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An Examination of the Static and Dynamic Performance of 
Interest Rate Option Pricing Models 

In the Dollar Cap-Floor Markets 
 
 

Abstract 
 

This paper examines the static and dynamic accuracy of interest rate option 
pricing models in the U.S. dollar interest rate cap and floor markets. We evaluate 
alternative one-factor and two-factor term structure models of the spot and the 
forward interest rates on the basis of their out-of-sample predictive ability in terms 
of pricing and hedging performance. The one-factor models analyzed consist of 
two spot-rate specifications (Hull and White (1990) and Black-Karasinski (1991), 
five forward rate specifications (within the general Heath, Jarrow and Morton 
(1990b)  class), and one LIBOR market model (Brace, Gatarek and Musiela (1997) 
[BGM]). For two-factor models, two alternative forward rate specifications are 
implemented within the HJM framework. We conduct tests on daily data from 
March-December 1998, consisting of actual cap and floor prices across both strike 
rates and maturities. Results show that fitting the skew of the underlying interest 
rate distribution provides accurate pricing  results within a one-factor framework. 
However, for hedging performance, introducing a second stochastic factor is more 
important than fitting the skew of the underlying distribution. Overall, the one-
factor lognormal model for short term interest rates outperforms other competing 
models in pricing tests, while two-factor models perform significantly better than 
one-factor models in hedging tests. Modeling the second factor allows a better 
representation of the dynamic evolution of the term structure by incorporating 
expected twists in the yield curve. Thus, the interest rate dynamics embedded in 
two-factor models appears to be closer to the one driving the actual economic 
environment, leading to more accurate hedges. This constitutes evidence against 
claims in the literature that correctly specified and calibrated one-factor models 
could replace multi-factor models for consistent pricing and hedging of interest 
rate contingent claims. 

 



 3

1.   Introduction 

 

Interest rate option markets are amongst the largest and most liquid option markets in the world 

today, with daily volumes of billions of U.S. dollars in trading of interest rate caps/floors, 

Eurodollar futures options, Treasury bond futures options, and swaptions. The total notional 

principal amount of over-the-counter interest rate options such as caps/floors and swaptions 

outstanding at the end of 2000 was about $9.5 trillion.1 These options are widely used both for 

hedging as well as speculation against changes in interest rates.  

 

Theoretical work in the area of interest rate derivatives has produced a variety of models and 

techniques to value these options, some of which are widely used by practitioners.2 The 

development of many of these models was mainly motivated by their analytical tractability. 

Therefore, while these models have provided important theoretical insights, their empirical validity 

and performance remain to be tested.  Empirical research in this area has lagged behind theoretical 

advances partly due to the difficulty in obtaining data, as most of these interest rate contingent 

claims are traded in over-the-counter markets, where data are often not recorded in a systematic 

fashion.  This gap is being slowly filled by recent research in this area. 

 

This paper provides empirical evidence on the validity of alternative interest rate models.  We 

examine the static and dynamic accuracy of interest rate option pricing models in the U.S. dollar 

interest rate cap and floor markets. For the first time in this literature, a time series of actual cap and 

floor prices across strike rates and maturities is used to study the systematic patterns in the pricing 

and hedging performance of competing models, on a daily basis. Alternative one- and two-factor 

models of the term structure are evaluated based on their static performance (by examining their 

out-of-sample price predictions) and their dynamic accuracy (by analyzing their ability to hedge 

caps and floors). The one-factor models analyzed consist of two spot-rate specifications (Hull and 

White (1990) [HW] and Black-Karasinski (1991) [BK]), five forward rate specifications (within the 

general Heath, Jarrow and Morton (1990b) [HJM] class), and one LIBOR market model (Brace, 

Gatarek and Musiela (1997) [BGM]). For two-factor models, two alternative forward rate 

                                                                 
1 Source: Bank for International Settlements (BIS) Quarterly Review, December 2000. 
2 The early models, many of which are still widely used, include those by Black (1976), Vasicek (1977), 
Cox, Ingersoll and Ross (1985), Ho and Lee (1986), Heath, Jarrow and Morton (1990b), Hull and White 
(1990), Black, Derman and Toy (1990), and Black and Karasinski (1991). Several variations and extensions 
of these models have been proposed in the literature in the past decade. 



 4

specifications are implemented within the HJM framework. The analysis in this paper, therefore, 

sheds light on the empirical validity of a broad range of models for pricing and hedging interest 

rate caps and floors, especially across different strikes, and suggests directions for future research.  

 

There are very few papers that study the empirical performance of these models in valuing interest 

rate derivatives. Flesaker (1993) and Amin and Morton (1994) test the HJM model in pricing 

Eurodollar future options. The Amin and Morton (1994) study evaluates different volatility 

specifications within the HJM framework, using a time-series of Eurodollar futures and options 

data. They document systematic strike rate and time-to-maturity biases for all models. However, 

their analysis is restricted to options with relatively short maturities (less than one-year), in a 

market with much lower trading volumes than those for caps/floors. Therefore, their analysis does 

not capture the longer-term effects of the volatility term structure, including mean-reversion. Also, 

they do not evaluate any spot rate specifications, and restrict their analysis to single factor models. 

Canabarro (1995) examines the accuracy of interest rate hedges constructed using the Black-

Derman-Toy and two-factor extensions of the Cox-Ingersoll-Ross and Brennan-Schwartz models, 

and finds that two-factor bond replicating strategies are more accurate than one-factor ones. 

However, his study is based on simulated data on Treasury yield curves, and does not examine 

many of the more recent term structure models. Bühler, Uhrig, Walter and Weber (1999) test 

different one-factor and two-factor models in the German fixed-income warrants market. In their 

comprehensive study, they report that the one-factor forward rate model with linear proportional 

volatility outperforms all other models. Their study, based on weekly data, is limited to options 

with maturities of less than 3 years. In addition, the underlying asset for these options is not 

homogenous. For some of the options, the underlying asset is the ten-year German Treasury bond 

(“the BUND”), while for others, it is the five-year German Treasury bond (“the BOBL”). The 

methodology in this study involves the estimation of model parameters from historical interest rate 

data rather than the extraction of this information from derivative prices. Therefore, the results are 

subject to large pricing errors. Lastly, the paper does not analyze strike-rate biases, due to data 

limitations.  However, casual observation and evidence from other derivative markets suggest that 

these biases may be significant.   

 

There have been some recent working papers that test model performance for pricing interest rate 

derivatives. Ritchken and Chuang (1999) test a three-state Markovian model in the Heath-Jarrow-

Morton paradigm when the volatility structure of forward rates is humped, using price data for at-
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the-money (ATM) caplets. They find that with three state variables, the model captures the full 

dynamics of the term structure without using any time varying parameters. However, a single state 

variable model is unable to achieve such a fit. They conclude that the volatility hump is an 

important feature to be captured in a term structure model. Hull and White (1999) test the LIBOR 

market model for swaptions and caps across a range of strike rates, but with data for only one day, 

August 12, 1999. They find that the absolute percentage pricing error for caps was greater than for 

swaptions.  Longstaff, Santa-Clara and Schwartz (2001, LSS) use a string model framework to test 

the relative valuation of caps and swaptions using ATM cap and swaptions data. Their results 

indicate that swaption prices are generated by a four-factor model, and that cap prices periodically 

deviate from the no-arbitrage values implied by the swaption market. Moraleda and Pelsser (2000) 

test three alternative spot-rate models and two Markovian forward-rate models on cap and floor 

data from 1993-94, and find that spot rate models outperform the forward-rate models. However, as 

they acknowledge, their empirical tests are not very formal. 

 

None of the above-mentioned papers examines the hedging performance of the alternative models, 

except the one by LSS where they test their four factor model against the Black model, and show 

that the performance of the two models is statistically indistinguishable, and a recent paper by 

Driessen, Klassen and Melenberg (2000, DKM) whose analysis runs parallel to the direction of our 

paper. DKM test one-factor and multi-factor HJM models with respect to their pricing and hedging 

performance using ATM cap and swaption volatilities. They find that a one-factor model produces 

satisfactory pricing results for caps and swaptions. In terms of hedging performance, for both caps 

and swaptions, they find that the choice of hedge instruments affects the hedging accuracy more 

than the particular term structure model chosen. However, as with all other studies cited above, 

their data set is restricted to ATM options. As noted earlier, the strike rate effect may be important 

since many of the model imperfections are more evident when one analyzes options away-from-the-

money. While it is interesting that they find satisfactory pricing and hedging performance using a 

one-factor model, even for swaptions, their results are not surprising. The question is whether this 

conclusion holds up for options that are away-from-the-money. In our paper, we specifically focus 

on cap and floor prices across different strike rates and maturities, to examine how alternative term 

structure models are affected by strike biases.3 

 

                                                                 
3 Another recent paper by Andersen (1999) adapts a multi-factor LIBOR market model to price Bermudan 
swaptions using simulations; however, it is not related to the empirical issues that we address in this 
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In this paper, the empirical performance of analytical models is evaluated along two dimensions – 

their static and dynamic accuracy. Static performance refers to their ability of a model to price 

options accurately at a given point in time, given that the model is estimated in a manner that is 

consistent with market observables. Dynamic accuracy refers to the ability of the model to capture 

movements in the term structure after being initially calibrated to fit market observables. The static 

accuracy of a model is useful in picking out deviations from arbitrage-free pricing. As for dynamic 

accuracy, the correct representation of the behavior of the term structure of interest rates is a crucial 

feature to validate an arbitrage-free model as an accurate tool to hedge interest rate claims. The 

hedging tests examine whether the interest rate dynamics embedded in the model is similar to that 

driving the actual economic environment that the model is intended to represent. 

 

Our results show that, for plain-vanilla interest rate caps and floors, a one-factor lognormal 

forward rate model outperforms other competing one-factor models, in terms of out-of-sample 

pricing accuracy. In addition, the estimated parameters of this model are stable. In particular, the 

one-factor BGM model outperforms other models in pricing tests where the models are calibrated 

using option pricing data for the same day for which they are used to estimate prices of other 

options. We also find that the assumption of lognormally distributed interest rates results in a 

smaller “skew” in pricing errors across strike rates, as compared to other distributions assumed in 

alternative interest rate models. Two-factor models improve pricing accuracy only marginally. 

