense that each of the univariate
components of the r.v. has Uniform(0, 1) marginals, whenever they may be not indepen-
dent.

Copula density. A copula C is then a continuous cdf with particular characteristics. For
some purposes it is however useful the associated copula density c, defined as

c(u) =
∂KC(u)

∂u1 . . . ∂uK

. (43)

Ordering. A copula C1 is smaller then C2, in symbols C1 ≺ C2 if C1(u) ≤ C2(u)
∀u ∈ [0, 1]K . In practice this means that the picture of C1 stay below that of C2.

Some particular copulas. Among copulas, three play an important role: the lower
Frèchet bound C−, the product copula C⊥ and the upper Frèchet bound C+, defined
as follows 12

C−(u) = max

(
K∑

i=1

ui −K + 1, 0

)

C⊥(u) =
K∏

i=1

ui

C+(u) = min(u1, . . . , uK).

We could show that
C−(u) ≺ C⊥(u) ≺ C+(u).

More in general, for any copula C,

C−(u) ≺ C(u) ≺ C+(u).

The concept of ordering is interesting because is connected with measures of concordance
(like the correlation coefficient). Considering two r.v., the product copulaC⊥(u) identifies
the situation of independence; copulas smaller then C⊥(u) are connected with situations
of discordance; copulas greater then C⊥(u) describe situations of concordance.

The ordering on the set of copulas, called concordance ordering, is however only a par-
tial ordering, since not every pair of copulas is comparable in this way. However many
important parametric families of copulas are totally ordered on the base of the values of
the parameters (examples are the Frank copula and the Normal copula).

12C− is not a copula for K ≥ 3 but we use this notation for convenience.
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B.2 Understanding copulas

We attempt to explain the usefulness of copulas starting from two important results.

The first one is relative to these well known relations concerning univariate r.v.:

X ∼ F ⇒ U = F (X) ∼ Uniform(0, 1)

and, conversely,
U ∼ Uniform(0, 1) ⇒ F−1(U) ∼ F

where with the symbol X ∼ F we mean ’X distributed with cdf F ’. F−1 is often called
the quantile function of X .

The second one is Sklar’s theorem. Sklar’s theorem is perhaps the most important result
regarding copulas.

Theorem 1 (Sklar’s theorem). Let F a K–dimensional cdf with univariate continuous
marginals F1, . . . , FK . Then there exist an unique K–dimensional copula C such that,
∀x ∈ RK ,

F (x1, . . . , xK) = C(F1(x1), . . . , FK(xK)).

Conversely, if C is a K–dimensional copula and F1, . . . , FK are univariate cdf , then the
function F defined above is a K–dimensional cdf with marginals F1, . . . , FK .

With these results in mind, one can verify that if F is a cdf with univariate marginals
F1, . . . , FK , and we take ui = Fi(xi) then F (F−1

1 (u1), . . . , F
−1
K (uK)) is a copula that

guarantees the representation in the Sklar’s theorem. We write then

C(u1, . . . , uK) = F (F−1
1 (u1), . . . , F

−1
K (uK)). (44)

In this framework the main result of Sklar’s theorem it is then, not the existence of a
copula representation, but the fact that this representation is unique. We note also that
given a particular cdf and its univariate marginals, (44) represent a direct way to find
functions that are copulas.

Conversely, if in equation (44) we replace each ui by its probability representation Fi(xi)
we obtain

C(F1(x1), . . . , FK(xK)) = F (x1, . . . , xK) (45)

that is exactly the formula within Sklar’s theorem.

In practice, the copula of a continuous K–dimensional r.v. X (unique by the Sklar’s theo-
rem) is the representation of the distribution of the r.v. in the ’probability domain’ (those
of ui’s), rather then in the ’quantile domain’ (those of xi’s, in practice the original scale).
It is however clear these two ways are not equivalent: the former forget completely the
information of the marginals but isolates the structure of dependence among the compo-
nents of X. This implies that in the study of a multivariate r.v. it is possible to proceed in
2 steps:
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1. identification of the marginal distributions;

2. definition of the appropriate copula in order to represent the structure of dependence
among the components of the r.v.

This two step analysis is emphasized also by the structure of the pdf of the K–variate
r.v. X that follows from the copula representation (45):

f(x1, . . . , xK) = c(F1(x1), . . . , FK(xK))
K∏

i=1

fi(xi). (46)

where fi(xi) is the pdf of the univariate marginals Xi and c is the copula density. It is
a very interesting formulation: the product of the marginal densities, which corresponds
to the multivariate density in case of independence among the Xi’s, is corrected by the
structure of dependence isolated by the copula’s density c. We note also as (46) is a way
to find functions representing copulas.

