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Abstract

The problem of fair pricing of contingent claims is well understood in the

context of an arbitrage free, complete �nancial market, with perfect information.

But in the more realistic context of an incomplete market or with imperfect

information, the arbitrage approach does not enable us to obtain a unique fair

price for all contingent claims but only a fair pricing interval, which is known

to be too large to be of great interest.

We present here a new approach by exploiting partial conditions issued from

equilibrium analysis. The explicit use of market clearing conditions enables us

to obtain a unique preference-free admissible price.

On a practical point of view, this enables us to give a unique fair price to any

contingent claim. Moreover, on a theoretical point of view, this unique price

appears to be only dependent on the real economy, as opposed to the �nancial

one.
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1. Introduction

The problem of fair pricing of contingent claims is well understood in the context of an
arbitrage free, complete �nancial market. We know that in this context, there exists
a unique equivalent martingale measure and that all contingent claims are attainable.
The problem of fair pricing of contingent claims is then reduced to taking expected
values with respect to the unique equivalent martingale measure (see Harrison and
Kreps [1979]).
In the context of an incomplete market, there exist more than one equivalent mar-
tingale measure and we don't obtain a unique fair price for all contingent claims but
only a fair pricing interval which consists of all expected values with respect to the
equivalent martingale measures (Jouini-Kallal [1995]). This interval is known to be
too large to be of great interest (Cvitanic-Pham-Touzi [1997]).

Our problem here is the following: we consider a market in which there are a
certain number of productive assets, referred to as the primitive stocks, whose price
processes are supposed to be driven by a Brownian motion and we assume that the
number of sources of uncertainty are greater than the number of primitive stocks
available so that the primitive market consisting only of these primitive productive
assets is incomplete. The price processes are very general di�usion processes: in
particular, we don't assume that they are of Markovian type. In this context, the set
of state price densities (or of equivalent probability measures that make the productive
assets martingales) is very large and so is the fair pricing interval for any contingent
claim.
In addition to these productive assets, we consider purely �nancial assets; we assume
that they complete the market and that the full market is in equilibrium. Our goal
here is then to use equilibrium conditions to reduce the set of admissible state prices
(or of admissible equivalent martingale measures).
Our approach is the following: we consider the complete full market and we assume
that the agents of this economy can achieve optimal demands. For each agent, the
optimal trading-consumption strategy as well as the optimal terminal wealth can be
linked, through marginal utility, to the density of the unique equivalent martingale
measure. Moreover, we assume that our full market is in equilibrium, i.e., that both
the commodity and the �nancial markets clear: the aggregated optimal demand of
agents must equal the total supply available in the economy. As the purely �nancial
assets are in zero net supply, this brings out considerable restrictions on the possible
set of equivalent martingale measures and enables us to greatly reduce the interval
of admissible prices. For example, if we assume that the utility functions satisfy
some regularity assumptions, then the interval of admissible prices is reduced to a
single point. Moreover, if we assume that the dividend process only depends on the
productive asset's price, which is not too restrictive an assumption, then our unique
fair price is the price given by Föllmer and Schweizer [1991]. To be concise, we have
productive assets in positive net supply and purely �nancial assets in zero net supply,
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which complete the market and we show that the prices of these purely �nancial assets
are completely determined as long as we know the productive assets price processes
as well as their corresponding dividend processes.

On a practical point of view, these restrictions on the admissible state prices can
�rst and foremost be used for pricing issues in di�erent cases: �rstly, if we consider a
market consisting of the primitive and of the additional assets and if we want to �nd
a fair price for one of the additional assets, using as little information as possible, i.e.,
not using all the additional assets price processes; secondly, if we want to do the same
thing for any asset to be introduced on the market assuming that its introduction does
not a�ect existing productive assets prices, i.e., in such a way that allowing the agents
to trade in the new asset does not change the prices of the primitive assets; thirdly, if
we consider an incomplete market consisting of the primitive assets (or of the primitive
assets and of a few �nancial assets, not numerous enough to complete the market) and
if we want to �nd a fair price for nonredundant contingent claims, assuming that we
can introduce enough �nancial assets to complete the market without modifying the
primitive assets prices and that this full completed market should be in equilibrium.
Besides, it is common in the option pricing econometric literature to assume that
assets prices follow a speci�c type of di�usion process; the relations obtained through
our analysis between the underlying securities price processes and the contingent
claims price processes have testable consequences and enable to check the validity of
the models considered.

On a theoretical point of view, it is interesting to notice that the unique fair price
we �nd only depends on the real economy, as opposed to the �nancial one.

Our model is not similar to the Black and Scholes model as their market is complete
without the additional �nancial assets. In their model, pricing problems are solved
without any equilibrium consideration.
Some authors have examined whether or not a certain type of di�usion price processes
can be derived from an equilibrium. While we try to reduce the set of admissible state
prices, they consider speci�c pricing models and want to �nd an economic justi�ca-
tion for them, i.e., to �nd utility functions for which there is an equilibrium in the
considered models. Such a problem has been raised by Bick [1987] for the Black and
Scholes model and by Bick [1990] and He and Leland [1993] for a Markovian di�usion
model in a complete market framework, where the unique risky asset is productive
and available in one unit supply. They characterize the risk premium as the unique
solution of a nonlinear partial di�erential equation, and they relate it to the shape of
the representative agent utility function. In Pham-Touzi [1996], a speci�c stochastic
volatility model, which is a particular case of a Markov setting, is considered; the same
main �tools� as in this paper, to wit utility maximization (although it is considered in
the framework of the representative agent's theory) and equilibrium characterization
are used; they apply their results to provide an economic foundation to the Hull and
White model and to the minimal martingale measure. Although it was not obvious
from the beginning because the goal and the settings are quite di�erent, our approach
is very close to theirs. As far as our problem is concerned, they �nd that the minimal
martingale measure of Föllmer and Schweizer is compatible with an equilibrium in
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their model if and only if the dividend process is an a�ne function of the productive
asset's price process. We show in this paper that there is a unique admissible price,
which appears to be the minimal martingale measure if the dividend process is a
regular function of the productive asset's price process.
In Bizid, Jouini and Koehl [1997], the same problem as ours is solved in discrete �nite
time and with a �nite number of states of the world at each date. They show that,
for a �xed node, the Arrow-Debreu prices associated to the possible successors of the
considered node are decreasing with respect to the price of this asset.