Thus, for accurate pricing of caps and floors, especially away-from-the-money, it is more important 

for the term structure model to fit the skew in the underlying interest rate distribution, than to have 

a second stochastic factor driving the term structure. However, the hedging performance improves 

significantly with the introduction of a second stochastic factor in term structure models, while 

fitting of the skew in the distribution improves hedging performance only marginally. This occurs 

because two-factor models allow a better representation of the dynamic evolution of the yield curve, 

which is more important for hedging performance, as compared to pricing accuracy.  Thus, even for 

simple interest rate options such as caps and floors, there is a significant advantage to using two-

factor models, over and above fitting the skew in the underlying (risk-neutral) interest rate 

distribution, for consistent pricing and hedging within a book. This refutes claims in the literature 

that correctly specified and calibrated one-factor models could eliminate the need to have multi-

factor models for pricing and hedging interest rate derivatives.4 

                                                                                                                                                                                                 
paper. 
4 For instance, Hull and White (1995) state that “the most significant difference between models is a strike 
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We examine two alternative calibrations of the spot rate models.  In the first implementation, the 

volatility and mean-reversion parameters are held constant. As a result, while the models are 

calibrated to fit the current term structure exactly, the model prices match the current cap/floor 

prices only with an error, albeit by minimizing its impact. In the alternative implementation, an 

additional element of flexibility is introduced by making the parameters time-varying. This enables 

us to fit both the current term structure and the cap/floor prices exactly, although this renders the 

parameter estimates unstable.  Thus, there is a tradeoff between the imperfect fit of the models and 

the instability of the model parameters, which is examined in our empirical analysis. 

 

The paper is organized as follows. Section 2 presents an overview of the different term structure 

models used for pricing and hedging interest rate contracts. In section 3, details of estimation and 

implementation of these term structure models are discussed. Section 4 describes the design of this 

empirical study and the different methodologies used in evaluating the alternative models. Section 

5 describes the data used in this study, along with the method used for constructing the yield curve. 

The results of the study are reported in section 6. Section 7 concludes. 

 

2. Overview of term structure models for pricing caps/floors 

 

The interest-rate derivatives market consists of instruments that are based on different market 

interest rates. Interest rate swaps and FRAs are priced based on the level of different segments of the 

yield curve; caps and floors are priced based on the level and the volatility  of the different forward 

rates (i.e., the diagonal elements of the covariance matrix). Swaptions are priced based on both the 

diagonal and the off-diagonal elements of the same covariance matrix, i.e., they also price the 

correlations among the forward rates. Since caps and floors do not price the correlations among 

forward rates, it appears, at first glance, that one-factor models might be sufficiently accurate in 

pricing them, and the added numerical complexity of multi-factor models (in particular, two-factor 

models) may not be justified.5  This is also one of the key issues that this paper seeks to investigate. 

 

                                                                                                                                                                                                 
price bias ... the number of factors in a term structure model does not seem to be important except when 
pricing spread options ... one-factor Markov models when used properly do a good job of pricing and 
hedging interest-rate sensitive securities”. 
5 One-factor term structure models imply perfectly correlated spot/forward rates, while two-factor (and 
multi-factor) models allow for imperfect correlation between spot/forward rates of different maturities. 
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There are a large number of term structure models for the valuation of interest-rate derivatives. They 

can broadly be categorized into two groups. The first one models the dynamics of the instantaneous 

or discrete-time spot interest rate (spot rate models), and the second models the arbitrage-free 

evolution of the entire term structure of forward rates (forward rate models).  

 

In the first group of models (spot rate models), the entire term structure is inferred from the 

evolution of the spot short-term interest rate (and, in case of two-factor models, by another factor 

such as the long-term interest rate, the spread, the volatility factor, or the futures premium). This 

includes the traditional models by Vasicek (1977), Brennan and Schwartz (1979), Cox, Ingersoll and 

Ross (1985), Longstaff and Schwartz (1992), Stapleton and Subrahmanyam (1999) and others. 

However, the equilibrium models such as those by Vasicek (1977), Brennan and Schwartz (1979) 

and Cox, Ingersoll and Ross (1985) determine the term structure endogenously; hence, they do not 

fit the current term structure exactly. This implies that the models may permit arbitrage 

opportunities across zero coupon bonds, even prior to pricing derivatives. Given the resulting 

potential mispricing of the underlying discount bonds, the error introduced in the prices of 

derivatives based on these bonds may be accentuated, because of their inability to price derivatives 

satisfactorily.  These models could be modified to match the term structure exactly in an arbitrage-

free framework by making one or more of the parameters time-varying. This is implemented in the 

models by Hull and White (1990), Black, Derman and Toy (1990), Black and Karasinski (1991), 

Peterson, Stapleton and Subrahmanyam (1999) and others. These no-arbitrage models take the 

current term structure as an input rather than an output, thus making the yield curve consistent 

with the observed prices of discount bonds. 

 

The approach of modeling the forward, rather than the spot, interest rates was pioneered by Ho and 

Lee (1986). Ho and Lee take as given the prices of discount bonds of all maturities and model the 

subsequent evolution of this price vector to preclude arbitrage opportunities. This is equivalent to 

modeling the forward interest rate curve, which was the approach used by HJM (1990b) in 

extending and generalizing the work of Ho and Lee in a continuous time framework. HJM model 

the instantaneous forward-rate curve with a fixed number of unspecified factors that drive the 

dynamics of these forward-rates. The form of the forward rate changes can be specified in a fairly 

general manner. In fact, many of the processes specified for the evolution of the spot interest rate 

can be treated as special cases of HJM models by appropriately specifying the volatility function of 

the forward interest rates. For example, specifying the volatility as an exponential function of the 
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time to maturity gives rise to the Ornstein-Uhlenbeck process as in Vasicek (1977). A constant 

volatility results in the continuous time version of the Ho and Lee model. In these two cases, closed 

form solutions are available for discount bonds and option prices. 

 

In recent years, the so-called “market models” have become very popular amongst practitioners. 

These models recover market pricing formulae by the direct modeling of market quoted rates. This 

approach overcomes one of the drawbacks of the traditional HJM models: that they involve 

instantaneous forward rates that are not directly observable (and are hence difficult to calibrate). A 

model that is popular among practitioners is the one proposed by Brace, Gatarek and Musiela 

(1997) [BGM].6 They derive the processes followed by market quoted rates within the HJM 

framework, and deduce the restrictions necessary to ensure that the distribution of market quoted 

rates of a given tenor under the risk-neutral forward measure is log-normal. With these restrictions, 

caplets of that tenor satisfy the Black (1976) formula for options on forward/futures contracts.  

 

In spot rate models, all the rates are derived from the evolution of the spot rate. In order to 

incorporate realistic correlation levels across the term structure, additional factors have then to be 

introduced in the form of another stochastic variable such as the long term rate, short rate volatility, 

the slope of the term structure, the mean-reversion parameter, etc. In contrast, the HJM framework 

allows the forward rates maturing at various fixed points in time to evolve simultaneously. The 

forward rate curve evolution can be modeled as being driven by any number of stochastic variables 

or factors.7 In theory, each of the forward rates could be driven by a separate stochastic variable 

yielding as many factors as there are forward rates. This allows the incorporation of correlations 

through appropriate specification of the volatility functions for each of the factors.  

 

In this paper, we analyze the comparative performance of various one-factor and two-factor spot 

rate, forward rate and market models. The spot rate models analyzed are the one-factor HW and BK 

models. In the forward rate class, one-factor and two-factor models are considered. The HJM 

framework is used to implement different assumptions about the distribution of the underlying 

forward rate, through appropriate specification of the volatility functions.8 Amongst the market 

models, the one-factor BGM model is analyzed. 

                                                                 
6 A similar model has also been proposed by Miltersen, Sandmann and Sondermann (1997). 
7 In theory, one could also model the spot rates with a multi-factor specification. 
8 In the HJM framework, the two-factor model nests the corresponding one-factor model, thus making it 
easier to compare the results of the two alternative specifications and infer the impact of introducing a 



 10

 

2.1 Spot rate models 

 

There is a large variety of spot rate models in the literature. They can be adapted to the current term 

structure of interest rates and volatilities by making the parameters of the stochastic processes time-

dependent. These time-dependent parameters are determined in a way such that both the 

endogenous term and volatility structures fit the observed ones exactly.  

 

A generalized one-factor spot rate specification, that explicitly includes mean reversion, has the 

form: 

[ ] dzdtraftrdf σθ +−= )()()(     (1) 

where 

f(r) = some function f of the short rate r, 

θ(t) = a function of time chosen so that the model provides an exact fit to the initial term 

     structure, usually interpreted as a time-varying mean, 

a = mean- reversion parameter, 

σ = volatility parameter. 

 

Two special cases of the above model are in widespread use. When f(r)=r, the resultant model is the 

HW model (also referred to as the extended-Vasicek model) 

[ ] dzdtartdr σθ +−= )(            (2) 

f(r)=ln(r) leads to the BK model 

[ ] dzdtratrd σθ +−= ln)(ln      (3) 

The volatility parameter, σ, determines the overall level of volatility, while the reversion parameter, 

a, determines the relative volatilities of long and short rates. The probability distribution of short 

rate is Gaussian in the HW model and lognormal in the BK model. 

 

In this paper, these models are estimated in two different ways. In the first implementation, the 

mean-reversion parameter ‘a’ and the short rate volatility ‘σ’ are both held constant. Therefore, the 

models are estimated with only one time-dependent parameter such that it fits the current term 

structure exactly. The remaining parameters of the process are determined so as to achieve a ‘best 

                                                                                                                                                                                                 
second stochastic factor. 
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fit’ to the observed volatility term structure. The drawback with this implementation is that by 

keeping the reversion and volatility parameters constant, the model does not fit the current 

cap/floor prices exactly, which induces an inherent mispricing to start with. The advantage of 

keeping the parameters constant is the resulting stability of parameter estimates as well as the 

stationarity of the volatility term structure. 

 

To understand the effect of making the parameters time varying, the second implementation of these 

models is conducted by making the reversion and volatility parameters time varying. This allows 

the models more degrees of freedom to make the current interest rate tree fit the prices of caps/floors 

as well. However, fitting to option prices has implications for the future evolution of the term 

structure. Making two or more parameters time varying may result in unstable parameter estimates 

and implausible future evolutions of the term structure.9 This would be reflected in poor out-of-

sample performance of these models. Hence, there is a tradeoff between a perfect fit of the current 

term structure of volatility and the stationarity of the model parameters.10 

 

2.2 Forward rate models 

 

In the forward rate models, the HJM framework allows the valuation of contingent claims without 

having to estimate the market price of risk or any drift parameters. The drift is completely defined by 

the volatility parameters. By appropriately specifying the volatility structure, virtually any interest 

rate distribution can be studied. This framework lends itself very well to the comparative evaluation 

of one-factor and two-factor models as the two-factor model nests the one-factor model, which can 

be easily obtained by setting the second volatility parameter to zero. Hence, a single estimation of 

the volatility parameters is sufficient to implement both the models. All other models require 

separate estimation of the model parameters for the one-factor and two-factor versions. Also, the 

HJM framework matches the current term structure, by construction; hence, it does not lead to 

mispricing the underlying discount bonds. 