B.3 The Normal copula

Amongst the copulas presented in letterature an important role is played by the Normal
copula, whose density is given by

c(u) = |R|−1/2 exp

[
−1

2
q′(R−1 − I)q

]
, (47)

where R is a correlation matrix, qi = Φ−1(ui), Φ(.) means the cdf of the standard Normal
distribution. Normal copulas are interesting because possess interesting characteristics:
the capability of capture a broad range of dependencies (the bivariate Normal copula, ac-
cording to the value of the correlation parameter is capable of attaining the lower Frechèt
bound, the product copula and the upper Frechèt bound), the analytical tractability, the
simple simulation.

C Useful multivariate statistical distributions

C.1 Multivariate Gamma distributions

The Cheriyan and Ramabhadran multivariate Gamma (shortly GammaCR) is defined as
follows13. Let Y0, Y1, . . . , YK independent random variables with the following distribu-
tions:

Y0 ∼ Gamma(φ0, 1) Yi ∼ Gamma(φi − φ0, 1) for i = 1, . . . , K,

13We adapt the definition in (Johnson et al., 2000, chapter 48) to our framework.
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where 0 < φ0 < φi for i = 1, . . . , K. Then, the K–dimensional r.v. X = (X1; . . . ;XK),
where

Xi =
1

βi

(Yi + Y0), (48)

and βi > 0, has GammaCR distribution with parameters φ0, φ = (φ1; . . . ;φK) and
β = (β1; . . . ; βK) that is

X ∼ GammaCR(φ0,φ,β).

The pdf is given by

f(x) =
1

Γ(φ0)

K∏
i=1

βi

Γ(φi − φ0)
e−
PK

i=1 βixi

∫ v

0

yφ0−1
0 e(K−1)y0

K∏
i=1

(βixi − y0)
φi−φ0−1dy0,

where v = min(β1x1, . . . , βKxK) and the integral leads in general to very complicated
expressions. Each univariate r.v.Xi has however aGamma(φi, βi) distribution. The main
conjoint moments can be computed via formula (48); in particular the variance matrix has
elements

C(Xi, Xj) =
φ0

βiβj

and then
ρ(Xi, Xj) =

φ0√
φiφj

.

This implies that parameters φ0 plays an important role in determining the correlation
among the Xi’s and that the GammaCR distribution admits only positive correlations
among the univariate components.

C.2 Normal copula – Gamma marginals distribution

The Normal copula – Gamma marginals distribution can be defined as a multivariate
distribution whose univariate marginals are Gamma distributions and the structure of de-
pendence is represented by a Normal copula. In symbols we write

X ∼ N(R)−
K∏

l=1

Gamma(φi, βi)

where φ = (φ1; . . . ;φK), β = (β1; . . . ; βK), and R is a correlation matrix.

Song (2000) defines and discusses multivariate distributions whose univariate marginals
are dispersion distributions and the structure of dependence is represented by a Normal
copula. Since the Gamma distribution is a particular case of dispersion distribution, the
Normal copula – Gamma marginals case is covered by the cited work. The author dis-
cusses various properties of multivariate dispersion models generated from Normal cop-
ula. In particular, exploiting first order approximations (as in Song (2000, pages 433–4))
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and adapting notation, we obtain that the variance matrix has approximated elements

C(xi, xj) ' Rij

√
φiφj

βiβj

and then
ρ(xi, xj) ' Rij.

With respect to the GammaCR distribution in section C.1, that considered in the present
section admits negative correlations also.

D A summary on estimating functions

Estimating Functions (EFs, henceforth) are a method for making inference on the un-
known parameters of a given statistical model. Even if some ideas appeared before, the
whole development of the theory of EFs begins from the works of Godambe (1960) and
Durbin (1960). Ever since, the method became increasingly popular, with important theo-
retical developments and illuminating applications in different domains: biostatistics and
models for stochastic processes in particular. EFs are relatively less diffuse in the econo-
metric literature, but the ’gap’ is progressively filling up, perhaps even as thanks to some
stimulating reviews (Vinod (1998), Bera et al. (2006)).

Broadly speaking, EFs have close links with other inferential approaches: in particular,
analogies can be found with the Quasi Maximum Likelihood method (QML) and with the
Generalized Method of Moment method (GMM) for just identified problems. However
some other inferential procedures, as for instance M-estimation, have connections with
EFs. About the relations between EFs and other inferential methods see, among others,
Desmond (1997), Contreras and Ryan (2000) and the reviews cited above.

This summary aims to show how EFs can be usefully employed for making inference on
time series models. In particular, we focus our attention on martingale EFs and this choice
is motivated by at least three reasons. Firstly: martingale EFs are largely applicable,
because in modelling time series, EFs that are martingales arise often naturally from the
structure of the process. Secondly: martingale EFs have particularly nice properties and
a relatively simple asymptotic theory. Thirdly: because an estimating function has some
analogies with the score function, and because the score function, if it exists, is usually a
martingale, it is quite natural to approximate it using families of martingales EFs.

