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Abstract

This paper is a critical survey of models designed for pricing fixed income securities and
their associated term structures of market yields. Our primary focus is on the interplay
between the theoretical specification of dynamic term structure models and their empirical
fit to historical changes in the shapes of yield curves. We begin by overviewing the dynamic
term structure models that have been fit to treasury or swap yield curves and in which
the risk factors follow diffusions, jump-diffusion, or have “switching regimes.” Then the
goodness-of-fits of these models are assessed relative to their abilities to: (i) match linear
projections of changes in yields onto the slope of the yield curve; (ii) match the persistence
of conditional volatilities, and the shapes of term structures of unconditional volatilities, of
yields; and (iii) to reliably price caps, swaptions, and other fixed-income derivatives. For the
case of defaultable securities we explore the relative fits to historical yield spreads.



1 Introduction

This paper is a critical survey of models designed for pricing fixed income securities (FIS)
and their associated term structures of market yields.1 Our primary focus is on the interplay
between the theoretical specification of dynamic term structure models (DTSMs) and their
empirical fit to historical changes in the shapes of yield curves. With this interplay in mind,
we characterize DTSMs in terms of three primary ingredients: the risk-neutral distribution of
the state variables or risk factors, the mapping between these risk factors and the short-term
interest rate, and the factor risk premiums that (when combined with the first two) allow
construction of the likelihood function of the historical bond yields. Then the roles of these
ingredients in the goodness-of-fits of several widely studied DTSMs are assessed based on
their matching of several first and second moment properties of bond yields and the prices
of fixed-income derivatives.
We begin in Section 2 with an introduction to arbitrage-free pricing of both default-

free and defaultable FIS. This discussion is directed more toward the needs of researchers
interested in the empirical implementation of pricing models, than toward the mathematical
details of valuation.2 This is followed in Section 3 by a review of the key ingredients of
several of the most widely studied continuous-time econometric specifications of DTSMs,
including affine, quadratic-Gaussian, and non-affine stochastic volatility models. For the case
of defaultable bonds, we review both “reduced-form” and “structural” models. Particular
attention is given to the trade-offs between analytic tractability and richness of the yield
distributions that can be achieved within these modeling frameworks. We conclude this
section with a discussion of pricing in the presence of “regime shifts.”
The empirical fit of DTSMs to treasury and swap yield data is explored in Section 4.

Using model-implied yields simulated from several popular families of DTSMs, we assess their
goodness-of-fit by the degree to which they replicate: (1) historical regressions showing that
holding period returns on bonds are predictable using yield-curve variables (e.g., Fama and
Bliss [1987], Campbell and Shiller [1991]); and (2) the conditional volatilities of yields tend
to be highly persistent (e.g., Brenner, Harjes, and Kroner [1996]) and the “term structure”
of unconditional volatilities is hump-shaped. In Section 5 we discuss the empirical fit of
DTSMs for defaultable securities, placing particular emphasis on whether these DTSMs
generate credit spreads consistent with historical experience.
In Section 6 we look beyond the spot market to see how well the model-implied prices of

fixed-income derivatives match up with their historical counterparts (implied volatilities). In
the process, we are led to address the fit of DTSMs to two additional historical observations:
(3) the correlations of the changes in the slopes of non-overlapping yield curve segments are
small compared to the correlations of changes in the yields themselves (e.g., Rebonato and
Cooper [1997]); and (4) implied volatilities of caps and swaptions appear to show variation
that is independent of the variation in the underlying swap market (Heidari and Wu [2001]

1FIS are contingent claims with promised cash flows that are known contractually at the inception of
the contract. Issuers of FIS often have multiple securities outstanding with different maturities that are
otherwise homogeneous with regard to their characteristics, in which case there is an (issuer-specific) term
structure of market yields.
2Recent, more mathematically oriented, surveys of the theoretical term structure literature can be found

in Back [1996], Sundaresan [2000], Gibson, LHabitant, and Talay [2001], and Yan [2001].
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and Collin-Dufresne and Goldstein [2001a]).
There are several important segments of the fixed-income literature that we have chosen

to omit from this survey in order to keep its scope manageable. Specifically, we largely
restrict our attention to dynamic pricing models that have examined features of the joint
distribution of long- and short-term bond yields in estimation and testing. This means that
no attempt is made to systematically review the vast literature on descriptive, time-series
models of interest rates (including the literature on short-term rates).3 Similarly, we discuss
the literature on pricing fixed-income derivatives using DTSMs, but do not explore in depth
the various specialized “pricing measures” used for pricing LIBOR-based derivatives, taking
the current yield curve as given.4

2 Specification of DTSMs

This section overviews the conceptual foundations of modeling the dynamic properties of
yield curves – specifying a DTSM in the sense used here. For ease of exposition, and because
of its prominence in the theoretical literature on DTSMs, we assume that the state vector
Y follows a continuous-time diffusion. Extensions of DTSMs to accommodate jumps and
regime shifts are discussed in Section 3.
DTSMs are typically constructed from the following three key ingredients:

IM(P ): the time-series process for Y under the pricing measure M(P ), induced by some
numeraire price P ;

IP: the time-series process for Y under the actual measure P;

Ir: the functional dependence of r(t) on Y .

IM(P ) and Ir are used for pricing and IP and Ir are used to construct the moments of bond
returns (under P) used in estimation, so all three ingredients are essential for econometric
analyses of DTSMs. The requirement that there be no arbitrage opportunities within a
DTSM places only weak restrictions on the choice of (IM(P ), IP, Ir). However, the computa-
tional demands of both pricing bonds and maximizing the estimation criterion function have
typically led researchers to choose (IM(P ), Ir) so that closed- or essentially closed-form solu-
tions are obtained for zero-coupon bond prices. Additionally, with (IM(P ), Ir) in hand, the
specification of the risk premiums that link IM(P ) and IP have often been chosen to maintain
tractability in estimation, while preserving the condition of no arbitrage opportunities. We
elaborate on these specification issues in Section 3.

3See Chapman and Pearson [2001] for a survey with extensive coverage of empirical studies of short-rate
models.
4Musiela and Rutkowski [1997] and Dai and Singleton [2002a] survey large portions of the literatures on

the “forward-rate” models of Heath, Jarrow, and Morton [1992], Brace, Gatarek, and Musiela [1997], and
Miltersen, Sandmann, and Sondermann [1997].
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2.1 DTSMs of Default-Free Bond Yields

Throughout this survey, we will use the concept of a pricing kernel, M , to describe the
pricing mechanism. Initially, we specialize to a setting where the state of the economy is
completely described by a Markovian state vector Y (t), with

dY (t) = µPY (Y, t) dt+ σY (Y, t) dW (t), (1)

where µPY is an N × 1 vector of drifts under P and σY is an N × N state-dependent factor-
volatility matrix. In this diffusion setting, Mt can be written generically as

dMt

Mt
= −rtdt− Λ′tdW (t), (2)

where rt = r(Y (t), t) is the instantaneous riskless rate, W (t) is a vector of N indepen-
dent Brownian motions, and Λt = Λ(Y (t), t) is the N -vector of market prices of risk. For
simplicity, we take the risk factors driving M and Y to be one and the same.
For a FIS with a dividend rate h(Y (t), t) for t ≤ T and terminal payoff g(Y (T )) at date

T , its price at date t ≤ T can be expressed in terms of the pricing kernel as

P (Y (t), t) = Et

[∫ T
t

M(s)

M(t)
h(Y (s), s)ds

]
+ Et

[
M(T )

M(t)
g(Y (T ))

]
, (3)

where Et denotes expectation conditioned on date t information under P. The solution to (3)
can be expressed equivalently as the solution to the following fundamental partial differential
equation (PDE) (e.g., Duffie [1996])

[
∂

∂t
+A
]
Pt − rtPt + ht = 0, (4)

where A is the infinitesimal generator

A = (µPt − σY tΛt)′
∂

∂Yt
+
1

2
Trace

[
σY tσ

′
Y t

∂2

∂Yt∂Y
′
t

]
. (5)

Λ in this construction is interpreted as the market price of risk, because the expected
excess return from holding a FIS with price P is given by

eP (t) ≡ E

[
dP (t) + h(t)dt

P (t)dt
− rt

∣∣∣∣ Ft
]
=
1

P (t)

∂P (t)

∂Y (t)′
σY (t)Λt, (6)

where Ft denotes agents’ information set at date t. The term pre-multiplying Λ(t) in (6) is
the volatility of P induced by volatility in Y . Thus, Λ is the vector of risk premiums required
for each unit of volatility of the N risk factors.
The practical problem faced by researchers pricing FIS and their associated derivatives is

one of computing the expectations in (3). The most widely applied approach to solving (3)
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(equivalently (4)) involves a “change of measure” to obtain a more tractable expectation.5

To illustrate this approach we fix T > 0 and let Z(t) and P (t) denote the prices of two
traded securities at date t < T that, for simplicity, have no cash flows prior to date T . We
view P (t) as a numeraire price that defines an associated measure M(P ) in the following

sense. Letting V (t) = Z(t)
P (t)
, from the counterparts of (4) for P (t) and Z(t) it follows that

0 = Vt + µ
M(P )′
Y VY +

1

2
Tr [σY σ

′
Y VY Y ′] , where µ

M(P )
Y = µPY − σY [Λ− σP ] (7)

and σP ≡ (σ′Y ∂P/∂Y )/P . Under regularity, the Feynman-Kac theorem applied to (7) implies

V (t) = E
M(P )
t [V (T )]⇔ Z(t)

P (t)
= E

M(P )
t

[
Z(T )

P (T )

]
, (8)

where the conditional expectation is taken with respect to a measure M(P ) under which Y

follows the process dY (t) = µ
M(P )
Y (t) dt+ σY (t) dW

M(P )(t), with WM(P ) a vector of standard
Brownian motions under measure M(P ). Under the measure M(P ), the short rate r does
not appear (in (7) and (8)) and the relative price V (t) follows a Martingale. Different choices

of P (t) lead to different µ
M(P )
Y (t) and therefore different pricing measures M(P ).

Two choices of numeraire P (t), that lead to two general-purpose pricing measures, are:

Risk-Neutral Measure Q =M(e
∫ t
0 r(s)ds): P (t) is the price of a continuously compounded

bank deposit (that is, P (t) = e
∫ t
0 r(s)ds), for which σP = 0 and the Q-drift of Y is

µQY (t) ≡ µPY (t)− σY (t)Λ(t). From (8),

Z(t) = EQt

[
e−
∫ T
t r(s)dsZ(T )

]
; (9)

Z(t) is the present value of Z(T ) discounted by the riskless rate, so Q is referred to as
the risk-neutral measure.

Forward Measure QT ≡ M(D(t, T )): P (t) = D(t, T ), the price of a zero-coupon bond
issued at date t and maturing at date T . In this case, V (t) is a “forward price” of
security Z(t), so QT is commonly referred to as the forward measure. Using the fact
that D(T, T ) = 1, (8) becomes

Z(t) = D(t, T )ETt [Z(T )] , (10)

where ETt [·] denotes conditional expectation under the measure QT .
5An alternative approach, besides the direct application of numerical methods, is to derive the so-called

Green’s function G(t, Y (t)|T, Y ) which gives the price P (t) of any FIS with dividend process h(Y (t), t) and
terminal payoff g(Y (T )) as

P (t) =

∫ T
t

ds

∫
dy G(t, Y (t)|s, y)h(y, s) +

∫
dy G(t, Y (t)|T, y) g(y).

