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Abstract

This paper estimates and tests consumption-based pricing kernels used in common equilibrium

interest rate term structure models. In contrast to previous papers that use return orthogonality

conditions, estimation in this paper is accomplished using moment conditions from a

consumption-based option pricing equation and market prices of interest rate options. This

methodology is more sensitive to preference misspecification over states associated with large

changes in consumption than previous techniques. In addition, this methodology provides a large

set of natural moment conditions to use in estimation and testing compared to an arbitrary choice

of return orthogonality conditions (e.g. instruments selected) used in GMM estimation.

Eurodollar futures option prices and an estimated joint model of quarterly aggregate

consumption and three month Eurodollar rates suggest are used to estimate and test pricing

kernels based on logarithmic, power, and exponential utility functions. Using the market prices of

interest rate options, evidence is found which is consistent with the equity premium puzzle; very

high levels of risk aversion are needed to justify the observed premium associated with an

investment position positively correlated with aggregate consumption. In addition, evidence is

found which is consistent with the riskfree rate puzzle: at high levels of risk-aversion for power or

exponential utility, negative rates of time preference are needed to fit the observed low riskless

interest rates.

These results suggest that typical term structure models are misspecified in terms of assumed

preferences. This may have deleterious effects on model estimates of the interest rate term

structure estimates and interest rate option prices.

___________________

This paper has benefited from the suggestions of Joel Hasbrouck, Jose Lopez, Anthony Lynch,

seminar participants at New York University - Stern School of Business, and the 1999 Derivatives

Securities Conference. The author wishes to thank David Hait for providing data used in an earlier

version of the paper.
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I. Introduction

Interest rate term structure models depend on an explicit or implicit specification of investor

preferences. Examples of explicit preference specifications include: specification of the pricing

kernel, the market price of risk, or the utility function of a representative agent. Implicit

preference specifications are reflected in the choice of a risk-neutral interest rate process, which,

together with the original interest rate process, implies a set of supporting preferences.

The specification of investor preferences plays an important role in predictions of the interest

rate term structure. Campbell (1986) shows how the term structure is a function of the coefficient

of relative risk aversion under constant relative risk aversion utility. Stanton (1997) non-

parametrically estimates the market price of risk as a function of the interest rate level, and finds

that the market price of risk has a significant effect on the prices of long term bonds.

The power of consumption-based pricing kernels in explaining characteristics of the interest

rate term structure has been investigated in the existing literature. For example, Boudoukh (1993)

as well as Canova and Marrinan (1996) consider pricing kernel based on a representative investor

with a power utility function. Using restrictions on bond returns, Ferson (1983) finds stronger

evidence against exponential utility than power utility. Dunn and Singleton (1986) find that non-

separable utility explains some bond return characteristics, but they also find evidence against this

model.

Outside the specific context of interest rate term structure models, consumption-based pricing

kernels are estimated and tested using return orthogonality conditions by Hansen and Singleton

(1982, 1993), Cochrane and Hansen (1992), Gallant, Hansen, and Tauchen (1990), and Chapman

(1997). Pricing kernel estimation approaches that utilize asset returns instead of consumption data

to identify the pricing kernel include Bansal and Viswanathan (1993) and Backus, Gregory, and

Zin (1997).

Several papers use option price data to identify pricing kernels defined over equity return

states. These papers estimate the pricing kernel as the ratio of state prices measured with option

data and state probabilities measured with historical returns data. Jackwerth (1997) and Ait-

Sahalia and Lo (1997) estimate average pricing kernels, while Rosenberg and Engle (1999)

estimate a time-varying pricing kernel. While these papers demonstrate the usefulness of option

price data in identifying the pricing kernel, they do not link estimated pricing kernels to aggregate
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consumption states, so they cannot be used to directly test consumption-based utility

specifications.

In contrast to previous papers that use return orthogonality conditions, estimation in this paper

is accomplished using moment conditions from a consumption-based option pricing equation and

market prices of interest rate options. This methodology offers several advantages over previous

approaches.

First, this methodology is more sensitive to preference misspecification over states associated

with large changes in consumption than previous techniques. Previous papers utilize moment

conditions based on equity or bond returns. These moment conditions are based on expectations

taken over all future return and consumption states. Hence, they reflect average risk aversion over

all consumption states. Moment conditions based on out-of-the-money option prices depend on

preferences (and probabilities) for large changes in the underlying asset price, which are

associated with large changes in consumption. Prices of assets that provide insurance against low

consumption states are very sensitive to risk aversion; thus, these assets are especially useful in

identifying preference misspecification.

Second, this methodology provides a large set of natural moment conditions to use in

estimation and testing compared to an arbitrary choice of return orthogonality conditions (e.g.

instruments selected) used in GMM estimation. Each observed option price along with a

consumption-based derivative pricing formula provides a moment condition. The magnitude of

derivative pricing errors also provides a useful metric to evaluate the pricing kernel specification;

this metric has a more intuitive interpretation than errors from return orthogonality conditions.

This paper solves the inverse of the equilibrium asset pricing problem to identify preference

parameters; preference parameters are estimated such that they are consistent with observed prices

and estimated payoff probabilities. In particular, preference parameters are selected to minimize

interest rate option pricing error, given the estimated joint density of future consumption and

interest rates. This technique is similar to Heaton’s (1995) two-stage simulated method of

moments approach. Evidence is provided (in section IV.d) that the results in the paper are robust

with respect to the specification of the joint density function.

Pricing kernel specifications are then tested by analyzing the magnitude of derivative pricing

error and predictability of the pricing errors. Under the null hypothesis of a correctly specified

pricing kernel and probability model, the pricing errors —  due to bid-ask spread and price

discretization —  should be white noise. This methodology extends the research on consumption-
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based asset pricing beyond equities and bonds to derivative assets revealing the impact of interest

rate model pricing kernel misspecification on interest rate derivative prices.

The important empirical findings of this paper are as follows. First, evidence is found which is

consistent with the equity premium puzzle: very high levels of risk aversion are needed to justify

the observed premium associated with owning an asset positively correlated with aggregate

consumption. While the equity premium puzzle is typically framed using aggregate consumption

data and equity returns, this paper provides another perspective using aggregate consumption data

and market prices of interest rate options. This finding also points to a possible source of error in

interest rate term structure forecasts and interest rate option prices from log-utility-based models

such as Cox, Ingersoll, and Ross (1986) or Longstaff and Schwartz (1992).

Second, evidence is found which is consistent with the riskfree rate puzzle: at high levels of

absolute or relative risk-aversion, negative rates of time preference are needed to fit the observed

low riskless interest rates. This finding is especially troubling in the context of interest rate term

structure models which are very sensitive to the rate of time preference.