An interesting historical review on EFs can be found in Bera et al. (2006), that provides
also a long list of references. About the topics handled in this summary, important refer-
ences can be found, among others, in Heyde (1997), Sørensen (1999), Bibby et al. (2004).

This summary is organized as follows: in section D.1 we list some necessary concepts
about martingale processes; in section D.2 we discuss the likelihood framework as an
important reference for interpreting EFs; in section D.3 we define EFs in general and
martingale EFs in particular; in section D.4 we sketch the asymptotic theory of martingale
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EFs; in section D.5 we consider optimal EFs; in section D.6 we show how nuisance
parameters can be handled.

D.1 Notation and preliminary concepts

As stated before, we aim to illustrate how martingale EFs can be usefully employed for
making inference on time series models. To this goal, we recall some concepts on mar-
tingale processes. We precede them summarizing the mathematical notation used.

D.1.1 Mathematical notation

We use the following mathematical notations:

• if x ∈ RK , then ‖x‖ = (x′x)1/2 (the Euclidean norm); if x ∈ RH×K then ‖x‖ =(
H∑

i=1

K∑
j=1

x2
ij

)1/2

(the Frobenius norm);

• if f(x) is a vector function of x ∈ RK , the matrix of its first derivatives is denoted
by ∇x′f(x) or ∇x′f ;

• given two square, symmetric and non negative definite (nnd) matrices A and B, we
say A not greater than B (or A not smaller than B) in the Löwner ordering if

B−A

is nnd and we write
A � B;

• p→ denotes convergence in probability;

• a∼ denotes almost sure (with probability 1) convergence.

D.1.2 Martingales

Let (Ω,F , P ) a probability space and let {xt} a discrete time (t ∈ Z+) K-dimensional
time series process, that is xt : Ω −→ RK . Denoting as Ft (⊆ F) the σ-algebra repre-
senting the information at time t, we recall that {xt}:

• is predictable if xt is Ft−1-measurable; this implies

E(xt|Ft−1) = xt;
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• is a martingale if xt is Ft-measurable and

E(xt|Ft−1) = xt−1;

• is a martingale difference if xt is Ft-measurable and

E(xt|Ft−1) = 0.

Using a Dobb’s representation, a martingale {xt} can be always represented as

xt = x0 +
t∑

s=1

∆xs, (49)

where
∆xt = xt − xt−1 (50)

is a martingale difference and x0 is the starting r.v. A martingale {xt} is null at 0 if
x0 = 0. In this case (49) becomes

xt =
t∑

s=1

∆xs (51)

and E (xt|Ft−1) = 0 for all t. A martingale {xt} null at 0 is square integrable if
‖V (xt) ‖ <∞ for all t.

Taking into account, from now on, square integrable martingales null at 0, and considering
their representation as in (51)-(50), the following quantities can be defined:

• 〈x,y〉t, the mutual quadratic characteristic between xt and yt:

〈x,y〉t =
t∑

s=1

C(∆xs,∆ys|Fs−1);

• 〈x〉T , the quadratic characteristic of xt:

〈x〉T =
t∑

s=1

V (∆xs|Fs−1).

Furthermore, if a martingale {xt} null at 0 depends on a parameter λ ∈ Rp, we define the
compensator of ∇λ′xt as

xt =
t∑

s=1

E (∇λ′∆xs|Fs−1) .
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D.2 Set-up and the likelihood framework

The likelihood framework provides an important reference for the theory of EFs. In fact,
even if they can be usefully employed just in situations where the likelihood is unknown
or is difficult to compute, EFs generalize the score function in many senses and share
many of its properties. Moreover, the score function plays an important role in many
aspects of the EFs theory.

Hence, we consider a discrete timeK-dimensional time series process {xt} and we denote
as x(T ) = {x1, . . . ,xT} a sample from {xt}. We assume that:

• the possible probability measures for x(T ) are P = {Pλ : λ ∈ Λ}, a union of
families of parametric models indexed by λ, a p-dimensional parameter belonging
to an open set Λ ⊆ Rp;

• each (Ω,F , Pλ), where λ ∈ Λ, is a complete probability space;

• each Pλ, where λ ∈ Λ, is absolutely continuous with respect to some σ-finite
measure. In this situation a likelihood is defined (even if it can be unknown).

We use the following notation:

• L(T )(λ) = f(x(T );λ) is the likelihood function (the density of x(T ));

• l(T )(λ) = lnLT (λ) is the log-likelihood function;

• s(T )(λ) = ∇λ′l(T )(λ) (provided that l(T )(λ) ∈ C1(Λ) a.s.) is the score function.

Usually, the likelihood function for time series samples can be expressed as product of
the conditional densities Lt(λ) = f(xt|Ft−1;λ) of the single observations in the sample.
In this case

L(T )(λ) =
T∏

t=1

Lt(λ)

l(T )(λ) =
T∑

t=1

lt(λ)

s(T )(λ) =
T∑

t=1

st(λ) (52)

where lt(λ) = lnLt(λ) and st(λ) = ∇λ′lt(λ).