Unfortunately, the derivation of the Green’s function in analytical form or its numerical computation is often
a non-trivial matter. See Steenkiste and Foresi [1999] for a discussion of the computational issues related to
this approach for the case of affine jump-diffusions and Collin-Dufresne and Goldstein [1999] for the case of
reflecting boundaries for the short-rate process r.
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Which measure is chosen in practice, either among these two or with some other numeraire,
depends on a researcher’s objective.
The financial industry tends to have a cross-sectional, as opposed to time-series, focus

given the practical demands of “point-in-time” pricing systems. The numeraire, and associ-
ated measure M(P ), are often chosen to give convenient closed-form or numerical solutions
for (8) for various option payoffs Z(T ). Particularly in the case of such LIBOR-based instru-
ments as caps, floors, and swaptions, pricing has tended to focus on forward measures QT ,
with the numeraire chosen to be either the price of a LIBOR-based zero-coupon bond or a
swap price. Of course, if two derivatives based on the same underlying risk factors are priced
with different numeraires, then the resulting pricing models may be based implicitly on mu-
tually inconsistent assumptions about the distributions of the risk factors (Brace, Gatarek,
and Musiela [1997],Jamshidian [1997]).
Another issue that arises in practice is that trading desks often require that a model

correctly “price” an entire yield curve before it will be used for pricing derivatives based
on this curve. This consideration in part underlies the wide-spread use of forward-rate
based models, which prescribe the risk-neutral dynamics of the forward curve (as in Heath,
Jarrow, and Morton [1992]). In such models, the forward curve f(t, ·), defined by f(t, T ) =
−∂ logD(t, T )/∂T , for any T ≥ t, is an (observable) input into an arbitrage free pricing
model. As typically implemented in industry, forward-rate models are silent about the time-
series behavior of yields under P and, therefore, are not within the family of DTSMs explored
in depth in this survey.
In the DTSMs with fixed parameters explored subsequently, the dimension of Y , N , is

typically small relative to the number of securities to be priced by M . One means of cir-
cumventing this limitation of dimensionality in yield-based models (those based on (IQ, Ir)),
is to introduce time-dependent parameters that allow for point-in-time calibration of a low-
dimensional factor model to an entire yield curve of spot yields or volatilities. (This is an
easy “add-on” in most of the DTSMs discussed subsequently.) This practice is not without
controversy, since recalibrating the parameters as the shape of the underlying yield curve or
option volatilities change amounts to “changing the model.” Therefore, the resulting models
are almost surely fraught with arbitrage opportunities from a dynamic perspective (Backus,
Foresi, and Zin [1998],Buraschi and Corielli [2000]),Brandt and Yaron [2001]).
In principle, these issues disappear if the entire yield curve is viewed as the state vector

and its dynamic properties are explicitly modeled under both Q and P. Such high (possibly
infinite) dimensional models, developed under the labels of “Brownian sheets” (Kennedy
[1994]), “random fields” (Goldstein [2000]), and “stochastic string shocks” (Santa-Clara and
Sornette [2001]), are discussed in more depth in Section 6.

2.2 DTSMs of Defaultable Bond Yields

If the issuer of an FIS might default prior to the maturity date T then, in addition to the risk
of changes in r, both the magnitude and the timing of payoffs to investors may be uncertain.
The effects of default risks on prices depends on how the default event is defined and the
specification of recovery wτ in the event of a default event. At the broadest level, the two
most commonly studied default processes are those of reduced-form and structural models.
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2.2.1 Reduced-Form Models

Reduced-form models treat default as governed by a counting (jump) process z(t) with
associated (possibly state-dependent) intensity process λP(t) and, as such, whether or not a
issuer actually defaults is an unpredictable event. For pricing in this setting, we extend the
formulation (2) of the pricing kernel to allow for a “jump” to the absorbing default state

dMt

Mt
= −rt − Λ′tdWt − Γt(dzt − λPt dt), (11)

where Γt = Γ(Yt) is the market price of default risk, and let w(Y (t)) denote the recovery by
holders of a FIS in the event of default. For a defaultable zero-coupon bond, issued at t and
maturing at date T , with price B(t, T ), the absence of arbitrage opportunities implies that
B(t, T )Mt is a Martingale. This, in turn, implies that[

∂

∂t
+A
]
B(t, T )− (rt + λQt )B(t, T ) + wtλQt = 0, (12)

where λQt = (1− Γt)λPt is the “risk-neutral” intensity of arrival of default.
Comparing (12) with (4) we see that the defaultable security is priced using the default-

adjusted discount rate rt + λ
Q
t . Intuitively, this is a consequence of the risk-neutral prob-

ability of an issuer surviving from date t to date s (presuming survival to date t) being
EQt
[
exp{− ∫ s

t
λQu du}

]
. Using rt + λQt in discounting accounts for both the time value of

money and the need for the issuer to survive to receive payments. Moreover, we see that,
even though we are pricing a zero-coupon bond, the possibility of a recovery in the event of
default effectively introduces a dividend that is received at the rate wtλ

Q
t (compare with h

in (4)). Since λQt dt is the probability of default over the next instant of time and wt is the
recovery in the event of default, the dividend is the mean recovery rate due to default.
Importantly, as discussed in Artzner and Delbaen [1995], Jarrow, Lando, and Yu [2000]

and Martellini and Karoui [2001], the requirement of no arbitrage places only weak restric-
tions on the risk premium Γ(t) and, hence, on the mapping between λQ and λP. Not only
may λP and λQ differ in their current levels, they may also have different degrees of per-
sistence, time-varying volatility, and one might jump while the other follows a continuous
sample path. Thus, moving between λP and λQ is not analogous to the standard adjustment
to the drift of r to obtain its risk-neutral representation.
Moreover, the instantaneous excess return on a defaultable zero-coupon depends on λP

and not on λQ:

eBt =
1

B(t, T )

∂B(t, T )

∂Y ′
σYΛt +

wt − B(t, T )
B(t, T )

λPt Γt. (13)

Compared to equation (6), eBt has an extra component,
wt−B(t,T )
B(t,T )

λPt Γt, representing compen-

sation for the expected loss due to default. This component is the product of wt−B(t,T )
B(t,T )

, the

percentage loss of value due to default; λPt , the actual default intensity; and Γt, the market
price of default risk. Since bond prices reveal information only about λQ, computing λP and
eBt typically requires additional information about the P-likelihood of an issuer defaulting.
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The solution to (12) for B(t, T ) depends on what one assumes about recovery, wt. Duffie
and Singleton [1999] assume that investors lose an expected (risk-neutral) fraction LQt of
the market value of B(t, T ), measured just prior to the default event (fractional recovery of
market value). In this case, wt = (1− LQt )B(t, T ) and B(t, T ) solves the PDE[

∂

∂t
+A
]
− (r(t) + LQ(t)λQ(t))B(t, T ) = 0. (14)

It follows that B(t, T ) = EQt

[
e−
∫ T
t Ru du

]
, where Rt ≡ rt + λQt L

Q
t denotes the “default-

adjusted” discount rate. The price of the zero-recovery security studied by Lando [1998] and
Madan and Unal [1998] is obtained as the special case with LQ = 1.
Alternatively, Lando [1998] and Duffie [1998] assume recovery of wτ at the time of default

which (by analogy to (3)) leads to the pricing relation

B(t, T ) = EQt

[
e−
∫ T
t (rs+λ

Q
s ) ds
]
+ EQt

[∫ T
t

e−
∫ u
t (rs+λ

Q
s ) ds λQuwu du

]
. (15)

With the face value of this bond normalized to unity, this recovery assumption is interpretable
as fractional recovery of face value. Madan and Unal [1998] derive similar pricing relations
for the case of junior and senior debts with different recovery ratios.
Finally, Jarrow and Turnbull [1995] assume a constant fractional recovery of an other-

wise equivalent treasury security with the remaining maturity of the defaultable instrument.
This recovery assumption has been less widely applied in the empirical literature than the
preceding two recovery assumptions.

2.2.2 Structural Models

Structural models, in their most basic form, assume default at the first time that some
credit indicator falls below a specified threshold value. The conceptual foundations for this
approach were laid by Black and Scholes [1973] and Merton [1970, 1974]. They supposed
that default occurs at the maturity date of debt provided the issuer’s assets are less than
the face value of maturing debt at that time. (Default before maturity was not considered.)
Black and Cox [1976] introduced the idea that default would occur at the first time that
assets fall below a boundary D (which may or may not be the face value of debt), thereby
turning the pricing problem into one of computing “first-passage” probabilities. For the case
of exogenously given default boundary F , if in the event of default bondholders lose the
fraction LQT of par at maturity, then the price B(t, T ) becomes

B(t, T ) = EQt

[
e−
∫ T
t
ru du (1− LT1{τ<T})

]
= D(t, T )

[
1− LTHT (At/F, rt, T − t)

]
, (16)

where HT (At/F, rt, T − t) ≡ ETt [1{τ<T}] is the first-passage probability of default between
dates t and T under the forward measure induced by the default-free zero price D(t, T ).
Thus, B(t, T ) is the price of a riskless zero-coupon bond minus the value of a put option on
the value of the firm. The value of a coupon bond in this setting is obtained by summing
the present values of the promised coupons discounted by the relevant zero prices B(t, T ) on
the coupon dates.
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Pricing in models with endogenous default thresholds has been explored by Geske [1977],
Leland [1994], Leland and Toft [1996], Anderson and Sundaresan [1996], Mella-Barral and
Perraudin [1997], and Ericsson and Reneby [2001], among others. The endogeneity of F arises
(at least in part) because equity holders have an option as to whether to issue additional
equity to service the promised coupon payments. With F determined by the actions of equity
holders and debtors, it becomes a function of the underlying parameter of the structural
model. The models of Anderson and Sundaresan [1996], Mella-Barral and Perraudin [1997],
and Ericsson and Reneby [2001] accommodate violations of absolute priority rules (equity
holders experience non-zero recoveries, even though bond holders recover less than the face
value of their debt).

2.2.3 Pricing with Two-Sided Default Risk

For the cases of interest rate forward and swap contracts, default risk is “two-sided” in the
sense that a financial contract may go “into the money” to either counterparty, depending
on market conditions, and so the relevant default processes for pricing change with market
conditions. Duffie and Singleton [1999] show, in the context of reduced-form models, that this
dependence of λQ and wτ on the price P (t) of the contract being valued renders the preceding
reduced-form pricing models inapplicable, at least in principle.6 Fortunately, for at-the-
money swaps (those used most widely in empirical studies of DTSMs), these considerations
are negligible (Duffie and Huang [1996] and Duffie and Singleton [1997]). Hence, standard
practice within academia and the financial industry is to treat such interest rate swaps
as if they are bonds trading at par ($1), with the discount rate R chosen to reflect the
credit/liquidity risk inherent in the swap market.
Using this approximate pricing framework, the resulting discount curve, − logB(t, T )/(T−

t), “passes through” short-term LIBOR rates. However, there is no presumption that long-
term swap rates and LIBOR contracts reflect the same credit quality. They are in fact
notably different (Sun, Sundaresan, and Wang [1993], Collin-Dufresne and Solnik [2000]).
Nor is there a presumption that Rt−rt reflects only credit risk; liquidity risk may be as, if not
more, important (see Grinblatt [1994] and Liu, Longstaff, and Mandell [2001] for discussions
of liquidity factors in swap pricing).

3 Term Structure Models

The central role of DTSMs in financial modeling has lead to the development of an enormous
number of models, many of which are not nested. Initially, we focus on the case where Y
follows a diffusion process and discuss four of the most widely studied families of DTSMs:
affine, quadratic-Gaussian (QG), non-affine stochastic volatility, and structural defaultable
bond pricing models. Then we step outside of the diffusion framework and discuss DTSMs
with jumps and multiple “regimes.”

6 Under fractional recovery of market value, one can still express B(t, T ) as the solution to (14) but,
because of the dependence of R on P , B(t, T ) solves a quasi-linear equation, instead of a more standard
linear PDE, and prices must be obtained by numerical methods.
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3.1 Affine Term Structure Models

The ingredients of affine term structure models are:

IQ(A) : Under Q, the drift and volatility functions of the risk factors satisfy

µQY (t) = λ0 + λY Y (t), (17)

σY (t)σY (t)
′ = g0 +

N∑
i=1

giYi(t), (18)

where λ0 is an N × 1 vectors and λY and gi, i = 0, 1, . . . , N , are N × N matrices of
constants. An equivalent characterization of σY (t) has σY (t) = Σ

√
S(t), where

Sii(t) = αi + β
′
iY (t), Sij(t) = 0, i 6= j, 1 ≤ i, j ≤ N, (19)

and Σ is an N ×N matrix of constants.
IP(A) : Given σY (t) satisfying (18), the requirement (17) determines the drift of Y under the

actual measure, µPY (t), once the market prices of risk Λ(t) are specified, and vice-versa.