Third, none of the estimated pricing kernels passes a specification test based on the

predictability of pricing errors; all of the models underprice interest rate calls. Even with a high

level of risk aversion (which increases the fitted value of interest rate calls which insure against

low consumption states), the power and exponential specifications are inadequate.

This paper is organized as follows. Section II examines the use of consumption-based pricing

kernels in interest rate derivative models and interest rate term structure models. Section III

describes the pricing kernel estimation and testing technique. Section IV presents the pricing

kernel estimation results and specification tests. Section V concludes the paper.

II.a. Pricing kernels and interest rate derivative valuation

Equilibrium term structure models typically posit a representative investor maximizing his or her

expected utility subject to a budget constraint. In a representative agent framework, the following

first order condition —   which defines a general asset pricing equation —  is obtained. See, for

example, Constantinides (1989).

(1) X E K C g Xt t t T T T= [ ( ) ( )],
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Equation (1) states that the current price of an asset (Xt) is the expectation of it’s pricing-

kernel-weighted payoffs. The pricing kernel —  Kt,T(CT) —  is defined over future consumption-

states (CT) and is decreasing in consumption, while the payoff function —  g(XT) —  depends on

the characteristics of the asset (e.g. the identity function for a linear asset) and the future asset

value (XT).

When the representative investor has time-separable utility, the pricing kernel may be written

as the marginal rate of substitution between current and future consumption multiplied by a

subjective discount factor. The marginal rate of substitution embodies the risk-discounting of

payoffs, while the subjective discount factor embodies the time-discounting of payoffs.

Equation (1) may be used for derivative pricing by replacing general payoff function with the

call or put payoff function. The (real) price of a call or put option (Dt), with an underlying asset

with terminal price rT, and which has a date T payoff given by g(rT) is:

(2) D E K C g r K C g r f C r dC drt t t T T T t T T T C r t T T T T= = ∫∫[ ( ) ( )] ( ) ( ) ( , ), , , ,

As written, evaluation of the equation (1) or equation (2) consumption-based pricing kernel

valuation formula  requires specification of the pricing kernel, the joint density of consumption

and the payoff random variable, and evaluation of the double integral. This pricing formula is

considered in Rubinstein (1976), Brennan (1979), Stapleton and Subramanyam (1984), Amin and

Ng (1993), Duan (1995), and Satchell and Timmerman (1997). In all of these papers, preference

parameters are substituted out of the final pricing formula for observable market variables.

A convenient feature of these “preference-free” pricing formulas is that preference parameters

and the moments of the consumption process do not need to be estimated to obtain option prices.

However, the preference and probability assumptions are restrictive. Usually, constant relative

risk aversion and joint-lognormality of consumption and the underlying asset price is required. In

the last three papers, certain types of stochastic volatility are permitted. However, these papers

require that the innovations to the underlying asset price process are normal. Thus, over a single

time period, price jumps and other “fat-tailed” behavior are ruled out.

The interest rate option pricing problem has been solved in “preference-free” form in the

context of specific continuous-time interest rate dynamics and (logarithmic) preferences of a
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representative agent. See, for example, Courtadon (1982), Cox, Ingersoll, and Ross (1985), and

Longstaff and Schwartz (1992). In some sense, the “preference-free”-ness of these models is by

assumption, since log-utility is a special case of constant relative risk aversion with the coefficient

of relative risk aversion set to unity.

In a general stochastic setting, preference parameters will appear in the option pricing formula.

Thus, equation (2), along with an observed option price, provides a moment condition that may be

used to identify a preference parameter. With an arbitrary specification of the stochastics as well

as pricing kernel state variables and functional form, the pricing formula may be numerically

inverted with the double integral evaluated by simulation to obtain estimates of pricing kernel

parameters.

Equations (1) and (2) also show how the choice of asset affects pricing kernel estimates.

Assets such as bonds or equities are priced by integrating over the entire range of future prices

(payoffs). Options —  which have non-zero payoffs only over a segment of the range of future

underlying prices —  are priced by integrating over the range of in-the-money states. Hence, option

prices depends only on preferences (and probabilities) over a particular payoff state range.

Particular state ranges of interest include those associated with large changes in the underlying

price (e.g. an interest rate or equity index level). Since these states may be associated with low

consumption, these are the states for which investors may demand insurance. Hence, the prices of

the insuring assets will be highly sensitive to investor state preferences. Pricing kernel estimates

over equity index return states by Ait-Sahalia and Lo (1997) and Rosenberg and Engle (1998)

indicate that some of characteristics of the cross-section of equity index option prices are due to

exceptionally high demand for payoffs in low consumption (large negative equity index return)

states.

Interest rates are negatively correlated with aggregate consumption, so high levels of risk

aversion should have the greatest effect on out-of-the-money interest rate calls. These options

have positive payoffs when there is a large increase in interest rates, which is associated with a

large decrease in consumption.

While the equation (1) and (2) pricing formulas are appropriate for pricing assets in real terms,

market prices are quoted in nominal terms. Using the cash-in-advance model of Lucas (1980) —

see also Boudoukh (1993) and Canova and Marrinan (1996) —  equation (1) may be generalized to

give the nominal price of an asset as:
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(3) X E K C g X It t t T T T t T= −[ ( ) ( ) ], ,
1

Equation (3) incorporates the effects of inflation by including the reciprocal of the realized

gross inflation rate (It,T
-1) in the pricing formula. A higher expected inflation rate (when inflation

is uncorrelated with consumption and the payoff variable) will result in a lower current asset

price. In practice, adding an additional stochastic variable considerably complicates pricing, since

a triple integral, rather than a double integral, must be evaluated.

However, if inflation is sufficiently predictable, it may suffice to replace inflation as a random

variable with it’s realization. This is equivalent to assuming inflation is perfectly forecastable.

This motivates the equation (4) approximation to equation (3), which states that the nominal asset

price is the realized-inflation adjusted real price. Equation (4) will be referred to as the CPK

(consumption-based pricing kernel) formula.

(4)   X I E K C g Xt t T t t T T T≅ −
, ,[ ( ) ( )]1

In the empirical work in this paper, the condition of strong predictability of inflation is

satisfied. The estimation period (1991-1998) is a period of low inflation (average rate of quarterly

CPI growth of .42%) and low inflation volatility (standard deviation of quarterly CPI growth of

.15%). This data is summarized in Table 1. Over one-quarter, which is the time-horizon for

estimation, inflation is highly predictable. A regression of the quarterly inflation rate on eight lags

using monthly data for 1947 - 1999 generates a standard deviation of prediction error (RMSE) of

.28% and adjusted r-squared of  80%.

II.b. Pricing kernel specifications and interest rate models

Pricing kernels used in interest rate models are typically chosen for analytical convenience rather

than empirical validity. This section describes the pricing kernels used in several of these models.