We assume that the score function s(T )
14 satisfies the usual regularity conditions: for all

λ ∈ Λ, and for all T ∈ Z+

1. s(T ) is a square integrable martingale null at 0;

14In many circumstances we suppress explicit dependence from the parameter λ.
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2. s(T ) is regular, in the sense that s(T ) ∈ C1(Λ) a.s.;

3. s(T ) is smooth, in the sense that differentiation and integration can be interchanged
in differencing expectations of st with respect to λ.

Under above regularity conditions, the ML estimator is the solution of the score equation

s(T )(λ) = 0.

Using the notation of section D.1, the Fisher information is defined by

IT = 〈s〉T = −sT ,

where the second equality is named second Bartlett identity. We can check easily that sT

and 〈s〉T are linked, respectively, to the sum of the Hessians and to the outer product of
the gradients of lt’s.

D.3 Martingale estimating functions

Within above framework, an estimating function (EF) for λ is a p-dimensional function
of the parameter λ and of the sample x(T ):

g(T )(λ;x(T )).

Usually we suppress explicit dependence from the observations and sometimes from the
parameter also. In these cases we indicate compactly the EF as

g(T )(λ) or g(T ).

An estimate for λ, is the value λ̂T that solves the corresponding estimating equation (EE)

g(T )(λ) = 0. (53)

The score function is then a particular case of estimating function. However, there is a
remarkable difference between the score function and a generic EF. In fact s(T )(λ) has
l(T )(λ) as its potential function, since s(T )(λ) = ∇λ′l(T )(λ). On the contrary, in general
an EF may not possess a potential function G(T )(λ) such that g(T )(λ) = ∇λ′G(T )(λ)
(Knudsen (1999, p. 2)).

As stated in Heyde (1997, p. 26), since the score function, if it exists, is usually a martin-
gale, it is quite natural to approximate it using families of martingales EFs. Furthermore,
in modelling time series processes, EFs that are martingales arise often naturally from the
structure of the process. In this spirit, we stress that many of the concepts discussed in this
section are particular to martingale EFs. For a more general handling see, among others,
Sørensen (1999).

Hence we consider martingale EFs that are square integrable and null at 0. As in (51), we
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represent them as sums martingale differences gt,

g(T ) =
T∑

t=1

gt

where gt = g(T ) − g(T−1). We denote the quadratic characteristic of g(T ) as

〈g〉T =
T∑

t=1

V (gt|Ft−1)

and the compensator of ∇λ′g(T ) as

gT =
T∑

t=1

E (∇λ′gt|Ft−1) .

As in the likelihood theory, some regularity conditions on EFs g(T )(λ) are usually im-
posed. In particular it is required that, ∀λ ∈ Λ,

1. g(T ) is a square integrable martingale null at 0;

2. g(T ) is regular, in the sense that g(T ) ∈ C1(Λ) a.s. and gT is non-singular;

3. g(T ) is smooth, in the sense that differentiation and integration can be interchanged
in differencing expectations of gt with respect to λ.

(We remark the analogies with the corresponding regularity conditions for the score func-
tion in section D.2). We denote as M(1)

T the family of estimating functions satisfying
conditions 1, 2, 3 above and we name it as the family of regular and smooth EFs.

Regular and smooth EFs satisfy some interesting properties. Among these (details in
Knudsen (1999, ch. 1), Heyde (1997, ch. 2)):

• The compensator of ∇λ′g(T ) is strictly linked to the mutual quadratic characteristic
between the EF and the score function, since

gT = −〈g, s〉T . (54)

This follows from the relation

E (∇λ′gt|Ft−1) = −C (gt, st|Ft−1) . (55)

• gT non-singular (see the regularity condition 2 above) implies 〈g〉T positive-definite.
This implication can be obtained representing gT as in (54) and using considera-
tions similar to Knudsen (1999, p. 4).
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• If A(λ) is a (p, p) non-random, non-singular matrix belonging to C1(Λ) a.s., then
also the linear transformation

A(λ)g(T )(λ) (56)

is an EF belonging to M(1)
T .

• If ξ(λ) is a smooth 1-to-1 reparameterization, then also g(T )(λ(ξ)) is a regular and
smooth EF for ξ (Knudsen (1999, p. 7)). In practice, invariance and smoothness
conditions are invariant under smooth 1-to-1 reparameterizations.

Using (56), from any EF g(T ) ∈M(1)
T we can derive another EF

g
(s)
(T ) = −g′T 〈g〉−1

T g(T ),

called standardized version of g(T ). g
(s)
(T ) assumes a special role: as argued in section D.4,

g
(s)
(T ) and g(T ) are equivalent, in the sense that they produce the same estimator with the

same asymptotic variance, but g(s)
(T ) is more directly comparable with the score function.