Ir(A) : The short rate is an affine function of Y :

r(t) = δ0 + δ
′
Y Y (t). (20)

Duffie and Kan [1996] show that under (IQ(A), Ir(A)), the solution to the PDE (4) forD(t, T )
is exponentially affine:

D(t, T ) = eγ0(T−t)+γY (T−t)
′Y (t), (21)

where γ0 and γY satisfy known ordinary differential equations (ODEs). Note that, in deriving
the pricing relation (21), Duffie and Kan were silent on the properties of Y under P. To
obtain (21), essentially any specification of µPY (t) and any arbitrage-free specification of Λ(t)
can be chosen, so long as the drift of Y under Q is an affine function of Y .
In order for affine specifications to be admissible, restrictions must be imposed on the

parameters to assure that the Sii(t) ≥ 0. To address this problem, for the case of N risk
factors and M (≤ N) factors driving the Sii(t), Dai and Singleton [2000] (hereafter DS)
introduced the “canonical” model AM(N) with Sii(t) =

√
Yi(t), i = 1, . . . ,M , and the

remaining N −M Sii(t) being affine functions of (Y1(t), . . . , YM(t)). DS provide an easily
verifiable set of sufficient restrictions on the parameters of AM(N) to guarantee admissibility.
The subfamily AM(N) (M = 0, . . . , N) of affine models was then defined to be all models
that are nested special cases of the M th canonical model or of invariant transformations
of this model. Duffie, Filipovic, and Schachermayer [2002] show that DS’s canonical affine
diffusion gives the most flexible affine DTSM on the state space RM × RN−M . The union
∪NM=0AM(N) does not encompass all admissible N -factor affine models, however.
DS analyze the “completely affine” class of DTSMs with

µPY (t) = κ(θ − Y (t)) and Λ(t) =
√
S(t)λ1, (22)
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where λ1 is an N × 1 vector of constants. In this case, both the P-drift µY (t) and Q-
drift µQ = µPY (t) − σY (t)Λ(t) are affine in Y (t). A potentially important limitation of the
specification (22) of Λ is that temporal variation in the instantaneous expected excess return
on a (T − t)-period zero bond, eD(t, T ) = γY (T − t)′ΣStλ1 (see (6)), is determined entirely
by the volatilities of the state variables through S(t). Moreover, the sign of each Λi(t) is
fixed over time by the sign of λ1i.
Duffee [2002] proposed the more flexible “essentially affine” specification of Λ(t) that has

Λt =
√
Stλ1 +

√
S−t λ2Yt, (23)

where λ1 is an N × 1 vector and λ2 is an N × N matrix, and7 S−ii,t = (αi + β ′iYt)
−1, if

inf(αi + β ′iYt) > 0, and zero otherwise. Within the canonical model for AM(N), the inf
requirement implies that the first M rows of λ2 are zero (corresponding to the M volatility
factors). Thus, when M = N (multi-factor CIR models), the “completely” and “essentially”
affine specifications are equivalent – excess returns vary over time only because of time-
variation in the factor volatilities.
However, when M < N , the essentially affine specification introduces the possibility that

Y affects expected excess returns both indirectly through the Sii(t) and directly through the
non-zero elements of λ2Yt. Moreover, the signs of the Λi(t) corresponding to the N −M
non-volatility factors may switch signs over time. (Those of the first M volatility factors
have fixed signs as in CIR-style models.) The smaller is M , the more added flexibility is
introduced by (23) over (22), though at the expense of less flexibility in matching stochastic
volatility. The specification (23) preserves the property that the drifts of Y are affine under
both Q and P.
Duarte [2001] extended the specification of Λ further to

Λ(t) = Σ−1λ0 +
√
Stλ1 +

√
S−t λ2Yt, (24)

where λ0 is an N × 1 vector of constants. The practical import of his extension is that the
Λi(t) corresponding to the M volatility factors in an AM(N) model may switch signs over
time. Additionally, larger differences between the drifts of Y under the P and Q measures are
accommodated, because µP(t) = κ(θ−Y (t))+Σ√S(t)Σ−1λ0 in Duarte’s model, as prescribed
by (17). With this modification, Y follows a non-affine process under P – the drift involves
both the level and square-root of the state variables – but one that is nevertheless affine
under Q (so that the pricing relation (21) continues to hold).
Though the characterization of the families AM (N) using (IQ(A), IP(A), Ir(A)) is entirely

in terms of the risk factors Y , each AM(N) is observationally equivalent to a large class
of multi-factor models in which r remains one of the state variables, with the drift and
conditional variance of r depending on other state variables (DS).8 For instance, the two-
factor Gaussian (“Vasicek”) model studied by Langetieg [1980] is equivalent to the two-factor

7 The requirement that the ith diagonal element of S−t be nonzero only if inf(αi + β′iYt) > 0 is necessary
to rule out arbitrage that might arise if elements of Λt approach infinity as (αi+β

′
iYt) approaches zero (Cox,

Ingersoll, and Ross [1985], Duffee [2002]).
8One implication of this equivalence is that many of the affine DTSMs examined in the literature are

nested in the framework (17) - (22). Included in this set are those in Vasicek [1977], Langetieg [1980], Cox,
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central-tendency model of r proposed by Beaglehole and Tenney [1991] and Balduzzi, Das,
and Foresi [1998].
The development of affine models of defaultable bond prices proceeds in a similar man-

ner. In the Duffie-Singleton framework with fractional recovery of market value, the default
adjusted discount rate Rt = rt + λ

Q
t L

Q
t can be modeled as an affine function of the state

Yt. A researcher has the choice of modeling R directly or of building up a model of R from
separate affine parameterizations of r and λQLQ.
Similarly, an affine model under fractional recovery of face value is obtained by assuming

that(rt+λ
Q
t ), λ

Q
t , and lnwτ are affine functions of Y . The price of $1 contingent on survival

to date T (the first term in (15)) is known in closed form since rt+λ
Q
t is an affine function of

Y . The recovery claim is priced using the extended transform of Duffie, Pan, and Singleton
[2000]:

EQ
[
e−
∫ u
t (rs+λ

Q
s ) ds λQuwu

]
du = eαB(t,u)+βB(t,u)·Y (t)[α̂(t, u) + β̂(t, u) · Y (t)], (25)

where αB(t, u), βB(t, u), α̂d(t, s), and β̂d(t, s) are given by explicit formulas. Only the one-
dimensional integral in (15) is computed numerically. Moreover, an equally tractable pricing
model is obtained if the fractional loss LQτ is incurred at T , the original maturity of the
bond (the convention used in most structural models). In this case, wτ = (1− LQτ )D(τ, T )
is the discounted recovery (from T to τ) and LQτ must be chosen judiciously to facilitate
computation of (25).
Whether one is modeling r alone (for pricing default-free FIS) or r and λQ (for pricing

defaultable securities), the choice of affine models will determine whether these variables
remain strictly positive over the entire state space. Strictly speaking, negative values for
either of these variables are not economically meaningful. However, the only family of affine
diffusions that guarantees strictly positive (r, λQ) are those in the family AN (N). With
M = N , negative correlations among the Y ’s are not admissible (DS), and λ2 = 0 in (23)
thereby restricting the state dependence of Λ(t). Thus, the common practice of studying
models in AM(N), withM < N , gives greater flexibility at specifying factor correlations and
market prices of risk, at the expense of (typically small) positive probabilities of the realized
r or λQ being negative.
Though Y is a latent state vector in most econometric studies of affine DTSMs, it is

effectively observable if N of the K ≥ N bond yields used in estimation are priced perfectly
by the model. The implied state Y βt is obtained by inverting the model for these N . In
empirical implementations (see, e.g., Chen and Scott [1993], Pearson and Sun [1994], Duffie
and Singleton [1997], and Honore [1998]), the remaining K −N bonds are often assumed to
be priced only up to an additive “pricing error.” In some cases, an alternative to introducing
additive errors is to introduce a bond-specific yield factor ψt and to discount future cash
flows for the bond in question using the adjusted short rate r(t)+ψ(t) (see Duffie, Pedersen,
and Singleton [2002] for an example in the context of pricing sovereign bonds).
If allK bonds are assumed to be priced with errors, then filtering methods must be used to

obtain fitted states Y β . Outside of the Gaussian case, the optimal filters are nonlinear so the

Ingersoll, and Ross [1985], Brown and Dybvig [1986], Hull and White [1987], Longstaff and Schwartz [1992],
Hull and White [1993], Chen and Scott [1993], Brown and Schaefer [1994], Pearson and Sun [1994], Chen
[1996], Balduzzi, Das, Foresi, and Sundaram [1996], and Backus, Foresi, Mozumdar, and Wu [2001].
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Kalman filters typically used are only approximations (Duan and Simonato [1999],Duffee
and Stanton [2001]). Bobadilla [1999] finds that estimates of β can be sensitive to the
parameterization of the pricing errors.
These extraction issues do not arise if the state variables are observed economic time series

(e.g., macro-economic and yield curve variables). Critical in choosing yield curve variables
as elements of Y is that the model maintain internal consistency – it must correctly “price”
the state variables when they are known functions of the prices of traded securities. Duffie
and Kan [1996] present a generic example of how this can be done in affine models. Imposing
internal consistency in non-affine settings can be challenging, so internal consistency is often
ignored (e.g., Boudoukh, Richardson, Stanton, and Whitelaw [1998]). Ang and Piazzesi
[2000], Buraschi and Jiltsov [2001], Wu [2000], and Wu [2002] incorporate macro factors (for
which these consistency issues do not arise) directly into affine term structure models.
The affine structure of Y also greatly facilitates estimation of DTSMs. The conditional

characteristic function (CCF ) of any affine diffusion Y (given Yt−1) is known in closed
form (Duffie, Pan, and Singleton [2000]). Therefore, if Y follows an affine diffusion under
P, then all of its conditional moments are also known. In particular, if a vector of zero-
coupon bond yields is used in estimation, then method-of-moments is a feasible estimation
strategy, since these yields are affine functions of Y (Liu [1997]). A special case is quasi-
maximum likelihood estimation (Fisher and Gilles [1996]). Estimators for affine models
of zero yields that are asymptotically efficient can be constructed directly from the CCF
(Singleton [2001],Carrasco, Chernov, Florens, and Ghysels [2002]).
In the case of coupon bonds, ML estimation is feasible for those special cases– Gaussian

(Jegadeesh and Pennacchi [1996]) and square-root (Chen and Scott [1993],Pearson and Sun
[1994])– where the conditional density of Yt given Yt−1 is known. More generally, Duffie,
Pedersen, and Singleton [2002] propose an approximate ML estimator for affine DTSMs.
Estimation may not be as tractable when Λ is modeled differently than as in (23), even

if the Q-drift of Y remains affine. This is true, for example, for Duarte’s formulation which
has the drift of Y being nonlinear under P. In this case, as well as situations where the
estimators in the preceding paragraph are not applicable, efficient estimates are obtained
using the Monte Carlo maximum likelihood estimator of Pedersen [1995] (see also Brandt
and Santa-Clara [2002]), the approximateML estimator of Ait-Sahalia [2002], or the efficient
simulated method-of-moments estimator proposed by Gallant and Tauchen [1996].

3.2 Quadratic-Gaussian Models

The quadratic-Gaussian family of DTSMs includes the models studied by Longstaff [1989],
Beaglehole and Tenney [1991], Constantinides [1992], Leippold andWu [2002], Ahn, Dittmar,
and Gallant [2002], and Lu [2000] as special cases. The ingredients of QG models are:

IQ(QG) : Under Q, the drift and volatility functions of the risk factors satisfy

µQY (t) = ν0 + νY Y (t), (26)

σY = Σ, a constant matrix, (27)

where ν0 is an N × 1 vector and νY is an N ×N matrix of constants.
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IP(QG) : Given σY (t) satisfying (27), the requirement (26) determines µ
P
Y (t), once Λ(t) is

specified, and vice-versa.

