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Abstract 

This paper proposes a new way of modeling and forecasting intraday returns.  We decompose 

the volatility of high frequency asset returns into components that may be easily interpreted 

and estimated.   The conditional variance is expressed as a product of daily, diurnal and sto-

chastic intraday volatility components.  This model is applied to a comprehensive sample 

consisting of 10-minute returns on more than 2500 US equities.  We apply a number of dif-

ferent specifications. Apart from building a new model, we obtain several interesting fore-

casting results. In particular, it turns out that forecasts obtained from the pooled cross section 

of companies seem to outperform the corresponding forecasts from company-by-company 

estimation. 
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1. INTRODUCTION 
 

 This paper proposes a new way of modeling and forecasting intraday returns.  We de-

compose the volatility of high frequency asset returns into multiplicative components, which 

may be easily interpreted and estimated.   The conditional variance is expressed as a product 

of daily, diurnal and stochastic intraday volatility components.  This model is applied to a 

comprehensive sample consisting of 10-minute returns on more than 2500 US equities.  We 

apply a number of different specifications.  Namely we build models for separate companies, 

pool data into industries and consider various criteria for grouping returns.  It turns out that 

results for the pooled regressions seem to be more stable.  The forecasts from the pooled 

specifications outperform the corresponding forecasts from company-by-company estima-

tion, and we discuss several issues regarding the best way to pool.   

Conventional GARCH approaches were argued to be unsatisfactory for modeling intra-

day returns by authors at the Olsen conference on High Frequency Data Analysis in Zurich in 

March 1995.  In response see Ghose and Kroner (1996).  Alternatively, Andersen and Boller-

slev (1997, 1998) propose models for 5-minute returns on Deutschemark-dollar exchange 

rate and the S&P500 index.  In the first paper, Andersen and Bollerslev build a multiplicative 

model of daily and diurnal volatility, and in the second they add an additional component 

which takes account of macroeconomic announcements.  We think that adding a collection of 

dummy variables representing macroeconomic news announcements to model volatility of 

US stocks is not very practical.  Most important macroeconomic announcements happen be-

fore the stock market opens.  Secondly, it is difficult to imagine that the strength and pattern 

of market’s response to news would be the same, even for the same type of events across 

time, disregarding the fact how much the news has been anticipated.  Third, idiosyncratic an-

nouncements can be expected to be particularly important for equities, and the timing of the 

majority of them is very difficult to forecast.  For most of Andersen and Bollerslev’s models, 

the intra-daily volatility components are deterministic. In contrast, the intra-daily components 

in our model are both deterministic (the diurnal) and stochastic (a separate intra-daily 

ARCH). 

Overall, in distinction to the huge volume of literature on daily volatility models, the re-

search on intraday volatility has been by far less studied. Taylor and Xu (1997) construct an 

hourly volatility model using an ARCH specification and supplementing the conditional vari-
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ance equation by two additional elements:  the implied volatility and the realized volatility 

computed from the high frequency data.  Giot (2005) examines a number of market risk mod-

els for intraday data.   A long memory stochastic volatility approach was applied by Deo, 

Hurvich and Lu (2005).  Their paper diurnally adjusts in the frequency domain and then uses 

a local Whittle estimator on log of squared returns to estimate the parameters.   

 We expect our intraday model to be of particular interest for derivative traders or hedge 

funds who seek high frequency measures of risk or time varying hedge ratios. Volatility es-

timates on an intraday basis could be used to evaluate the risk of slow trading (Engle, 2005) 

or as input to measures of time varying liquidity. Most importantly, however, intraday vola-

tility estimates are useful for devising optimal strategies to place limit orders or schedule 

trades.  The literature on order choice supplies sufficient evidence that volatility is an impor-

tant factor in order submission strategies (cf. Ellul et al. 2003, Griffith et al., 2000). These 

strategies are implemented on intraday basis.   Ranaldo (2004) documents that high volatility 

increases the probability of submission of limit orders, whereas Ellul et al. (2003) find an in-

creased order submission probability for all order types in volatile periods.  According to Lo 

et al. (2002), limit orders execute more quickly when markets become more volatile (the au-

thors use the logarithm of the number of trades in the previous hour as a proxy for volatility).  

Hasbrouck and Saar (2002) investigate the effects of volatility on the cross-section of com-

panies traded on Island ECN.  They find that increased volatility reduces the expected time to 

execution, which they label as a mechanistic volatility effect.  These results are of paramount 

practical importance for the finance industry, since recent years have seen an unprecedented 

surge in automated trading.  In sum, we think that far more attention should be paid to model-

ing intraday volatility, and we propose an important contribution to the existing literature.    

The paper is organized as follows. Section 2 presents the model. Section 3 describes the 

data and gives results of estimation. This is followed by a forecasting section and conclusions.  
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2. THE MODEL 

2.1. Notation 

We use the following notation. Days in the sample are indexed by t (t =1,…, T).  Each day is 

divided into 10 minute intervals referred to as bins and indexed by i (i =0,…, N).  The current 

period is {t,i}.  The price of an asset at the end of bin i of day t is denoted by P{t,i}. The con-

tinuously compounded return r{t,i} is modeled as: 
 

 

{ , }
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t i
t i

t i
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The overnight return in bin zero is deleted leading to a total number of return observations, 
M=TN. 

2.2. Model 

 

We propose a new GARCH model for high frequency intraday financial returns, 

which specifies the conditional variance to be a multiplicative product of daily, diurnal and 

stochastic intraday volatility.  Intraday equity returns are described by the following process: 

 { , } { , } { , } { , } and    ~ (0,1) t i t i t i t i t ir h s q Nε ε=  (2) 

where: 

ht is the daily variance component, 

si is the diurnal (calendar) variance pattern, 

q{t,i} is the intraday variance component with mean one,  and 

ε{t,i} is an error term.  

The daily variance component could be specified in a number of ways.  Andersen and Boller-

slev (1997, 1998), estimate this component from a daily GARCH model for a longer sample, 

going back a number of months or years.  It could also be estimated based on daily realized 

variance as proposed by Engle and Gallo(2005).  We adopt a different route, however, and 

utilize commercially available volatility forecasts produced daily for each company in our 

sample.  This eliminates the need for longer series for the daily model than for the intra-daily 
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model.  With the turnover of corporate ownership, it is difficult to get consistent long series 

for a big universe of stocks.   

The diurnal component is calculated as the variance of returns in each bin after deflating 

by the daily volatility.  To see this consider the variance of these returns: 
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 (3) 

 
Practically, we estimate the model in two stages.  First we normalize returns by daily 

and diurnal volatility components, and then model the residual volatility as a unit 
GARCH(1,1) process: 

 { , } { , } { , } { , }
ˆ/t i t i t t i t iy r h q ε= =  (4) 

 2
{ , } { , 1} 1 { , 1}

ˆ ˆ( / )t i t i t i t iq r h sω α β q− −= + + −  (5) 

The GARCH specification can be rewritten as: 
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The unit GARCH might enforce the constraint 1ω α β= − −  although in the empirical 

work this has not been done.   