 

Let f(t,T) be the forward interest rate at date t for instantaneous riskless borrowing or lending at date 

T. The HJM approach models the evolution of the entire instantaneous forward rate curve, driven 

                                                                 
9 This non-stationarity would be more problematic for instruments whose prices depend on future 
volatility term structures (like American/Bermudan options, spread options captions, etc.). For standard 
caps and floors, as in this paper, this is less important. 
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by a fixed number of unspecified factors. Forward interest rates of every maturity T evolve 

simultaneously according to the stochastic differential equation 

∑
=

+=
n

i
ii tdWTtfTtdtTtTtdf

1

)()),(,,(,.),(),( σµ    (4) 

Where Wi(t) are n independent one-dimensional Brownian motions and µ(t,T,.) and σi(t,T,f(t,T)) are 

the drift and volatility coefficients for the forward interest rate of maturity T. 11 The volatility 

coefficient represents the instantaneous standard deviation (at date t) of the forward interest rate of 

maturity T, and can be chosen arbitrarily. For each choice of volatility functions σi(t,T,f(t,T)), the drift 

of the forward rates under the risk-neutral measure is uniquely determined by the no-arbitrage 

condition  

dsstfstTtfTtTt
n

i

T

t
ii∑ ∫

=

=
1

)),(,,()),(,,(,.),( σσµ    (5) 

The drift term for the forward rate maturing at T depends on the instantaneous standard deviation 

of all forward rates maturing between t and T. The choice of the volatility function σi(t,T,f(t,T)) 

determines the interest rate process that describes the stochastic evolution of the entire term 

structure. If the volatility function is stochastic, it may make the interest rate process non-

Markovian, in which case no closed-form solutions are possible for discount bonds or options.12 

Hence, it is necessary to restrict the nature of the volatility functions in order to obtain manageable 

solutions. 

 

The volatility functions analyzed in this paper, σi(t,T,f(t,T)), are time invariant functions. In these 

functions, the volatility depends on t and T only though T-t. Therefore, given a term structure at 

time t, the form of its subsequent evolution through time depends only on the term structure, not on 

the specific calendar date t. Even with this restriction, a rich class of volatility structures can be 

analyzed. To preserve the stability of parameter estimation, we analyze only one- and two-

parameter volatility functions in this paper. Hence, we focus on the following volatility functions, 

and models that they imply:  

 

                                                                                                                                                                                                 
10 See Hull and White (1996) for a discussion on this issue. 
11 The drift coefficient for each maturity T depends on forward interest rates of all other maturities, the 
dependence being represented by “.” as the third argument of µ(t,T,.). 
12As discussed later, Ritchken and Sankarasubramanian (1995) identify restrictions that are required to 
make the process non-Markovian.  
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One-factor models: 

1. Absolute: σ(.) = σ0 ,13 

2. Linear Absolute: σ(.) = [σ0 + σ1(T-t)] , 

3. Square root: σ(.) = σ0 f(t,T)1/2 , 

4. Proportional: σ(.) = σ0 f(t,T) ,14 

5. Linear proportional: σ(.) = [σ0 + σ1(T-t)]f(t,T). 

 

Two-factor models: 

1. Absolute:  σ1(.) = σ1,  

σ2(.) = σ2. 

2. Proportional:  σ1(.) = σ1 f(t,T),  

σ2(.) = σ2 f(t,T). 

 

2.3 Market Models 

 

These models are consistent with market pricing practice for short term interest rates; hence, they 

are straightforward to calibrate using the Black (1976) formula for options on forward/futures 

contracts. For a particular tenor, τ, market quoted forward rates are required to be log-normal. The 

tenor is fixed once and for all, since the requirement is that rates of only that tenor are log-normal. If 

L(t,x) is the market quoted forward rate at time t for time t+x of tenor τ, then the process for the 

market quoted rate is required to be log-normal as follows: 

tdzxtLxtdtxtxtdL ),(),(),(),( γµ +=      (6) 

where γ(t,x) is a d-dimensional vector. BGM show that for this restriction to hold, the drift µ(t,x) 

must have the form 

2
2

),(
),( 1

),( 
),(),(),(),( xt

xtL
xtL

xtxtxtLxtL
x

γ
τ

τ
σγ

+
++

∂
∂

    (7) 

where σ(t,x) is related to γ(t,x) by 

                                                                 
13 This form of volatility specification leads to the continuous-time version of the Ho-Lee model, with 
Gaussian interest rates. 
14 The HJM framework requires that the volatility functions be bounded. Hence this volatility function is 
capped at a sufficiently high level of f*, such that there is no effect on prices. 
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The BGM functions γ(t,x) are calibrated to the observed Black implied volatilities using the 

following relation 

∫
−

−
−

= −
−

1
2

1
1

2 ),(
1 it

t
i

i
i dssts

tt
γσ     (9) 

Since the BGM models focus on market quoted instruments, there is no need for instantaneous 

rates, which are required in the other models. 

 

 

 

 

 

3. Model estimation and implementation 

 

The spot rate models (HW and BK) are implemented by constructing a recombining trinomial lattice 

for the short-term interest rate.15 The current term structure is estimated from spot LIBOR rates and 

Eurodollar futures prices, as explained in Appendix A. The volatility parameter σ and the mean-

reversion parameter a are chosen so as to provide a “best fit” to the market prices of caps and floors, 

by minimizing the sum of squared residuals. The delta hedge ratios are computed using the 

quadratic approximation to the first derivative of the option price with respect to the short rate. 

 

Forward rate models are implemented under the HJM framework, with specific volatility functions, 

to ensure that the interest-rate process is Markovian, i.e., path independent. Path-dependence 

renders the implementation of a term structure model infeasible, in general, except for special cases. 

These special cases include models in which interest rates are assumed to be normally distributed, 

or where the volatility structures meet certain conditions to remove path dependence.16 Further, 

                                                                 
15 Details of the trinomial lattice construction methodology can be obtained from Hull and White (1994). 
16 Ritchken and Sankarasubramanian (1995) have identified the necessary and sufficient conditions on 
volatility structures that capture the path dependence by a single sufficient statistic (which represents the 
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from a computational perspective, option prices cannot, in general, be represented as simple 

solutions to partial differential equations, because of the need to model multiple points on the term 

structure; this leads to complex boundary conditions with multiple state variables. Due to these 

reasons, the models in this paper are implemented using discrete-time, non-recombining binomial 

trees, which are computationally efficient.  

 

The forward rate process described above is arbitrage-free only in continuous time and, therefore, 

cannot be directly used to construct a discrete-time tree for the evolution of the forward curve. 

Therefore, the drift term in the forward rate process needs to be reformulated in discrete time.17 The 

derivation of the drift term for the discrete-time approximation of the forward rate process for the 

one- and two-factor models is presented in Appendix B. The delta hedge ratios are again computed 

as before, using the quadratic approximation to the first derivative. 

 

The BGM model is implemented using Monte Carlo simulation, in the interests of computational 

efficiency. We simulate 5000 different paths, using the initial given term structure, and use 

antithetic variance reduction techniques, to price all our options. Extensive robustness checks were 

done to ensure that the results were not sensitive to the number of simulated paths. The 

discretization of the forward rate process and its drift are taken from Hull (2000). The delta hedge 

ratios are computed using a central difference approximation.  

 

4. Experimental design 

 

We apply two broad sets of tests to the interest rate option data, static and dynamic, that need some 

explanation. The fundamental motivation for testing the static accuracy of interest rate models is to 

examine whether they are capable of predicting future option prices conditional on term structure 

information. This capability is best evaluated by the ex-ante price predictive ability of the model. It 

is important for valuation models to capture information from current observable market data, and 

translate them into accurate option prices.18 Towards this end, in this study, models are calibrated 

                                                                                                                                                                                                 
accumulated variance of the forward rate upto the current date), thus making the evolution of the term 
structure Markovian with respect to two state variables. 
17 The discrete time no-arbitrage conditions for the drift term have been adapted from Jarrow (1996) and 
Radhakrishnan (1998). 
 
18 This is especially true for Value-at-Risk systems, where the objective is to be able to accurate estimate 
option prices in the future, conditional on term structure information. 
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based on the market data on term structure parameters as well as option prices at the current date. 

Then, at a future date, the same model is used along with current term structure information to 

estimate option prices .  The accuracy of the predicted option prices is judged by comparing them 

with the actual observed option prices. This is a “static” test of the models, in the sense that current 

option prices are used to calibrate the model and price the same option one period later. This test 

does not examine whether the changes in option prices and the ability to hedge them are in line 

with the model’s predictions.  

 

The dynamic tests of these models examine the fundamental assumption underlying the 

construction of arbitrage-free option pricing models, which is the possibility of replication of the 

option by a portfolio of other securities that are sensitive to the same source(s) of uncertainty.19 A 

test of the dynamic accuracy of these models can be constructed by examining the accuracy of local 

replication portfolios. This test is conducted by first constructing a hedge based on a given model, 

and then examining how the hedge performs over a small time interval subsequently. An accurate 

model to hedge interest rate exposures must produce price changes similar to those observed in the 

market, conditional on the changes of its state variables. Hence, the hedging tests are indicative of 

the extent to which the term structure models capture the future movements in the yield curve, i.e., 

the dynamics of the term structure. In principle, it is possible for a model to perform well in static 

tests and yet fail in dynamic tests, since the two types of tests are measuring different attributes of 

the model. 

 

In arbitrage-free term structure models, the input parameters are allowed to change over time. The 

parameter vector is re-estimated each time the option prices are observed in order to fit a snapshot 

of market observables. This procedure is more permissive than the one dictated by the assumption 

that parameters are either constant or time-dependent in a deterministic way. It allows parameters 

to behave like pseudo-stochastic variables, despite not being assumed as such in the formulation of 

the model’s stochastic structure. In this paper, we examine the “local” accuracy of term structure 

models; hence, it is not necessary to impose any restrictions on the model parameters. 

 

In addition to the valuation performance measures, three other criteria are used to assess these 

models:  

                                                                 
19 With continuous trading and continuous state variable sample paths, the only sensitivities that matter 
for hedging are the deltas, since with continuous re-balancing, higher order sensitivities need not be 
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1) the stability of the parameters and the model performance over time,  

2) the presence of systematic biases in the pricing and hedging errors, and  

3) the relative complexity and difficulty in estimating the models, including numerical 

efficiency. 

 

4.1 Hedging interest rate caps and floors 

 

Since caplets and floorlets are essentially options on the forward interest rate, they can be hedged 

with appropriate positions in the LIBOR forward market. In practice, they are most commonly 

hedged using the short term interest rate futures contract, the Eurocurrency futures contract, e.g. 