Ir(QG) : The short rate is a quadratic function of Y :

r(t) = a+ Y (t)′b+ Y (t)′cY (t), (28)

where a is a scalar, b is an N × 1 vector, and c is an N ×N matrix of constants.
Ahn, Dittmar, and Gallant [2002] and Leippold and Wu [2002] show that under these con-
ditions the solution to the PDE (4) is an exponential quadratic function of Y :

D(t, T ) = eγ0(T−t)+γY (T−t)
′Yt+Y ′t γQ(T−t)Yt , (29)

where γ0, γY , and γQ satisfy known ODEs.
The drift condition (26), along with the assumption that the diffusion coefficient σY (t) is

the constant matrix Σ, imply that Y follows a Gaussian process under Q. These assumptions
do not restrict the drift of Y under P, however. Subject to preserving no arbitrage, we are
free to choose essentially any functional form for µPY (t), so long as Λ(t) is chosen so that
the weighted difference (µPY (t) − ΣΛ(t)) is affine in Y . The special case examined in Ahn,
Dittmar, and Gallant [2002] has Λ(t) = λ0+λY Y (t), which implies that Y is Gaussian under
both P and Q. Interestingly, this is the same functional form as is obtained for the Gaussian
affine model with Λ(t) as in (23) since, in this case, S(t) is a constant matrix. The effects of
Λ(t) on prices in the QG and Gaussian affine models are not equivalent, of course, because
the mappings between Y and zero-coupon bond prices are different.
The SAINTS model proposed by Constantinides [1992] is shown by Ahn, Dittmar,

and Gallant [2002] to be the special case of the QG model in which Σ is diagonal and
µPY (t) = −KY (t) with K diagonal (the N risk factors are mutually independent); and the
coefficients λ0 and λY determining Λ(t) are constrained to be specific functions of the pa-
rameters governing the Y process. These constraints potentially render the SAINTS model
much less flexible than the general QG model in representing the distributions of bond yields.
Estimation of QG models is complicated by the fact that there is not a one-to-one map-

ping from observed yields to the state vector Y , because of the quadratic dependence of r on
Y . For example, in a one-factor QG model, the yield on a s-period, zero-coupon bond, ys,
is given by ys(t) = as + bsY (t) + csY (t)

2. Given ys(t) and under suitable parameter values
(so that b2s − 4cs(as − ys(t)) > 0), there are two roots to the above quadratic equation,
corresponding to two possible values of the implied state variable:

Y (t) =
−bs ±

√
b2s − 4cs(as − ys(t))
2cτ

. (30)

Given this indeterminacy, filtering methods are called upon to estimate the model-implied Y .
Ahn, Dittmar, and Gallant circumvent this problem by using simulated method of moments
(which effectively gives observable Y through simulation). Then they use the reprojection
methods proposed by Gallant and Tauchen [1998] to estimate E[Y (t)|y(t−1), . . . , y(t−L)],
with y being the vector of bond yields used in estimation. Lu [2000] uses the filtering density
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f(Y (t)|y(t), y(t− 1), . . . , y(1)) to compute the conditional expectation of Y (t). Though the
likelihood function for QG models can be written down in closed-form, we are not aware of
any studies that directly implement the ML estimator.
QG models are also easily adapted to the problem of pricing defaultable securities by

having both r and λQ be quadratic functions of Y . In this setting, QG models offer the flexi-
bility, absent from affine models, of having strictly positive (r, λQ) and negatively correlated
state variables (see, e.g., Duffie and Liu [2001]).

3.3 Non-affine, Stochastic Volatility Models

Andersen and Lund [1997,1998] studied various special cases of the following non-affine
three-factor model9

d log v(t) = µ(v̄ − log v(t))dt+ ηdWv(t),
dθ(t) = ν(θ̄ − θ(t))dt+

√
αθ + βθθ(t) dWθ(t), (31)

dr(t) = κ(θ(t)− r(t))dt+ r(t)γv(t)dWr(t),
where (Wv,Wθ,Wr) are independent Brownian motions. In this model the volatility factor
v(t) follows a lognormal process and the instantaneous stochastic volatility of r, r(t)γv(t),
is affected both by v and r. These models do not have known, closed-form solutions for
bond prices. Largely for this reason this formulation of stochastic volatility has been studied
primarily in the context of econometric modeling of the short-rate and not as a DTSM.
Another non-affine, one-factor DTSM has (Cox, Ingersoll, and Ross [1980], Ahn and Gao

[1999])

dr(t) = κ(θ − r(t))r(t) dt+ r(t)1.5dWr(t). (32)

This “three-halves” model gives a stationary r so long as κ and σ are greater than 0, and the
conditional density f(rt+1|rt) is known in closed form (Ahn and Gao [1999]). For this model,
the market price of risk of r (as specified by Ahn and Gao) is Λ(t) = λ1/

√
r(t) + λ2

√
r(t).

Therefore, unlike in CIR-style affine models, Λ(t) may change signs over time if λ1 and λ2
have opposite signs. Moreover, the P and Q drifts of r may be quite different. Thus, this
model may achieve added flexibility for fitting yields relative to many affine DTSMs, though
correlated, multi-factor extensions have yet to be worked out.

9Another non-affine model that has received considerable attention in the financial industry (but rela-
tively little attention in academic research) has log r(t) following a Gaussian process. Perhaps the most well
know version is the Black, Derman, and Toy [1990] model, along with its continuous-time limit in Black and
Karasinski [1991]. A two-factor (multi-nomial) extension was studied by Peterson, Stapleton, and Subrah-
manyam [1998]. An important limitation of this class of models, first noted by Hogan and Weintraub [1993],
is that, for any positive time interval, expected rollovers of r are infinite, because the continuous compound-
ing involves an exponential of an exponential. To circumvent this problem, Sandmann and Sondermann
[1997] propose that one construct a “money-market” account as the numeraire for risk-neutral pricing using
rates with a finite accrual period like a three-month rate.
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3.4 Parametric Structural Models of Defaultable Bond Prices

Structural models of default combine an arbitrage-free specification of the default-free term
structure with an explicit definition of default in terms of balance sheet information. The
former is typically taken to be a standard affine DTSM. The new, non-trivial practical con-
sideration that arises in implementing structural models is the computation of the forward,
first-passage probability QT .
A representative structural model has firm value A following a log-normal diffusion with

constant variance and non-zero (constant) correlation between A and the instantaneous
riskless rate r:

dAt

At
= (r − γ) dt+ σAdWAt, (33)

dr = κ(µ− r) dt+ σrdWrt, (34)

where corr(dWA, dWr) = ρ and γ is the payout rate. Kim, Ramaswamy, and Sundaresan
[1993] and Cathcart and El-Jahel [1998] adopt the same model for A, but assume that r
follows a one-factor square-root (A1(1)) process. Related structural models are studied by
Nielsen, SaaRequejo, and Santa-Clara [1993] and Briys and de Varenne [1997].
The basic “Merton model” has: (i) the firm capitalized with common stock and one bond

that matures at date T , (ii) a constant net payout rate γ and a constant interest rate r, and
(iii) default occur when AT < F , where F is constant. (Firms default only at maturity of
the bond.) In actual applications of this model, a coupon bond is typically assumed to be
a portfolio of zero-coupon bonds, each of which is priced using the Merton model. Geske
[1977] extended Merton’s model to the case of multiple bonds maturing at different dates.
Building upon Black and Cox [1976], Longstaff and Schwartz [1995] allowed the issuer

to default at any time prior to maturity of the bonds (not just at maturity) and replaced
the assumption of constant r with the one-factor Vasicek [1977] model (34). Though the
Longstaff-Schwartz model is in many respects more general than the Merton model, the
latter is not nested in the former.10

In the Leland and Toft [1996] model, a firm continuously issues new debt with coupons
that are paid from the firm’s payout γA. The default boundary is endogenous, because
equityholders can decide whether or not to issue new equity to service the debt in the event
that the payout is not large enough to cover the dividends. Their model gives a closed-form
expression for B(t, T ) under the assumption of constant r. Anderson and Sundaresan [1996]
and Mella-Barral and Perraudin [1997] solve simplified bargaining games to obtain close-form
expressions for their default boundaries.
A typical feature of structural pricing models is that the value of the firm diffuses con-

tinuously over time. This has the counter-factual implication that yield spreads on short-
maturity, defaultable bonds will be near zero, since it is known with virtual certainty whether
or not an issuer will default over the next short interval of time. As shown by Duffie and
Lando [2001], more plausible levels of short-term spreads are obtained in structural models

10 The Merton model gives a closed form solution for defaultable zero-coupon bond prices. Longstaff and
Schwartz provided an approximate numerical solution for B(t, T ) in their setting. Subsequently, Collin-
Dufresne and Goldstein [2001b] provided an efficient numerical method for computing the B(t, T ).
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by making the assumption that bondholders measure firm’s assets with error. Once measure-
ment errors are introduced, this basic structural model becomes mathematically equivalent
to an intensity-based, reduced-form model.
Equally importantly, many structural models also imply that credit spreads tend to

asymptote to zero with increasing maturity. This is a consequence of the fact that (risk-
neutrally) A drifts away from the default boundary at the rate r so the forward probability
of default, HT (At/F, rt, T − t) converges to zero as T →∞. To address this counter-factual
implication, Collin-Dufresne and Goldstein [2001b] and Tauren [1999] attribute a target
debt/equity ratio to issuers, and Ericsson and Reneby [2001] assume a positive growth rate
of total nominal debt.

3.5 Bond Pricing with Jumps

There is growing evidence that jumps are an important ingredient in modeling the distribu-
tion of interest rates. For instance, Das [2002], Johannes [2000], and Zhou [2001] find that
jump-diffusion models fit the conditional distribution of short-term interest rates better than
the nested diffusion models they examine. Reduced-form models for the pricing of bonds
(defaultable or default-free) are easily extended to allow Y to follow a jump-diffusion

dY (t) = µY (Y ) dt+ σY (Y ) dW (t) + ∆Y dZ(t), (35)

where Z is a Poisson counter, with state-dependent intensity {λP(Y (t)) : t ≥ 0} that is
a positive, affine function of Y , λP(Y ) = l0 + l′Y Y ; and ∆Y is the jump amplitude with
distribution νP on RN . If the jump risk is priced, then a compensated jump term also appears
in the pricing kernel with a possibly state-dependent coefficient Γ(∆Y, Y ) representing the
market price of jump risk:

dMt

Mt
= −r(Y ) dt− Λ(Y )′ dW (t)− [Γ(∆Y, Y ) dZ(t)− γ(Y )λP(Y ) dt] , (36)

where γ(Y ) =
∫
Γ(x, Y )dνP(x) is the conditional P-mean of Γ. From (36), the risk-neutral

distribution of the jump size and the risk-neutral jump arrival rate are given by

dνQ(x) =
1− Γ(x, Y )
1− γ(Y ) dν

P(x), λQ(Y ) = (1− γ(Y ))λP(Y ). (37)

Although in general Γ(x, Y ) may depend on both Y and the jump amplitude x, and therefore
γ(Y ) may be state-dependent, in most implementations Γ is assumed to be a constant.
These expressions simplify further if we can write Mt = M(Yt, t). This is possible, for

example, in equilibrium pricing models where M represents marginal utility that depends
only on the current state. In this case, Ito’s lemma implies that

rt = − 1
Mt

[
∂

∂t
+AP

]
Mt, Λt = −σ′t

∂

∂Yt
logMt, Γt(x) = 1− M(Yt + x, t)

M(Yt, t)
. (38)

Note in particular the link between the market price of jump risk Γ and M : the sign of
M (read “marginal utility”) depends on whether a jump in Y raises or lowers marginal
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utility relative to the pre-jump value. Moreover, the risk-neutral jump arrival rate and the
risk-neutral distribution of the jump size are given by

λ(Yt, t) =

∫
M(Yt + x, t)dν

P
t (x)

M(Yt, t)
λP(Yt, t), dνQt (x) =

M(Yt + x, t)∫
M(Yt + x′, t)dνPt (x′)

dνPt (x).