 
3. ECONOMETRIC ISSUES 
 

In this section we will discuss statistical properties of the two-step estimator of the model 

outlined in the previous section.  The estimation proceeds in two steps. First we specify and 

estimate the diurnal component.  Following equation  (3) we estimate the diurnal component 

for each bin as the variance of y{t,i} in this bin.  That is: 

 { }
2

,
1

1ˆ , 1,...,
T

i t i
t

s y i
T =

= ∀ =∑ N  (7) 

  

The second step consists of standardizing y{t,i} by iŝ  and estimating parameters of 

the GARCH(p,q) model, which describes the dynamics of the intraday stochastic com-
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ponent as in (6).  Such a multi-step estimation strategy is potentially misleading as er-

rors in one stage can lead to errors in the next stage.   Nevertheless it will be shown be-

low that the estimator is consistent but that the standard errors should be adjusted. 

 In deriving the asymptotic properties of the estimators in this sequential procedure, 

we will follow Newey and McFadden (1994) (later denoted as NM) and cast the above 

steps into the GMM framework. We will consider the GMM estimator of the moment 

conditions stacked one on the other. We will use the following notation. Vector 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

θ
φ

ψ  contains both the k1 parameters φ, estimated in the first step, and the k2 pa-

rameters θ, estimated in the second step,.   Let there be k1 moment conditions g1(φ) and 

k2 moment conditions g2(φ , θ) comprising vector ( ) ( )
( )
1

2 ,
g

g
g

φ
ψ

φ θ
⎛ ⎞

= ⎜
⎝ ⎠

⎟ . The correspond-

ing sample sums are g1M and g2M, giving gM=(g1M’, g2M’)’.  We will consider the GMM 

estimator of the parameter vector 

 
ˆ

ˆ arg min ' arg min '
ˆ M M Mg Wg g g
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θ
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= = =⎜ ⎟⎜ ⎟

⎝ ⎠
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Since it is a just identified system, W=I.  To solve this system, φ must solve the first set 

of equations and θ must solve the second set conditional on the estimated value of φ. 

Thus it is a natural framework to analyze two step estimators of this type.  Newey and 

McFadden (1994) (c.f. their Theorem 6.1, p. 2178), have shown that if  are 

consistent estimators of the true φ

θφ ˆandˆ

0 and θ0, respectively, and gM satisfies a number of 

standard regularity conditions, the resulting GMM estimator is consistent and asymp-

totically normal:  

 (0 1 1

0

ˆ
0, '
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dM N G

φ φ

θ θ
− −
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)G  (9) 
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⎟⎟
⎠

⎞
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⎝

⎛
∂

∂
=

'ψ
ψgEG  and ( ) ( )( )'ψψ ggE=Ω . 

As in Hansen (1982), the above matrices can be consistently estimated by replacing ex-

pectations by sample averages and parameters by their estimates.   

 The NM approach is very convenient and may be applied when parameters at some 

steps are estimated by ML.  In this case some of the GMM moment conditions are taken 
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to be score functions.  In the current two-step setting, the sample sums in the first and 

the second stages are: 
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In order to apply NM’s Theorem 6.1, we have to make sure that  are consis-

tent estimators of the true parameter values at each stage.  This is indeed the case for 

estimator (7).  In random sampling from a stationary ergodic distribution, the sample 

mean is a consistent estimate of the expected value.  Consistency of  follows from, for 

example, Hansen and Lee (1994) or Lumsdaine (1996).  In sum, the consistency and as-

ymptotic normality of the estimator (11) is a corollary to Theorem 6.1 (p. 2178) in 

Newey and McFadden (1994).  The above results could, in principle, be generalized to a 

multi-step estimation.   

θφ ˆandˆ

θ̂

 
 
4. EMPIRICAL RESULTS 
 

4.1. DATA 
 

Our sample consists of price data on 2721 companies obtained from the TAQ data-

base.  We analyze logarithmic returns standardized by a commercially available volatil-

ity forecast for each company and each day and the standard deviation of returns in 

each 10-minute bin.  The returns were calculated using transaction prices.  The over-

night return in bin zero has been deleted. Data spans a three-month period in April-June 

2000.    
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4.2. RESULTS FOR A SINGLE STOCK 

 

Some results will be presented using returns on a single randomly chosen 

NASDAQ-listed stock – Semitool Inc (SMTL). This company produces equipment for 

semiconductor industry.    We divide 10-minute returns by their respective daily com-

mercially available volatility forecasts.  What can be observed for these data, however, 

is a very clear diurnal volatility pattern.  Figure 1 plots the standard deviation of returns 

in each of 39 10-minute bins. There is a pronounced increased variation in the begin-

ning of each day, a calmer period in the middle and somewhat increased variation to-

wards the end.  This diurnal pattern has been observed by many studies for all sorts of 

financial returns.   

[INSERT FIGURES 1,2 AND 3 ABOUT HERE] 

The sample variance for each bin will be our estimate of diurnal variance component 

si. Hence in the second step, returns are normalized by their respective diurnal standard 

deviations.  In order to take account of the remaining intraday dynamics, we fit a 

GARCH (1,1) model into returns standardized in that way.  Figure 2 superimposes the 

three volatility components described above.  For clarity, we have chosen to show an 

approximately three-week period at the very beginning of the sample (3-25 April 2000). 

The bold blue line shows the daily volatility forecast, which is the same for all bins on a 

given day. The green thin line represents the regular diurnal pattern, and the stochastic 

intraday component appears in red with dotted marks.  We may appreciate that this 

component is able to modify the regular deterministic diurnal pattern.   

Figure 3 consists of five panels.  Top panel shows logarithmic returns normalized by 

the unconditional standard deviation of the series. This is followed by the square roots 

of the estimated variance components: daily, diurnal and intraday.  These are followed 

by the square root of a composite variance component, being the product of the preced-

ing three variance components.     
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4.3. RESULTS FOR A SAMPLE OF 2721 STOCKS 
 

4.3.1 SEPARATE ESTIMATION RESULTS 
 

 Model (6) is estimated for 2721 US stock equity returns, which have been previously di-

vided by a volatility forecast for a day and “diurnally adjusted” by the standard deviation for 

each bin. Any remaining serial correlation is eliminated by fitting an ARMA(1,1).    Estima-

tion is performed for the period April-May 2000, and the combined count of observations 

during this period exceeds 4.2 million data points.  Since it is rather demanding to fit results 

of estimation for 2721 separate companies into a table of a manageable size, we report results 

of this procedure resorting to graphical methods.  Figure 4a shows parameter values for com-

panies sorted by their trading intensity.  By a “GARCH parameter” and an “ARCH parame-

ter”, we refer to β and α coefficients from equation (5).  The top and middle panels of Figure 

4a depict β and α  parameters, respectively.  The bottom panel plots the sum of both parame-

ters, thus informing us how persistent the volatility is.  Figure 4b offers a histogram of this 

measure of persistence (β + α).  In both figures, we may observe a fair amount of variation in 

the values of parameters and the measure of persistence.  For the purpose of this graphical 

illustration, the companies are sorted according to their trading intensity. Here we measure 

trading intensity by the average daily number of trades.   