Eurodollar futures, due to the liquidity of the futures market, as well as availability of contracts up 

to a maturity of 10 years, in increments of 3 months. Strictly speaking, interest rate forward 

contracts are similar to, but not exactly the same as interest rate futures contracts. The difference 

between the two is due to the negative convexity of the forward contract.20  This convexity difference 

affects the computed hedge ratio. The price of an interest rate futures contract on the expiration date 

is defined as 100 minus the spot interest rate on that date. Hence, a short position in a caplet 

(floorlet) can be hedged by going short (long) an appropriate number of futures contracts. The hedge 

position of the cap (floor) is the sum of the hedge positions for the individual caplets (floorlets) in 

the cap (floor), i.e., a series of futures contracts of the appropriate maturities, known as the futures 

strip. 

 

The hedge position is constructed by computing the change in the price of the caplets for a unit (say 

1 basis point) change in the forward rate, relative to the number of futures contracts of appropriate 

maturity that give the same change in value for the same unit change in the forward rate. This is the 

delta hedge ratio for the caplet. In the context of a particular term structure model, the delta can 

sometimes be defined in closed form. In this paper, the hedge ratios are calculated numerically as 

explained in Section 3. Various robustness checks are done to ensure that the discretization of the 

continuous time process does not materially affect the accuracy of the computed delta.  

 

                                                                                                                                                                                                 
explicitly considered. 
20 For details, see Gupta and Subrahmanyam (2000). 
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A portfolio of a short position in a cap and a short position in an appropriate number of futures 

contracts is locally insensitive to changes in the forward rate, thus making it “delta-neutral.” In 

theory, this delta-neutral hedge requires continuous rebalancing to reflect the changing market 

conditions. In practice, however, only discrete rebalancing is possible. The accuracy of a delta 

hedge depends on how well the model’s assumptions match the actual movements in interest rates. 

 

A caplet/floorlet can also be gamma-hedged in addition to being delta-hedged, by taking positions 

in a variety of LIBOR options. Gamma is the second derivative of the price of the caplet/floorlet 

with respect to a change in the interest rate. Gamma hedging refers to hedging against changes in 

the hedge ratio.  Setting up a gamma-neutral hedge results in a lower hedge slippage over time. 

However, in principle, the accuracy of the gamma hedge in the context of a particular model could 

be different from the accuracy of the delta hedge within the same model. Therefore, the hedging 

performance of the models could be different if they were evaluated using both delta and gamma 

hedging, instead of just delta hedging. In this paper, term structure models are tested based only on 

their delta hedging effectiveness. 

 

There is a conceptual issue relating to hedging that needs to be defined explicitly. The hedging for 

any interest rate derivative contract can be done either “within the model” or “outside the model.” 

The “within the model” hedge neutralizes the exposure only to the model driving factor(s), which, 

in the case of a one-factor model, is the spot or the forward rate. The “outside the model” hedge is 

determined by calculating price changes with respect to exogenous shocks, which, per se, would 

have a virtually zero probability of occurrence within the model itself.21 This “outside the model” 

procedure is, hence, conceptually internally inconsistent and inappropriate when testing one 

model against another.22 The “within the model” hedge tests give very useful indications about the 

realism of the model itself. The discussion about “delta-hedging” in the previous paragraphs of this 

section deals only with “within the model” hedging. This is the type of hedging that is empirically 

examined in this paper.  

 

4.2 Empirical design for testing static accuracy 

                                                                 
21 Examples of such exogenous shocks include jumps in the yield curve or in individual forward rates, 
changes in the volatilities of interest rates, etc. These are ruled out within the structure of most of the 
models examined in this paper. 
22  From a practitioner’s viewpoint, this inconsistency may be less important than the actual performance 
of the hedge. 
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In order to evaluate the static accuracy of interest rate models, we measure the comparative 

performance of the models for pricing caps/floors by analyzing the magnitude of the out-of-sample 

cross-sectional pricing errors. As explained earlier, the spot rate models are first estimated using 

constant parameters so that the models fit the current term structure exactly, but the volatility 

structure only approximately (in a least squares sense). In the second estimation, the parameters in 

the spot rate models are made time-varying so that the models fit the volatility term structure exactly 

as well, by calibration to the observed prices of caps/floors. To examine the out-of-sample pricing 

performance of each model, the prices of interest rate caps and floors at date ti are used to calibrate 

the term structure model and back out the requisite implied parameters. Using these implied 

parameter values and the current term structure at date ti+1, the prices of caps and floors are 

computed at date ti+1. The observed market price is then subtracted from the model-based price, to 

compute both the absolute pricing error and the percentage pricing error. This procedure is 

repeated for each cap and floor in the sample, to compute the average absolute and the average 

percentage pricing errors as well as their standard deviations. These steps are followed separately 

for each of the models being evaluated. Then, the absolute as well as percentage pricing errors are 

segmented by type of option (cap or floor), “moneyness” (in-the-money, at-the-money, and out-of-

the-money) and maturity to test for systematic biases and patterns in the pricing errors. The 

coefficients of correlation between the pricing errors across the various models are also computed to 

examine how the models perform with respect to each other. 

 

The cross-sectional pricing performance of the models is further examined using two different 

calibration methods. The objective of estimating pricing errors using alternative calibration 

methods is to test the robustness of the pricing results to estimation methodology. In the first one, 

the prices of ATM caps (of all maturities) are used to calibrate the term structure model.23 This 

model is then used to price the away-from-the-money caps of all maturities on the same day. The 

same procedure is repeated for the floors. The model prices are compared with market prices, and 

the errors are analyzed in a manner similar to the one before. In the second method, the cap prices 

(of all strike rates and maturities) are generated using the models calibrated to floor prices (of all 

strike rates and maturities), and floor prices generated by calibrating the models to cap prices. 

These two tests are strictly cross-sectional in nature, as the prices of options on one day are used to 

                                                                 
23 The ATM cap is taken to be the one with the strike that is closest to ATM, since, in general, no fixed 
strike cap (or floor) will be exactly ATM. 
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price other options on the same day, while in the earlier procedure the prices of options on the 

previous day were used to estimate current option prices.    

 

To study the possible systematic biases in the pricing performance of the models in more detail, the 

pricing errors for these models are analyzed. The market price of the cap/floor is regressed on its 

model forecast price to analyze the mispricing and identify the model that is most consistent with 

data. 

 

4.3 Empirical design for testing dynamic accuracy 

 

Tests for dynamic accuracy evaluate the comparative performance of the models in hedging 

caps/floors. This is implemented by analyzing the magnitude of the out-of-sample cross-sectional 

hedging errors. To examine the hedging performance of the models, the term structure models are 

calibrated at date ti using the current prices of interest rate caps and floors, and the requisite 

parameters are backed out. Using the current term structure of interest rates as well as spot 

cap/floor prices, the delta-hedge portfolio is constructed. The hedge portfolio is constructed 

separately for caps and floors. Each of these hedge portfolios consists of caps (or floors) of the 4 

maturities (2-,  3-,  4- and 5-years), across the 4 strike prices, and the appropriate number of 

Eurodollar futures contracts. 

 

In constructing the delta hedge for a caplet/floorlet with interest rate futures contracts, the hedge 

position must take into account an institutional factor. Caps/floors are negotiated each trading 

date for various maturities; hence, the expiration dates of caplets could be any date in the month. In 

contrast, exchange-traded futures contracts expire on a particular date.  The expiration dates of the 

futures contracts generally do not coincide with the expiration dates of the individual caplets 

(floorlets) in the cap (floor). Therefore, it is necessary to create a “synthetic” futures contract whose 

expiration date coincides with that of a particular caplet/floorlet, by combining two futures 

contracts with maturity dates on either side of the expiration date of the caplet/floorlet being 

hedged.  In other words, we form a synthetic position in a hypothetical futures contract expiring on 

the caplet/floorlet expiration date, by interpolating between the two adjacent contracts 

 

Using this hedge portfolio, the hedging error is computed at date ti+k, to reflect a k-day rebalancing 

interval. The hedging error corresponds to the change in the value of the hedge portfolio over these 
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k days. In order to test for the effect of the rebalancing interval, the hedging errors are computed 

using a five-day and a twenty-day rebalancing interval.24 In both cases, the procedure is repeated 

for each model, and the hedging errors are analyzed.25 

 

5. Data 

 

The data for this study consists of daily prices of U.S. dollar (USD) caps and floors, for a ten-month 

period (March 1 – December 31, 1998), i.e. 219 trading days, across four different strike rates (6.5%, 

7%, 7.5%, 8% for caps, and 5%, 5.5%, 6%, 6.5% for floors) and four maturities (2-, 3-, 4-, and 5-year).26  

These data were obtained from Bloomberg Financial Markets. 

 

Table 1 presents descriptive statistics of the data set. The prices of the contracts are expressed in 

basis points, i.e., a price of 1bp implies that the price of the contract for a notional principal of 

$10,000 is $1. The average, minimum and maximum price of the respective contracts over the 

sample period are reported in this table. The table indicates that the prices of both caps and floors 

increase, on average, with maturity.  The prices of caps (floors) decrease (increase) with the strike 

rate. 

 

It should be noted that our sample period witnessed considerable volatility in the global fixed 

income markets.  Several major events triggered by the Russian default and the Long Term Capital 

Management (LTCM) crisis jolted the fixed income cash and derivatives markets. Hence, the dollar 

cap and floor markets experienced greater variation in prices than usual.  This is fortuitous since it 

implies that the empirical tests of the various models are that much more stringent and, as a result, 

our conclusions are likely to be robust. 

 

                                                                 
24 A five-day rebalancing interval corresponds to weekly portfolio rebalancing, while a twenty-day 
rebalancing interval approximates monthly rebalancing. The results using daily rebalancing are not 
reported in the paper as there was very little hedge slippage over one trading day, thereby leading to 
almost perfect hedging using any model. Longer term rebalancing intervals provide a more stringent test 
of the extent to which the dynamics of the underlying interest rate are embedded in the model. The longer 
rebalancing intervals are in line with the spirit of capital adequacy regulations based on the guidelines of 
the Bank for International Settlements. 
25 The results reported in this paper are robust to the specific number of time steps in the discrete interest 
rate trees. Tests were done to study the differences in results by using larger number of time steps, and the 
differences were insignificant. 
26 Therefore, there are 218 days for which the model forecasts are compared with market prices. 
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Since interest rate caps and floors are contracts with specific maturity periods rather than specific 

maturity dates, a complication arises while doing the hedging tests. For these tests, we need the 

market prices of the original cap/floor contract that was hedged using futures. However, each day 

the reported prices of caps and floors refer to prices of new contracts of corresponding maturities, 

and not to the prices of the contracts quoted before. Hence, there is no market price series for any 

individual cap/floor contract. For example, consider a 5-year cap quoted at date ti, which is also 

hedged at date ti. To evaluate the performance of this hedge at date ti+1, we need the price of the same 

cap at date ti+1, i.e. at date ti+1, we need the price of a cap expiring in 5 years less one day. However, 

the cap price that is observed at date ti+1 is the price of a new cap expiring in 5 years, not 5 years less 

one day. This data problem is not specific to just caps and floors – it is present for all OTC contracts 

that are fixed maturity rather than fixed maturity date contracts.  