If Y is an affine-jump diffusion under the risk-neutral measure, with the risk-neutral
drift and volatility specifications being affine as in (17) - (19)), and the “jump transform”
ϕ(c) =

∫
RN
exp (c · x) dνQ(x), for c an N -dimensional complex vector, is known in closed

form, then the PDE defining the zero prices D(t, T ) admits a closed-form solution (up to
ODEs) as an exponential-affine function of Y , just as in the case of affine diffusions (Duffie,
Pan, and Singleton [2000]). Care must be taken in specifying ϕ(c) to make sure that Y
remains an admissible process. For instance, for those risk factors that follow square-root
diffusions in the absence of jumps, it appears that the added jump must be positive to assure
that this factor never become negative. Das and Foresi [1996] and Chacko and Das [2001]
present illustrative examples of affine bond and bond-option pricing models with jumps.
State variables with jumps have received relatively less attention in the empirical litera-

ture on DTSMs. One of the earliest affine models with jumps is that of Ahn and Thompson
[1988] who extend the equilibrium framework of Cox, Ingersoll, and Ross [1985] to the case
of Y following a square-root process with jumps. Brito and Flores [2001] develop an affine
jump-diffusion model, and Piazzesi [2001] develops a mixed affine-QG model, in which the
jumps are linked to the resetting of target interest rates by the Federal Reserve (see also Das
[2002]).
Within a reduced-form model of defaultable bonds, Collin-Dufresne and Solnik [2000]

have the mean loss rate s = λQLQ following a Gaussian jump-diffusion model with constant
arrival intensity for jumps in λQLQ. This formulation allows credit spreads to be negative,
even without the jump component.
In a structural pricing model, Zhou [2000] added the possibility of a jump in assets

A with i.i.d. amplitudes at independent Poisson arrival times, thereby allowing for A to
pass through the default threshold (F in our basic formulation) either through continuous
fluctuations of the Brownian motion or by jumps.

3.6 DTSMs with Regime Shifts

A potential limitation of diffusion models of the risk factors Y is that the resulting DTSMs
may not match the higher-order moments of bond yields. While adding jumps would help in
this regard, jump-diffusions may not generate persistent periods of “turbulent” and “quiet”
bond markets. To fit such patterns in historical yields, Hamilton [1988], Gray [1996], and Ang
and Bekaert [2001], among others, have had some success using switching-regime models.
Motivated by these descriptive studies, this section introduces the possibility of multiple

economic regimes into the affine family of DTSMs. We begin by presenting a continuous-
time treatment of regime-switching in affine DTSMs that allows for changes over time in
the distribution of the state vector and in the market prices of risk. This discussion extends
the complementary treatment in Landen [2000] by parameterizing the pricing kernel under
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the measure P (in addition to under Q) and allowing for state-dependent probabilities of
transitioning between regimes.
The evolution of “regimes” is described by an (S+1)-state continuous-time conditionally

Markov chain st : Ω→ {0, 1, . . . , S} with a state-dependent (S+1)×(S+1) rate or generator
matrix RPt = [R

P
ij,t] in which all rows sum to zero. (See Bielecki and Rutkowski [2001] for

formalities.) Intuitively, RPij,t dt, i 6= j represents the probability of moving from regime i
to regime j over the next short interval of time. The subsequent discussion is simplified
notationally by introducing (S + 1) regime indicator functions zjt = 1{st=j}, j = 0, 1, . . . , S,
with the property that E[dzjt |st, Yt] = RPjt dt, where RPjt ≡ RPj(st;Yt, t) =

∑S
i=0 z

i
tR
P
ij,t.

To introduce regime-switching into a bond pricing model, we assume that the pricing
kernel can be written as Mt ≡ M(st;Yt, t) =

∑S
j=0 z

j
tM(st = j;Yt, t). (As noted in the case

of jumps, having M(st; ·) depend only on Y implicitly constrains the state-dependence of
M .) Then, using Ito’s lemma,

dMt

Mt
= −rtdt− Λ′tdWt −

S∑
j=0

Γjt

(
dzjt − RPjt dt

)
. (39)

Λ(st;Yt, t) is the market price of diffusion risk and Γ
j(st;Yt, t) is the market price of a shift

from the current regime st to regime j an instant later. Under this formulation of Mt,
Γj(st = i;Yt, t) = [1−M(st = j;Yt, t)/M(st = i;Yt, t)]. Therefore, Γi(st = i;Yt, t) = 0 and

(1− Γi(st = j;Yt, t))(1− Γj(st = i;Yt, t)) = 1, 0 ≤ i, j ≤ S. (40)

Thus, there are only 1
2
S(S + 1) free market prices of risk for regime shifts. In particular,

for a two-regime model (S = 1) there is only one free market price of regime switching risk,
representing the ratio of the pricing kernels for the two regimes.
The risk-neutral distribution of the short-rate is governed by the relations rit ≡ r(st =

i;Yt, t) = δi0 + Y
′
t δ
i
Y , and the assumption that (risk-neutrally) Y follows an affine diffusion

with regime-dependent drifts and volatilities

µQ(st;Yt, t) ≡
S∑
j=0

zjtκ
Qj(θQj − Yt),

σ(st;Yt, t) =
S∑
j=0

zjtdiag(α
j
k + Y

′
t β
j
k)k=1,2,... ,N .

(41)

where δi0 and α
i
k are constants, κ

Qi is a constant N × N matrix, and δiY , θ
Qi, and βik are

constant N × 1 vectors. When a regime shifts, the conditional moments of Y change, but
its sample path remains continuous.
LettingD(t, T ) ≡ D(st, Yt; t, T ), we can writeD(t, T ) ≡

∑S
j=0 z

j
tD
j(t, T ), whereDj(t, T ) ≡

D(st = j, Yt; t, T ). No arbitrage, which requires that µ
D(t, T ) = rtD(t, T ) for all 0 ≤ st ≤ S

and all admissible Yt, implies that the D
j(t, T ) satisfy the (S + 1) PDEs

[
∂

∂t
+Ai

]
Di(t, T ) +

S∑
j=0

RQij,tD
j(t, T )− ri(Yt, t)Di(t, T ) = 0, 0 ≤ i ≤ S, (42)
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where Ai is the counterpart to (5) for regime st = i, RQij,t = (1 − Γj(st = i;Yt, t))R
P
ij,t if

j 6= i, and RQii,t = −
∑
j 6=iR

Q
ij,t. ( R

Q
t is the rate matrix of the conditionally Markov chain

under the risk-neutral measure Q.) In general, the matrix RQt is not diagonal. Therefore,
these S+1 PDEs are coupled, and the (Di(t, T ) : 0 ≤ i ≤ S) must be solved for jointly.
The boundary condition is D(T, T ) = 1 for all sT , which is equivalent to (S + 1) boundary
conditions: (Di(T, T ) = 1 : 0 ≤ i ≤ S.
An affine regime-switching model with a closed-form solution for zero-coupon bond prices

is obtained by specializing further to the case where: RQt is a constant matrix, and κ
Qi, δi,

and βik are independent of i. Under these assumptions,

Di(t, T ) = eγ0i(T−t)+γY (T−t)
′Yt, 0 ≤ i ≤ S, (43)

where the γ0i(·) and γY (·) are explicitly known up to a set of ODEs. Note that in this
specialized environment regime-dependence under Q enters only through the “intercept”
term γ0i(T − t); the derivative of zero-coupon bond yields with respect to Y does not depend
on the regime. Though admittedly strong, these assumptions do allow for Y to follow a
general affine diffusion and for the P-rate matrix RP to be state-dependent.
In both respects, this formulation extends the one-factor, continuous-time formulation

of Naik and Lee [1997] (as well as Proposition 3.2 of Landen [2000]). Even with regime-
switching, it may be empirically more plausible to allow for multiple, correlated factors risk
factors. Moreover, Naik and Lee assume constant market prices of regime-shift risk (Γj(t) are
constants), and obtain regime-independence of the risk-neutral feedback matrix κQj under
the stronger assumption that the actual matrix κPj is independent of j.
In sorting out the added econometric flexibility of these model relative to single-regime,

affine DTSMs, it is instructive to examine the implied excess returns on a (T − t)-period
zero-coupon bond. Based on the pricing kernel (39), for current regime st = i, we have

µiDt − rit = σi
′
DtΛ

i
t −

S∑
j=0

Γj(st = i)

[
1− Dj(t, T )

Di(t, T )

]
RPjt , (44)

where σiDt is the diffusion vector in regime i for D
i(t, T ). If Γj(st = i) = 0, for all

j = 0, 1, . . . , S, then excess returns may still be time varying for two reasons: (i) state-
dependence of Λt and/or σY (t) (as in single-regime models), and (ii) the possibility that
either of these constructs might shift across regimes. It is the latter added source of flex-
ibility that the previous literature on DTSMs with regime shifts has relied on to improve
goodness-of-fit over single-regime DTSMs.
By allowing for priced regime-shift risk (Γj(st) 6= 0), we see from (44) that our formulation

introduces an additional source of variation in excess returns. This is true even if RP is
a constant (non-state dependent) matrix. Of course, allowing RP to be state-dependent,
while maintaining the assumption of constant RQ for computational tractability, would add
additional flexibility to this model.

3.7 Discrete-Time DTSMs

There is a limited amount of (mostly) academic research that takes a relatively non-parametric
approach to specifying M in discrete time. A sequence of cash flows is then priced under
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P using (3). Backus and Zin [1994] parameterize − log(Mt/Mt−1) as an infinite order, mov-
ing average process with i.i.d. normal innovations. This formulation accommodates richer
dynamics than a Gaussian diffusion model and is easily extended to multiple factors, but it
abstracts from time-varying volatility. More recently, Brandt and Yaron [2001] parameterize
− log(Mt/Mt−1) as a Hermite polynomial function of (Yt, Yt−1), where Yt is an observable
state vector. Their model extends the Backus-Zin specification of M by allowing for non-
normality and time-varying conditional moments, but it is more restrictive in requiring that
the pricing kernel depend only on (Yt, Yt−1) and that Y be observable. Similarly, Lu and Wu
[2000] model the state-price density using a semi-non-parametric density based on Hermite
polynomial expansions.
These semi-parametric approaches, though flexible, often present their own challenges.

Specifically, it may be difficult to verify that the parameters of the pricing kernel are identified
from bond yield series. Also, if the state variables are taken to be functions of observable
bond yields, then internal consistency requires that the same functions of the model-implied
yields must recover the state vector. This consistency is not always easily imposed.
Sun [1992] and Backus, Foresi, and Telmer [1998] develop discrete-time counterparts to

Gaussian and CIR-style affine DTSMs by working with an Euler approximation to the state
vector. In the latter case, these models are approximate in that the conditional distribution of
Y must be truncated to assure non-negativity of the conditional variance of Y . Gourieroux,
Monfort, and Polimenis [2002] develop exact, discrete-time versions of affine DTSMs by
modeling the conditional distributions of Y and M directly, potentially as functions of a
long history of Y . To our knowledge, these models have not been extended to allow for
market prices of risk as rich as (23) or (24).
Bansal and Zhou [2002] develop discrete-time, regime-switching models that relax the

assumptions that κQi and βit are regime-independent, while maintaining the assumption
that RP = RQ, a constant matrix (the Γj(t) = 0). Their model does not admit a closed-form
exponential affine solution, so they proceed by linearizing the discrete-time Euler equations
and then solving the resulting linear relations for prices.
Note that, following the construction of Hamilton, Bansal and Zhou [2002] specify the

conditional mean and variance of log Mt+1
Mt
as functions of (st+1, Yt). This is different from

the discrete-time formulation of our continuous-time regime-switching model which has the
pricing kernel dependent on st, not on the future realization of the regime state st+1. Con-
ceptually, having Λ(t) depend on st, and not st+1, seems more natural if it is to be interpreted
as the market price of risk, since the latter must be in agents’ information set at the time
prices are set, date t. Notwithstanding this reservation, the econometric implications of the
Bansal-Zhou and our formulations may be very similar, because the continuous-time limit
of their formulation is a special case of our continuous-time formulation.