D.4 Asymptotic theory

A central part of the theory is devoted to find EFs that produce good, and possibly optimal,
estimators. In this work, however, we focused attention to martingale EFs: the optimality
criteria employed in this context have essentially an asymptotic justification. Following
these motivations, in this section we sketch the asymptotic theory concerning martingale
EFs. More details can be found, among others, in Heyde (1997), Sørensen (1999), Bibby
et al. (2004).

In generic terms, the asymptotic theory of martingale EFs moves from a Taylor expansion
of the EF in a neighborhood of the true parameter value and the consequent application of
some law of large numbers (LLN) and central limit theorem (CLT) for square integrable
martingales.

Hence, we consider the following Taylor expansion of g(T )(λ̂T ) = 0 around the true
parameter value λ0:

0 = g(T )(λ̂T ) = g(T )(λ0) +∇λ′g(T )(λ
∗)(λ̂T − λ0), (57)

where λ∗ = αλ0 + (1− α)λ̂T with α ∈ (0, 1). Adding some other regularity conditions
(they are useful for inverting ∇λ′g(T )(λ

∗), for approximating it by ∇λ′g(T )(λ0) and for
convergence of this last quantity to the compensator gT (λ0) – details in Heyde (1997,
ch. 2)) we have

λ̂T − λ0 ' −gT (λ0)
−1g(T )(λ0). (58)
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Under mild regularity conditions a LLN,

g−1
T g(T )

p→ 0, (59)

and a CLT,
〈g〉−1/2

T g(T )
d→ N(0, Ip), (60)

apply. Combined with (58), these imply

λ̂T
p→ λ0 (61)

and
〈g〉T (λ0)

−1/2gT (λ0)(λ̂T − λ0)
d→ N(0, Ip). (62)

We callM(2)
T ⊆M(1)

T the class of martingale EFs g(T ) that belong toM(1)
T and satisfy the

additional regularity conditions needed for (61) and (62). Summarizing above results, EFs
belonging to M(2)

T give consistent and asymptotically normal estimators with asymptotic
variance matrix

V∞

(
λ̂T

)
= gT (λ0)

−1′〈g〉T (λ0)gT (λ0)
−1 = JT (λ0)

−1. (63)

The heuristic meaning of this result is that a small asymptotic variance requires EFs with
’small’ variability 〈g〉T and ’large’ sensitivity gT . The random matrix

JT = g′T 〈g〉−1
T gT (64)

can be interpreted as an information matrix: it is called martingale information (Heyde,
1997, p. 28) or Heyde information (Bibby et al., 2004, p. 30).

Now, let us return to the standardized version of g(T ), that is

g
(s)
(T ) = −g′T 〈g〉−1

T g(T ). (65)

We can check easily that, for EF belonging to M(2)
T , g(T ) and g

(s)
(T ) are equivalent: they

produce the same estimator and have J(g(s))T = J(g)T , that is they have the same Heyde
information. However (65) is more directly comparable with the score function than
g(T ). In fact, replacing (54) into (65), we can check that g

(s)
(T ) can be interpreted as the

orthogonal projection of the score function along the direction of g(T ). This means that,
for any g(T ) ∈ M(2)

T , g
(s)
(T ) is the version of g(T ) “closest” to the score function, in the

sense that (
s(T ) − g

(s)
(T )

)(
s(T ) − g

(s)
(T )

)′
�
(
s(T ) −Ag(T )

) (
s(T ) −Ag(T )

)′
for any linear transformation of g(T ) as in (56). Moreover, we can check that g(s)

(T ) satisfies
a second Bartlett identity analogous to that of the score function:

J(g)T = J(g(s))T = 〈g(s)〉T = −g(s)
T . (66)
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D.5 Optimal estimating functions

The interpretation provided in section D.4 of the Heyde information and its close link with
the asymptotic variance of λ̂T suggest the criterion usually employed to choose optimal
EF in the asymptotic sense: “maximize” the Heyde information. More precisely, once
selected a subfamily MT ⊆M(2)

T of EFs we have:

Definition 1 (A-optimality) g∗(T ) is A-optimal (optimal in the asymptotic sense) into

MT ⊆M(2)
T if

J (g∗)T � J (g)T

a.s. for all λ ∈ Λ, for all g(T ) ∈ MT and for all T ∈ Z+. An A-optimal estimating
function g∗(T ) is called a quasi score function, whereas the corresponding estimator λ̂T is
called a quasi likelihood estimator15.