 

To overcome this problem, we construct a price series for each cap/floor contract, each day, until 

the expiration of the contract. The current term structure and the current term structure of 

volatilities (from the current prices of caps/floors) are used to price the original cap/floor contract 

each day. This price is used as a surrogate for the market price of the cap/floor contract on that 

particular day. This price is a model price, and not a real market price. However, the hedging 

performance tests are still useful in identifying models that can set up more accurate hedges for the 

cap/floor contracts. At the very least, the tests will evaluate models in terms of their internal 

consistency in terms of hedging performance. 

 

6. Results 

 

This section examines the results obtained for all models. The models are estimated each day using 

the current term structure of volatility from cap/floor prices.  

6.1 Parameter stability 

 

To examine the stability of the parameters of the estimated models, summary statistics for the 

estimated parameters are reported in table 2. The parameter estimates across models are not directly 

comparable for several reasons. First, the models use different factors (spot rates and forward rates), 

with some of them being two-factor models. Second, the drift and volatility functions differ in 
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functional form. Third, the number of parameters estimated varies across models. However, the 

stability of these parameters can be inferred from the estimate of the coefficient of variation for each 

parameter. 

 

Our results show that there is some variation in parameter estimates across time. By definition, the 

models posit that the drift and volatility parameters are constant. One explanation for this 

divergence from theory is that there is a second or third factor driving the evolution of rates, which 

is manifesting itself in the form of time-varying parameters. Possible candidates for the additional 

factor could be stochastic volatility, or a curvature factor. In our results, though the parameters vary 

over time, they are fairly stable. The coefficient of variation for most parameters is below 0.5, and for 

many parameters it is below 0.33.27 The mean, standard deviation, coefficient of variation, minimum 

value and the maximum value of the parameters are reported in table 2. Comparable statistics are 

difficult to provide for the BGM model, since model estimation involves calibration of  many 

volatility functions, not specific parameters, each day. 

 

For the one-factor and the two-factor models, the parameter values are more stable for one-

parameter models, while the coefficients of variation are significantly higher for the two-parameter 

models. In the case of spot rate models, the mean- reversion rate has a small absolute value and 

high standard error relative to the mean estimate, indicating that it is observed with significant 

error. In the forward rate models, the slope parameters for the linear absolute and linear 

proportional models have very high coefficients of variation and very small absolute values, 

making their estimates less reliable. These results indicate that adding more parameters to the 

model improves the ability of the model to fit prices, but significantly hampers the stability of the 

estimated model. This is also the reason why no model with more than two parameters was 

analyzed in this study. Therefore, from a practical perspective, the one-parameter one-factor models 

provide accurate, stable results as far as the model parameters are concerned.  

6.2 Pricing performance 

 

                                                                 
27 The stability of the parameter estimates can be judged by looking at the coefficient of variation of the 
estimates over the sample period. A coefficient of variation below 0.5 indicates that the volatility of the 
estimate was less than half of the mean estimate; thus, the parameter was fairly stable over the sample 
period. 
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The tests for the comparative pricing performance of the models are implemented using the 

methodology described in section 4. The results for these tests are reported in tables 3, 4, 5, 6, and 7. 

These results are for out-of-sample fits of model-based prices to the observed market prices. 28   

 

The summary statistics of the forecast errors are presented in table 3. The table provides a first 

impression about the empirical quality of the models. The average absolute error is below 1 bp for 

caps, indicating a very small bias in the models. For floors, the error is close to 3 bp for the absolute 

and linear absolute forward rate models, while it is less than 1 bp for the other models. A similar 

pattern is observed in average percentage errors, which are less than 2% in most of the cases, 

indicating a very small bias. Since the bid-ask spread in these markets is of the order of 2 bp, the fit 

of the models is good.  

 

The average absolute errors and the average absolute percentage errors display a clear pattern. The 

average absolute percentage errors are roughly similar for caps and floors. Within the class of one-

factor models, the absolute errors are highest for the constant volatility forward rate model (3.5 bp 

for caps and 6.8 bp for floors) and lowest for the proportional (lognormal) forward rate model (1.2 

bp for caps and 2.7 bp for floors). All the other models fall in between these models, in terms of 

prediction errors.29 The two-factor models have marginally lower pricing errors as compared to the 

one-factor models that they nest. For example, the two-factor lognormal model has an average 

absolute error of 1.1 bp for caps and 2.4 bp for floors, as compared to 1.2 bp and 2.7 bp respectively 

for the one-factor lognormal model. Also, the spot rate models with time-varying parameters have 

considerably lower pricing errors for caps as well as floors, as compared to those for the models 

with constant parameters. Making the parameters time varying brings down the errors to almost the 

level of two-factor models. In this case, the time-varying parameters appear to be acting as “pseudo-

factors.” The one-factor BGM model works as well as the one-factor proportional volatility model.  

Perhaps, the one-factor lognormal structure that is common to both models is more important than 

other aspects of the two models. 

                                                                 
28 Note that these models use one or two parameters estimated out-of-sample to simultaneously generate 
16 cap and 16 floor prices each day. In terms of the number of options, the models price 304 caplets (19 
caplets for 4 maturities and 4 strikes each) and 304 floorlets (19 floorlets for 4 maturities and 4 strikes each) 
every day. 
29 The linear proportional model has a slightly lower average pricing error (2.5 bp) for floors. However, it 
is a two-parameter model, for which the parameter estimates are more volatile than those for the 
corresponding one-parameter model that it nests. 
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Table 4 presents the correlation between the pricing errors for the different models. The pricing 

errors for the models are computed by averaging the difference between the model prices and the 

observed market prices for all the caps/floors priced each day. The correlations are reported 

separately for caps and floors. There is a common component in the errors for all the models, which 

can be due to data noise, presence of other factors, etc. However, the correlations are higher within 

one-parameter and two-parameter models; this emphasizes the importance of the number of 

parameters in determining the behavior of the models. The correlations are also higher within the 

spot rate and the forward rate models, and within one-factor and two-factor models. Moreover, the 

correlations are slightly lower for floors as compared to caps. One possible reason for this result is 

the higher average price for floors, that results in larger absolute errors, and hence a lower 

correlation between them.  

 

Tables 5 and 6 present the absolute and percentage errors for the caps/floors for all the models, for 

the cross-sectional tests using different calibration methods. For results in table 5, the models are 

first calibrated using ATM cap/floor prices, and then the ITM and OTM cap/floor prices are 

estimated. The absolute and percentage errors in this case are lower than those in table 3, where the 

models are calibrated using cap/floor prices from the previous day. For this calibration, the one-

factor BGM model has the lowest pricing errors, while the constant volatility Gaussian model has 

the highest error. The proportional volatility models have low pricing error, but they are out-

performed by the BGM model. Again, the spot rate models with time-varying parameters have much 

lower pricing errors. The two-factor models have marginally lower pricing errors than the one-

factor models that they nest. The pricing errors are lowered further in table 6, where the models are 

calibrated using caps to estimate floor prices, and using floors to estimate cap prices. Across 

models, the pattern of errors is similar to the previous table. The one-factor BGM model outperforms 

all other models. The lognormal forward rate model provides fairly accurate pricing performance, 

but not the most accurate in these two calibrations. However, it should be noted that the BGM 

model is designed to fit contemporaneous cap prices exactly. Hence, in these two alternative 

calibrations, it performs better that the other models, since these tests, strictly speaking, are not out-

of-sample - some of the option prices are being used to price the rest of the options the same day. The 

magnitudes of the pricing errors from the cross-sectional tests reinforce the conclusion that two-

factor models are only marginally better than one-factor models for pricing these options. The 

results from the two alternative calibration methods for the models reaffirm that the pricing results 

reported in table 3 are robust to changes in model calibration methods. They also show that 
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calibrating models to current option prices (as done in tables 5 and 6) and to a full range of strike 

rates (done only in table 6) results in more accurate pricing performance.  

 

Figures 1 and 2 plot the percentage errors for the models, as a function of their strikes. All the 

models tend to overprice short-dated caps/floors and under-price long-dated ones. However, the 

over- and under-pricing patterns are different for one-parameter and two-parameter models. The 

one-parameter models tend to compensate the over-pricing of short-dated options by under-pricing 

long-dated options. The two-parameter models display a slight hump at the 3 yr maturity stage. 

They overprice medium-term caps/floors more than the short-term ones, and then compensate by 

under-pricing the long-dated caps/floors. In terms of fitting errors, the two-parameter models are a 

marginally better fit than the one-parameter models that they nest.  

 

To study the systematic biases in more detail, the following cross-sectional regression model is 

estimated for caps and floors separately: 

(Market Price)t = β0 + β1 (Model Forecast Price)t + εt      (8) 
 
The results of this estimation are presented in table 7. The objective of this estimation is to identify 

which model is most consistent with the data. The slope coefficients (β1) are significantly different 

from zero and insignificantly different from one for all the models, with a very high R-square value, 

which shows that the average prediction error in the models is quite small. Also, the β1 coefficient is 

slightly greater than one for floors, and slightly smaller than one for caps, for most of the models. 

Similarly, the β0 coefficient is negative for floors and positive for caps, across all models. Thus, the 

models tend to overprice floors and underprice caps, which is consistent with the results reported 

earlier in this section. The spot rate models with time-varying parameters show slightly different 

results - they tend to overprice options. In the time-varying implementations, caps are being 

underpriced less, while floors are being overpriced more. 

 

More significantly, the patterns of mispricing display a clear skew across strike rates, for all 

maturities. All the models tend to over-price in-the-money (low strike) caps and underprice out-of-

the-money (high strike) caps. In the case of floors, the models underprice out-of-the-money (low 

strike) and overprice in-the-money (high strike). These patterns are consistent across all maturities. 

The skew is the greatest for the constant volatility (Ho-Lee Gaussian model) and the least for the 

proportional volatility models (one-factor and two-factor lognormal models). For the square root 

volatility model, in which the distribution of the underlying rate is non-central chi-square (which is 
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less skewed than lognormal), the extent of skew in the pricing errors is also in between the 

Gaussian and the lognormal models. These patterns are similar for caps and floors, and are 

consistent across spot rate and forward rate models, as well as one-factor and two-factor models.  