4 Fitting DTSMs to Swap and Treasury Yields

We begin our more indepth exploration of the empirical fit of DTSMs by reviewing their
applications to the treasury and swap yield curves. As a means of organizing our discussion,
we focus on the following empirical observations:
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LPY: Letting yn ≡ − logD(t, t+ n)/n denote the yield on an n-period zero-coupon bond,
linear projections of y

(n−1)
t+1 − ynt on the slope of the yield curve, (ynt − rt)/(n− 1), give

fitted coefficients φnT that are negative, often increasingly so for longer maturities.

Campbell and Shiller [1991] and Backus, Foresi, Mozumdar, and Wu [2001], among others,
document significantly negative φnT , particularly for large n, using U.S. Treasury bond data
over the past fifty years (see Table 1). Using U.S. data, the pattern LPY is most pronounced
(and statistically significant) for sample periods that include the change in monetary oper-
ating procedures during 1979-1983. However, notably, φnT is consistently negative across
simple periods including prior and subsequent to this monetary “experiment,” though (no
doubt due in part to the shorter sample period) the standard error bands are also larger.11

Maturity 12 24 36 48 60 120
Campbell-Shiller (1991) -0.672 -1.031 -1.210 -1.272 -1.483 -2.263

1952-1978 (.598) (.986) (1.187) (1.326) (1.442) (1.869)
Campbell-Shiller (1991) -1.381 -1.815 -2.239 -2.665 -3.099 -5.024

1952-1987 (.683) (.1.151) (1.444) (1.634) (1.749) (2.316)
Backus, et. al. (2001) -1.425 -1.705 -1.190 -2.147 -2.433 -4.173

1970-1995 (.825) (1.120) (1.295) (1.418) (1.519) (1.985)
Backus, et. al. data 0.206 -0.001 -0.295 -0.478 -0.566 -0.683

1984-1995 (.527) (1.013) (1.358) (1.610) (1.811) (2.593)

Table 1: The estimated slope coefficients φnT in the regression of y
(n−1)
t+1 −ynt on (ynt −rt)/(n−

1). The maturities n are given in months and estimated standard errors of the φnT are given
in parentheses.

Looking outside the U.S., the pattern LPY is not nearly so pronounced, if there at all.
Among the studies that document different patterns, primarily for European countries, are
Hardouvelis [1994], Kugler [1997], Gerlach and Smets [1997], Evans [2000], and Bekaert and
Hodrick [2001].
While these projections have been discussed most widely in the context of tests of the

“expectations theory” of the term structure, we follow the recent literature on DTSMs and
treat these projections as descriptive statistics that an empirically successful DTSM should
match.12 Focusing on the φnT naturally raises the issue of whether their large negative
values are a consequence of small-sample bias induced by highly persistent interest rate
levels and spreads. The Monte Carlo studies in Bekaert, Hodrick, and Marshall [1997] and
Backus, Foresi, Mozumdar, and Wu [2001] suggest that the bias is toward larger values of
φnT , thereby reinforcing the conclusion that φn < 0 for large n.
11 Preliminary analysis of weekly swap data over the period 1988-2000 gives values of φnT somewhat larger
than −1. for U.S. data.
12There is substantial empirical evidence that the assumption of constant risk premiums maintained in
the expectations theory is inconsistent with historical data. Some of the central references on this topic are
Fama [1984a,1984b], Fama and Bliss [1987], and Campbell and Shiller [1991]. Bekaert and Hodrick [2001]
argue that the past use of large-sample critical regions, instead of their small-sample counterparts, may have
overstated the evidence against the expectations theory.
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CVY Conditional volatilities of changes in yields are time-varying and and persistent. More-
over, the term structures of unconditional volatilities of U.S. swap and treasury yields
have recently been hump-shaped.

There is substantial evidence that bond yields exhibit time-varying conditional second
moments (e.g., Ait-Sahalia [1996], Brenner, Harjes, and Kroner [1996], Gallant and Tauchen
[1998]). Other than in the case of the Gaussian affine and basic log-normal models, DTSMs
typically build in time-varying volatility, a property that is naturally central to the reliable
valuation of many fixed-income derivatives. Thus, challenge CVY is not whether yields
exhibit time-varying volatility, but rather whether there is enough model-implied variation
in volatility (both in magnitude and persistence) to match historical experience.
Another important dimension of CVY is that the term structure of unconditional volatil-

ities of (changes in) bond yields has tended to be hump-shaped over the past ten to fifteen
years (see, e.g., Litterman, Scheinkman, and Weiss [1988]). Plotting the volatilities of zero-
coupon treasury bond yields against maturity over the period 1983 - 1998 shows a hump
that peaks around two to three years in maturity. (Figure 1).13 A very similar pattern of
volatilities is obtained using U.S. dollar fixed-for-variable rate swap yields for the post 1987
period (for which data is available). Interestingly, it appears that this hump at two years was
not a phenomenon observed for the entire post World War II period in the U.S. Figure 1 also
displays the term structure of volatilities for the subperiod 1954 - 1978 (the period of the
“monetary experiment” from 1979 - 1981 was omitted), during which the volatilities were
both smaller and their term structure was less humped.
Single-factor models, as traditionally formulated, are unlikely to be successful in matching

these patterns (see Brown and Dybvig [1986], Brown and Schaefer [1994], Backus, Foresi,
Mozumdar, and Wu [2001]).14

4.1 DTSMs and Challenge LPY

Fisher [1998], Backus, Foresi, Mozumdar, and Wu [2001], Roberds and Whiteman [1999],
Duffee [2002], and Dai and Singleton [2002b], among others, have examined whether affine
DTSMs provide an explanation for the failure of the “expectations theory.”15 Drawing

13Annualized volatility is measured as the standard deviation of changes in the logarithms of bond yields,
scaled up by the number of observations per year.
14Another issue is whether the linear drift specifications in one-factor models are appropriate. Evidence
supporting a nonlinear conditional mean for the short rate is discussed in Ait-Sahalia [1996] and Stanton
[1997]. In principle, the finding of non-linear drifts for one-factor models could be a consequence of mis-
specifying the number of factors. However, the non-parametric analyses in Boudoukh, Richardson, Stanton,
and Whitelaw [1998] and Balduzzi and Eom [2000] suggest that the drifts in both two- and three-factor
models of treasury yields are also nonlinear. In spite of this evidence, it does seem that having multiple
factors in linear models is more important, at least for hedging purposes, than introducing non-linearity into
models with a smaller number of factors (see, e.g., Balduzzi and Eom [2000]). Perhaps for this reason, or
because of the computational demands of pricing in the presence of nonlinear drifts, attention continues to
focus primarily on DTSMs with linear drifts for the state variables.
15Dai [2002] and Wachter [2002] examine the puzzle LPY in the context of non-affine macro-economic
models in which agents preferences exhibit habit formation. McCallum [1994] and Kugler [1997] propose
resolutions of the puzzle LPY in the context of linear monetary policy rules.

22



36

35

34

33

32

31

37

38

39

40

41

42

0 1 2 3 4 5 6 7 8 9 10

1954{1978

1983{1998

Maturity (years)

Y
ie
ld
V
ol
at
il
it
y
(b
as
is
p
oi
n
ts
)

Figure 1: Term structures of volatilities of in yields on zero-coupon U.S. treasury bonds
based on monthly data from 1954 through 1998.

upon the analysis in Dai and Singleton [2002b], Figure 2 displays displays the popula-
tion16 φn implied by canonical three-factor Gaussian (A0C(3)) and square-root or CIR-style
(A3C(3)) models, along with the φnT (label LPY) estimated with the Fama-Bliss data set.
Model A0C(3) was estimated using the extended risk-premium specification (23), while model
A3C(3) was fit with the more restrictive specification (22) as required by the no-arbitrage
condition.
Model A3C(3) embeds the most flexible specification of factor volatilities (within the

affine family), but requires the relatively restrictive risk premium specification (22). From
Figure 2 we see that the fitted φnT form (approximately) a horizontal line at unity, implying
that the multi-factor CIR model fails to reproduce the downward sloping pattern LPY. The
empirical analysis in Duffee and Stanton [2001] suggests that this failure of CIR-style models
extends to the special case of (24) with λ2 = 0. Thus, it seems that it is not enough to free
up the mean of Λ(t) in “completely affine” DTSMs to match LPY; the dynamics of Λ must
also be changed as in (23). On the other hand, the Gaussian A0C(3) model, which gives
maximum flexibility both in specifying the dynamic properties of the market prices of risk
and the factor correlations, is successful at generating φn that closely resemble LPY.
Whether a DTSM matches LPY speaks to whether it matches the P-dynamics of yields,

16Population φn are computed using a long simulated time-series from the estimated DTSM. Monte Carlo
evidence reported in Dai and Singleton [2002b] suggests that similar patterns are obtained by computing the
average estimates of the φn from simulated samples of lengths equal to that of the Fama-Bliss data set.
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Figure 2: Unadjusted sample and model-implied population projection coefficients φn. Risk-
adjusted sample projection coefficients φR. Source: Dai and Singleton [2002].

but it does not directly address whether a DTSM matches the Q-dynamics. The latter is
addressed by introducing the yield (ct) and forward (pt) “term premiums”

cnt ≡ ynt −
1

n

n−1∑
i=0

Et[rt+i], pnt ≡ fnt − Et[rt+n], (45)

and regressing (yn−1t+1 − ynt − (cn−1t+1 − cn−1t )+ pn−1t /(n− 1)) onto (ynt − rt)/(n− 1). A correctly
specified DTSM should produce a coefficient φRnT of unity, for all n (Dai and Singleton
[2002b]). From Figure 2 it is seen that model A3C(3) gives φ

R
nT that are nearly the same

as the historical estimates LPY; it is as if model A3C(3) has constant risk premiums. In
contrast, the φRnT implied by model A0C(3) are approximately unity, at least for n ≥ 2 years.
These findings highlight the demands placed on risk premiums in matching the first-

moment properties of bond yields. Though the risk premium specification (22) has been
widely adopted in econometric studies of affine DTSMs, it appears to be grossly inconsistent
with LPY. Even with Duffee’s extended specification (23), only the Gaussian model appears
to match both LPY and the requirement that φR = 1.
Turning to multi-factor QG models, they share essentially the same market prices of

risk as the extended Gaussian model, so we would expect them to be equally successful at
matching LPY. Lu [2000] computes the φn implied by a three-factor SAINTS model and,
while they become increasingly negative with larger n, they appear to be too small relative to
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the φnT . This may be a consequence of the restrictive nature of Λ(t) in the SAINTS model.
Using LIBOR/swap data over a more recent sample period, Leippold and Wu [2001] find
that a general two-factor QG model generates patterns forward-rate projections consistent
with history.
The structure of risk premiums in regime-switching models also appears to be central

to their flexibility in matching LPY. All of the empirical studies we are aware of adopt the
relatively restrictive risk premium specification (22) within each regime, and assume that
regime-shift risk is not priced. Naik and Lee [1997] and Evans [2000] have the market price of
risk being proportional to volatility, with the same proportionality constant across regimes.
In Naik and Lee, this implies that regime-dependence of the bond risk premium is driven
entirely by the regime-dependence of volatility. Evans only allows the long-run means, and
not the volatility, of the state variables to vary across regimes. In contrast, Bansal and
Zhou [2002] allow the market price of risk to vary across regimes, through both the regime-
dependence of volatility and the regime-dependence of the proportionality constant.
Interestingly, Evans’ two-factor CIR-style model (an A2(2) model with two regimes) fails

to reproduce the historical estimates of φn from U.K. data (see his Table 6). In contrast,
Bansal and Zhou, who study a two-factor CIR model with two regimes using U.S. data,
generate projection coefficients consistent with the pattern LPY in Figure 2. Taken together,
these findings suggest that having multiple regimes may overcome the limitations of AN (N)
models in matching LPY outlined above, so long as the factor volatilities and risk premiums
vary independently of each other across regimes. Yet unaddressed in this literature is whether
having the market prices of diffusion risk changing across regimes would be empirically
important in the presence of priced regime-shift risk.