Returning for a moment to the Heyde information, we already underlined that J(g)T

equates the quadratic characteristic of the standardized version g
(s)
(T ) (see (66)). Very

interestingly, it can be shown that, when the score function exists, A-optimality as defined
above is equivalent to find into MT the standardized EF g

∗(s)
(T ) “closest” to the score s(T ),

in the sense that

E

[(
s(T ) − g

∗(s)
(T )

)(
s(T ) − g

∗(s)
(T )

)′]
� E

[(
s(T ) − g

(s)
(T )

)(
s(T ) − g

(s)
(T )

)′]
(67)

for any other g
(s)
(T ) into MT . (67) reveals another important result of the EFs theory: if

MT encloses s(T ), just the score function is asymptotically optimal with respect to any
other EF g(T ).

As stated in Heyde (1997), the criterion in the of A-optimality definition or the equivalent
formulation (67) are hard to apply directly. In practice the following theorem can be
employed:

Theorem 2 (Heyde (1997, p. 29)) If g∗(T ) ∈MT ⊆M(2)
T satisfies

g∗−1
T 〈g∗〉T = g−1

T 〈g,g∗〉T , (68)

for all λ ∈ Λ, for all g(T ) ∈MT and for all T ∈ Z+, then g∗(T ) is A-optimal in M(2)
T .

Conversely, if MT is closed under addition and g∗(T ) is A-optimal in MT then (68) holds.

As we always work on subsets of M(2)
T , a crucial point in applications is to make a good

choice of the set MT of the EFs considered. About this, an important family of EFs that

15 Despite a quasi likelihood function in the sense of potential function of g(T ) may not exist (see section
D.3).
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often can be usefully employed in time series processes is

MT =

{
g(T ) ∈M(2)

T : g(T )(λ) =
T∑

t=1

αt(λ)vt(λ)

}
,

where vt(λ) is aK-dimensional martingale difference andαt(λ) is a (p,K)Ft−1-measurable
function. Tacking

α∗t = −E (∇λv′t|Ft−1)V (vt|Ft−1)
−1

we can check immediately that condition (68) of theorem 2 is satisfied and then

g∗(T ) = −
T∑

t=1

E (∇λv′t|Ft−1)V (vt|Ft−1)
−1 vt (69)

is A-optimal into MT . Furthermore, since g∗−1
T 〈g∗〉T = −Ip its Heyde information is

given by

J (g∗)T = 〈g∗〉T = −g∗T =
T∑

t=1

E (∇λv′t|Ft−1)V (vt|Ft−1)
−1E (∇λ′vt|Ft−1) . (70)

(69) is known as the Hutton-Nelson quasi score function. We note that when a martingale
difference vt(λ) can be defined from the model under analysis, the Hutton-Nelson solu-
tion provides a powerful and, at the same time, surprisingly simple tool: (69) and (70),
the fundamental quantities for the inference, depend only on the conditional variance and
on the conditional expectation of the first derivative of vt(λ). See Heyde (1997, sect. 2.6)
for a deeper discussion.

D.6 Estimating functions in presence of nuisance parameters

Sometimes, the p-dimensional parameter λ that appears in the likelihood can be parti-
tioned as λ = (θ,ψ), where:

• θ is a p1-dimensional parameter of scientific interest called interest parameter;

• ψ is a p2-dimensional (p2 = p − p1) parameter which is not of scientific interest
and is called nuisance parameter.

In this case the score function for λ can be partitioned as

s(T )(λ) =

(
s(T )1

s(T )2

)
,

where s(T )1 = ∇θ′l(T ) and s(T )2 = ∇ψ′l(T ) are marginal score functions for θ and ψ
respectively.
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This structure can be replicated if instead of a score function we consider an EF

g(T )(λ) =

(
g(T )1

g(T )2

)
,

where g(T )1 and g(T )2 are the marginal estimating functions for θ and ψ respectively. In
particular, g(T )1 is meant for estimating θ when ψ is known whereas g(T )2 is meant for
estimating ψ when θ is known.

A clear discussion of inferential issues with nuisance parameters can be found, among
others, in Liang and Zeger (1995). The main inferential problem is that, in presence
of nuisance parameters, some properties of estimating functions are no longer valid if
we replace parameters with the corresponding estimators. For instance, unbiasedness of
g(T )1 is not guaranteed if ψ is replaced by an estimator ψ̂. By consequence, optimality
properties also are not guaranteed.

An interesting statistical handling of nuisance parameter in the estimating functions frame-
work is provided in Jørgensen and Knudsen (2004) (see also Knudsen (1999)). Their
handling parallels, in some aspects, the notion of Fisher-orthogonality (F-orthogonality,
henceforth) in ML estimation. F-orthogonality is defined by block diagonality of the
Fisher information matrix for λ = (θ,ψ). This particular structure guarantees the fol-
lowing properties of the ML estimator:

1. asymptotic independence of θ̂ and ψ̂;

2. efficiency-stable estimation of θ, in the sense that the asymptotic variance for θ is
the same whether ψ is treated as known or unknown;

3. simplification of the estimation algorithm;

4. θ̂(ψ), the estimate of θ when ψ is given, varies only slowly with ψ.