 

This negative skew in the pricing errors is consistent with the hypothesis that fatter right tails in the 

distribution of the underlying interest rate would lead to under-pricing in out-of-the-money caps 

and floors.  The results indicate that the risk-neutral distribution of the underlying interest rate has 

a thinner left tail and a fatter right tail than the assumed distribution for any of these models. The 

partial correction of the skew by the lognormal model suggests that a skew greater than that in the 

lognormal distribution may help to predict away-from-the-money cap and floor prices better. 

 

A comparison of the results for the one-factor models with those for the two-factor models shows 

that fitting the skew in the distribution of the underlying interest rate improves the static 

performance of the model more than by introducing another stochastic factor in the model. For 

example, the average pricing error for the one-factor lognormal model (1.2 bp for caps and 2.7 bp for 

floors) is much less than the average pricing errors for the two-factor Gaussian model (2.6 bp for 

caps and 5.0 bp for floors).  

 

6.3 Hedging performance 

 

The tests for the comparative dynamic accuracy of the models are conducted using the methodology 

described in section 4.3. The results for this analysis are presented in table 8. The accuracy of 

hedging, and hence the accuracy of replication of the interest rate options, differs significantly 

across term structure models. The average percentage hedging errors reported in table 8 show that 

2-factor models perform significantly better than one-factor models in hedging interest rate risk in 

caps and floors. The difference is more significant for longer rebalancing intervals. With a 5-day 

rebalancing interval, most one-factor model hedges result in an average percentage error of about 

0.5% of the hedge portfolio value in caps, and about 0.5%-0.8% in floors. In the case of two-factor 

models, the 5-day average percentage error is reduced to less than 0.2%. With a 20-day rebalancing 

interval, the average percentage hedging error reduces from 1.6%-3% for various one-factor models 

to 0.5%-0.7% for the two-factor models. Interestingly, the hedging results for the time-varying 

implementation of the spot rate models are very different from the pricing results - making the 

parameters time-varying actually leads to consistently larger hedging errors, indicating that the 
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stability of model parameter estimation is important for accurate hedging performance. The 

hedging errors are evidence of the overall effectiveness of the interest rate hedges created by the 

models over time. Hence, the hedging performance reflects the dynamic accuracy of the various 

term structure models. 

 

Within the class of one-factor and two-factor models, the hedging errors do depict the trend 

observed in the pricing errors, of a higher skew in the underlying distribution leading to smaller 

errors. For example, for the 5-day rebalancing interval, the average percentage error for caps goes 

down from 0.68% for the Gaussian one-factor forward rate model to 0.33% for the lognormal one-

factor forward rate model. Similarly, for the 20-day rebalancing interval, the error goes down from 

2.44% to 1.62%, respectively. However, adding a second stochastic factor leads to a much larger 

reduction in the hedging errors. This result is different from the pricing results where fitting the 

skew correctly dominated the introduction of a second stochastic factor. The Gaussian two-factor 

forward rate model has an average percentage error of 0.19% for 5-day rebalancing and 0.54% for 

20-day rebalancing, which is significantly lower than those for the one-factor lognormal forward 

rate model. 

 

In previous research, principal component analysis of interest rates changes reveals the various 

factors that drive the evolution of the term structure.30 The first factor is interpreted as “level” factor 

capturing parallel shifts in the term structure, and has been shown to contribute about 92% of the 

overall explained variance of interest rate changes. The second factor, interpreted as a “twist” factor 

in the yield curve, incorporating changes in the slope of the term structure, has been shown to 

contribute another 7% of the overall explained variance of interest rate changes.31 The results in this 

paper show that, for accurate hedging of interest rate caps and floors, it is not enough to correctly 

model just the first factor. Modeling the second factor allows the incorporation of expected twists in 

the yield curve while determining state variable sensitivities, thereby leading to more accurate 

hedging. This also constitutes evidence against claims in the literature, that correctly specified and 

calibrated one-factor models can replace multi-factor models for hedging purposes.32 

 

                                                                 
30 See, for example, Brown and Schaefer (1994) and Rebonato (1998). 
31 The third factor, interpreted as the “curvature” factor, incorporates changes in the curvature of the term 
structure, and explains most of the residual 1% variance of interest rate changes. This third factor may be 
important for pricing swaptions and bond options, but not for pricing interest rate caps and floors.  
32 See, for example, Hull and White (1990), and Buser, Hendershott and Sanders (1990). 
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7. Conclusions 

 

A variety of models of interest rate dynamics have been proposed in the literature to value interest 

rate contingent claims. While there has been substantial theoretical research on models to value 

these claims, their empirical validity has not been tested with equal rigor. This paper presents 

extensive empirical tests of the static and dynamic accuracy of term structure models in the interest 

rate cap and floor markets. The paper also examines, probably for the first time in the literature, 

actual price data for caps and floors across strike rates, with maturities extending out to 5 years. 

 

Alternative one-factor and two factor models are examined based on the accuracy of their out-of-

sample price prediction, and their ability to hedge caps and floors. Within the class of one-factor 

models, two spot rate, five forward rate, and one market model specifications are analyzed. For two-

factor models, two forward rate specifications are examined. Overall, in terms of the out-of-sample 

static tests, the one-factor lognormal (proportional volatility) forward rate model is found to 

outperform the other competing one-factor models in pricing accuracy. The estimated parameters of 

this model are more stable than those for corresponding two-parameter models, indicating that one-

parameter models result in more robust estimation. In contrast, the pricing errors allowing for time-

varying implementation of the one-factor models are at the level of those for the two-factor models: 

the time-varying parameters appear to be acting as “pseudo-factors.” However, making the 

parameters time-varying actually leads to consistently larger hedging errors, indicating that the 

stability of model parameter estimation is important for accurate hedging performance. The one-

factor BGM model also provides accurate pricing results, but outperforms the lognormal model only 

in tests which are not strictly out-of-sample.  

 

More significantly, the lognormal assumption in the distribution of the underlying forward rate 

leads to a smaller “skew” in pricing errors across strike rates, as compared to the errors obtained by 

using a Gaussian interest rate process. The pricing accuracy of two-factor models is found to be 

only marginally better than the corresponding one-factor models that they nest. Therefore, the 

results show that a positive skew in the distribution of the underlying rate helps to explain away-
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from-the-money cap and floor prices more accurately, while the introduction of a second stochastic 

factor has only a marginal impact on pricing caps and floor.  

 

On the other hand, the tests for dynamic accuracy of these models show that two-factor models are 

more effective in hedging the interest rate risk in caps and floors. While fitting the skew improves 

hedging performance marginally, introducing a second stochastic factor in the term structure model 

leads to significantly more accurate hedging. The one-factor BGM model provides hedging 

accuracy similar to the one-factor lognormal forward rate model, perhaps due to the common 

lognormal structure, but is outperformed by two-factor models. The two factor models allow a better 

representation of the dynamic evolution of the yield curve, by incorporating expected changes in 

the slope of the term structure. Since the interest rate dynamics embedded in two-factor models is 

closer to the one driving the actual economic environment, as compared to one-factor models, they 

are more accurate in hedging interest rate caps and floors. This result is also evidence against 

claims in the literature that correctly specified and calibrated one-factor models could replace multi-

factor models for hedging. 

 

So what are the implications of these results for the pricing and hedging of caps and floors in 

particular, and interest rate contingent claims in general? For interest rate caps and floors, one-

factor lognormal and BGM models have been found to be sufficiently accurate in pricing 

performance. However, even for these plain-vanilla options, there is a need to use two-factor models 

for accurate hedging. Therefore, for consistent pricing and hedging within a book, even for plain-

vanilla options like caps and floors, there is evidence that strongly suggests using two-factor 

models, over and above fitting the skew in the underlying interest rate distribution. Whether there is 

need for a third factor driving the term structure is still an open question for research.33 Introducing 

more stochastic factors in the model makes computations more time consuming, so there is a trade-

off between the cost of implementing a model and the stability of the model parameters, on the one 

hand, and its accuracy, on the other. However, for consistent pricing and hedging of the interest 

rate exposures of more complicated interest rate contingent claims like swaptions and yield spread 

options, there may be significant benefits to using term structure models with three or more factors.  

We defer these issues to be explored in future research. 

                                                                 
33 Litterman and Scheinkman (1991) report that the third factor, modeling changes in the curvature of the 
term structure, is important in explaining price changes. 
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Appendix A 

 

Estimation of the current term structure 

 

The current LIBOR term structure is estimated using spot LIBORs and Eurodollar futures prices. 

Theoretically, market swap rates can also be used along with spot LIBORs to estimate the LIBOR 

term structure. However, swap rates are available only for maturities of 2, 3, 4, 5, 7, and 10 years, 

while Eurodollar futures prices are available for maturities upto 10 years in increments of three 

months, which allows the computation of LIBOR zero rates with much higher accuracy. Moreover, 

Eurodollar futures contracts are extremely liquid with very high trading volumes and open interest. 

Hence, they are likely to reflect the best available information about the term structure of interest 

rates.  

 

The spot market data are used to accurately define the curvature of the LIBOR yield curve, going out 

to the first futures expiration date (0-3 months, depending on the date). Beyond that date, 

Eurodollar futures prices are used to estimate the yield curve going out to 10 years. The yield curve 

thus obtained is then corrected for convexity. It is well known that, in the presence of stochastic 

interest rates, the implied forward rates are lower than futures rates, due to convexity in the payoffs 

of forward contracts.34  Hence, the convexity adjustments are estimated for each futures contract 

maturity, and then subtracted from the futures yield curve to obtain the convexity-corrected LIBOR 

zero curve. The convexity adjustments are computed using the Hull-White one-factor model, for 

which the parameters are estimated using current option prices. The same convexity adjustments 

(and hence, the same yield curve) are used for testing all the models.35 The cubic spline 

interpolation method is used to define the complete shape of the yield curve as a smooth function of 

maturity.  

 

                                                                 
34 See Gupta and Subrahmanyam (2000) for a detailed description of convexity adjustments, and the 
methods that can be used to estimate them. 
35 The convexity adjustments are fairly invariant to the model used to estimate them, as shown in Gupta 
and Subrahmanyam (2000). Therefore, the use of the Hull-White model to estimate the convexity 
adjustment for constructing the yield curve, across models, is unlikely to make a difference. 
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Appendix B 

 

Derivation of the drift term for the discrete-time approximation of the forward 

rate processes 

 

The forward rate process in the HJM framework is arbitrage free only in continuous time. Hence, for 

discrete time implementations of the model, the drift term for the process needs to be reformulated, 

for the one- and two-factor models. 