4.1.1 DTSMs and Challenge CVY

A hump-shaped term structure of yield volatilities is inconsistent with the theoretical im-
plications of both one-factor affine and QG DTSMs. This is essentially a consequence of
mean-reversion of the state.
In multi-factor models, a humped-shaped volatility curve can be induced either by nega-

tive correlation among the state variables or hump-shaped loadings on the state variables Y
in the mapping between zero coupon yields and Y . Fitted yields from both affine and QG
DTSMs typically fit the volatility hump (e.g., DS and Leippold and Wu [2001]), so long as
yields on bonds with maturities that span the humps are used in estimation.
The economic reasons for the different shapes in Figure 1 remain largely unexplored,

though the differing patterns pre- and post-1979 are suggestive. In a study of U.S. treasury
yields over the period 1991-95, Fleming and Remolona [1999] found that the term structure of
“announcement effects” – the responses of treasury yields to macroeconomic announcements
– also have a hump-shaped pattern that peaks around two to three years. Moreover, they fit
two-factor affine models in which r mean-reverts to a stochastic long-run mean and found
that the model-implied announcement impact curves were also humped-shaped. Might it be
that investors’ attitudes toward macroeconomic surprises following the monetary experiment
in the late 1970’s changed, much like what happened in option markets following the “crash”
of October, 1987? Bekaert, Hodrick, and Marshall [2001] explore the possibility of associated
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“peso” effects on yield curve behavior.
Piazzesi [2001]’s analysis lends support to a monetary interpretation of the volatility

hump. Her econometric model, which is essentially a four-factor mixed affine-QG model
with jumps, not only matches the humped-shape volatility pattern in Figure 1, but also the
“snake” shape of volatility between zero and two years (steeply declining volatility from zero
to six months and then rising volatility to two years). This study provides a rich structural
(monetary) interpretation of the need for a fourth factor to capture the very short end of
the LIBOR curve (on the need for four factors, see also Liu, Longstaff, and Mandell [2001]).
The second aspect of CVY is the degree of model-implied time-varying volatility relative

to what we find in the historical data. To set a historical benchmark for comparing models
we estimated GARCH(1,1) (Bollerslev [1986]) models for the five-year yields using historical
data.17 Next we computed ML estimates of the canonical A1C(N) models (N = 2, 3), based
on the risk premium specification (23), with the six-month and two- and ten-year yields
(two- and ten-year yields when N = 2) assumed to be fit perfectly by the model. Then
we refit the same GARCH model using simulated yields from these models. In the case of
swaps, we simulated twenty years of weekly data (1040 observations); while in the case of
treasury zero-coupon data, we simulated twenty years of monthly data (240 observations).
We selected the five-year yield, because it lies between the two- and ten-year yields that are
matched perfectly at the implied state variables. The results are displayed in Table 2.
The swap sample, 1987 - 2000, covers a period of relative tranquility in interest rates,

compared to the period of the late seventies and early eighties. The five-year yields implied
by model A1C(3) exhibit comparable volatility characteristics to the historical data. In
contrast, the model A1C(2) substantially understates the degree of volatility persistence in
the five-year swap yield. So moving from two to three factors makes a substantial difference
in matching the persistence in stochastic volatility during this period, even though in both
cases only Y1 drives the factor volatilities.

GARCH(1,1) σ̄ α β

Swap-Sample 0.005 (.001) 0.126 (.038) 0.657 (.062)
Model A1C(2) 0.012 (.003) 0.102 (.040) 0.235 (.209)
Model A1C(3) 0.008 (.000) 0.126 (.027) 0.793 (.024)
Treasury-Sample 0.016 (.005) 0.165 (.058) 0.749 (.069)
Model A1C(3) .000 (.000) 0.146 (0.075) 0.605 (.188)
Model A1R(3) .000 (.000) 0.164 (0.070) NA

Table 2: ML estimates of GARCH(1,1) parameters using historical and simulated time series
of swap and treasury yields. The GARCH model has σ2t = σ̄ + αu

2
t + βσ

2
t−1, where ut is the

innovation from an AR(1) representation of the level of the five-year yield. Standard errors
are given in parentheses.

17 Clearly one could use a much richer parameterization of conditional volatility than a GARCH(1,1)
model– the semi-non-parametric density proposed by Gallant and Tauchen [1996] is one such parameteriza-
tion. Our goal here was to simply compute a descriptive measure of persistence in volatility that could be
used to compare models. Going beyond this basic comparison is an interesting topic for future research.
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The Fama-Bliss sample of treasury zero-coupon bond yields covers a twenty-five year
period that includes the monetary experiment in the late seventies. Nevertheless, we see that
the implied GARCH(1,1) estimates from model A1C(3) again match those in the sample quite
closely. To see whether the specification Λ(t) affects these results, we re-estimated model
A1C(3) with Λ(t) given by (22) instead of (23). The results for treasury data– Model A1R(3)
in Table 2– are striking, with the volatility in Model A1R(3) showing almost no persistence.
The best fitting model was an ARCH(1).18

The structure of conditional volatility inQGmodels has been explored extensively in Ahn,
Dittmar, and Gallant [2002] and Ahn, Dittmar, Gao, and Gallant [2000] (see also Lu [2000]).
They argue that there is a significant difference between three-factor QG and affine models
along this dimension, with QG models doing a much better job of matching the conditional
variation in the historical U.S. treasury data as captured in their descriptive (semi-non-
parametric auxiliary) model. However, their reference affine model was the preferred affine
A1(3) model examined in DS which is based on specification (22) of Λ(t). As we have
just seen, using instead the specification (23) substantially affects the model-implied yield
volatilities. Thus, the magnitude of the gap, or indeed whether there is a gap at all, between
the fits of affine and QG models to the dynamic properties of yield volatilities may warrant
further exploration.

5 Empirical Studies of Credit Spreads

The empirical literature on corporate bond pricing is relatively in its infancy. Besides overall
assessments of goodness-of-fit, this literature has tended to focus on reproducing the nega-
tive correlation between treasury rates and corporate spreads observed historically (Duffee
[1998]), and on understanding the determinants of spread variation.

5.1 Reduced-Form Models

Within the family of reduced-form models with fractional recovery of market value, Duffee
[1999] examined corporate spreads to the U.S. Treasury curve, with D(t, T ) described by
an A2(2) affine model for (Y1, Y2) and the instantaneous credit spread st = λQt L

Q
t given

by an affine function of (Y1, Y2, Y3). For Lehman Brothers data on trader quotes for non-
callable corporate bonds, he found a model-implied negative correlation between corporate
yield spreads and U.S. treasury rates, consistent with his earlier descriptive analysis. The
average error in fitting non-callable corporate bond yields was less than ten basis points.
Similarly, Collin-Dufresne and Solnik [2000] have rt following a Gaussian A0(2) model and st
following a Gaussian jump-diffusion model with constant jump intensity. Treating the U.S.
treasury curve as the reference curve and using yields on LIBOR contracts as the defaultable
securities, they find that the correlation between rt and st is also negative.
Though the preceding studies treated st as a purely latent process, observable state

variables are easily incorporated into reduced-form models by letting one or more of the

18 We repeated this calculation for several simulated time series of length twenty years and obtained
qualitatively similar results.
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Y ’s be an observable economic time series. In this manner, it is possible to capture part
of the “spirit” of structural models within a reduced-form setting by having λQLQ depend
on information about the balance sheet of an issuer. For instance, Bakshi, Madan, and
Zhang [2001a] examine a fractional recovery of market value, reduced-form model in which
the default-adjusted discount rate R is an affine function of r and Yt = firm leverage, Rt =
α0 + αrrt + αY Yt. The reference rate r was determined by a Gaussian A0(2) model and the
credit factor Y was assumed to follow a mean-reverting Gaussian diffusion. Upon estimating
the models using Lehman Brothers data, they found that (after accommodating interest
rate risk) higher leverage increases the default-adjusted discount rate, with leverage-related
credit risk being more pronounced for long- than for short-dated corporate bonds. Bakshi,
Madan, and Zhang [2001b] compare the relative fits of reduced-form models under various
recovery timing conventions in a recovery of face value model. Janosi, Jarrow, and Yildirim
[2000] also study a two-factor model for R in which r follows a one-factor Gaussian process
and the credit factor is related to the level of the S&P500 equity index.
Affine models have also be used in the pricing of sovereign bonds. Merrick [1999] cali-

brates a discrete-time model (to Russian and Argentinian bonds) that can be reinterpreted
as a model with a constant (state independent) intensity. More generally, Keswani [2002]
and Pagès [2000] apply special cases of the recovery of market value model to data on Latin
American Brady bonds, and Dullmann and Windfuhr [2000] apply a similar framework to
price European government credit spreads under the EMU.
These models presume that holders of sovereign debt face a single credit event – default

with liquidation upon default – and, in particular, do not allow for restructurings and the
associated write-downs of face value. Duffie, Pedersen, and Singleton [2002] develop a model
allowing for both write-downs and for bonds to have idiosyncratic credit factors. After fitting
this model to data on Russian MinFin bonds around the Russian default in August, 1998,
they found substantial evidence for significant write-downs after the 1998 default.

5.2 Structural Models

Empirical implementation of structural models requires one to confront more directly the
(often very) complex capital structures of issuers. Among the issues that must be addressed
are: the components of the capital structure to be included in A and F ; measurement of
asset volatility σA and the correlation ρ between A and r; and the choice of recovery ratios.
The empirical implementations of structural models have varied widely in their resolutions
of these issues.19

Jones, Mason, and Rosenfeld [1984] implemented the Merton model for a sample of
callable coupon bonds for the sample period 1977 - 1981. They found absolute pricing errors
of 8.5%: model prices were too high so spreads were too narrow. Ogden [1987] looked at

19As a precursor to econometric implementation of structural models, Huang and Huang [2000] inquire
whether the credit risk inherent in structural models is likely to account for the observed spreads in investment
grade bonds. Calibrating a structural model to both balance sheet information and historical default rates
simultaneously, they conclude that, within their models, credit risk accounts for a small fraction of the
observed spreads for investment grade bonds. Their models are more successful at explaining the larger
spreads for junk bonds.
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primary market prices for bonds over the period 1973 - 1985. The Merton model under-
predicted spreads by an average of 104 basis points. A major limitation of both of these
studies was their use of callable bond prices.
More recently, Lyden and Sariniti [2000] used Bridge data, which provides actual trans-

actions prices on non-callable bonds for both financial and non-financial firms. For the
Merton model they found mean absolute errors in yield spreads of 80+ basis points. The
model-implied spreads were particularly low (bonds were over-priced) for small firms and
long maturities. For a two-factor Longstaff-Schwartz model, in which default occurs when A
falls below the par value of outstanding bonds and any recovery is a constant fraction w of
par value, they obtained roughly the same results. Moreover, the findings for the L-S model
were largely insensitive to the assumed value of ρ. In interpreting these results, one should
perhaps bear in mind that their sample included both financial and non-financial firms, with
quite heterogeneous leverage ratios.
Ericsson and Reneby [2001] reach a more optimistic conclusion about the fit of a structural

model with endogenous default and leverage ratios that reflect growth in both debt and
equity values. Using maximum likelihood methods to estimate the parameters of their firm-
value process, they obtain unbiased out-of-sample spread predictions of yield spreads for the
non-callable debt of a small sample of 50 industrial firms.
The most comprehensive empirical comparison of structural models to date is provided

by Eom, Helwege, and Huang [2001], who examine versions of the Merton, Geske [1977],
Leland and Toft [1996], Longstaff and Schwartz [1995], and Collin-Dufresne and Goldstein
[2001b] models. They restrict their sample to industrial firms with relatively simple capital
structures, comprised largely of equity and non-callable debt. Consistent with previous
studies, the Merton model predicts spreads that are too small, as does Geske’s model though
to a lesser extent. Interestingly, the Leland-Toft, Longstaff-Schwartz, and Collin-Dufresne-
Goldstein models all tend to over-predict spreads, though in different ways. The Leland-Toft
model over-predicts spreads for virtually all ratings and maturities; the Longstaff-Schwartz
model gives excessive spreads for relatively risky bonds, while yielding spreads that are
too small for relatively safe bonds; and the Collin-Dufresne-Goldstein model with mean-
reverting leverage ratios reduces the under-prediction of spreads on safe bonds, while still
over-predicting spreads on average. Eom, Helwege, and Huang [2001] conclude that the
major challenge to improving the fit of structural models is to “raise the average predicted
spread relative to the Merton model, without overstating the risks associated with volatility,
leverage or coupon. (page 3)”