[INSERT TABLE 1 AND FIGURE 4 ABOUT HERE] 

 Companies at the left of Figure 4a are very actively traded, and at the very right- trade 

seldom.  It can be observed that estimates’ variability decreases with the trading intensity.  

Further, there is an upward trend in the GARCH parameter and a downward tendency for the 

ARCH parameter.  In fact, Figures 4a and 4b give us a rationale for grouping companies for 

the purpose of estimation.    It turns out that for some companies, especially the least trading 

ones, separate GARCH estimation encounters difficulties, predominantly of a numerical na-

ture.  When we inspected the “troubled” companies more closely, estimation problems were 

usually resolved by removing, one or two very influential observations (of a magnitude of 10 

standard deviations or so).  This however seems to be a rather arbitrary procedure.  When 

confronted with a big cross section of companies, as in this paper, such arbitrary practice 

could prove very tedious and virtually impossible in real-time big scale implementation. 
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4.3.2 GROUPED ESTIMATION RESULTS 
 

As discussed in previous section, Figure 4a indicates that for some companies, par-
ticularly the less liquid ones, mainly due to the widespread presence of influential or 
outlying observations, numerical problems with convergence are more likely.  We seek 
to use the cross-section information, to improve estimation results.  We will judge the 
performance of particular models on the basis of their forecasting results, presented in 
sections following the present one.   

The purpose is to group/pool companies and estimate a GARCH model for each 
group.  Just as in the case of pooled OLS estimation, we append one series to the end of 
the previous one.  However, we must normalize each company returns by its standard 
deviation to prevent the switching point from being a structural break.  

An important question we need to answer is what a good criterion for grouping 
should be.  Grouping similar companies increases the sample size and will improve ac-
curacy.  However grouping dissimilar companies will introduce bias.  The way we 
group series could certainly influence the parameters of model (6).   Although industry 
grouping is an obvious candidate, we have investigated a number of different admissi-
ble ways of sorting companies. 

  We have attempted to classify groups based on the exchange the stocks are traded 
on and if they are included in major indices.  In particular we have obtained 5 groups:  
NYSE/NASDAQ exchange and S&P and non-S&P equities, with the remaining 5th 
category “Other stocks”.  This exercise was motivated by the finding reported by some 
authors (c.f. Bennett and Wei, 2003) documenting changing volatility levels for compa-
nies that have switched exchanges.  Our five groups turned out to be very unbalanced in 
terms of size, and the forecast comparison seemed to be worse than the other grouping 
modes applied.  Therefore we do not report results of this exercise in this paper. 

Another approach to pooling stocks is to sort them by time series characteristics.  As pre-
viously mentioned, Figure 4a suggests a liquidity criterion for pooling companies into 
groups.  We have tried several categories: we have grouped companies according to 
their capitalization and intensity of trading measured as both the average number of 
trades per day and the percentage of zero returns.  Capitalization grouping placed com-
panies with visibly different volatility patterns into the same groups and it underper-
formed other measures in forecasting.  In the rest of the paper, our favorite liquidity cri-
terion will be the average number of trades per day.  However, estimation and forecast-
ing results were indistinguishable for the percentage of zero returns as a criterion for 
sorting. 
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In summary, we will investigate three different ways of sorting companies into 
groups.  INDUST denotes a GARCH estimation for companies grouped according to 
their primary industry classification.  In LIQUID mode we have grouped companies ac-
cording to the average number of trades per day.  The last mode (ONEBIG) involves 
estimation of a single large GARCH model, for all companies pooled together into one 
group.  

[INSERT TABLES 2-4 AND FIGURES 5-7 ABOUT HERE] 

In the INDUST mode we group data into 54 industries and estimate 54, instead of 
2721 intraday GARCH (1,1) models.   Each return series has been divided by its stan-
dard deviation in order to render returns comparable across stocks. Estimation results of 
this step are summarized in Table 2 and parameters plotted in Figure 5.  We do not en-
counter any convergence problems as was the case for some companies in individual 
estimation.  The persistence parameter for most industries falls in the range of 0.86-
0.96, and the minimum value is 0.761.  Please note that the persistence values are lower 
than it is customary for daily GARCH models.  This however does not contradict tem-
poral aggregation results of Drost and Nijman (1993), since we have previously re-
moved the daily volatility component, responsible for a longer persistence.   

Next we estimate GARCH models for 50 groups of companies sorted according to the li-
quidity criterion. Table 3 gives results and Figure 6 plots parameters.  A somewhat disap-
pointing result emerging from Table 3 is that most of the actively traded groups produce 
GARCH residuals that show statistically significant volatility clustering (as indicated by 
ARCH LM(1) and LM(20) tests).  It appears, however, that this sorting mode works well for 
less liquid stocks, a finding that will be reinforced by forecasting comparisons.  Histogram in 
Figure 6b seemingly documents a reduction in intraday GARCH parameter variation with 
one notable exception.  The least liquid group comprising 55 companies has a persistence 
parameter equal to 0.575.  This group is characterized by spectacular kurtosis and skewness 
coefficients.  Figure 7 gives a snapshot of 10-minute returns on the least trading stocks 
and modestly trading stocks.  The bulk of observations in least trading group are equal 
to zero, and many nonzero observations could be described as outlying or “influential” 
because they equal to several standard deviations from the mean.   

Finally, Table 4 reports results for ARCH estimation for the intraday component for one 
giant pool of all the companies, comprising over 4.2 million observations.  Similar to the in-
dustry case, this table also indicates modest persistence of intraday volatility. 
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5. FORECASTING RESULTS 
 

5.1. LOSS FUNCTIONS AND DESIGN 
 

We now turn to out of sample forecast accuracy.  We use the parameter estimates for 
the period April-May 2000, and forecast one-step-ahead volatilities for each bin in June 
2000.  Forecasts are obtained in a sequential procedure on the basis of estimated pa-
rameters and the volatility forecast calculated at previous bin, as well as actual returns 
from the previous bin.  From the structure of the model, forecasts of the variance of re-
turns are the product of the daily variance forecast, the diurnal variance and the 
GARCH variance.  In this analysis, the variance that is forecast is of the return deflated 
by the daily volatility times the diurnal volatility.  In the forecast period the daily vola-
tility is taken from the same commercial source as for the estimation period. 