This paper is organized as follows: in section 2, we introduce our market model; in
section 3, we characterize the equivalent martingale measures; in section 4, we consider
how economic agents actually trade in this market. In section 5, we are interested in
utility maximization and optimal demand for a single agent. In section 6, we de�ne
what we call equilibrium and we use the preceding sections to obtain necessary con-
ditions for equilibrium and provide the main results. Section 7 is made of extensions
and remarks and studies more speci�cally su�cient conditions for equilibrium as well
as the case of several productive assets.
All proofs are in the appendix.

We introduce a few notations; all vectors are column vectors and transposition is
denoted by the superscript �: As usual, 1d denotes the d-dimensional vector whose
every component is one. If Z =

�
Z1; :::; Zn

�
denotes a vector in Rn; then diagZ

denotes the (n� n) diagonal matrix whose diagonal entries are the components of Z:

We denote by k Z k2 the nonnegative real number Pn
i=1

�
Zi
�2
.

Two probability measures P and Q, de�ned on the same measurable space (
; F )
are said to be equivalent if they agree on the null sets. Let (
; F; P ) be a �xed
probability space and T denote the interval [0; T ]. Then L2

d (T) denotes the set of
(Ft)t2T-progressively measurable, Rd-valued processes f	t; t 2 Tg such that

Z T

0

k 	t k2 dt <1 a:s: P:

For any Rd-valued process 	 = f	t; t 2 Tg in L2
d (T) ; let the real-valued process

E (	) = fEt (	) ; t 2 Tg denote the exponential local martingale given for each t in T
by

Et (	) = exp

�Z t

0

(	s)
� dWs � 1=2

Z t

0

k 	s k2 ds
�
:

For a real-valued process u = fut; t 2 Tg de�ned on a probability space (
; F; P ) ; we
denote by u� =

�
u�t ; t 2 T

	
the process de�ned by u�t = �min (0; ut) for all t in T:

As usual, a function F : T�R! R is said to be of class Cm;n if the m-th derivative of
F (�; x) : T! R and the n-th derivative of F (t; �) : R! R exist and are continuous.
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2. The market model

We �x a �nite-time horizon T
M

= [0; T ], on which we are going to treat our problem:
T corresponds to the terminal date for all economic activity under consideration. All
processes that we shall encounter in this paper are de�ned on T.
We consider a �primitive� market consisting of one bond and one single productive
asset. We shall refer to these two assets as the primitive assets. We will consider in
section 7 the case of a market in which there are more than just one productive asset.
As we have seen in the introduction, we assume that our full market consists not only
of these primitive assets but also of additional �purely �nancial� assets �completing�
the market. More precisely:

2.1. Conditions on the primitive market

The primitive market model is the same as in Karatzas [1989] taking m = 1, except
that we consider here dividends paying assets.
We adopt a model for the primitive market consisting of one bond with price at time
t denoted by S0

t such that
dS0

t = S0
t rtdt; S0

0 = 1

and one stock (or one productive risky asset) with price per share at time t denoted
by St satisfying the equation

dSt = St [(bt � �t) dt+ �tdWt] ; S0 = 1: (2.1)

Here, W =
n�
W 1

t ; :::;W
d
t

��
; t 2 T

o
is a d-dimensional Brownian motion on a proba-

bility space (
; F; P ) and we let (Ft)t2T denote the P -augmentation of the natural
�ltration generated by W . We assume that the sample paths ofW completely specify
all the distinguishable events, which mathematically entails FT = F . Since standard
Brownian motions start from zero with probability one, F0 is trivial.
It is assumed throughout that d � 1; i.e., the number of sources of uncertainty is
larger than the number of stocks.

Assumption 1 The real-valued interest rate process frt; t 2 Tg, the real-valued

process fbt; t 2 Tg, the real-valued dividend yield process paid by the stock f�t; t 2 Tg
as well as the volatility (1� d)-matrix-valued process

�
�t =

�
�1t ; :::; �

d
t

�
; t 2 T	 are

taken to be progressively measurable with respect to (Ft)t2T and bounded uniformly in

(t; !) in T�
:

Under this assumption, we know that equation (2:1) admits a unique real-valued,

(Ft)t2T-adapted, continuous solution fSt; t 2 Tg, satisfying E
�
sup
t2T

St
2

�
<1 (see for

instance Karatzas-Shreve [1988]).

Assumption 2 For all t in T; the volatility matrix �t has full rank 1.

This amounts to assuming that, for all t in T, P
h
�jt = 0 for all j in f1; :::; dg

i
= 0. A

d-dimensional process � = f�t; t 2 Tg that we shall call in a natural way the relative
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risk process can then be de�ned by :

�t
4
=

"
(bt � rt) =

dX
i=1

(�it)
2

#
��t a:s: P; 0 � t � T:

With the above assumptions, � is an (Ft)t2T-progressively measurable process and we
shall make in the remainder of the paper the following

Assumption 3 The process � is uniformly bounded.