 

Discretization of a one-factor process leads to two branches at each node of the tree. In the discrete 

economy, let hn be the time step from time tn to tn+1. Given that the forward rate process is in state st 

at time tn, it can be in one of the following two states (up or down) at time tn+1: 
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where µ(.) is the drift and σ(.) is the volatility function of the forward rate process f. The maturity of 

the forward rate, T, can take on any value between t and the maximum maturity assumed in the 

term structure to generate as many forward rates as desired, within the constraints of 

computational limitations.  

 

In this framework, discount bond prices are given by 
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These discount bond prices evolve in the following manner: 
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Given the above processes for the forward rates and the discount bond prices, pu(.) and pd(.) can be 

represented in terms of the µ(.) and σ(.) functions. 
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Using the money market account as the numeraire implies that all bond prices grow at the riskless 

rate, f(tn,tn). Therefore, the martingale condition applied to the discrete framework requires that 

[ ]),().,(),( 11 TtPttPETtP nnntn ++=               (C.4) 

i.e., 

[ ]);,();,();,();,();,( 2
1

2
1

nnnnn tntntntnntn sTtpdsTtpusTtPsttfsTtP +=      (C.5) 

 

This is a system of N equations, where N is the number of forward rates  at time tn, that can be 

solved recursively to get the expression of the drift term, µ(.), in each of the N forward rate processes: 
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Using a specific functional form for the volatility function σ(.), the drift from the equation above and 

the forward rate process evolution, the HJM interest rate tree can now be constructed. 

 

For the two-factor process, discretization requires three branches at each node of the tree. The 

forward rate process is represented in a manner similar to the one-factor case, as follows: 
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Using the money market account as the numeraire and applying the martingale condition, the drift 

function in discrete time is given by 
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As in the one-factor case, the HJM tree can now be constructed using any specific form for the 

volatility function.36 

                                                                 
36 The HJM tree is non-recombining, due to the non-Markovian nature of the forward rate process for most 
volatility structures. Hence, from a numerical implementation perspective, the exploding number of 
terminal nodes in the tree imposes a limit on the number of time steps that can be used for a general 
volatility structure. In the usual binomial tree, the burden on computer memory and computing power is 
enormous since each node has to carry the values of the entire forward rate vector. Therefore, in this 
paper, a recursive algorithm proposed by Das (1998) is used. This algorithm eliminates the need for 
storing the entire forward rate tree in the memory, by following each sample path to its conclusion in a 
recursive manner. This frees up memory space, potentially allowing a relatively large number of time 
steps to be used, within the constraints of computing time, and also speeds up computation. See Das (1998) 
for details of the recursive algorithm. 
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Table 1 
 

This table presents descriptive statistics of the data set used in this paper. The data consists of cap 
and floor prices across 4 different maturities (2-, 3-, 4-, and 5-year) and across 4 different strike rates, 
for each maturity (6.5%, 7%, 7.5%, and 8% for caps and 5%, 5.5%, 6%, and 6.5% for floors). The 
sample period consists of 219 trading days of daily data, from March 1 to December 31, 1998. The 
prices of the contracts are expressed in basis points, i.e., a price of 1bp implies that the price of the 
contract for a notional principal of $10,000 is $1. The average, minimum and maximum price of the 
respective contracts over the sample period are reported in this table. 
 
 6.5% Caps 7% Caps 

 2 yr 3 yr 4 yr 5 yr 2 yr 3 yr 4 yr 5 yr 

Mean 16 37 72 117 8 22 47 82 

Min 4 13 32 57 2 8 21 42 

Max 33 64 109 164 18 38 74 120 

 7.5% Caps 8% Caps 

 2 yr 3 yr 4 yr 5 yr 2 yr 3 yr 4 yr 5 yr 

Mean 4 13 31 57 3 8 20 40 

Min 2 3 12 29 1 2 8 21 

Max 10 24 55 94 5 17 41 75 

 5% Floors 5.5% Floors 

 2 yr 3 yr 4 yr 5 yr 2 yr 3 yr 4 yr 5 yr 

Mean 37 132 163 197 67 186 234 284 

Min 7 80 98 115 20 112 143 169 

Max 129 267 328 385 190 359 445 523 

 6% Floors 6.5% Floors 

 2 yr 3 yr 4 yr 5 yr 2 yr 3 yr 4 yr 5 yr 

Mean 116 262 332 401 182 363 461 557 

Min 51 166 213 254 106 251 322 385 

Max 262 465 580 682 341 583 731 864 
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Table 2  
 

This table presents summary statistics for the parameter estimates for the one-factor and two-factor spot 
rate and forward rate models tested in this paper. The summary statistics for each parameter are computed 
using daily parameter estimates over the sample period, March 1 - December 31, 1998. The models are 
estimated each day over the 219 day sample period, by calibrating them to the market prices of caps and 
floors across four different maturities (2-, 3-, 4-, and 5-year) and across four different strike rates for each 
maturity (6.5%, 7%, 7.5%, 8% for caps, and 5%, 5.5%, 6%, 6.5% for floors).  
 

Model Parameter Mean Min Max s.d. c.v. 

Spot Rate Models 

a 0.045 0 0.088 0.027 0.61 Hull and White 

σ 0.0109 0.0051 0.0172 0.0035 0.32 

 
a 0.055 0 0.097 0.025 0.45 Black and Karasinski 

σ 0.194 0.131 0.284 0.056 0.29 

Forward Rate Models – One Factor 

Absolute σ0 0.0113 0.0075 0.0214 0.0035 0.31 

 
σ0 0.0098 0.0031 0.018 0.0043 0.44 Linear Absolute 

σ1 0.0007 -0.0029 0.053 0.0018 2.6 

 
Square Root σ0 0.0456 0.0273 0.0874 0.0105 0.23 

 
Proportional σ0 0.1851 0.1169 0.2741 0.0407 0.22 

 
σ0 0.1759 0.0799 0.2632 0.0721 0.41 Linear Proportional 

σ1 0.0053 -0.0005 0.0138 0.0037 0.70 

Forward Rate Models –Two Factor 

σ1 0.0051 0.0021 0.0107 0.0023 0.45 Absolute 

σ2 0.0101 0.0039 0.0206 0.0047 0.47 

 

σ1 0.0894 0.0513 0.1374 0.0277 0.31 Proportional 

σ2 0.1621 0.0906 0.2591 0.0438 0.27 
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Table 3  
 

This table presents summary statistics for the forecast errors (in basis points and percentage terms) for the 
one-factor and two-factor spot rate and forward rate models analyzed in the paper. The average error is 
defined as the predicted model price minus the observed market price, averaged for the 32 caps and floors 
(4 strike rates each for caps and floors, for each of the 4 maturities) over the 219 days (March-December, 
1998) for which the study was done. The average percentage error is defined as the (model price – market 
price)/market price, averaged in a similar way. 
 

Caps Floors Model 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 
Error 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 

Error 
Spot Rate Models 

Hull and White -1.0 2.3 -1.8% 6.9% 1.0 4.6 -1.3% 5.3% 

HW - time varying -0.2 1.3 -0.9% 4.5% 2.5 3.9 0.5% 3.8% 

Black & Karasinski 0.1 1.4 0% 4.3% -0.1 3.0 -1.3% 3.1% 

BK - time varying 0.4 1.1 0.7% 3.3% 0.2 2.5 -0.7% 2.4% 

Forward Rate Models – One Factor 

Absolute 0.8 3.5 1.4% 10.1% 2.9 6.8 -0.3% 6.0% 

Linear Absolute 0.1 2.3 -0.2% 6.9% 2.6 6.2 -0.7% 6.4% 

Square Root -1.2 1.7 -2.3% 4.9% 0.5 3.8 -1.0% 3.9% 

Proportional 0.1 1.2 0% 4.0% -0.1 2.7 -1.3% 2.9% 

Linear Proportional 0.2 1.2 0.6% 3.9% -0.1 2.5 -1.1% 2.7% 

Forward Rate Models – Two Factor 

Absolute 0.8 2.6 1.4% 7.8% 2.3 5.0 -0.1% 4.6% 

Proportional 0.05 1.1 0% 3.7% -0.1 2.4 -1.1% 2.6% 

Market Model - One Factor 

BGM 0.5 1.2 0.7% 3.9% 0.1 2.6 -1.2% 2.8% 
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Table 4 
 

This table presents the correlation coefficients between the out-of-sample pricing errors for caps and 
floors for the models tested in this paper. There are a total of 219 observations for each model, 
corresponding to each day over the sample period, March 1 - December 31, 1998. The pricing error is 
defined as the model price minus the observed market price, averaged across the 32 caps and floors priced 
on that day (4 strike rates each for caps and floors, for each of the 4 maturities). 
 

Model HW HW 
(II) 

BK BK 
(II) 

Abs. 
(1-fac) 

Linear 
Abs. 

Square 
Root 

Prop. 
(1-fac) 

Linear 
Prop. 

Abs. 
(2-fac) 

Prop. 
(2-fac) 

BGM 
(1-fac) 

Caps 

HW 1            

HW (II) 0.94 1           

BK 0.87 0.83 1          

BK (II) 0.79 0.81 0.92 1         

Abs. (1-fac) 0.81 0.77 0.54 0.59 1        

Linear Abs. 0.69 0.72 0.49 0.61 0.71 1       

Square root 0.53 0.63 0.76 0.75 0.89 0.72 1      

Prop. (1-fac) 0.57 0.61 0.96 0.98 0.86 0.75 0.97 1     

Linear Prop. 0.42 0.50 0.92 0.94 0.63 0.96 0.75 0.69 1    

Abs. (2-fac) 0.49 0.48 0.43 0.56 0.82 0.71 0.54 0.55 0.48 1   

Prop. (2-fac) 0.41 0.47 0.65 0.69 0.63 0.58 0.46 0.92 0.81 0.77 1  

BGM (1-fac) 0.55 0.49 0.54 0.44 0.61 0.58 0.60 0.72 0.68 0.53 0.55 1 

Floors 

HW 1            

HW (II) 0.95 1           

BK 0.84 0.82 1          

BK (II) 0.79 0.75 0.94 1         

Abs. (1-fac) 0.78 0.71 0.59 0.64 1        

Linear Abs. 0.65 0.66 0.45 0.51 0.69 1       

Square root 0.61 0.72 0.71 0.69 0.85 0.68 1      

Prop. (1-fac) 0.56 0.63 0.98 0.93 0.84 0.74 0.96 1     

Linear Prop. 0.49 0.44 0.91 0.90 0.59 0.94 0.69 0.62 1    

Abs. (2-fac) 0.47 0.46 0.49 0.48 0.79 0.74 0.51 0.57 0.44 1   

Prop. (2-fac) 0.44 0.51 0.59 0.55 0.63 0.61 0.41 0.89 0.75 0.72 1  

BGM (1-fac) 0.39 0.47 0.40 0.49 0.58 0.52 0.61 0.73 0.66 0.48 0.53 1 

 



 42

Table 5  
 

This table presents summary statistics for the cross-sectional out-of-sample forecast errors (in basis points 
and percentage terms) for the one-factor and two-factor spot rate and forward rate models. The models are 
calibrated using the prices of ATM options (out of the 4 strike rates, the one that is closest to ATM). Then, 
the prices of the away-from-the-money (ITM and OTM) caps and floors are estimated using the models 
(for the 3 remaining strike rates). This is done for all maturities, and for caps and floors separately. The 
average error is defined as the predicted model price minus the observed market price, averaged for the 
12 caps/floors (the 3 remaining strike rates for each of the 4 maturities) over the 219 days (March-
December, 1998) for which the study was done. The average percentage error is defined as the (model 
price – market price)/market price, averaged in a similar way. 
 