 It should be appreciated that forecasting volatility is connected with an addi-
tional complication since of course we do not observe the variable we want to forecast.  
In our forecasting evaluation we will compare our forecasts with the squared return 

.  This return is a random variable drawn from a distribution with a vari-

ance we are trying to estimate.   We expect that the squared return will be large only 
when the true variance is large, however, the squared return may be small even when 
the variance is large.  As a consequence, it is not at all clear what a sensible loss func-
tion should be.  For recent discussions of forecast accuracy measures, see Granger 
(2003) or Patton (2004).   In the following, we use two loss functions: 

{ } { }
2 2

, ,
ˆ ˆ/ t it i t iz r h= s

 

L1 LIK Out-of-sample likelihood 2
{ , }

1 { , }
{ , }

log t i
t t i f

t i

z
L q

q
= +  

L2 MSE Mean Squared Error ( )22
2 { , } { , }

f
t t i t iL z q= −  

 

The use of squared return in place of the true volatility introduces biases in many popu-
lar loss functions problematic (so does the RV measure, c.f. Patton, 2004).  However, 
under MSE and LIK loss functions optimal forecasts are unbiased (c.f. Patton, 2004 and 
Hansen and Lunde, 2005).    

Although part of the literature on assessing forecasting performance of daily models 
(c.f. Hansen and Lunde, 2004) recommends using RV as a proxy, this paper uses 
squared returns because 10 minute interval does not allow a reliable measure of realized 
volatility to be estimated.   For many of the companies in our sample and outside of the 
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active trading periods, the small numbers of trades in 10-minute bins raised concern 
about the precision of RV estimates.   

We determine forecasts for each company separately, using parameters estimated in 
both separate and pooled estimations. Therefore for each time period, for each com-
pany, we obtain 5 different forecasts that will form the basis for a subsequent model 
evaluation and comparison. 

 

 
5.2. OUT-OF-SAMPLE FORECAST COMPARISON 

 

We have performed five different estimations for companies pooled into groups in 
various ways and will refer to these ways as modes.  The first mode (NSTOCH) con-
tains no stochastic component (5) at all.  Mode No. 2 (UNIQUE) involves no pooling, 
i.e. we estimate unique GARCH models for separate companies. Mode No. 3 (INDUST) 
denotes a GARCH estimation for companies grouped according to their primary indus-
try classification.  In Mode No. 4 (LIQUID) we have grouped companies according to 
the average number of trades per day.  The last mode (ONEBIG) involves estimation of 
a large GARCH model, for all companies pooled together to form one group.  

For each of these 5 separate estimations we have calculated a series of forecast er-
rors.  These forecast errors are used to calculate accuracy measurement criteria using 

loss functions L1 and L2, ∑
=

=
τ

τ 1

1
t

jtj LL , where j=1,2; τ= 858 and τ denotes the length of 

the forecasting period. 

Table 5 compares accuracy of volatility forecasts obtained from the above estima-
tion modes.  We have calculated two forecast accuracy measures for each of the 5 esti-
mations and for each company, which amounts to a total of (5 modes*2 criteria * 2721 
stocks =) 27210 numbers. Then for each company we have compared performance of 
different modes of estimation pair by pair, and calculated a percentage of times a fore-
cast from a given estimation outperforms each of the remaining forecasts.  Hence, num-
bers contained in Table 5 give us the frequency with which the mode in the row outper-
forms the mode in the column for a particular loss function.  We will first focus our at-
tention on the upper panel of Table 5, which presents results of forecast comparison us-
ing LIK loss function.  For example, the third row second column compares results of 
NSTOCH vs. separate GARCH estimations.  Here the number 0.618 means that the 
specification without component (5) yields worse forecasts than the individual com-
pany-by-company estimation 62% of times.  The second column of the table informs us 
that NSTOCH estimation performs worse than all the other modes. 

   



 14

As we learn from column three, separate estimation gives worse forecasting results 
than INDUST, LIQUID and ONEBIG modes, but outperforms NSTOCH.  The fifth col-
umn establishes forecasting inferiority of LIQUID mode in comparison to both 
INDUST and ONEBIG modes.  Finally the sixth column offers ONEBIG mode as a 
winner of this competition.  The above discussion carries over to the lower panel of Ta-
ble 5, which presents results for LIK loss function.  One exception is that the MSE cri-
terion marginally favours INDUST estimation over ONEBIG model.   Taking into ac-
count the criticism directed at the MSE loss function as being unduly influenced by a 
few big errors, we think that overall ONEBIG mode emerges as a winner of the fore-
casting comparison. 

[INSERT TABLES 5-7 ABOUT HERE] 

Table 6 pertains to the same set of forecasting results as Table 5.  It reports the 
mean and median of the forecast accuracy measures calculated for each of the 2721 
companies and five estimation modes. The smallest number in each row denotes the 
smallest mean or median error. This table also contains the ordering that LIK and MSE 
criteria assign to the five estimation modes.  Rank 1 denotes the best model, with the 
smallest error, model numbered as fifth performs the worst.  Starting from the top 
panel, the liquidity sorted model appears to give the smallest mean errors for both loss 
functions.  Please note that UNIQUE GARCH outperforms the model with no stochastic 
intraday component.  We test the differences in the value of mean estimates of forecast 
errors using the Diebold Mariano (1995) tests reported in Table 7.  This table presents 
t-values for the null hypothesis that the difference in forecast errors is zero. Note that if 
the model in the row forecasts worse than the model in the column, the t-ratio is nega-
tive.  Column (or Row) 5 indicate that, according to the LIK loss function, liquidity 
sorting gives significantly better mean forecasts than the other models.   

The lower panel of Table 6 contains medians of the forecast accuracy measures.  
Here ONEBIG model performs best, similarly to what we have concluded from Table 5.  

 Tables 5 and 6 give somewhat conflicting answers to the question - which method of 
company grouping should be adopted. However they agree that grouping is very desir-
able compared with separate estimation.  We investigate the supposed disagreement 
looking at liquidity issues.  We limit our attention to two separate samples of 550 most 
liquid and most illiquid companies.  Table 8.A reports forecast accuracy measures for 
the subsample of least liquid stocks.  Please note that means of error functions are big-
ger for least liquid stocks than for most liquid stocks (Table 8.B.).  Nowhere is the dif-
ference between both tails so visible as for the MSE measure.  The numbers differ by an 
order of a magnitude, and this illustrates the sensitivity of the MSE criterion to outlying 
observations, more frequently haunting illiquid stocks.   Similar to conclusions from 
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Table 6, Table 8.A recommends liquidity sorted GARCH model as a preferred forecast-
ing tool for illiquid stocks.   

[INSERT TABLE 8 ABOUT HERE] 

 The picture suddenly changes when we look at the results assembled in Table 8.B, 
which concern the most liquid stocks.  Here ONEBIG GARCH solution, followed 
closely by industry grouping outperform both liquidity-sorted models and separate es-
timation.  These conclusions closely resemble results reported in Table 5. 

 To sum up, we have seen that inclusion of stochastic intraday component (5) im-
proves forecasting results in comparison with the model with diurnal and daily compo-
nents only.  We also observe better forecasting performance using cross section infor-
mation, and applying different methods of pooling.  The exact way we chose to group 
companies heavily relies on company characteristics, liquidity in this case.  Most liquid 
stocks seem to benefit from the widest pooling possible, i.e. using all available cross 
section information.  Most illiquid stocks apparently exhibit intraday dynamics which 
are idiosyncratic to their particular liquidity-determined group, and consequently we 
may obtain better forecasts when we group these stocks together.  