Consider the Cox, Ingersoll, and Ross (1985) or the Longstaff and Schwartz (1992) model of

the interest rate term structure. In both models, it is assumed that there is a representative investor
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with a logarithmic consumption-based utility function. Let Ct be the representative investor’s

consumption on date t. Then, the pricing kernel (with rate of time preference ρ) is:

(5)  K C e C CC t T
T t

T t,
( )( ; ) ( / )ρ ρ= − − − 1

Campbell (1986) derives an interest rate term structure model based on a representative

investor with power (constant relative risk aversion, CRRA) utility over consumption states. In

this model, the pricing kernel (with rate of time preference ρ and coefficient of relative risk

aversion γ) is:

(6)  K C e C CC t T
T t

T t,
( )( ; , ) ( / )ρ γ ρ γ= − − −

Constantinides (1992) derives an interest rate term structure model based on a pricing kernel

specification (and utility function) which allows an arbitrary number of unspecified state

variables. A special case of the Constantinides pricing kernel is defined by an investor with

exponential (constant absolute risk aversion, CARA) utility over consumption states. The pricing

kernel (with rate of time preference ρ and coefficient of absolute risk aversion γ) is:

(7)  K C e eC t T
T t C CT t

,
( ) ( )( ; , )ρ γ ρ γ= − − − −    

III. Pricing kernel estimation and testing

Given the correct probability model and payoff function, a pricing kernel specification should be

rejected if it misprices traded securities. This paper uses the CPK option pricing errors in pricing

kernel specification tests.

Empirical implementation of the CPK valuation formula requires estimates of pricing kernel

preference parameters (ρ and γ) and probabilities (the joint density of consumption and interest

rates). Since aggregate consumption and interest rates are observable, there are a variety of

estimation techniques that may be used to estimate their joint density.

In this paper, a bivariate time-series model is used to estimate the joint consumption and

interest rate process. The forecast joint density is then obtained by monte-carlo simulation. Details
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of the model specification are given in the next section. The joint density of future consumption

(CT) and interest rates (rT) —  conditioned on the information set available today (t) and indexed

by the parameter vector θ1 —  is denoted f C rC r t T T, , ( , ; )θ1 .

The pricing kernel parameter vector (θ2) is obtained by numerical inversion of the CPK

formula, in which the pricing kernel is denoted K CC t T, ( ; ).θ2  Consider the CPK formula with a

white noise error term reflecting observational error in derivative prices due to price

discretization, bid-ask spread, and non-synchronous prices of the derivative and underlying asset.

(8) D K C g r f C r dC drt C t T T C r t T T T T t= +∫∫ , , ,( ; ) ( ) ( , ; )θ θ ε2 1

Non-linear least squares regression of interest rate derivative prices on fitted values using the

CPK formula will identify the preference parameter vector (θ2). Let Dt,i be the observed price of

an interest rate derivative on date t and $ ( ),Dt i θ2 be the fitted derivative price using the CPK

formula. The double integral in the CPK pricing equation may be evaluated numerically by

averaging the pricing kernel weighted payoff at each (j=1..J) simulated terminal consumption and

interest rate pair. This type of simulation-based option pricing is an extension of the approach of

Boyle (1977).

(9) $ ( ) ( ; ) ( ), , , , ,
...

D
J

K C g ri t C t T j i r T j
j J

θ θ2 2
1

1≅
=
∑

Then, the NLS regression may be written as:

(10) D Dt i t i t i, , ,
$ ( )= +θ ε2

When the error term (εt,i) is normally distributed, the non-linear least squares estimator will

obtain the maximum likelihood estimates of the pricing kernel parameter vector (θ2). Otherwise,

the NLS estimate will be a consistent estimate of the parameter vector.

Pricing kernel specification tests are based on the N (i=1...N) estimated pricing errors. The

pricing error variance is used to test the goodness of fit of each proposed pricing kernel. The
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unbiasedness of pricing model estimates is tested using the t-statistic for the average pricing error

for calls and puts. In addition, the economic plausibility of the estimated preference parameters is

analyzed.

IV. Pricing kernel estimation and testing: empirical results

In order to implement the CPK formula, a model of the joint density of future consumption and

interest rates is required, along with a dataset of interest rate option prices, and realized inflation

rates. The CPK formula requires that the forecast dates for the consumption and interest rate

density match the expiration dates of the options to be priced. For this reason, a discrete-time

model of quarterly consumption and interest rates is estimated, and the one-quarter-ahead joint

density forecast is used in the CPK equation to price options with one quarter until expiration.

Since Eurodollar futures options traded on the Chicago Mercantile Exchange are some of the

most liquid interest rate option contracts, prices of these options are used in the estimation

procedure. Eurodollar futures options have payoffs at expiration that are determined by the three-

month Eurodollar spot interest rate, motivating the choice of the interest rate series used in the

empirical section. Adjustments are made to synchronize the option expiration dates as needed and

to exclude the value of early exercise due to the American exercise style of these options.

IV.a. The consumption and interest rate data and model

The dynamic relationship between consumption and interest rates is modeled in a bivariate

framework, which allows for correlated errors. Table 1 summarizes the properties of quarterly

consumption and interest rates over the period from 1985:2 until 1998:2. The starting date of the

sample coincides with the listing date for Eurodollar options on futures.

The consumption series is the quarterly, per-capita, real consumption of non-durable goods

and services over the quarter as reported in the CITIBASE database. The Eurodollar interest rate

series is the British Banker’s Association three-month London Interbank Offer Rate (LIBOR) as

reported the first business day of the quarter.

There is evidence for a unit root in the consumption and interest rate series as well as their

logs, based on results from an augmented Dickey-Fuller test. This suggests that the series should

be modeled in differences or that an error correction model is required. A Johansen (1991) test for
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cointegration is performed and no cointegrating vectors are found. There is evidence of stochastic

volatility in the interest rate series based on the p-value of the ARCH(1) coefficient. Figure 1 plots

the consumption and interest rate series over the sample period.

The consumption and interest rate models used are based on the existing literature and

statistical evidence from this dataset. Log-differenced quarterly consumption is typically found to

obey a first-order vector autoregressive process with constant volatility and normal residuals,

which suggests the following model:

(11) ∆ ∆C C Nt t t t
* *

, , ~ ( , )= + + 0−α β ε ε σ1 1 1 1 1 1
2                  

Estimation of this AR(1) model results in an autoregressive parameter estimate of .3077, a

standard error of .1334, and an adjusted r-squared of 9.45%. These and other model estimation

results are reported in Table 2. Prior to model estimation, the consumption data is filtered using a

single moving average term at the third lag to remove spurious autocorrelation due to sampling

error, as noted by Wilcox (1992).