Caps Floors Model 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 
Error 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 

Error 
Spot Rate Models 

Hull and White -0.7 1.8 -1.3% 4.9% 0.8 3.3 -0.8% 3.7% 

HW - time varying 0.1 1.1 0% 3.3% 1.9 3.0 0.1% 3.0% 

Black & Karasinski 0.1 0.9 0.1% 2.6% 0 1.9 -0.8% 1.9% 

BK - time varying 0.4 0.7 0.5% 1.9% 1.2 1.7 0.1% 1.5% 

Forward Rate Models – One Factor 

Absolute 0.6 2.7 1.2% 7.8% 2.2 5.2 -0.2% 4.5% 

Linear Absolute 0.1 1.8 0.1% 5.1% 2.0 4.5 -0.5% 4.7% 

Square Root -0.9 1.2 -1.7% 3.4% 0.4 3.0 -0.7% 2.9% 

Proportional 0.1 0.9 0% 2.4% -0.04 1.9 -0.8% 1.9% 

Linear Proportional -0.1 0.8 0.1% 2.4% 0.05 1.8 -0.6% 1.8% 

Forward Rate Models – Two Factor 

Absolute 0.5 1.7 0.8% 5.0% 1.5 3.4 -0.2% 3.1% 

Proportional 0.02 0.6 0% 1.9% -0.06 1.5 -0.7% 1.6% 

Market Model - One Factor 

BGM 0 0.5 0% 1.6% 0 0.9 0% 1.2% 
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Table 6 
 

This table presents summary statistics for the cross-sectional out-of-sample forecast errors (in basis points 
and percentage terms) for the one-factor and two-factor spot rate and forward rate models. For pricing 
caps, the models are calibrated using the current prices of floors, and vice-versa. The average error is 
defined as the predicted model price minus the observed market price, averaged for the 16 caps or floors 
(4 strike rates for each of the 4 maturities) over the 219 days (March-December, 1998) for which the study 
was done. The average percentage error is defined as the (model price – market price)/market price, 
averaged in a similar way. 
 

Caps Floors Model 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 
Error 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 

Error 
Spot Rate Models 

Hull and White -0.5 1.2 -0.9% 3.5% 0.6 2.3 -0.6% 2.5% 

HW - time varying 0.2 0.8 0.1% 2.5% 1.3 2.0 0.1% 2.0% 

Black & Karasinski 0.1 0.6 0.1% 1.8% 0 1.2 -0.5% 1.2% 

BK - time varying 0.3 0.5 0.5% 1.3% 0.3 0.9 -0.2% 0.9% 

Forward Rate Models – One Factor 

Absolute 0.5 2.0 0.9% 5.7% 1.6 3.7 -0.2% 3.2% 

Linear Absolute 0.1 1.3 0.1% 3.8% 1.5 3.3 -0.4% 3.3% 

Square Root -0.6 0.8 -1.1% 2.3% 0.3 2.0 -0.5% 1.9% 

Proportional 0.04 0.5 0% 1.5% -0.02 1.2 -0.5% 1.2% 

Linear Proportional -0.1 0.5 0% 1.4% 0.03 1.1 -0.4% 1.1% 

Forward Rate Models – Two Factor 

Absolute 0.4 1.2 0.6% 3.5% 0.9 2.0 -0.1% 1.9% 

Proportional 0.02 0.4 0% 1.1% -0.04 0.9 -0.4% 0.9% 

Market Model - One Factor 

BGM 0 0.4 0% 0.9% 0 1.0 0% 0.8% 
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Table 7 
 

This table presents results for model performance by estimating the following regression model for each 
of the one-factor and two-factor models examined in the paper: 
 

(Market Price)t = β0 + β1 (Model Forecast Price)t + εt 
 
The coefficients are presented with the standard errors in parenthesis for the slope coefficient. The model 
and market prices of the caps and floors are expressed in basis points, for the 219 daily observations 
during the sample period March-December, 1998. All the caps (6.5%, 7%, 7.5%, and 8% strike) and floors 
(5%, 5.5%, 6%, 6.5%) for each of the four maturities (2-, 3-, 4-, and 5-year) are used in the regression model 
to test for biases in model performance. 
 

Caps Floors  
Model  

β0 
 

β1 
 

R2 

 
β0 

 
β1 

 
R2 

Spot Rate Models 

Hull and White 2.538 0.971 
(0.027) 

0.978 -1.153 1.012 
(0.019) 

0.983 

HW - time varying 1.107 0.988 
(0.021) 

0.991 -2.213 1.029 
(0.017) 

0.994 

Black & Karasinski 0.083 1.002 
(0.013) 

0.994 -0.094 0.997 
(0.008) 

0.991 

BK - time varying -0.671 1.015 
(0.012) 

0.996 -1.379 1.021 
(0.011) 

0.997 

Forward Rate Models:  One-Factor 

Absolute -0.094 1.007 
(0.020) 

0.977 -3.217 1.025 
(0.022) 

0.972 

Linear Absolute 0.065 1.002 
(0.018) 

0.989 -2.439 1.019 
(0.016) 

0.979 

Square Root 2.972 0.963 
(0.029) 

0.982 -0.328 1.002 
(0.019) 

0.984 

Proportional 0.039 1.001 
(0.014) 

0.993 0.049 0.998 
(0.009) 

0.995 

Linear Proportional 0.070 1.003 
(0.011) 

0.994 -0.055 0.997 
(0.012) 

0.995 

Forward Rate Models:  Two-Factor 

Absolute -0.046 1.008 
(0.013) 

0.988 -2.057 1.017 
(0.015) 

0.980 

Proportional 0.015 1.000 
(0.006) 

0.997 -0.028 0.999 
(0.007) 

0.998 

Market Model - One Factor 

BGM 0.043 1.001 
(0.007) 

0.991 0.022 0.999 
(0.005) 

0.996 
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Table 8 
 

This table presents summary statistics for the hedging errors for the one-factor and two-factor spot rate 
and forward rate models analyzed. The hedging error is defined as the percentage change in the value of 
the hedge portfolio over a 5-day and a 20-day rebalancing interval. This error is averaged over the 219 
days (March-December, 1998) for which the study was done. The hedge portfolio consists of one each of all 
the caps (floors) in the sample, across the four strike rates and the four maturities, and the appropriate 
Eurodollar futures contracts. 
 

Caps Floors 
5-day rebal. 20-day rebal. 5-day rebal. 20-day rebal. 

 
Model 

Avg. % 
Error 

Avg. % 
Abs 

Error 

Avg. % 
Error 

Avg. % 
Abs 

Error 

Avg. % 
Error 

Avg. % 
Abs 

Error 

Avg. % 
Error 

Avg. % 
Abs 

Error 
Spot Rate Models 

Hull and White 0.05% 0.56% 0.17% 2.67% 0.03% 0.76% 0.22% 3.04% 

HW - time varying 0.04% 0.51% 0.29% 3.22% 0.05% 0.59% 0.35% 4.22% 

Black & Karasinski -0.03% 0.41% -0.09% 2.05% 0.06% 0.58% 0.19% 2.41% 

BK - time varying -0.12% 0.32% 0.03% 2.11% 0.11% 0.53% 0.25% 2.78% 

Forward Rate Models – One Factor 

Absolute 0.08% 0.68% 0.07% 2.44% 0.12% 0.81% 0.04% 3.15% 

Linear Absolute 0.11% 0.52% 0.13% 2.23% 0.09% 0.75% 0.14% 2.57% 

Square Root 0.10% 0.46% 0.21% 1.98% -0.13% 0.44% -0.08% 2.16% 

Proportional 0.04% 0.33% 0.07% 1.62% 0.07% 0.31% 0.11% 1.55% 

Linear Proportional 0.04% 0.37% 0.08% 1.67% 0.05% 0.29% 0.09% 1.69% 

Forward Rate Models – Two Factor 

Absolute 0.02% 0.19% 0.05% 0.54% 0.01% 0.16% 0.02% 0.74% 

Proportional 0.02% 0.11% 0.04% 0.47% -0.02% 0.15% -0.01% 0.49% 

Market Model - One Factor 

BGM 0.05% 0.38% 0.07% 1.65% 0.06% 0.33% 0.12% 1.59% 
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Figure 1 
 

These figures present the average percentage pricing errors in predicting the prices of caps, using the one-
factor and two-factor spot rate and forward rate models. The errors presented pertain to caps of 2-, 3-, 4- 
and 5-year maturity for strike rates of 6.5%, 7%, 7.5% and 8%. These errors are averaged over the 219 
trading day sample period, March 1 - December 31, 1998.  
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Average Pricing Errors
Hull-White

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
Black-Karasinski

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
(HJM - constant vol.)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%

Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
(HJM - linear absolute vol.)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
Hull-White (time-varying)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
Black-Karasinski (time-varying)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr



 47

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Average Pricing Errors
(HJM - square root vol.)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
(HJM - proportional vol.)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
(HJM - linear proportional vol.)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
(Absolute - 2 factor)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or
2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
(Proportional 2-factor)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr

Average Pricing Errors
BGM (one-factor)

-20%

-10%

0%

10%

20%

6.5% 7% 7.5% 8%
Cap Strike Rate

P
er

ce
nt

ag
e 

E
rr

or

2 yr
3 yr
4 yr
5 yr



 48

Figure 2 
 

These figures present the average percentage pricing errors in predicting the prices of floors, using the 
spot rate and forward rate models. The errors presented pertain to floors of 2-, 3-, 4- and 5-year maturity 
for strike rates of 5%, 5.5%, 6% and 6.5%. These errors are averaged over the 219 trading day sample 
period, March 1 - December 31, 1998. 
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