 

6. CONCLUSION 
   

This paper proposes a new way of modeling and forecasting intraday returns.  We decompose 

the volatility of high frequency asset returns into components that may be easily interpreted 

and estimated.   The conditional variance is expressed as a product of daily, diurnal and sto-

chastic intraday volatility components.  This model is applied to a comprehensive sample 

consisting of 10-minute returns on more than 2500 US equities.   
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Table 1.  SMTL Intraday GARCH Results 
 

Parameter Value Standard Error T Statistic 

C 0.0013 0.0177 0.0726

ω 0.1896 0.0208 9.1076

β 0.6814 0.0293 23.2738

α 0.1295 0.0130 9.9463

 

Notes:  This table presents estimation results for intraday GARCH(1,1) model for Semitools Inc. Sample period 
April-May 2000. Symbols α , β and ω denote GARCH parameters from the variance equation (5). C denotes a 
constant in the mean equation. 
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Table  2.  Industry Sorting Estimation Results - INDUST Mode 
 
Industry Skewness Kurtosis No. of α+β ω ω β β α α AIC BIC LM(1) LM(20)

coefficient coefficient observations t-stat t-stat t-stat

1 -0.17 19.6 92970 0.863 0.139 105.9 0.797 476.0 0.065 105.2 -258309.7 -258338.1 2.1 16.0
2 0.09 21.6 24100 0.761 0.244 62.0 0.663 130.6 0.098 56.7 -67122.8 -67147.1 0.0 4.5
3 -0.33 22.3 71292 0.861 0.142 131.4 0.787 532.0 0.074 92.3 -198004.8 -198032.3 0.5 10.7
4 0.12 18.4 134195 0.889 0.113 123.1 0.825 639.9 0.064 108.1 -372851.6 -372881.1 2.5 13.2
5 0.15 14.9 100579 0.896 0.106 113.8 0.829 634.0 0.067 95.2 -279073.6 -279102.2 0.4 13.0
6 -0.01 11.9 43641 0.906 0.095 50.0 0.849 325.3 0.058 51.4 -121803.9 -121830.0 0.4 4.6
7 -0.22 12.9 55380 0.892 0.111 63.0 0.795 288.6 0.097 60.3 -153314.6 -153341.4 0.9 38.7 **
8 -0.07 16.8 102608 0.844 0.159 107.2 0.751 354.8 0.092 93.2 -284211.1 -284239.7 0.5 17.2
9 -0.04 30.3 23673 0.892 0.116 75.1 0.812 351.9 0.079 64.1 -65365.8 -65390.0 0.3 4.2

10 0.61 21.6 10647 0.858 0.150 48.0 0.757 179.4 0.101 36.2 -29420.7 -29442.5 0.4 6.2
11 -0.09 16.2 37322 0.836 0.167 66.1 0.743 218.8 0.093 78.3 -103739.8 -103765.4 0.1 7.1
12 -0.38 32.0 28236 0.766 0.235 60.6 0.680 133.9 0.086 44.6 -78267.4 -78292.2 0.0 3.7
13 -0.19 19.4 33540 0.819 0.185 53.2 0.708 132.8 0.111 42.9 -92707.1 -92732.3 0.0 2.2
14 -0.26 15.9 56705 0.909 0.093 77.5 0.839 452.9 0.071 73.9 -156693.2 -156720.1 1.1 9.8
15 -0.13 17.3 44927 0.911 0.091 88.4 0.818 461.0 0.093 78.9 -122184.8 -122210.9 4.1 * 15.6
16 -0.01 13.1 37401 0.894 0.110 57.1 0.790 242.5 0.104 56.4 -102781.0 -102806.6 1.4 11.4
17 -0.27 16.5 90714 0.892 0.112 137.6 0.789 544.5 0.103 98.5 -247939.1 -247967.3 0.3 6.6
18 0.19 12.6 24959 0.874 0.129 54.3 0.770 216.1 0.104 49.7 -69013.1 -69037.5 0.6 13.2
19 0.21 22.1 84239 0.922 0.079 117.7 0.865 810.5 0.057 99.8 -232447.2 -232475.2 0.7 6.0
20 0.01 15.3 57330 0.928 0.075 78.5 0.863 568.6 0.065 72.9 -158422.2 -158449.1 1.9 19.4
21 -0.33 19.4 103229 0.909 0.094 142.1 0.832 807.2 0.076 110.4 -283229.7 -283258.4 0.4 13.7
22 0.21 12.1 28119 0.866 0.137 40.7 0.791 176.8 0.075 41.9 -78377.3 -78402.0 0.5 6.9
23 0.20 12.9 37401 0.797 0.208 49.2 0.679 124.4 0.119 59.2 -103768.6 -103794.2 0.7 11.1
24 -0.06 18.0 25583 0.929 0.073 65.4 0.867 516.7 0.061 55.2 -70375.5 -70399.9 0.5 9.7
25 -0.37 16.0 48163 0.911 0.090 86.8 0.839 529.8 0.072 69.5 -132640.9 -132667.2 3.5 14.2
26 0.22 7.7 10919 0.918 0.083 19.1 0.826 123.0 0.092 24.6 -30003.2 -30025.1 1.9 9.0
27 -0.11 14.0 42119 0.879 0.124 62.0 0.785 242.4 0.094 55.2 -115949.9 -115975.8 0.2 4.5
28 -0.33 16.5 17121 0.816 0.185 31.8 0.743 100.3 0.073 31.2 -47691.1 -47714.3 0.1 2.5
29 0.11 22.2 103542 0.910 0.093 173.4 0.845 1040.1 0.065 126.9 -286380.4 -286409.0 0.8 13.0
30 0.15 10.0 119105 0.865 0.136 121.4 0.786 517.5 0.079 90.0 -332176.0 -332205.0 8.2 ** 40.6 **
31 0.18 13.8 58733 0.914 0.087 72.6 0.857 505.5 0.057 70.1 -163754.1 -163781.0 0.8 9.3
32 0.28 11.9 15600 0.912 0.093 25.2 0.807 136.5 0.106 30.5 -42909.4 -42932.4 0.0 9.0
33 0.14 19.3 31628 0.819 0.187 77.5 0.707 206.9 0.112 58.0 -87301.5 -87326.6 0.1 6.9
34 -0.11 20.5 44691 0.909 0.096 115.0 0.816 590.0 0.094 83.5 -121879.7 -121905.8 3.3 11.5
35 0.11 12.1 51400 0.914 0.090 60.8 0.809 350.2 0.105 75.5 -140405.5 -140432.1 12.5 ** 23.1
36 0.20 18.1 108809 0.904 0.101 121.8 0.808 629.2 0.095 122.4 -298386.7 -298415.5 4.1 * 18.7
37 -0.19 16.7 214610 0.919 0.086 160.4 0.810 985.7 0.109 198.7 -582635.7 -582666.6 2.2 15.9
38 -0.03 13.3 222297 0.920 0.083 186.0 0.810 943.2 0.110 164.7 -599522.4 -599553.3 3.4 44.0 **
39 0.02 10.5 148821 0.944 0.060 108.0 0.822 755.4 0.122 128.8 -396821.0 -396850.7 10.1 ** 69.1 **
40 0.04 14.7 125260 0.918 0.084 178.5 0.817 871.1 0.100 130.7 -338694.3 -338723.5 0.5 7.4
41 -0.13 13.0 258050 0.933 0.072 210.5 0.813 1319.2 0.120 211.7 -690593.4 -690624.7 19.8 ** 82.7 **
42 0.21 13.3 34240 0.903 0.100 54.5 0.814 285.0 0.089 53.5 -94093.9 -94119.2 3.8 12.4
43 -0.18 15.3 113017 0.907 0.095 124.0 0.818 622.6 0.089 105.5 -308729.2 -308758.1 0.6 14.0
44 -0.37 19.1 50504 0.889 0.115 120.6 0.779 464.7 0.110 84.7 -137111.2 -137137.7 0.0 3.7
45 -0.18 15.8 174678 0.922 0.082 178.0 0.820 937.9 0.102 152.7 -473090.9 -473121.1 3.0 25.7
46 -0.06 17.6 85601 0.919 0.083 114.8 0.845 765.2 0.074 116.6 -234855.2 -234883.2 5.0 * 19.9
47 0.08 21.5 34865 0.896 0.109 87.2 0.802 428.8 0.094 84.2 -95357.6 -95382.9 5.7 * 17.6
48 -0.05 20.1 96524 0.930 0.072 162.9 0.869 1462.3 0.060 123.0 -266470.5 -266498.9 12.0 ** 22.1
49 -0.07 21.4 218205 0.905 0.097 176.9 0.845 1042.4 0.060 144.9 -605493.6 -605524.5 3.1 15.1
50 -0.15 19.4 48044 0.892 0.110 59.7 0.839 348.0 0.053 60.0 -134115.7 -134142.0 0.4 7.6
51 -0.19 15.2 57679 0.910 0.094 114.3 0.808 540.9 0.102 88.1 -156792.1 -156819.0 0.3 8.6
52 -0.39 18.9 87902 0.944 0.058 148.1 0.880 1358.0 0.064 127.4 -240292.6 -240320.8 4.9 * 9.2
53 -0.06 11.2 79754 0.956 0.050 73.2 0.822 514.5 0.133 97.5 -209371.4 -209399.2 7.8 ** 39.1 **
54 0.06 13.4 156155 0.906 0.096 94.1 0.850 607.8 0.056 101.1 -436825.6 -436855.5 0.9 15.5