Let � = f�t; t 2 Tg denote the process given by �t
M

= 1=S0
t = exp� R t

0
rsds: We shall

also have the occasion to use the discounted price process ~S =
n
~St; t 2 T

o
de�ned by

~St
4
= St exp

R t
0
(�s � rs) ds for all t in T. Using Itô's lemma, we easily get that ~S is

the unique solution of the following stochastic di�erential equation:

d ~St = ~St [(bt � rt) dt+ �tdWt] = ~St�t [�tdt+ dWt] ; ~S0 = 1:

2.2. Conditions on the purely �nancial assets

In this section, we consider a su�ciently large number of purely �nancial assets (or
contingent claims), i.e., assets which are in zero net supply, in order to complete
the market. It is easy to show that the minimum number of such assets is (d� 1).
Moreover, if there are more assets and if the market is supposed to be complete,
we can combine them in such a way as to obtain (d� 1) assets which complete the
market. In the next, we will assume that there are exactly (d� 1) additional purely
�nancial assets. Their prices Ci

t for i in f1; :::; d� 1g are driven by the d-dimensional
Brownian motionW and we assume that they �complete� the market. More precisely,
we assume that the prices Ci

t are governed by

dCi
t = Ci

t

�
aitdt+ �itdWt

�
i = 1; :::; (d� 1),

where the coe�cients satisfy the following regularity conditions.

Assumption 4 The process

�
�t =

h�
�ij
�
t

i
1�i�d�1
1�j�d

; t 2 T
�
is an (Ft)t2T-progressively

measurable, uniformly bounded, (d� 1)�d matrix-valued process such that for all t in

T; the (d� d)-augmented volatility matrix ��t
M

=
�
�t
�t

�
admits an inverse1. The norms of

(��t)
�1

and of (���t )
�1

are uniformly bounded2. The process
n
at =

�
ait
�
1�i�d�1

; t 2 T
o

is an (Ft)t2T- progressively measurable, uniformly bounded (d� 1)-dimensional vector

process.

Let �b
M

=
�
b
a

�
denote the d-dimensional augmented stock appreciation vector. A d-

dimensional process �� =
�
��t; t 2 T

	
can then be de�ned by :

��t
4
= (��t)

�1 ���bt � rt1d
��

a:s: P; 0 � t � T:

1For example a matrix-valued process f�t; t 2 Tg such that for all t, the rows of �t, thought of as

vectors in Rd are orthonormal and in the kernel of �t; i.e., �t�
�

t
= 0, like in Karatzas et al. [1991].

2We could for instance impose for all t in T a nondegeneracy condition on the matrix ��t���

t
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With the above assumptions, �� is (Ft)t2T-progressively measurable and uniformly
bounded.

So our full market consists of (d+ 1) assets: the bond, the primitive stock and (d� 1)
additional purely �nancial assets. We shall denote by Z the d-dimensional risky assets

price process given by Z
M

=
�
S;C1; :::; Cd�1

�
and by ~Z the discounted price process

~Z
M

=
�
~S;C1=S0; :::; Cd�1=S0

�
. Notice that assets prices can �uctuate in an almost

arbitrary not necessarily Markovian fashion.

3. Equivalent martingale measures

Now that we have described both our primitive and our full markets, we can consider
the problem of the existence and of the characterization of equivalent probability
measures on (
; F; P ) that make the discounted price processes ~S in the primitive
market and ~Z in the full market martingales. We will see in section 6 that these
probability measures are of great use for our problem. Besides, we already know that
the fair price of any contingent claim, whose �nal payo� is in the form h (ST ) for some
function h, belongs to the following interval�

inf
Q2MS

EQ [�Th (ST )] ; sup
Q2MS

EQ [�Th (ST )]

�

whereMS denotes the set of all equivalent probability measures that make the process
~S a martingale (see Harrison-Kreps [1979], El Karoui-Quenez [1995] or Jouini-Kallal
[1995]).

3.1. In the primitive market

With the notations of section 2, we still consider the �ltered probability space
�

; F; (Ft)t2T ; P

�
.

De�nition 3.1. A probability measure Q de�ned on (
; F; P ) is an S-equivalent
martingale probability measure for (Ft)t2T if it satis�es :

1. The probability measures P and Q are equivalent:

2. The process ~S is a Q-martingale for (Ft)t2T.

Using Itô's lemma and the fact that the dividend yield process is uniformly bounded,
notice that an S-equivalent martingale probability measure is in fact an equivalent
probability measure that makes the discounted �gain� process

G =

�
St
S0
t

+

Z t

0

exp

�Z s

0

�rudu
�
�sSsds; t 2 T

�

a martingale; and we know, since the fundamental theorem of asset pricing, that the
existence of such a probability measure is essentially equivalent to the assumption
of no arbitrage (see, among others, Harrison-Kreps [1979], Harrison-Pliska [1981],
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Delbaen-Schachermayer [1984] and see also the end of section 4.1). Under such a
probability measure, the expected return of the stock is equal to the (short term)
interest rate minus the dividend yield.
Let M2

d (T) denote the set of R
d-valued processes � = f�t; t 2 Tg in L2

d (T) such that

E [ET (�)]
M

= E

"
exp

(Z T

0

(�s)
� dWs � 1=2

Z T

0

k �s k2 ds
)#

= 1:

Notice that M2
d (T) corresponds to the set of processes f�t; t 2 Tg in L2

d (T) such that
the exponential local martingale

E (�) =
�
exp

�Z t

0

(�s)
� dWs � 1=2

Z t

0

k �s k2 ds
�
; t 2 T

�

is a true martingale: as a matter of fact, E (�) being a nonnegative local martingale,
we can use Fatou's lemma and get that this process is a supermartingale; therefore,
it is a martingale if and only if its expected value is a constant for all t in T:
We introduce the following set

K� M

=
n
� 2 L2

d (T) such that 8t; �t�t = 0 and � ��
M

= � (� + �) 2M2
d (T)

o
:

Notice that K� is never empty because the null process n = fnt; t 2 Tg de�ned by
nt = 0 for all t always belongs to K�. Indeed, the �rst two conditions: n in L2

d (T)
and �tnt = 0 for all t are trivially satis�ed and as � is assumed to be uniformly
bounded, the process E (��) is a martingale -see, for instance, the Novikov condition
in Karatzas and Shreve [1988] p. 199.

We now characterize all S-equivalent martingale probability measures:

Lemma 3.2. Let Q be a probability measure de�ned on (
; F; P ). The following are
equivalent :

1. The probability measure Q is an S-equivalent martingale probability measure

for (Ft)t2T.

2. The probability measure Q is such that dQ=dP = ET (���) for some � in K�:

We shall denote by MS the set of S-equivalent martingale probability measures
for (Ft)t2T. As we have seen, the null process n always belongs to K� so MS is
never reduced to the empty set and there always exists at least one S�equivalent
martingale probability measure denoted by P 0 and given by dP 0=dP = ET (��); it is
the so-called minimal martingale-measure of Föllmer-Schweizer [1991].
There exists a unique martingale probability measure if and only if we have K� = f0g
which is the case if and only if d = 1. In that case, the unique S-equivalent martingale
probability measure is the one given by Föllmer and Schweizer [1991] :More generally,
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MS can be considered as indexed by K�: for each � in K�; we shall denote by P �

the corresponding martingale measure, i.e., such that

dP �=dP = exp

(Z T

0

� (��s )
�
dWs � 1=2

Z T

0

k �s k2 + k �s k2 ds
)

and by M� M

= E [��� ] the corresponding process and then we have

MS= fP � ; � 2 K�g 6= ;:

Notice that for each S�equivalent martingale probability measure P � ; we have d ~St =
~St
�
�tdW

P�

t

�
.

3.2. In the full market

We are interested in what we shall call Z�equivalent martingale probability measures,
i.e., equivalent probability measures Q that make the full process

~Z
M

=
�
~S;C1=S0; :::; Cd�1=S0

�
a Q-martingale for (Ft)t2T : Notice that any Z�equivalent martingale probability
measure is in an obvious way an S-equivalent martingale probability measure. Fol-
lowing exactly the same approach as in the preceding section for d = 1, we show the
following result:

Lemma 3.3. There exists a unique equivalent probability measure �P de�ned on

(
; F; P ) that makes the full process ~Z a martingale for (Ft)t2T. It is given by

d �P=dP = ET
����� = exp

(
�
Z T

0

�
��s
��
dWs � 1=2

Z T

0

k ��s k2 ds
)
.

We then have d ~Zt = diag ~Zt

h
��tdW

�P
t

i
where

n
W

�P
t ; t 2 T

o
is the �P�Brownian motion

for (Ft)t2T de�ned by W
�P
t

M

= Wt +
R t
0
��sds for all t in T: We shall in the remainder of

the paper denote the martingale process
n
E
h
d �P
dP

j Ft
i
; t 2 T

o
by �M =

�
�Mt; t 2 T

	
.

As �P belongs to MS, it can be written in the form P �� for �� = �� � � satisfying

�t��t = �t
�
��t � �t

�
= (1 0 ...0)

�
�bt � rt1d

�� (bt � rt) = 0:

Notice also that �P not only depends on the productive asset price process but also
on the �nancial assets price processes.

4. Trading strategies

Let us now consider an economic agent, who invests in the full market.
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4.1. Wealth process and admissible strategies

We shall denote respectively by �St and �C
i

t the amounts that the agent invests at
time t in the stock and in the ith contingent claim respectively, by ct the rate at which

he withdraws funds for consumption and by X
�S;

�
�C

i
�
i
;c

t the corresponding wealth of

this agent at time t. We allow here any �St or �C
i

t to become negative, which amounts
to allowing the agent to sell short any risky asset. Similarly, the amount of money

�S
0

t = X
�S;

�
�C

1
;:::;�C

d�1
�
;c

t � �St �
Pd�1

i=1 �
Ci

t invested in the bond at time t may also
become negative, which is to be interpreted as borrowing at the interest rate rt: More
precisely:

De�nition 4.1. A trading strategy or a portfolio process

� =
n�

�St ; �
C1

t ; :::; �C
d�1

t

��
; t 2 T

o
is an element of L2

d (T).

De�nition 4.2. A consumption strategy or a consumption rate process

c = fct; t 2 Tg

is a nonnegative, progressively measurable, real-valued process that satis�es
R T
0 ctdt <

1 a:s: P .