This specification provides an adequate fit to the consumption data; model residuals and their

squares are not autocorrelated as reported in Table 3. As postulated, residuals are generated by a

normal density as indicated by the results of the Jarque-Bera (1980) test. Since the normal density

is obtained in the limit from a student’s-t density as the number of degrees of freedom approaches

infinity, the innovation density for the consumption process is rewritten in this manner. Residuals

are also found to be uncorrelated with lagged log-differenced interest rates.

The interest rate model incorporates the finding that forward rates are often significant

predictors of future spot rates. See, for example, Fama (1984). This suggests the following model

for the Eurodollar spot rate, in which f*
t-1 is the log of lagged three-month Eurodollar forward rate.

(12) ∆r f rt t t t
* * *

,( )= + − +− −α β ε2 2 1 1 2

This model is estimated, and the term spread is found to be statistically significant with a

coefficient of .6434 and a standard error of .2910. The adjusted-r-squared from the regression is

7.08%. For this regression, the forward rate is estimated using the price of the Eurodollar futures

contract with one quarter until expiration.
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The squared residuals from the interest rate conditional mean equation exhibit autocorrelation,

which is evidence for stochastic volatility. Amin and Ng (1997) find that implied volatilities are

superior to historical squared returns in predicting Eurodollar interest rate volatility. This

motivates the use of a conditional volatility model in which implied volatility at the start of the

quarter for a Eurodollar futures option with approximately three months until expiration (σi,t-1
2) is

used to predict the interest rate innovation volatility over the quarter. Estimation is performed

using maximum likelihood and a student’s-t likelihood function with ν2 degrees of freedom.

(13) σ γσ ε σ ν2 1
2

1
2

2 2 1
2

20, | , , , |~ ' ( , , )t t i t t t tstudent s t− − −= −             

The estimated coefficient on lagged implied volatility is 1.10 and the number of degrees of

freedom is 12.41. Figure 2 plots the estimated annualized interest rate innovation volatility, which

ranges from approximately 5% to 35%, and the estimated annualized consumption innovation

volatility, which is .70%. The magnitude of ν2 shows a significant deviation from normality.

Specification tests in Table 3 indicate that this model fits the data well. Again, (standardized)

residuals and their squares are uncorrelated. The excess skewness and kurtosis relative to a normal

density are accommodated using a student’s-t innovation density.

The interest rate and consumption processes are related by their joint error density, which is

assumed to be bivariate student’s-t (Fang, Kotz, Ng, 1990). This density allows for excess kurtosis

relative to the bivariate normal, and it incorporates the normal as a limiting case. The marginal

densities are student’s-t and are related by their correlation (ρ), which is estimated using the

sample correlation of the standardized residuals (-.3760).  Negative correlation is consistent with

the notion that increases in interest rates are associated with lower levels of consumption.

(14)
ε
ε

σ ρσ σ
ρσ σ σ

ν
ν

1

2

1
2

1 2 1

1 2 1 2
2

1

2

0
0

,

,

, |

, | ,

~ , ,t

t

t t

t t t

student t






 − 











 



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











−

−

Table 4 presents summary statistics for simulations of the estimated joint consumption and

interest rate process. The simulations are based on initial values of consumption and interest rates

at the start of April from 1991 until 1998. The simulated values of consumption and interest rates

at the start of July are obtained using the model described above with 50,000 simulations per year.
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The simulated data reflects the characteristics of the original data and the estimated model.

The simulated correlation of the log-differenced consumption each year is nearly identical to the

estimated value. The impact of the term spread in the interest rate equation is relatively small,

except in 1994, when the term spread is unusually large. The simulated interest rate changes

exhibit time-varying volatility and excess kurtosis as desired.

IV.b. The interest rate option data

The interest rate option data used in the estimation of the pricing kernels is based on closing

prices of Eurodollar futures options traded on the Chicago Mercantile Exchange. One advantage

of using the option pricing equation for pricing kernel estimation is that each observed option

price provides a moment condition. To reduce the number of moment conditions to a manageable

size, the initial database of closing prices is subsetted, so that attention is restricted to out-of-the-

money options with reported closing prices on the first trading day of April from 1991 until 1998,

at least 100 contracts traded, and expirations in June of the same year.

The CME prices, which are for contracts with American exercise-style and mid-month

expiration, are used to estimate the price of options with European exercise-style and beginning of

the month expiration. It is necessary that the options have beginning of the quarter expiration to

synchronize timing of the payoff variable in the option pricing equation with the estimated

consumption and interest rate density. European exercise-style is necessary to eliminate path

dependence in the option payoff.

The adjusted prices are estimated as follows. First, the implied standard deviation

corresponding to each option price is calculated by numerically inverting the Black (1976) model

with the Barone-Adesi and Whaley (1987) adjustment for the early exercise premium. The riskless

rate used is the three-month constant maturity treasury rate from the Federal Reserve Board’s

FRED database, the time-to-expiration is measured in calendar time, and the option strike price

and futures settlement price are converted to rates by taking the difference between one-hundred

and the original price. The option type is reversed, since call (put) bond option contracts

correspond to put (call) interest rate option contracts.

Then, the prices of out-of-the-money European Eurodollar interest rate options with beginning

of July expiration are estimated using the Black (1976) model. The implied standard deviation for
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each strike rate is calculated as above. The same spot rate and riskless rate are used as above, and

time until expiration is measured in calendar time until the first trading day of July.

Table 5 presents the estimated option prices using this procedure. There are a total of forty-

five options that meet the screening criteria, with a minimum of three in 1997 and a maximum of

nine in 1992. The options are roughly half puts and half calls in each year. The estimated prices of

the European-style beginning of the month expiration options are consistently higher than the

original option prices due to the value of an additional two weeks of existence. The loss of the

early exercise feature results in a small decrease in option value, holding time-until-expiration

constant.

Figures 3 and 4 plot the contract-specific option-implied volatility in each year against the

centered strike rate. The centered strike rate is the difference between the original strike rate and

the implied forward rate (from the June Eurodollar contract) rounded to the nearest 25 basis

points. A “volatility smile,” i.e. an upward parabolic shape centered on the at-the-money contract

is observed in most years. The level and curvature of the smile exhibit time variation.

The existence of the smile indicates that the Black (1976) model is not the correct model for

interest rate option pricing. However, it is still a useful device for interpolation, when the contract

specific implied volatility is used. Stochastic volatility and non-normal innovations, both

characteristics found in the quarterly interest rate process, would generate higher prices for away-

from-the-money options resulting in a smile. In addition, higher demand for insurance in high

interest rate states (which occur in low consumption states) may generate higher prices for out-of-

the-money interest rate calls. This would be the counterpart to the equity volatility skew induced

by higher demand for insurance against low S&P500 states (which occur in low consumption

states).

IV.c. Pricing kernel estimation and specification tests

Consumption-based pricing kernels are estimated using a non-linear least squares regression of

Eurodollar interest rate option prices on fitted prices using the CPK formula, as described in

section III.