 
Notes:  This table presents estimation results for intraday GARCH(1,1) models for 54 industries. Sam-
ple period April-May 2000. Symbols α, β and ω denote GARCH parameters from the variance equation (5).  
Persistence is measured as the sum of parameters (α + β).  AIC and BIC denote Akaike and Schwartz In-
formation Criteria, respectively. LM(1) and LM(20) statistics are calculated as the ARCH LM test, cf. Engle 
(1982), on the residuals from (6). Under the null of no ARCH effects at lag q, the statistic has a chi2 distribu-
tion with q degrees of freedom, where q= 1, 20.  * , ** denote significance at the 5% and 1% levels, respec-
tively.   
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Table  3.  Liquidity Sorting Estimation Results LIQUID Mode 

 
Group Skewness Kurtosis α+β ω ω β β α α AIC BIC LM(1) LM(20)

coefficient coefficient t-stat t-stat t-stat

1 -1.05 133.9 0.575 0.439 136.1 0.514 146.3 0.061 66.1 -166244.5 -166271.4 0.3 2.1
2 -0.48 66.6 0.916 0.085 191.6 0.886 1655.6 0.030 148.1 -223214.4 -223242.3 0.6 4.5
3 -0.45 41.1 0.926 0.075 124.7 0.892 1145.5 0.034 116.7 -234652.3 -234680.3 1.0 8.7
4 -0.07 28.9 0.925 0.076 100.3 0.893 934.5 0.032 99.4 -238318.5 -238346.5 5.5 * 14.6
5 -0.16 29.2 0.917 0.085 113.7 0.869 866.7 0.047 110.5 -237045.4 -237073.5 1.0 4.7
6 0.07 24.8 0.887 0.115 118.1 0.826 654.5 0.061 124.7 -237362.3 -237390.3 2.0 8.1
7 -0.02 21.5 0.918 0.084 93.9 0.866 714.3 0.051 102.4 -238251.4 -238279.5 1.7 10.1
8 -0.06 20.2 0.928 0.074 103.6 0.876 889.0 0.052 114.1 -237731.6 -237759.6 4.7 * 16.0
9 0.04 15.7 0.946 0.055 75.0 0.907 905.9 0.039 89.5 -238954.2 -238982.2 9.7 ** 25.6