Assuming that the trading-consumption strategy is self �nancing, i.e., that at each
time t, sales and dividends must �nance purchases and consumption, we obtain, with
the above interpretations and de�nitions, for each t in T, the following equation for
the wealth of the agent

dX�;c
t =

�S
0

t

S0
t

dS0
t +

�St
St

dSt +

d�1X
i=1

�C
i

t

Ci
t

dCi
t

�ctdt+ �St
St

�tStdt: (4.1)

where the terms on the right-hand side of the equation account respectively for capital
gains or losses from the productive asset held, capital gains or losses from �nancial
assets held, the decrease in wealth due to consumption and the increase in wealth due
to dividends paid by the productive asset. It is easy to see that, with the assumptions
made on the trading and consumption strategies, all quantities are well de�ned. Using
what has been done in the preceding section, the dynamics of the wealth process can
be rewritten

dX�;c
t =

"
X�;c
t � �St �

d�1X
i=1

�C
i

t

#
rtdt+ �St [(bt � �t) dt+ �tdWt]
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+

d�1X
i=1

�C
i

t

�
aitdt+ �itdWt

�� ctdt+
�St
St

�tStdt

= [rtX
�;c
t � ct] dt+ (�t)

� ��bt � rt1d
�
dt+ (�t)

�
��tdWt

= [rtX
�;c
t � ct] dt+ (�t)

� ��tdW
�P
t :

where, as above, W
�P
t

M

= Wt +
R t
0
��sds is a �P -Brownian motion. The unique solution

of this equation with initial wealth X�;c
0 = x � 0 is denoted by fXx;�;c

t ; t 2 Tg and is
easily seen to be given for all t in T by

�tX
x;�;c
t = x�

Z t

0

�scsds+

Z t

0

�s (�s)
�
��sdW

�P
s : (4.2)

We shall now single out those pairs (�; c) for which the investor avoids negative
wealth by de�ning admissible strategies:

De�nition 4.3. A pair (�; c) of portfolio and consumption rate processes is called

admissible for the initial capital x � 0 if the unique corresponding wealth process

fXx;�;c
t ; t 2 Tg given by equation (4:2) above satis�es

Xx;�;c
t � 0 for all t 2 T: (4.3)

The class of such pairs is denoted by A (x). Notice that we don't need the assumption

that � satis�es E
�P
hR T

0
k�sk2 ds

i
< 1, which is often found in the literature and

implies according to (4:2) that the process

Y
M

=

�
�tX

x;�;c
t +

Z t

0

�scsds; t 2 T
�

consisting of current discounted wealth plus total discounted consumption is a square
integrable �P -martingale. One may note the requirement in (4:3) that wealth is always
nonnegative which makes budget feasibility somewhat more restrictive than the usual
notion. We impose a no-bankruptcy condition not only at terminal time but at each
time t in T, i.e., Xt � 0 for all t in T, which amounts to saying that at each time t, the
investor must be able to cover his debts -see e.g. Karatzas-Lehoczky-Shreve [1987] or
Du�e [1994] where the same assumption is made. It is technically useful as it enables
us to apply Fatou's lemma in equation (4:2) and get that the above mentioned process

Y
M

=

�
�tX

x;�;c
t +

Z t

0

�scsds; t 2 T
�

(4.4)

consisting of current discounted wealth plus total discounted consumption is a �P -
supermartingale. We then get the inequality

E
�P

�
�tX

x;�;c
t +

Z t

0

�scsds

�
� x (4.5)
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which can be interpreted as a budget constraint: the expected total value of current
wealth and consumption-to-date, both de�ated to t = 0, does not exceed the initial
capital.

If we consider an economic agent who only invests in the primitive market, all de-
�nitions and interpretations remain the same, provided we adapt them in a natu-
ral way to the primitive market: more precisely, a trading strategy is an element

� =
n�
�St
��

; t 2 T
o
of L2

1 (T); a consumption strategy is a nonnegative, progressively

measurable, real-valued process c = fct; t 2 Tg that satis�es
R T
0 ctdt < 1 a:s: P .

The wealth process corresponding to a trading-consumption strategy (�; c) is given
for all t in T by

�tX
x;�;c
t = x�

Z t

0

�scsds+

Z t

0

�s (�s)
�
�sdW

P 0

s : (4.6)

Finally, a pair (�; c) of trading and consumption strategies is called admissible for
the initial capital x � 0 if the unique corresponding wealth process fXx;�;c

t ; t 2 Tg
satis�es Xx;�;c

t � 0 for all t 2 T:

Notice that both our full market model and our primitive market model exclude
arbitrage opportunities; an arbitrage opportunity is an admissible plan that yields
through some combination of buying and selling a positive gain in some circumstances
without a countervailing threat of loss in other circumstances or equivalently in our
setting, a trading strategy that achieves with zero initial capital an amount of terminal
wealth which is almost surely nonnegative and positive with positive probability; so
here, an arbitrage opportunity consists of a pair (�; c) of portfolio and consumption
rate processes such that (�; c) is in A (0) and such that the corresponding wealth
process with initial capital x = 0 is almost surely nonnull at terminal time. In both
cases (full and primitive markets), the existence of at least one equivalent martingale
probability measure (for ~Z in the �rst case and for ~S in the second case) rules out such
opportunities: indeed, in both cases, as we have seen with equation (4:5), the wealth
at initial time is greater than the expected value of the discounted wealth at terminal
time: the discount process being positive and the wealth process being nonnegative,
it is then impossible, starting from the initial capital x = 0 to reach a nonnull wealth
at terminal time.

4.2. Achievable consumption and wealth processes

For every given real number x � 0; denote by C (x) the class of consumption rate

processes c which satisfy E
�P
hR T

0 �scsds
i
� x and by L (x) the class of nonnegative,

F -measurable random variables B which satisfy E
�P [�TB] � x.