An additional moment condition is added to the estimation, so that the estimated models are

consistent with market interest rates as well as interest rate option prices. In particular, the rate of
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time preference is chosen so that the fitted yield of a riskless three-month bond is equal to the

contemporaneous three-month constant maturity treasury rate.

The important empirical findings of this paper, reported in Table 6, are as follows. First,

evidence is found which is consistent with the equity premium puzzle: very high levels of risk

aversion are needed to justify the observed premium associated with an investment position with

returns positively correlated with aggregate consumption. For interest rate options, ceteris paribus,

higher levels of risk aversion increase the price of interest rate calls which provide a hedge against

low consumption (high interest rate) states. The effect on interest rate puts is in the opposite

direction.

The CPK estimation results show that very high levels of risk aversion are needed to fit

market prices of interest rate options: the CPK estimate of the coefficient of relative risk aversion

is 193.2. This is substantially higher than the level of risk aversion found in previous studies, and

significantly different from 1, which corresponds to log utility. It is likely that the high estimated

level of risk aversion is due to the increased sensitivity of the CPK estimation technique to

preferences over states associated with a large decrease in consumption, compared to previous

tests which average across all consumption states.

The rejection of log utility is significant, because the Cox, Ingersoll, and Ross (1985) and

Longstaff and Schwartz (1992) models are based on this assumption. Violation this assumption

indicates a possible source of error in term structure predictions or option price estimates using

these models. The magnitude of the estimated coefficient of relative risk aversion suggests that

preference effects on term structure forecasts are likely to be substantial. However, it is also the

case that the very high level of estimated risk aversion for the CRRA pricing kernel is

economically implausible also indicating misspecification.

These results in Table 6 also show that the choice of preference specifications has a significant

impact on estimated option prices. The CRRA and CARA pricing kernels increase model pricing

accuracy by 50% versus the log and linear specifications. The CRRA and CARA pricing error

standard deviations are about 1.4 basis points, compared to about 3 basis points for the log and

linear pricing kernels. This confirms the assertion that out-of-the-money option prices are highly

sensitive to preference specifications.

The second panel of Table 6 reports the estimated rates of time preference for each model.

While the estimates for the linear and log utility specifications are reasonable (on the order of the

annualized riskless interest rate), the estimates for the power (CRRA) and exponential
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specifications (CARA) are large and negative. This finding is consistent with the riskfree rate

puzzle: at high levels of absolute or relative risk-aversion, negative rates of time preference are

needed to fit the observed low riskless interest rates. Since large negative rates of time preference

are economically implausible, this is evidence for misspecification of the CRRA and CARA

pricing kernels.

The first panel of Table 6 also reports a test of pricing model unbiasedness using the t-statistic

for the average proportional pricing error for calls and puts from each model. Positive t-statistics

indicate the model is underpricing on average and negative t-statistics indicate that the model is

overpricing on average. All of the pricing kernels significantly underprice interest rate calls, which

is a further indication of misspecification.

IV.d. Robustness tests

The estimation procedure in this paper requires the complete specification of the joint density of

consumption and interest rates. In this section, a distribution-free alternative estimation technique,

which utilizes option returns, is proposed and implemented. The results from this technique are

qualitatively similar to the fully-specified estimation confirming the reliability of the previously

stated results.

Consider the moment condition obtained by dividing both sides of equation (3) by the current

asset price and subtracting one from each side.

(15) 0 11= −−E I K C rt t T t T T t T[ ( ) ], , ,

Equation (15) states that, for all assets, real conditional risk-adjusted expected returns are zero.

This equation also holds unconditionally:

(16) 0 11= −−E I K C rt T t T T t T[ ( ) ], , ,

And, the sample version of equation (16) may be used for estimation by minimizing the squared

error for the sample moment conditions:
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The assets used in estimation are interest rate calls and puts that are 1% or 5% out-of-the-

money with one-quarter until expiration over the period 1991 - 1998. Option returns (rt,T = DT/Dt)

are calculated using the quarterly interpolated European interest rate option price based on the

cross-section of Eurodollar options with closest to 90 days until expiration on the first day of each

quarter (Dt). The option payoff (DT) is determined using the option payoff function and the quoted

BBA LIBOR rate on the option expiration date.

The inflation rate (It,T) is the quarterly CPI growth rate (urban: all items) from the Federal

Reserve’s FRED database. The consumption data and pricing kernel specifications are the same as

those used in the CPK estimation. An additional condition used in estimation, analogous to that of

the CPK technique, is that rate of time preference is chosen so that the fitted yield of a riskless

three-month bond is equal to the average three-month constant maturity treasury rate over this

period.

The estimation results are reported in the third column of table 6. The coefficients of relative

and absolute risk aversion using the distribution-free technique are 114 and .03. While these are

lower than using the CPK technique, they are still very high. The corresponding estimated rates of

time preference are -1.64 and -1.70. Thus, the qualitative results using the CPK and distribution-

free methods are similar; namely, very high levels of risk-aversion are needed to characterize

interest rate option prices and interest rate option returns. To fit the observed low riskless interest

rates, high levels of risk-aversion require negative rates of time preference.

V. Conclusions

This paper estimates and tests consumption-based pricing kernels used in common equilibrium

interest rate term structure models. In contrast to previous papers that use return orthogonality

conditions, estimation in this paper is accomplished using moment conditions from a

consumption-based option pricing equation and market prices of interest rate options.

Evidence is found which is consistent with the equity premium and risk-free rate puzzles.

Very high levels of risk aversion are needed to characterize market prices of interest rate options;

at these high levels of risk aversion, negative rates of time preference are needed to fit observed
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riskless interest rates. In terms of the tested pricing kernels, the linear and log specifications do

not have high enough risk aversion to fit the data. The power and exponential specifications

require rates of time preference which are economically implausible.

These results suggest that typical term structure models are misspecified in terms of assumed

preferences. This may have deleterious effects on interest rate term structure and option price

estimates.
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Table 1
Data summary

Consumption
Log 
consumption

Log differenced 
consumption Eurodollar rate

Log Eurodollar 
rate

Log differenced 
Eurodollar rate

Inflation rate 
(1991-1998)

Number obs. 53 53 53 53 53 53 32
Mean    $3,664 8.21 0.0042 6.38% -2.80 -0.01 0.42%
Maximum $4,082 8.31 0.0112 10.25% -2.28 0.23 0.71%
Minimum $3,294 8.10 -0.0077 3.25% -3.43 -0.30 0.19%
Std. Dev.  $193 0.05 0.0039 1.81% 0.31 0.09 0.15%
Skewness  0.12 0.01 -0.76 -0.02 -0.58 -0.22 0.07
Kurtosis  2.46 2.44 4.20 2.26 2.55 3.81 1.95
Augmented Dickey-Fuller 
test statistic 0.56 0.03 -3.90 -1.47 -2.16 -4.68 -5.17
First-order 
autocorrelation 0.91 0.91 0.25 0.93 0.92 -0.09 0.08
ARCH(1) p-value 0.3971 0.0292 0.7801

This table presents summary statistics for the consumption and interest rate data used in the estimation of the joint model of their time-
series processes. Consumption is the quarterly per capita non-durable goods and services consumption from the National Income and
Product (NIPA) accounts as recorded in the CITIBASE database. Consumption is seasonally adjusted and deflated to constant 1992
dollars. Per capita consumption is obtained by dividing by the total monthly population reported by the U.S. Census Bureau in the
CITIBASE database. Consumption statistics are reported by the Bureau of Economic Analysis in the Personal Income and Outlays news
release.