10 -0.19 15.5 0.933 0.068 82.2 0.883 774.1 0.050 90.7 -238538.4 -238566.5 6.8 ** 22.8
11 0.08 15.6 0.918 0.083 81.9 0.864 624.6 0.054 87.8 -238514.3 -238542.4 5.2 * 18.2
12 0.03 17.0 0.873 0.129 87.6 0.804 398.2 0.069 82.5 -238273.7 -238301.8 1.4 17.8
13 -0.11 16.6 0.909 0.093 83.8 0.830 511.9 0.079 110.5 -236173.6 -236201.7 0.6 11.3
14 0.09 14.0 0.928 0.074 94.4 0.859 760.1 0.069 98.0 -236305.5 -236333.6 16.7 ** 38.5 **
15 -0.14 14.1 0.905 0.097 75.8 0.833 448.2 0.072 81.8 -237521.2 -237549.3 1.8 11.7
16 0.10 13.6 0.931 0.071 86.0 0.863 690.1 0.068 93.0 -236377.8 -236405.9 9.8 ** 25.9
17 -0.05 12.4 0.915 0.089 74.2 0.832 478.3 0.083 85.9 -236897.4 -236925.5 8.0 ** 30.8
18 -0.10 14.1 0.916 0.087 77.8 0.829 496.1 0.087 97.6 -235707.8 -235735.9 3.8 21.7
19 -0.10 15.1 0.928 0.075 107.0 0.832 651.4 0.096 107.6 -232606.3 -232634.3 3.1 20.2
20 -0.03 11.8 0.934 0.069 80.6 0.855 600.0 0.078 84.1 -235792.1 -235820.2 9.6 ** 31.7 *
21 -0.22 14.8 0.906 0.099 78.8 0.802 427.4 0.104 89.7 -234870.7 -234898.8 8.4 ** 28.1
22 -0.16 12.2 0.901 0.103 80.7 0.800 401.6 0.101 86.9 -230967.3 -230995.3 1.9 15.1
23 -0.01 10.8 0.903 0.101 71.6 0.804 376.0 0.099 82.0 -231523.6 -231551.6 9.0 ** 44.9 **
24 0.09 11.2 0.898 0.105 76.6 0.798 388.9 0.100 81.0 -231429.2 -231457.3 13.6 ** 41.0 **
25 -0.09 13.3 0.930 0.075 98.4 0.834 630.5 0.095 92.8 -230710.7 -230738.7 14.5 ** 38.0 **
26 0.04 10.8 0.921 0.083 72.6 0.823 441.9 0.098 82.4 -230872.9 -230900.9 14.5 ** 41.9 **
27 0.05 10.9 0.925 0.080 73.2 0.815 448.5 0.110 87.6 -229528.8 -229556.8 14.3 ** 48.5 **
28 -0.09 13.4 0.909 0.098 78.1 0.785 379.7 0.123 93.0 -229022.1 -229050.1 2.4 25.4
29 0.08 10.4 0.908 0.095 67.5 0.799 352.1 0.110 79.0 -229024.3 -229052.3 5.2 * 32.0 *
30 -0.08 11.5 0.899 0.105 86.9 0.787 401.6 0.112 88.9 -230512.6 -230540.6 9.7 ** 31.5 *
31 -0.11 11.0 0.922 0.083 73.6 0.811 436.3 0.111 91.6 -241774.3 -241802.5 14.5 ** 60.8 **
32 -0.12 12.4 0.920 0.085 76.2 0.808 446.4 0.112 97.6 -238271.6 -238299.8 7.3 ** 33.7 *
33 0.02 10.6 0.889 0.115 73.8 0.768 316.4 0.121 83.0 -235022.9 -235051.0 12.4 ** 47.9 **
34 -0.11 9.5 0.894 0.111 72.9 0.761 302.3 0.133 79.5 -233621.2 -233649.3 4.7 * 43.1 **
35 0.01 9.7 0.904 0.100 69.8 0.786 312.7 0.118 73.0 -230334.7 -230362.7 7.9 ** 38.2 **
36 -0.12 10.5 0.900 0.105 63.8 0.768 280.0 0.131 76.2 -232441.0 -232469.1 6.2 * 34.4 *
37 0.03 10.0 0.908 0.098 68.6 0.774 317.9 0.134 83.9 -232382.9 -232411.0 5.7 * 30.6
38 -0.04 9.7 0.915 0.090 77.5 0.791 425.2 0.124 91.5 -232209.1 -232237.1 6.4 * 42.3 **
39 0.01 8.5 0.908 0.097 62.3 0.782 307.0 0.126 74.7 -230539.3 -230567.4 11.6 ** 46.0 **
40 -0.02 8.9 0.922 0.082 64.7 0.804 366.2 0.119 76.0 -234015.9 -234044.0 10.2 ** 52.1 **
41 -0.07 9.4 0.924 0.081 73.6 0.797 393.2 0.126 81.9 -227993.4 -228021.4 5.4 * 46.9 **
42 -0.02 9.4 0.919 0.087 87.8 0.784 454.4 0.134 90.5 -228162.5 -228190.5 8.2 ** 59.8 **
43 -0.07 8.9 0.931 0.072 61.2 0.816 390.1 0.116 78.3 -227845.4 -227873.4 20.8 ** 74.9 **
44 -0.11 10.6 0.936 0.070 71.2 0.810 426.8 0.126 85.7 -231733.2 -231761.3 6.7 ** 40.3 **
45 -0.05 9.3 0.934 0.070 60.0 0.808 380.1 0.126 86.4 -231166.0 -231194.0 10.8 ** 47.4 **
46 -0.04 9.0 0.919 0.084 71.0 0.790 330.6 0.130 76.3 -228379.7 -228407.7 13.2 ** 49.0 **
47 0.03 9.2 0.948 0.055 53.9 0.828 392.6 0.120 71.1 -229369.1 -229397.2 37.9 ** 86.8 **
48 0.07 9.3 0.959 0.046 63.8 0.837 545.7 0.121 82.0 -231876.6 -231904.7 10.5 ** 44.9 **
49 0.12 9.4 0.954 0.050 55.9 0.823 418.9 0.131 79.8 -222887.3 -222915.3 7.7 ** 31.1
50 0.27 9.9 0.964 0.040 66.9 0.802 389.7 0.162 86.1 -215098.5 -215126.5 1.6 36.9 *

 
Notes:  This table presents estimation results for intraday GARCH(1,1) models for 50 groups of liquid-
ity sorted companies. Sample period April-May 2000. Symbols α , β and ω denote GARCH parameters 
from the variance equation (5).  Persistence is measured as the sum of parameters (α + β).  AIC and BIC 
denote Akaike and Schwartz Information Criteria, respectively. LM(1) and LM(20) statistics are calculated as 
the ARCH LM test, cf. Engle (1982), on the residuals from (6). Under the null of no ARCH effects at lag q, the 
statistic has a chi2 distribution with q degrees of freedom, where q= 1, 20.  * , ** denote significance at the 5% 
and 1% levels, respectively.   
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Table 4. All Sample Estimation Results- ONEBIG Mode 
 
Parameter Value Standard Error T Statistic 

ω  0.096 0.000112 854.3

β  0.823 0.000180 4570.4

α  0.084 0.000115 728.6
 
Notes:  This table presents estimation results for intraday GARCH(1,1) models for one large group of 
companies pooled together. Sample period April-May 2000. Symbols α , β and ω denote GARCH 
parameters from the variance equation (5).  
 
 
 
 
Table 5. Comparison of one-period-ahead forecasts for estimation modes 
Frequency with which the mode in a row outperforms the mode in a column 
 

Modes NSTOCH UNIQUE INDUST LIQUID ONEBIG 

LIK loss function   

NSTOCH  0.382 0.275 0.245 0.262 
UNIQUE 0.618 0.354 0.404 0.339 
INDUST 0.725 0.646 0.572 0.445 
LIQUID 0.755 0.596 0.428 0.377 
ONEBIG 0.738 0.661 0.555 0.623  

Modes NSTOCH UNIQUE INDUST LIQUID ONEBIG 

MSE loss function   

NSTOCH   0.304 0.203 0.307 0.222 
UNIQUE 0.696  0.419 0.465 0.432 
INDUST 0.798 0.581  0.615 0.520 
LIQUID 0.694 0.535 0.385  0.411 
ONEBIG 0.778 0.568 0.480 0.590   

 
Notes: This table compares accuracy of one-step-ahead volatility forecasts obtained from five 
estimation modes.  It contains frequency with which a forecast from an estimation described in 
a row outperforms a forecast from an estimation mode indicated in the column. Top panel: 
forecasts comparisons using LIK (Out-of-sample likelihood) loss function.  Second panel: 
Forecasts comparison using MSE loss function.   
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Table 6.  Mean and median of forecast accuracy measures for in-
dividual stocks 
 