We have seen with equation (4:5) that if (�; c) is in A (x), then c is in C (x) and XT

is in L (x). We shall now study to which extent the �opposite implications� are true,
i.e., for every c in C (x), does there exist a trading strategy � such that (�; c) is in

12



A (x); for every B in L (x), does there exist (�; c) in A (x) such that Xx;�;c
T = B and

for every pair (c; B) in C (x)� L (x) satisfying

E
�P

�
�TB +

Z t

0

�scsds

�
� x,

does there exist a trading strategy � such that (�; c) is in A (x) and Xx;�;c
T = B:

Achievable consumption processes

Given an initial wealth x > 0, we want to know which consumption processes an
investor can achieve and we give a positive answer to the �rst question just raised.

Proposition 4.4. 1. For every c in C (x), there exists a portfolio process � such

that (�; c) belongs to A (x) :

2. For every c in D (x)
M

=
n
c 2 C (x) ;E

�P
hR T

0
�scsds

i
= x

o
, the preceding � is

unique, the corresponding wealth process satis�es Xx;�;c
T = 0 and the process

M given in (4:4) is a �P -martingale.

Achievable terminal wealth and completeness issues

We shall see now that the primitive market in the case d = 1 as well as the full
market enable agents to hedge against all risk.

De�nition 4.5. A contingent claim is a �nancial instrument consisting of a payment

B at maturity, where B is a nonnegative, FT -measurable random variable satisfying

E [B�] <1 for some � > 1.

We shall denote any contingent claim by its payment B. Using the boundedness of
the processes ��, � and r as well as Hölder's inequality, it is not hard to see that any
contingent claim B satis�es E

�P [B�T ] <1 as well as EP 0

[B�T ] <1.

De�nition 4.6. The market is complete if, for all contingent claim B; there exist a
trading strategy � and an initial capital x � 0 such that (�; 0) is in A (x) and the

terminal value of the corresponding wealth process is equal to B; i.e., Xx;�;0
T = B:

We say that the full market -resp. the primitive market- is complete if the conditions
of the de�nition are satis�ed for a trading strategy in the form � =

�
�S ; �C1 ; :::; �Cd�1

�
-resp. in the form � =

�
�S
�
- and for a wealth process satisfying equation (4:2) -resp.

equation (4:6).

We can now prove the following

Theorem 4.7. 1. The primitive market is complete if and only if d = 1:

2. The full market is complete.

Following exactly the same approach, we can characterize the levels of wealth attain-
able by an initial capital x � 0:

13



Proposition 4.8. Given an initial wealth x � 0;

1. For every B in L (x) ; there exists a pair (�; c) in A (x) such that the correspond-

ing wealth process Xx;�;c satis�es Xx;�;c
T = B almost surely.

2. For any B in M (x)
M

=
n
B 2 L (x) ;E

�P [�TB] = x
o
, the pair (�; c) in A (x)

above is unique and c � 0; moreover, the corresponding wealth process is given

by �tX
x;�;0
t = E

�P [�TB j Ft] :
Achievable pairs of terminal wealth and consumption processes

Let A denote the set of pairs (c;X) where c is an adapted nonnegative consumption
rate process and X is a nonnegative FT -measurable random variable describing termi-
nal wealth; we want to know which pairs (c;X) in A an investor can achieve starting
with an initial capital x > 0 and following an admissible strategy:

Proposition 4.9. If a pair (c;X) in A is such that E
�P
hR T

0 �scsds+ �TX
i
= x, then

there exists a trading strategy � such that (�; c) belongs to A (x) and Xx;�;c
T = X .

We are now in a position to answer the last question raised at the beginning of
the section:

Corollary 4.10. For any pair (c;X) in A such that E
�P
hR T

0 �scsds+ �TX
i
< 1,

there exist an initial wealth x > 0 and a trading strategy � such that (�; c) belongs
to A (x) and Xx;�;c

T = X .

5. Optimal demand in the full market

We still consider an economic agent, who invests in the so-called full market. We
assume that his preferences are represented by a utility function for consumption
and terminal wealth. The problem is the following: how should this agent choose at
every time his portfolio and his consumption rate processes from among admissible
pairs in order to obtain a maximum expected utility from both consumption over the
time-interval T and terminal wealth.
More precisely, the agent has a utility function U : A! R given by

U (c;X) = E

"Z T

0

u (t; ct) dt+ V (X)

#

where

� V : R+ ! R is strictly increasing and concave;

� u : T� R+ ! R is continuous and, for each t in T, u (t; �) : R+ ! R is strictly
increasing and concave;

� V is strictly concave or, for each t in T, u (t; �) is strictly concave.
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We assume that the agent is endowed with an initial capital x > 0 and that there is
no exogenous endowment during the trading period T. We now have the problem for
each initial wealth x,

sup
(�;c)2A(x)

U (c;Xx;�;c
T ) .

Using proposition 4:9 and the strict monotonicity of either or both of V and fu (t; �) ; t 2 Tg,
we get that the agent's optimization problem is equivalent to

sup
(c;X)2A

U (c;X)

subject to E
�P

"Z T

0

�tctdt+ �TX

#
� x.

A �rst step in the characterization of optimal pairs in A is given by the following
result.

Proposition 5.1. A pair (c�; X�) in A is optimal for the agent if and only if

E

"Z T

0

�tMtc
�
t dt+ �TMTX

�
#
= x

and there is a constant 
� > 0 such that (c�; X�) solves

sup
(c;X)2A

E

"Z T

0

u (t; ct)� 
��tMtctdt+ V (X)� 
��TMTX

#
. (5.1)

We can be a little more systematic about the properties of U and V in order to
characterize optimal pairs.
Assumption A: The function V is C1on (0;1), strictly concave and satis�es Inada

conditions3. For all t 2 T; u (t; �) is C1on (0;1), strictly concave and satis�es Inada

conditions.