Among these, Jørgensen and Knudsen (2004) state that efficiency-stable estimation is the
crucial property.

Starting from this point, Jørgensen and Knudsen (2004) extend F-orthogonality to EFs
introducing the concept of nuisance parameter insensitivity (NPI). Even if these authors
define and employ this concept within a finite sample optimality framework, NPI can be
easily extended asymptotic optimality framework. We discuss this in the following. See
the above reference for the original treatment.

We start our exposition partitioning the compensator gT and the quadratic characteristic
〈g〉T as

gT =

(
gT,11 gT,12

gT,21 gT,22

)
〈g〉T =

(
〈g〉T,11 〈g〉T,12

〈g〉T,21 〈g〉T,22

)
(71)
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conformably to the parameters θ and ψ. Using this partition, the information JT and the
asymptotic variance matrix J−1

T have a block structure

JT =

(
JT,11 JT,12

JT,21 JT,22

)
J−1

T =

(
[J−1

T ]11 [J−1
T ]12

[J−1
T ]21 [J−1

T ]22

)
(72)

whose components can be derived from (71).

Definition 2 (Nuisance parameter insensitivity) The marginal EF g(T )1 ∈ M(2)
T

16 is
NPI or ψ-insensitive if

gT,12 = 0.

Using block matrix algebra, we can check easily thatψ-insensitivity of g(T )1 is a sufficient
condition for

[J−1
T ]11 = g′−1

T,11〈g〉T,11g
−1
T,11. (73)

(In practice, this result represents the only if part of the Insensitivity Theorem – see the-
orem 3 below). It implies that, under ψ-insensitivity, the asymptotic variance of θ can
be computed using the compensator and the quadratic characteristic of g(T )1 only (see
property 2 above).

Another important consequence of NPI is that θ̂(ψ), the estimate of θ when ψ is given,
varies only slowly withψ (property 4 above). In fact, as argued in Jørgensen and Knudsen
(2004, p. 97), if ‖ψ̂−ψ‖ isOp(v

−1/2) then ‖θ̂(ψ)−θ‖ isOp(v
−1) if g(T )1 isψ-insensitive,

otherwise is Op(v
−1/2).

Sensitivity can be removed by projection. In fact we can check easily that the marginal
EF

g∗(T )1 = g(T )1 − gT,12g
−1
T,22g(T )2 (74)

is ψ-insensitive. In the Hilbert space sense, (74) is the projection of g(T )2 onto the ortho-
complement of s(T )2. This means that g∗(T )1 carries the same information about θ as g(T )1

and g(T )2 together. See Jørgensen and Knudsen (2004, p. 101) for a deeper discussion.

We think however that, from a theoretical point of view, the more interesting result of
the cited paper is that NPI is not only sufficient but also necessary for (73). This result
has been condensed by Jørgensen and Knudsen (2004) in the Insensitivity Theorem. We
provide it below, adjusting the formulation to the asymptotic framework considered here.
The theorem can be proved, with minor adjustments, as in the cited paper.

Theorem 3 (Insensitivity Theorem) The marginal EF g(T )1 ∈ M(2)
T is ψ-insensitive if

and only if
[J−1

T ]11 = g′−1
T,11〈g〉T,11g

−1
T,11

for all regular marginal EFs g(T )2 ∈M(2)
T .

16Strictly speaking, the marginal EF g(T )1 does not belong M(2)
T . In fact, g(T )1 has dimension p1

whereas members of M(2)
T are p-dimensional functions. However, we use M(2)

T also for EFs with different
dimension, meaning that they have to satisfy the corresponding regularity conditions.
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E Mathematical Appendix

We prove sufficient conditions for nonnegativity of the components of µt.

Proposition 1 The relation

n∑
i=1

(
aix

2
i + bixi

)
+ c ≥ 0 (75)

is satisfied for all xi ≥ 0 (i = 1, . . . , n) if and only if the coefficients ai, bi and c satisfy
all the following conditions:

1. ai ≥ 0 for all i ∈ Sn;

2. bi ≥ 0 for all i ∈ Sn such that ai = 0;

3. c− 1

4

n∑
i=1

b2i
ai

I(bi < 0) I(ai > 0) ≥ 0.

where Sn = {1, . . . , n}.

Proof:

The minimum of
n∑

i=1

(aix
2
i + bixi) + c (76)

with respect to the xi’s is simply the sum of c and the minima of the additive quantities
(aix

2
i + bixi). Hence, considering assumption xi ≥ 0:

1. if ai < 0, the minimum of (aix
2
i + bixi) is always −∞;

2. if ai = 0, the minimum of (aix
2
i + bixi) = bixi is nonnegative (0) only if bi ≥ 0;

3. if ai > 0, the minimum of (aix
2
i + bixi) for xi ≥ 0 is reached for xi = − bi

2ai

I(bi <

0) and is given by − b2i
4ai

I(bi < 0).