The Eurodollar rate is the 3 month Eurodollar offer rate (LIBOR) reported by the British Banker’s Association (BBA) at 11 AM London time
on the first business day of each quarter. BBA data is available beginning in January of 1986. Prior to this date, the Eurodollar bid rate
(EDBID) — as reported on the Federal Reserve H.15 form is available beginning in January 1971. EDBID is transformed into a fitted offer
rate using parameters from a linear regression of daily LIBOR on EDBID over the period from 1986 through 1998. The estimated model
(with LIBOR in percent terms) is LIBOR = 0.128743 + 0.998897*EDBID. The regression adjusted r-squared is .9997, and the root mean
squared error is 3.1 basis points.

Log consumption and log Eurodollar rate are the natural logarithms of the respective variables. Kurtosis is reported in total rather than
excess units. The augmented Dickey-Fuller test statistic is from a regression of the level on a constant, the lagged level, and one lagged
difference. In this case, the 5% critical value to reject a unit root is -2.92. The ARCH(1) p-value is the probability value for the coefficient
on a single lagged squared residual from an ARCH(1) model estimated with a constant term in the mean equation (and a single lagged
difference for differenced consumption). Low p-values are evidence for ARCH.

The inflation rate —  reported in the rightmost column — is not used in the simulation, but it is used in CPK option price estimation as
defined in equation (4). Only data for the same period as the observed option prices (1991-1998) is used in estimation, so this is the data
for which summary statistics are reported. The inflation rate is defined as the net growth rate of the seasonally adjusted quarterly
consumer price index for all urban consumers: all items as measured by the Bureau of Labor Statistics and reported in the Federal
Reserve’s FRED database.



Table 2
Model of the joint consumption and interest rate process

Consumption mean equation Interest rate mean equation 
Parameter 
estimate 

Standard 
error

Parameter 
estimate 

Standard 
error

α1 0.0030 0.0007 α1 -0.0149 0.0130
β1 0.3077 0.1334 β1 0.6434 0.2910

Consumption variance equation Interest rate variance equation
Parameter 
estimate 

Standard 
error

Parameter 
estimate 

Standard 
error

σ1 0.0035 γ 1.10 0.2524
ν1 ∞ ν2 12.41 15.1475

Joint error density
Parameter 
estimate 

Standard 
error

ρ -0.3760

Estimation summary statistics Estimation summary statistics
Adj. R-sqr. 0.0945 Adj. R-sqr. 0.0708
F-probability 0.0251 F-probability 0.0317

This table presents the estimated joint model for the consumption and interest rate process. The estimation is
performed using log-differences of the original series (C*=log(C), r*=log(r)). The consumption process is estimated as
an AR(1) in log-differences with constant volatility and normal residuals. The consumption data is prefiltered to remove
spurious seasonal correlation at the third lag as noted by Wilcox (1992). The interest rate process is estimated with the
spread between the log spot rate and the log three month forward rate (implied by the Eurodollar futures price) as an
independent variable in the mean equation as presented in Fama (1984). The interest rate conditional variance
dynamics are estimated by maximum likelihood using a t-density with ν2 degrees of freedom and the residuals from
the mean equation. The implied volatility of Eurodollar futures options with approximately three months until expiration
(σi) is used as a predictor of future expected volatility. See, for example, Amin and Ng (1997). The correlation
parameter (ρ) is the sample correlation of the standardized residuals from the two models. Specification tests for the
models are presented in Table 3.
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Table 3
Specification tests for the consumption and interest rate model

Tests of standardized residuals
Consumption 
equation       
(p-value)

Interest rate 
equation           
(p-value)

Error autocorrelation
Autocorrelation Q-test 0.5221 0.1646
Autocorrelation in squares Q-test 0.6325 0.6333
Error distribution
Jarque-Bera normality test p-value 0.3824
Skewness -0.0968 -0.1394
Kurtosis 3.9951 4.7067

This table presents results of several specification tests on the standardized residuals (e t/σt)
from the estimated consumption and interest rate model. All test statistics (except for skewness
and kurtosis) are reported as p-values such that a p-value less than .05 represents a rejection of
the null hypothesis of correct specification. The Q-test statistics are p-values from a Ljung-Box
(1978) test based regression of the standardized residuals (or their squares) on 4 lags. The
Jarque-Bera (1980) normality test is based on the skewness and kurtosis of the residuals.
Kurtosis is reported in total, rather than excess units.



Table 4
Summary statistics from simulation of consumption and interest rate processes

1991 Mean Std Dev Skewness Kurtosis Minimum Maximum
Simulated consumption 3608.45 12.55 0.00 3.00 3557.14 3660.72
Simulated cons. growth (gross) 1.0049 0.0035 0.00 3.00 0.99 1.02
Simulated interest rate 6.39% 0.53% 0.34 3.96 3.81% 9.68%
Simulated interest rate (change) 0.01% 0.53% 0.34 3.96 -2.56% 3.30%
Initial consumption 3590.88
Initial interest rate 6.38%
Initial forward rate 6.51%
Simulated correlation (of log diff.) -0.38

1992 Mean Std Dev Skewness Kurtosis Minimum Maximum
Simulated consumption 3664.74 12.74 0.01 3.02 3611.63 3720.11
Simulated cons. growth (gross) 1.0040 0.0035 0.01 3.02 0.99 1.02
Simulated interest rate 4.38% 0.46% 0.42 4.18 2.31% 8.14%
Simulated interest rate (change) 0.07% 0.46% 0.42 4.18 -2.00% 3.83%
Initial consumption 3590.88
Initial interest rate 4.31%
Initial forward rate 4.49%
Simulated correlation (of log diff.) -0.37

1993 Mean Std Dev Skewness Kurtosis Minimum Maximum
Simulated consumption 3713.42 12.93 0.00 2.99 3659.83 3765.38
Simulated cons. growth (gross) 1.0042 0.0035 0.00 2.99 0.99 1.02
Simulated interest rate 3.26% 0.33% 0.38 3.91 1.83% 5.49%
Simulated interest rate (change) 0.01% 0.33% 0.38 3.91 -1.42% 2.24%
Initial consumption 3698.03
Initial interest rate 3.25%
Initial forward rate 3.32%
Simulated correlation (of log diff.) -0.37