Under Assumption A, we shall denote by uc (t; �) the derivative of u (t; �) and by
Iu (t; �) the inverse function of uc (t; �). Then
Proposition 5.2. Under Assumption A, a pair (c�; X�) in A is optimal for the agent

if and only if there exists a constant 
� > 0 such that

�t
�Mt = 
�uc (t; c�t ) 0 � t � T a:s: P (5.2)

�T �MT = 
�V 0 (X�) (5.3)

E

"Z T

0

�t �Mtc
�
t dt+ �T �MTX

�
#
= x: (5.4)

3A strictly concave increasing function F : R+ ! R that is C1 on (0;1) satis�es Inada conditions

if infx F 0 (x) = 0 and supx F
0 (x) = +1. If F satis�es these Inada conditions, then the inverse IF

of F 0 is well de�ned as a strictly decreasing continuous function on (0;1) whose image is (0;1).
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Now that we have characterized the optimal pairs (c�; X�) in A, we can turn to
multi-agent equilibrium considerations.

6. Equilibrium and compatible state price densities

We have so far considered a single economic agent, trading in the full market. We
shall now assume that our economy consists of a �nite number n of agents, who all
have utility functions Uj : A! R given by

Uj (c;X) = E

"Z T

0

uj (t; ct) dt+ Vj (X)

#
for j = 1; :::; n

where uj and Vj satisfy the same conditions as u and V at the beginning of section 5.
Each agent j has an initial endowment xj and tries to maximize his utility Uj (c;X)
from both consumption over the time-interval T and terminal wealth. So the optimal
demand (cj)

�
of each agent j in the consumption commodity as well as his optimal

portfolio choice (�j)
�
are determined by the optimization problem studied in the

preceding section
sup

(�;c)2A(xj)
Uj
�
c;X

xj ;�;c
T

�
.

Besides, the total supply in the economy at time t consists of one unit of the productive
asset St and of the dividend paid by the stock Dt: In equilibrium, the aggregated
optimal demands of the agents must equal the total supply available.
More precisely, an equilibrium consists in price processes S0; S; C1; :::; Cd�1 and trading-

consumption choices

�
(��j )

S ;
h
(��j )

Ci
i
i�d�1

; c�j

�
1�j�n

which are optimal for the agents

and such that for all t in T, the following market clearing conditions hold almost surely:

nX
j=1

�
c�j
�
t
= Dt

nX
j=1

(��j )
S
t = St

nX
j=1

(��j )
Ci

t = 0 1 � i � (d� 1)

nX
j=1

X
��j ;c

�

j

t = St

where the last relation follows from the equilibrium condition on the amount invested

in the bond:
P

j(�
�
j )
S0

t =
P

j X
��j ;c

�

j

t �Pj(�
�
j )
S
t �

P
j

Pd�1
i=1 (�

�
j )
Ci

t = 0.
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As described in the introduction, our problem consists in �nding a fair price for
contingent claims using as little information as possible; more precisely, we want to
know if it is possible to �nd a fair pricing interval, which is not too large, and that
only uses information on the productive asset's price process.

As implied by the next lemma and mentioned in the introduction, by only using the
assumption of no arbitrage, our problem is solved for any contingent claim in the case
d = 1 and for contingent claims B, which are redundant with respect to the primitive
market in the case d > 1.

De�nition 6.1. We say that a contingent claim B is redundant -with respect to

the primitive market- if there exist a nonnegative initial capital x and an admissible

trading-consumption strategy (�; 0) in A (x) such that the corresponding discounted

wealth process is a P 0-martingale and has a terminal value equal to the discounted

contingent claim, i.e., Xx;�;0
T = B:

Notice that if the trading strategy � is in the form � =
�
�S ; 0; :::; 0

�
then the

corresponding wealth process is in the form

dXx;�;0
t = [rtXt] dt+

�
�St
��
�tdW

P 0

t

so that the conditionEP 0
hR T

0



�Ss 

2 dsi <1 ensures that �Xx;�;0 is a P 0-martingale.

Lemma 6.2. Let B be a given contingent claim.

1. If d = 1, then the unique fair price for B is equal to EP 0

[�TB].

2. If d > 1 and if B is redundant then its unique fair price is also equal to

EP 0

[�TB].

Notice that P 0 only depends on the productive asset's price process so that in
both cases the unique fair price for any contingent claim B is perfectly determined
without any knowledge about the �nancial assets price processes.

Assume now that the contingent claim B is nonredundant (with respect to the primi-
tive market); following the same approach as above in the case d = 1, its unique fair
price is E

�P [�TB]; the problem is that, as we have noticed at the end of section 3.2,
we need to know all the additional purely �nancial assets price processes in order
to compute this price, which is not supposed to be the case here. As the equivalent
probability measure �P belongs to the setMS of all S-equivalent martingale measures,
we know that this fair price lies in the interval consisting of the expected values of
the discounted contingent claim with respect to all S-equivalent martingale measures.
But this interval has been shown to be too large (Cvitanic-Pham-Touzi [1997]). Our
purpose here is to �nd prices or equivalently S-equivalent martingale measures that
are compatible with what we have called equilibrium and to restrict this way the fair
pricing interval. In the remainder of the paper, a fair price will denote a price that is
compatible with both equilibrium and the assumption of no arbitrage.
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6.1. A necessary condition for equilibrium

We have seen in section 3 that as �P belongs toMS, we can write it in the form P �� for
some �� inK�. We shall here suppose that there is an equilibrium and, in order to grab
more information on ��, deduce necessary conditions that the process fM ��

t ; t 2 Tgmust
satisfy. We emphasize the fact that we are in this section only interested in necessary
conditions for equilibrium; we shall consider su�cient conditions for equilibrium in
section 7.
We assume that the agents' utility functions satisfy Assumption A of section 5.