Loss func-
tion 

  NSTOCH UNIQUE INDUST LIQUID ONEBIG 

Mean of forecasts accuracy measures  

LIK Mean  1.0001 0.9485 0.9306 0.9271 0.9313 
 Rank  5 4 2 1 3 

MSE Mean  3.4930 3.4835 3.4668 3.4661 3.4666 
 Rank  5 4 3 1 2 

Median of forecasts accuracy measures  

LIK Median  1.0002 0.9543 0.9430 0.9432 0.9410 
 Rank  5 4 2 3 1 

MSE Median  2.9765 2.9571 2.9495 2.9498 2.9478 
  Rank  5 4 2 3 1 

 
Top panel contains sample means of the forecast accuracy measures calculated for five estima-
tion modes for each company separately for both loss functions.   Second panel contains sam-
ple medians of the forecast accuracy measures.   
Rows labeled “Rank” indicates the ranking of models on the basis of their mean (or median ) 
errors.  Models with smallest errors are ranked as 1, the worst models are assigned the rank 
number 5.   
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Table 7.  Forecast accuracy Diebold-Mariano test, t-values 
 

Modes NSTOCH  UNIQUE  INDUST  LIQUID  ONEBIG  

LIK loss function        

NSTOCH   -5.8297 * -35.772 * -40.947 * -34.688 * 

UNIQUE 5.8297 *  -2.074 * -2.459 * -1.998 * 

INDUST 35.772 * 2.074 *  -4.964 * 1.367  

LIQUID 40.947 * 2.459 * 4.964 *   5.351 * 

ONEBIG 34.688 * 1.998 * -1.367  -5.351 *  

MSE NSTOCH  UNIQUE  INDUST  LIQUID  ONEBIG  

MSE loss function        

NSTOCH    -3.5983 * -22.176 * -23.956 * -20.394 * 

UNIQUE 3.598 *  * -7.404 * -7.481 * -7.322 * 

INDUST 22.176 * 7.404 *   -1.377  -0.335  
LIQUID 23.956 * 7.481 * 1.377     -0.624  

ONEBIG 20.394 * 7.322 * 0.334  -0.624    

Notes: This table presents t-values for the null hypothesis that the difference in forecast errors 
between estimation modes is not significantly different from zero. If the model in the row fore-
casts worse than the model in the column, the t-ratio is negative.  * denotes significance at the 5% 
level.. 
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Table 8.  Forecast accuracy comparison for most and least liquid stocks 
 

A. Least Liquid Stocks 

 Forecast accuracy measures LIK Rank MSE Rank Av. Rank 

NSTOCH No stochastic intraday component 1.0002 5 5.8425 2 3.5
UNIQUE Separate GARCH estimation  0.9779 4 5.8871 5 4.5
INDUST Industry GARCH estimation 0.9548 2 5.8481 3 2.5
LIQUID Liquidity-Sorted GARCH estimation 0.9405 1 5.8287 1 1
ONEBIG One large GARCH estimation 0.9629 3 5.8541 4 3.5

B. Most Liquid Stocks 

 Forecast accuracy measures LIK Rank MSE Rank Av. Rank 

NSTOCH No stochastic intraday component 0.9999 5 2.7439 5 5
UNIQUE Separate GARCH estimation  0.9679 4 2.7309 4 4
INDUST Industry GARCH estimation 0.9293 2 2.7084 2 2
LIQUID Liquidity-Sorted GARCH estimation 0.9339 3 2.7172 3 3
ONEBIG One large GARCH estimation 0.9274 1 2.7044 1 1

 
  Notes:  This table reports forecast accuracy measures for the subsample of least liquid stocks (top 
panel) and most liquid stocks (second panel).  Rank denotes ordering from best (1) to worst (4).  Av-
erage Rank is calculated as the mean of ordering measures in each row. LIK and MSE are two loss 
functions used. 
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Figure 1.  Standard deviation of returns across bins for SMTL stock.  The horizontal axis 
labels denote hours during a trading day. Values depicted in this graph are calculated as a 
standard deviation of 10-min returns in each bin. Returns have been previously divided by 
daily volatility components. 
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Figure 2.  Volatility Components for Semitools Inc.  This figure superimposes square roots of vari-
ance components estimated for SMTL, Semitools Inc.  For clarity this picture offers a snapshot for 
the period 3-25 April 2000. The bold line shows the daily volatility forecast, which is the same for all 
bins on a given day. The green thin line represents the regular diurnal pattern, and the stochastic in-
traday component appears in red with dotted marks.    
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Figure 3. Volatility Components for Semitools Inc. Estimation period April-May 2000. Top 
panel:  Logarithmic intraday returns on SMTL stock normalized by their unconditional stan-
dard deviation.  Second panel:  The square root of the daily variance component.  Third panel:  
The square root of the diurnal variance component.  Fourth panel:  The square root of the in-
traday variance component.   Fifth panel:  The square root of the composite variance compo-
nent being the product of the proceeding three variance components.   
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Figure 4a. Estimation results for the intraday GARCH models for 2721 for separate compa-
nies. Sample period April-May 2000.  For the purpose of this picture companies were sorted 
by their average daily number of trades. Top panel:  GARCH β from equation (5).  Second 
panel: ARCH parameter α from equation (5).  Third panel:  Persistence measure (α + β).  
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Figure 4b. Histogram of the persistence measure (α + β) from intraday GARCH estimation 
for 2721 Separate Models. Sample period April-May 2000.  The horizontal axis denotes the 
value of the persistence parameter (α + β) and the vertical axis denotes the number of compa-
nies with the estimated persistence parameters falling into a corresponding bin. 
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Figure 5a. Estimation results for the intraday GARCH models for 54 industries. Sample 
period April-May 2000. First panel: GARCH parameter β from equation (5). Second panel: 
ARCH parameter α from equation (5). Third panel: Persistence measure (α+β).  
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Figure 5b. Histogram of the persistence measure (α + β) from intraday GARCH estimation 
for 54 industries. Sample period April-May 2000.  The horizontal axis denotes the value of the 
persistence parameter (α + β) and the vertical axis denotes the number of companies with the 
estimated persistence parameters falling into a corresponding bin. 
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Figure 6a. Estimation results for the intraday GARCH models for 50 liquidity-sorted 
groups. Trading intensity or liquidity increases from the left to the right side of each picture.  
Sample period April-May 2000. First panel: GARCH parameter β from equation (5). Second 
panel: ARCH parameter α from equation (5). Third panel: Persistence measure (α+β). 
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Figure 6b. Histogram of the persistence measure (α + β) from intraday GARCH estimation 
for 50 liquidity-sorted groups. Sample period April-May 2000.  The horizontal axis denotes 
the value of the persistence parameter (α + β) and the vertical axis denotes the number of com-
panies with the estimated persistence parameters falling into a corresponding bin. 
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A. Least Trading Group (1/50) 

 
B. Modestly Trading Group (15/50) 

 
Figure 7.  Examples of standardized logarithmic returns for two of the 50 Liquidity-Sorted 

Groups. Horizontal axis denotes ith observation in each liquidity sorted group and 
snapshots were chosen at random from the upper half of the groups. 
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