Requiring that (76) has a nonnegative minimum, from the above conditions those in the
proposition follow immediately.

�



E MATHEMATICAL APPENDIX 47

As a corollary of the previous proposition, we prove sufficient conditions for nonnegativ-
ity of the components of µt in the vector MEM. For sake of generality, we give the result
for the general formulation in which more lags are included in the µ structure.

Corollary 1 Let

µt = ω +
L∑

l=1

[
βlµt−l +αlxt−l + γlx

(−)
t−l + δlx

(s)
t−l

]
, (77)

the equation that describes the evolution of µt in the vector MEM of section 3.1, where:

• xt, µt (t = 1, . . . , T ) and ω are (K, 1)-vectors;

• βl, αl, γl and δl (l = 1, . . . , L) are (K,K) matrices;

• in the ’enriched’ formulation: x
(−)
t = xt I(rt < 0), x(s)

t = x
1/2
t sign(rt);

• in the ’contagion’ formulation: x
(−)
t = xt � I(rt < 0), x(s)

t = x
1/2
t � sign(rt).

We assume that the starting values xt and µt, for t = 1, . . . , L, have non-negative com-
ponents.

Then µt has non-negative components if all the following conditions are satisfied (i, j =
1, . . . , K, l = 1, . . . , L):

1. βijl ≥ 0, αijl ≥ 0, αijl + γijl ≥ 0;

2. if αijl = 0 then δijl ≥ 0; if αijl + γijl = 0 then δijl ≤ 0;

3. ωi −
1

4

K∑
j=1

L∑
l=1

δ2
ijl

[
I(δijl < 0) I(αijl > 0)

αijl

+
I(δijl > 0) I(αijl + γijl > 0)

αijl + γijl

]
≥ 0

Proof:

We prove the result considering the ’enlarged’ formulation. For the ’contagion’ version
the proof is almost identical.

The proof is by induction on t. Assume that xt−l,µt−l ≥ 0 for l = 1, . . . , L. Then the
i-th subequation of (77) can be rewritten taking:

(x1; . . . ;xn) = (µt−1; . . . ;µt−L;xt−1; . . . ;xt−L)1/2

(a1, . . . , an) = (βi.1, . . . ,βi.l,αi.1 + γi.1 I(rt−1 < 0), . . . ,αi.L + γi.L I(rt−L < 0))

(b1, . . . , bn) = (0′, . . . ,0′, δi.1 sign(rt−1), . . . , δi.L sign(rt−L))

c = ωi,
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whereβi.l,αi.l, γi.l, and δi.l denote the i-th row of the corresponding matrix of coefficients
at lag l.

At this point we can apply proposition 1 to the formulation obtained. Rewriting conditions
1, 2 and 3 of the proposition in the model notation and considering that, in the whole time
series, the returns rt−l take both positive and negative signs, the result follows.

�
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Table 2: Multiple Indicator MEM: Comparison across Estimators. GE
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Note: Standard errors for the constant are not reported since the coefficient was estimated
through variance targeting. ’ML-I’ reports the estimated results equation by equation with
the specification selected by the system estimators. ’ML-I (own)’ reports the estimated
results equation by equation with its own specification.
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Table 3: Estimated Impact Matrices of the vMEM on the indicators |rt|, hlt, rvt – GE
stock, 01/03/1995-12/29/2000.

EE
|rt−1| hlt−1 rvt−1

|rt| 0.81827 0.16775 0
hlt 0.03208 0.91007 0
rvt 0.02091 0.02097 0.86716

ML-R
|rt−1| hlt−1 rvt−1

|rt| 0.82797 0.15642 0
hlt 0.03371 0.90783 0
rvt 0.02168 0.01797 0.87161

ML-I (own)
|rt−1| hlt−1 rvt−1

|rt| 0.80522 0.18163 0
hlt 0 0.95848 0
rvt 0.02694 0 0.86286

ML-I
|rt−1| hlt−1 rvt−1

|rt| 0.79342 0.20658 0
hlt 0.02085 0.92892 0
rvt 0.02439 0.0137 0.84803

Table 4: Characteristic roots of the estimated Impact Matrices of the vMEM on the indi-
cators |rt|, hlt, rvt – GE stock, 01/03/1995-12/29/2001.

Characteristic roots of A
ML-R 0.80064 0.85259 0.98827
EE 0.80118 0.84151 0.98738
ML-I (own) 0.78945 0.80948 0.97853

Table 5: Estimated parameters of the Gamma marginals of the vMEM on the indicators
|rt|, hlt, rvt – GE stock, 01/03/1995-12/29/2001 (1515 obs.)

ML-R ML-I
|rt| 1.2808 1.272
hlt 6.6435 6.689
rvt 20.6836 20.84