1994 Mean Std Dev Skewness Kurtosis Minimum Maximum
Simulated consumption 3793.82 13.19 0.00 3.03 3738.42 3847.09
Simulated cons. growth (gross) 1.0046 0.0035 0.00 3.03 0.99 1.02
Simulated interest rate 4.26% 0.41% 0.37 3.99 1.87% 7.55%
Simulated interest rate (change) 0.32% 0.41% 0.37 3.99 -2.06% 3.61%
Initial consumption 3776.36
Initial interest rate 3.94%
Initial forward rate 4.53%
Simulated correlation (of log diff.) -0.37

1995 Mean Std Dev Skewness Kurtosis Minimum Maximum
Simulated consumption 3850.00 13.40 0.00 2.98 3794.19 3910.22
Simulated cons. growth (gross) 1.0052 0.0035 0.00 2.98 0.99 1.02
Simulated interest rate 6.34% 0.41% 0.25 3.74 4.47% 8.96%
Simulated interest rate (change) 0.02% 0.41% 0.25 3.74 -1.84% 2.65%
Initial consumption 3830.16
Initial interest rate 6.31%
Initial forward rate 6.48%
Simulated correlation (of log diff.) -0.37



Table 4 (continued)
Summary statistics from simulation of consumption and interest rate processes

1996 Mean Std Dev Skewness Kurtosis Minimum Maximum
Simulated consumption 3926.26 13.69 0.03 2.99 3869.46 3979.59
Simulated cons. growth (gross) 1.0058 0.0035 0.03 2.99 0.99 1.02
Simulated interest rate 5.37% 0.34% 0.27 3.84 3.79% 7.82%
Simulated interest rate (change) -0.09% 0.34% 0.27 3.84 -1.67% 2.35%
Initial consumption 3903.66
Initial interest rate 5.46%
Initial forward rate 5.43%
Simulated correlation (of log diff.) -0.37

1997 Mean Std Dev Skewness Kurtosis Minimum Maximum
Simulated consumption 3979.50 13.88 0.01 3.04 3924.44 4038.64
Simulated cons. growth (gross) 1.0041 0.0035 0.01 3.04 0.99 1.02
Simulated interest rate 5.84% 0.25% 0.19 3.78 4.77% 7.23%
Simulated interest rate (change) 0.02% 0.25% 0.19 3.78 -1.05% 1.42%
Initial consumption 3963.44
Initial interest rate 5.81%
Initial forward rate 5.98%
Simulated correlation (of log diff.) -0.38

1998 Mean Std Dev Skewness Kurtosis Minimum Maximum
Simulated consumption 4122.50 14.34 0.03 2.99 4067.83 4180.14
Simulated cons. growth (gross) 1.0062 0.0035 0.03 2.99 0.99 1.02
Simulated interest rate 5.63% 0.24% 0.19 3.79 4.26% 7.33%
Simulated interest rate (change) -0.08% 0.24% 0.19 3.79 -1.44% 1.62%
Initial consumption 4097.28
Initial interest rate 5.71%
Initial forward rate 5.71%
Simulated correlation (of log diff.) -0.38

This table presents summary statistics for the simulated consumption and interest rate
processes using the joint model presented in Table 2. 50,000 simulation replications are used
per year.

Simulated consumption is the simulated quarterly consumption choice for the third quarter of
each year at the beginning of July, and consumption growth is the ratio of simulated
consumption and the second quarter actual consumption choice (initial consumption).

The simulated interest rate is the simulated interest rate on the first business day of July. The
simulated interest rate change is the difference between the simulated interest rate and LIBOR
on the first business day of April (initial interest rate). The initial forward rate is the implied three
month forward rate from the June Eurodollar futures contract on the first business day of April.
The simulated correlation is the Pearson correlation coefficient of the simulated consumption
and interest rate log differences.



Table 5
Eurodollar interest rate option data

Date
Implied June 
forward rate Strike rate

Option type (as 
an interest rate 
option)

Estimated 
option price

Original 
option price

Implied 
standard 
deviation

April-91 6.51% 5.75% PUT 0.0281 0.0200 19.37%
April-91 6.51% 6.00% PUT 0.0512 0.0400 17.46%
April-91 6.51% 6.25% PUT 0.0940 0.0800 15.57%
April-91 6.51% 6.50% PUT 0.1962 0.1800 15.67%
April-91 6.51% 6.75% CALL 0.1047 0.0900 15.38%
April-91 6.51% 7.00% CALL 0.0510 0.0400 15.74%
April-91 6.51% 7.25% CALL 0.0280 0.0200 16.91%
April-92 4.49% 3.75% PUT 0.0159 0.0100 24.50%
April-92 4.49% 4.00% PUT 0.0282 0.0200 20.49%
April-92 4.49% 4.25% PUT 0.0732 0.0600 19.12%
April-92 4.49% 4.50% CALL 0.1551 0.1400 17.96%
April-92 4.49% 4.75% CALL 0.0849 0.0700 20.31%
April-92 4.49% 5.00% CALL 0.0531 0.0400 23.30%
April-92 4.49% 5.25% CALL 0.0294 0.0200 24.70%
April-92 4.49% 5.50% CALL 0.0303 0.0200 29.98%
April-92 4.49% 5.75% CALL 0.0168 0.0100 30.35%
April-93 3.32% 3.00% PUT 0.0277 0.0200 20.51%
April-93 3.32% 3.25% PUT 0.0698 0.0600 15.43%
April-93 3.32% 3.50% CALL 0.0615 0.0500 19.48%
April-93 3.32% 3.75% CALL 0.0284 0.0200 22.53%
April-93 3.32% 4.00% CALL 0.0161 0.0100 25.95%
April-94 4.37% 4.00% PUT 0.0347 0.0200 18.43%
April-94 4.37% 4.25% PUT 0.0978 0.0800 17.51%
April-94 4.37% 4.50% CALL 0.1026 0.0800 18.04%
April-94 4.37% 4.75% CALL 0.0446 0.0250 18.88%
April-94 4.37% 5.00% CALL 0.0203 0.0150 20.24%
April-95 6.48% 6.00% PUT 0.0143 0.0150 11.36%
April-95 6.48% 6.25% PUT 0.0485 0.0400 10.51%
April-95 6.48% 6.50% CALL 0.1532 0.1400 12.72%
April-95 6.48% 6.75% CALL 0.0604 0.0500 12.21%
April-95 6.48% 7.00% CALL 0.0393 0.0300 14.95%
April-95 6.48% 7.50% CALL 0.0154 0.0100 18.42%
April-96 5.41% 4.75% PUT 0.0148 0.0100 17.89%
April-96 5.41% 5.00% PUT 0.0266 0.0200 14.51%
April-96 5.41% 5.25% PUT 0.0587 0.0500 11.56%
April-96 5.41% 5.50% CALL 0.0792 0.0700 10.98%
April-96 5.41% 5.75% CALL 0.0262 0.0200 11.88%
April-97 5.98% 5.75% PUT 0.0277 0.0200 8.99%
April-97 5.98% 6.00% CALL 0.0911 0.0800 8.50%
April-97 5.98% 6.25% CALL 0.0152 0.0150 7.78%
April-98 5.71% 5.50% PUT 0.0131 0.0150 6.71%
April-98 5.71% 5.63% PUT 0.0450 0.0450 6.82%
April-98 5.71% 5.75% CALL 0.0592 0.0550 7.02%
April-98 5.71% 5.88% CALL 0.0268 0.0250 7.63%
April-98 5.71% 6.00% CALL 0.0150 0.0150 8.60%