6 DTSMs and Derivatives Prices

With the growing availability of time-series data on the implied volatilities on fixed-income
derivatives, comparisons of DTSM-implied to market prices of derivatives is increasingly
being used in assessing goodness-of-fit. Particular attention has been given to the pricing of
caps/floors and swaptions in the LIBOR/swap markets, no doubt in part because of the size
and importance of these markets.
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6.1 Risk-Factor Distributions and Derivatives Pricing

Much of the recent literature applying DTSMs to the pricing of derivatives has focused
on two features of the distributions of swap rates and implied volatilities on LIBOR-based
derivatives. First, Heidari and Wu [2001] and Collin-Dufresne and Goldstein [2001a] find
that there is substantial variation in the implied volatilities of swaptions that appears to be
unrelated to variation in the underlying swap rates. That is, it appears as if there are risk
factors underlying changes in derivatives prices that are independent of those underlying
shifts in the swap curve. To some the presence of “unspanned factors” is puzzling, because
swaptions are derivative contracts based on the underlying swap rates.
Second, though financial theory predicts a close link between the prices of caps and swap-

tions (as they are both LIBOR-based derivatives), developing a model that simultaneously
prices both contracts has proved challenging. Explanations for this “swaption/cap puzzle”
often focus on the nature of the model-implied factor volatilities and/or correlations and
their roles in determining prices. For instance, Rebonato and Cooper [1997] and Longstaff,
Santa-Clara, and Schwartz [2001a] compare the correlations among forward swap rates with
those implied by low-dimensional factor models and find that the correlations implied by the
models are much larger than those in the data. Brown and Schaefer [1999] and Carverhill
[2002] find similar results using Treasury strip yields.20

We can anticipate the difficulty standard DTSMs will have in matching yield correlations
by comparing historical and model-implied correlations among weekly changes in the yield
spreads for non-overlapping segments of the U.S. dollar swap yield curve. The correlation
“3-2/4-3,” for example, in Table 3 represents the correlation of daily changes in the 3yr-
2yr swap spread with changes in the 4yr-3yr spread. The rows labeled “2 PC” and “4
PC” present the corresponding correlations for fitted spreads from projections onto the first
two and four principal components (PCs), respectively. Notably, even using four PC’s the
segment correlations are larger than their sample counterparts, and the match is much worse
using only two PC’s (in the spirit of a two-factor DTSM).

Segment 3-2/4-3 4-3/5-4 5-4/7-5 7-5/10-7
Historical 0.34 0.09 0.13 0.14
2 PC 0.99 0.99 0.99 0.99
4 PC 0.81 0.96 0.84 0.32

Table 3: Correlations of changes in swap yield spreads for various yield-curve segments. 10-
7,3-2, for example, indicates the correlation between changes in the 10-7 year yield spread
and the 3-2 year yield spread.

Not surprisingly, when we compute model-implied segment correlations from the affine
AM(N) models with N ≤ 3, using swap data, they are all substantially larger than their
20It is well known that a small number of principal components explains well over 90% of the variation
in yields across the maturity spectrum for U.S. treasury yields (e.g., Litterman and Scheinkman [1991]), as
well as for many foreign bond markets (e.g., Singleton [1995], Driessen, Melenberg, and Nijman [2000]). This
evidence serves as a primary motivation for examining low-dimensional state vectors in empirical studies of
DTSMs.
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historical counterparts. The same is true for the fitted, relative to the historical, treasury
yields from Ahn, Dittmar, and Gallant [2002]’s study of QG models.
If swaptions and caps have different sensitivities to a model’s (in)ability to match yield

curve segment or forward-rate correlations, then this could resolve the pricing puzzles. How-
ever, the literature is not fully in agreement about the relative responses of the prices of caps
and swaptions to changes in factor volatilities or correlations. After addressing the pricing
of swaptions in DTSMs, we take up in more depth the relative pricing of caps and swaptions.

6.2 Implications for Pricing Swaptions

Focusing first on the “unspanned factors” puzzle, this finding is not, of course, logically in-
consistent with arbitrage-free pricing. Indeed, Collin-Dufresne and Goldstein [2001a] provide
one explanation within an arbitrage-free, affine DTSM based on the possibility that some
elements of γY (T − t) in (21) are zero for all T − t. This possibility, which requires that
N ≥ 3, arises when there are factors driving the volatility of r that are not “spanned” by
the term structure of swap yields. The structure of volatility risk premiums might provide
an alternative explanation.
Empirical work addressing the fit of DTSMs to the joint distributions of swap and swap-

tion prices has been limited. Upon fitting an A3(3) model (with independent factors) to
historical swap yields, Jagannathan, Kaplan, and Sun [2001] find that their model is inca-
pable of accurately pricing caps and swaptions.21 However, in the light of the preceding
discussion, reliable pricing of swaptions would seem to depend on using swaption data in
estimation in order to “pick up” the effectively unspanned factors. This is confirmed by
Umantsev [2001], who estimated AM(3) models using data on swap rates and swaption
volatilities simultaneously. He finds that AM(3) models, for M = 1, 2, fit the data notably
better than an A3(3) model. Moreover, as anticipated by the descriptive findings of Heidari
and Wu [2001], the third factor is related more to volatility in the swaption market than
to “curvature” in the swap curve (the more typical third factor in DTSMs fit to yield data
alone).
The latter evidence suggests that low-dimensional DTSMs (say N equal to 3 or 4) may

well be capable of reliably pricing swaptions. This appears to be at odds with the arguments
in Rebonato [1999] and Driessen, Klaassen, and Meleberg [2000].

6.3 Implications for the Relative Pricing of Caps and Swaptions

Where matching the correlation structure does seem to matter is in resolving the “swap-
tions/caps” pricing puzzle. Elaborating on the nature of this puzzle, many have found that
model-implied volatilities extracted from cap prices tend to be larger than those backed out
from swaption prices. One interpretation of this puzzle is based on the observation that a

21 Since swaptions are effectively options on coupon-paying bonds, closed-form solutions for the relevant
exercise probabilities are generally not known, even in the affine case. Chen and Scott [1995] develop pricing
relations that are specific to multi-factor AN (N) (CIR) models, and are used by Jagannathan, Kaplan,
and Sun [2001]. Singleton and Umantsev [2002] and Collin-Dufresne and Goldstein [2002] develop accurate,
approximate pricing formulas for the entire family of affine diffusion models.
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cap can be viewed as a portfolio of options on forward LIBOR rates, whereas a swaption
can be viewed as an option on a portfolio of forward LIBOR rates. As such, cap prices
are relatively insensitive to the correlation structure of forward LIBOR rates, whereas the
swaption prices depend crucially on the correlation structure. Indeed, a one-factor model
can be calibrated exactly to all at-the-money cap prices, but it likely mis-price swaptions
because forward rates are perfectly correlated in such a model.
Hull and White [1999] and Longstaff, Santa-Clara, and Schwartz [2001b] calibrate multi-

factor forward-rate based models to (select portions of) the historical correlation structure
of the forward rates22 and explore the relative pricing of caps and swaptions. Hull and
White [1999] find that (for a single trading day) at least three factors are needed in order to
rationalize observed caps and swaptions prices, whereas Longstaff, Santa-Clara, and Schwartz
[2001b] find that, in order to explain caps and swaptions prices over a window of several
months, at least four factors are needed. Both studies document periods of significant
relative mispricings of caps and swaptions relative to the predictions of their models. Similar
findings are reported by Jagannathan, Kaplan, and Sun [2001] and Fan, Gupta, and Ritchken
[2001]. The ultimate resolution of this “swaptions/caps puzzle” may require time-varying
correlations and possibly factors affecting the volatility of yields that do not affect bond
prices. Collin-Dufresne and Goldstein [2001c] posit a “switching correlation” affine model
with both of these features and find that it has features consistent with historical swaption
and cap volatilities, but they do not formally calibrate their model to historical data.

7 Concluding Remarks

Our overview of the empirical fit of DTSMs has underscored several successes, while high-
lighting several challenges for future research. Specifically, Affine- and Quadratic-Gaussian
DTSMs are evidently capable of resolving the puzzles associated with the rejections of the
expectations hypothesis. At the same time, for both families of models, there appears to
be a “tension” between matching properties of (i) the conditional mean, (ii) the conditional
volatilities, and (iii) the risk premiums (Duffee [2002], Dai and Singleton [2002b]). Within
the family of affine DTSMs, clearly we must have M > 0 in order for there to be stochastic
volatility. However, accommodating stochastic volatility in this manner seems to conflict
with matching the first-moment properties of yields. In principle, Duarte [2001]’s extended
market price of risk (24) may partially relax this tension, because it allows for richer P-
dynamics of the M volatility factors in AM(N) models.
Similarly, Ahn, Dittmar, and Gallant found that their most flexible QG model exhib-

ited less volatility than was observed historically (as reflected in their semi-non-parametric
model), both in terms of level and persistence. Thus, it seems that still undiscovered is
a tractable DTSM that simultaneously matches LPY and CVY, at maximum likelihood
estimates of the parameters.
We also find it interesting that regime-switching paired with (22) and single-regime,

22Hull and White [1999] is based on the Libor Market Model, whereas Longstaff, Santa-Clara, and Schwartz
[2001b] is based on a discrete approximation of the string model proposed by Santa-Clara and Sornette [2001].
Both studies use a calibration method similar to a principal components analysis.
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affine and QG models paired with (23) seem to perform comparably in matching the pattern
LPY. It seems that, implicitly, the structure of preferences, and the economy more generally,
in these formulations are quite different and a better understanding of these differences
would likely improve our understanding of interest rate determination. Some hints about the
links between model formulation and the macro economy come from several recent studies.
Duffee [2001] explores various macroeconomic interpretations of the finding that the slope
of the yield curve forecasts excess returns, the finding that underlies the need for richer risk
premiums than (22) in affine models. Bansal and Zhou [2002] find that the regime switching
process inferred from bond prices appears to be strongly associated with NBER business
cycle indicators for the U.S.. This is consistent with the findings of Ang and Bekaert [2001]
from a regime-switching model estimated without the structure of a pricing model. Further
exploration of the links between factor risk premiums, regime identities, and the business
cycle seems warranted.
The recent efforts at developing discrete-time DTSMs, motivated by extant continuous-

time formulations, also raise interesting questions for future research. Along some di-
mensions, the discrete-time models offer more flexibility in specifying the dynamics of the
state process. However, specifications of the market prices of risk appear to richer in the
continuous-time formulations. Does more flexibility in modeling Y reduce the need for richer
specifications of Λ?
Turning to the recent empirical work on reduced-form models of defaultable bonds, a

natural next step in this literature would be to estimate a model in which λQLQ is a affine
function of (possibly multiple) observed credit factors, as well as latent factors. The findings
in Collin-Dufresne, Goldstein, and Martin [2001] that most of the variation in credit spreads
is independent of a long list of observed macroeconomic and balance sheet variables suggests
that supply/demand factors indigenous to the corporate market may be playing a key role in
spread variation. Duffie and Singleton [1997] report a similar result for swap spreads. Latent
factors would allow modelers to capture the substantial residual variation in the spread st
that is not captured by the various observable economic factors examined in these studies.
As better fitting models are developed, further analysis of economic forces underlying

variation in spreads would also be beneficial. We have, in the end, a quite limited under-
standing of the determinants of spreads, particularly those in swap and high-grade corporate
bond markets. The findings in Eom, Helwege, and Huang [2001] clarify some of the chal-
lenges facing structural modeling. Looking beyond the default process, are there unmodeled
supply and demand forces affecting spreads and, if so, what are these forces? And what is
the role of “liquidity” in spread determination?
Finally, the recent literature on pricing derivatives using DTSMs illustrates the enormous

potential for new insights from using derivatives data in model estimations.
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