This table contains estimated European Eurodollar interest rate option prices (with beginning of July expiration) at the
end of the first business day of April from 1991 through 1998. These prices are extrapolated from the market closing
prices of June Eurodollar futures options with the same strike rate. Closing prices are from a database created by the
Chicago Mercantile Exchange and distributed by the Futures Industry Institute.

The specifics of the price estimation are as follows. The closing prices of June Eurodollar futures options are collected
on the first trading day of April each year. Options with volume less than 100 contracts are discarded. Implied standard
deviations are estimated by numerically inverting the Black (1976) futures options pricing formula with Barone-Adesi and
Whaley (1987) adjustment for the early exercise premium. The 3 month constant maturity treasury rate (as reported by
the Federal Reserve in the FRED database)  is used as the riskless rate (r), the time until expiration is measured as a
fraction of a year using calendar days (T-t), and the spot price is the June Eurodollar futures settlement price which is
converted to a forward rate (St) by taking the difference of 100 and the futures price. The strike rate (E) is the difference
between 100 and the Eurodollar futures option strike price. The type of a Eurodollar futures option call (put) as an
interest rate options is put (call).

The prices of out-of-the-money European Eurodollar interest rate options with beginning of July expiration are estimated
using the Black model and the following parameters: σi = implied standard deviation for the strike calculated as above,
the spot rate (S t) and riskless rate (r) as above, and time until expiration (T-t) is the fraction of a year until the first trading
day of July. The strike rate (E) is 100 minus the strike price of the original Eurodollar futures contract from which the
implied standard deviation was calculated, and the option type is selected so that all contracts are out-of-the-money.



Table 6
Pricing kernel estimation results

Utillity function

Risk aversion 
parameter: CPK 
estimation

Risk aversion 
parameter: 
Distribution-
free estimation

Standard 
deviation of 
pricing error

Standard 
error of 
standard 
deviation

Average pricing 
error T-statistic 
(puts)

Average pricing 
error T-statistic 
(calls)

Linear 0.0298 0.0031 -0.77 3.45
Log 0.0296 0.0031 -0.75 3.44
CRRA 193.2281 114.0054 0.0141 0.0015 1.22 2.12
CARA 0.0519 0.0307 0.0139 0.0015 1.22 2.08

Estimated annual rate of time preference
Year Linear Log CRRA CARA

1991 0.0638 0.0443 -2.7976 -2.7325
1992 0.0431 0.0273 -2.1133 -2.0931
1993 0.0325 0.0159 -2.2658 -2.2612
1994 0.0394 0.0210 -2.6127 -2.6427
1995 0.0631 0.0425 -3.0179 -3.0857
1996 0.0546 0.0316 -3.4945 -3.6280
1997 0.0581 0.0420 -2.1505 -2.2354
1998 0.0571 0.0326 -3.7806 -4.0758

This table contains the estimated pricing kernel parameters and two pricing kernel specification tests. CPK
pricing kernel parameters are estimated using a non-linear least squares regression of observed Eurodollar
option prices on estimated Eurodollar option prices. The option dataset is described in Table 5. An additional
condition in the estimation sets the the rate of time preference such that the riskless interest rate
(contemporaneous constant maturity three month treasury bill yield as reported in the Federal Reserve Board’s
FRED database) is replicated by the model. The second panel reports the annualized rate of time preference for
each model.

For comparison, pricing kernel parameters are also estimated using a distribution-free technique described in
section IV.d. of the paper. The moment condition used in this case is that expected quarterly risk-adjusted real
net returns for 1% and 5% out-of-the-money calls and puts with 90 days until expiration are equal to zero.
Estimation is accomplished by minimizing the squared error for the sample version of this equation.

The standard errors of the standard deviations are asymptotic standard errors for the normal case. The pricing
error T-statistic is the student’s-t statistic for the sample average of the proportional pricing errors [(market price
- model price) / model price] of out-of-the-money calls or puts using each model. T-statistics greater than 2 in
absolute value are indication that the pricing model provides biased estimates and that the pricing kernel is
misspecified. Positive t-statistics indicate the model is underpricing on average and negative t-statistics indicate
that the model is overpricing on average.



Figure 1
Quarterly consumption and interest rates
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This figure plots the time-series of quarterly per capita consumption (real seasonally adjusted)
by U.S. residents along with the 3 month Eurodollar rate (LIBOR) over the period from 1971:2
to 1998:2. The log-differences of these series are used to estimate the joint consumption and
interest rate process. The scales for each series are along opposite sides of the chart.



Figure 2
Consumption and interest rate innovation volatility
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Figure 2 plots the time-series of volatilities (annualized standard deviations) of the consumption and
interest rate innovations. The volatility models are described in Table 2.



Figure 3
June Eurodollar futures options 
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This figure plots implied volatilities against centered strike rates for June Eurodollar futures options at the
beginning of April from 1991 to 1994. Implied volatilities are calculated using the Barone-Adesi and Whaley
(1987) model using closing June Eurodollar futures options prices on the first business day of April. Implied
volatilities are reported as standard deviations in annualized percentage terms. The x-axis is defined as a
strike rate, i.e. 100 - Eurodollar futures option strike price, which is centered by subtracting the three month
implied forward rate on the first trading day of April (rounded to the nearest 25 basis points).



Figure 4
June Eurodollar futures options 

Implied volatility, April (1995 - 1998)
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This figure plots implied volatilities against centered strike rates for June Eurodollar futures options at the
beginning of April from 1995 to 1998. Implied volatilities are calculated using the Barone-Adesi and Whaley
(1987) model using closing June Eurodollar futures options prices on the first business day of April. Implied
volatilities are reported as standard deviations in annualized percentage terms. The x-axis is defined as a
strike rate, i.e. 100 - Eurodollar futures option strike price, which is centered by subtracting the three month
implied forward rate on the first trading day of April (rounded to the nearest 25 basis points).