As there is an equilibrium, each agent j must achieve an optimal consumption rate
process c�j as well as an optimal terminal wealth X�

j . According to section 5, this
implies that for all j = 1; :::n, there exists a positive constant 
�j > 0 such that

�tM
��
t = 
�j (uj)c

h
t;
�
c�j
�
t

i
0 � t � T a:s: P (6.1)

or �
c�j
�
t
= Iuj

 
t;

1


�j
�tM

��
t

!
0 � t � T a:s: P .

On the other hand, as there is an equilibrium, markets must clear. As we have seen
at the beginning of this section, this implies that

nX
j=1

�
c�j
�
t
= Dt:

So, with the notations introduced in the preceding sections, we get the following
lemma, whose proof is immediate.

Lemma 6.3. A necessary condition for an equilibrium to be reached in our model is

that there exist positive constants 
�j , j = 1; :::n, such that

nX
j=1

Iuj

 
t;

1


�j
�tM

��
t

!
= Dt:

6.2. Assuming that the utility functions are �regular�

We shall now assume that for each j, the utility function uj satis�es certain regularity
conditions, to wit,

Iuj : T�R�+ ! R+

is of class C1;2. We also assume that the coe�cients of the primitive risky asset are
such that for all t in T, bt 6= rt.

We show that the compatibility with equilibrium enables us to price the contingent
claims in a unique way, by only using information on the primitive assets.
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Let ' (t; x)
M

=
Pn

j=1 Iuj

�
t; 1

�j
x
�
. The regularity assumptions made on all utility

functions imply that ' is of class C1;2 on R+ � R�+ and enable us to apply Itô's
lemma to the process � = f' (t; �tM

��
t ) ; t 2 Tg and get that for all t in T

d�t = atdt� 'x
�
t; �tM

��
t

�
�tM

��
t

�
���t
��
dWt

for some progressively measurable process a = fat; t 2 Tg. Using lemma 6:3, if equilib-
rium is reached in our model, the dividend process fDt; t 2 Tg must follow a di�usion
process given by

dDt = bDt dt+ �Dt dWt for all t in T

where
�Dt

M

= �'x
�
t; �tM

��
t

�
�tM

��
t

�
���t
��

.

As for all j and for all t, Iuj (t; �) is assumed to be strictly decreasing, 'x (t; �) is
negative; for all t 2 T, the random variable �tM

��
t is positive; this implies that there

exists a measurable positive process � such that for all t in T;

���t = �t
�
�Dt
��

or

�t + ��t = �t(�
D
t )
� a:s: P .

Notice that this implies that, for all i in f1; :::; dg,
(���)it = �t(�

D)it a:s: P ,

so that the coe�cients (���)it and (�D)it are of the same sign.
The process �� we are looking for satis�es

�t��t = 0 for all t in T

in order to belong to K�. We must then have

�t�t = �t�t(�
D
t )
�: (6.2)

For all t in T, we have assumed that bt � rt 6= 0, so that �t(�
D
t )
� 6= 0 and we get

�t =
(bt � rt)

�t(�Dt )
� and (6.3)

��t = �̂t
M

=
(bt � rt)

�t(�Dt )
� (�

D
t )
� � �t

The only martingale measure to be compatible with equilibrium is then P �̂ . The
problem of fair pricing of nonredundant contingent claims is then reduced to taking
the expected value with respect to P �̂ ; which only involves the productive asset and
its dividends price processes: our problem is solved.

Notice that, according to relation (6:2), the condition we have imposed on bt and
rt is equivalent to the condition that for all t, �t(�

D
t )
� 6= 0 which amounts to saying

that the price process S and its associated dividend process are in a way correlated,
which seems reasonable. We shall now consider the speci�c case where the dividends
process can be expressed as a function of the corresponding asset price process.
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6.3. Assuming that there exists a regular function d : T�R�+ ! R such that
the dividend process can be written in the form fd (t; St) ; t 2 Tg

We assume now that the dividend process can be written in the form

Dt = fd (t; St) ; t 2 Tg
where d : T�R�+ ! R+ is of class C1;2.
Notice that as the discounted gain process G given by

Gt =
St
S0
t

+

Z t

0

exp

�Z s

0

�rudu
�
�sSsds for all t in T

is a martingale under any S-equivalent martingale measure P � -see section 3-, we
have

St = EP �

"
exp

 Z T

t

�rudu
!
ST +

Z T

t

exp

�Z s

t

�rudu
�
�sSsds j Ft

#

so that the assumption made seems reasonnable.
Using Itô's lemma, we get that the dividend process fDt; t 2 Tg follows a di�usion
process given by

dDt = bDt dt+ �Dt dWt

where the volatility process �D satis�es

�Dt = ds (t; St)St�t for all t 2 T.
Then, assuming the same regularity on the utility functions, the approach of the
preceding section remains valid; we obtain that there exists a measurable process �
such that for all t in T

���t = �t(�t)
�:

As �t�
��
t = �t�t = (bt � rt) and as for all t, �t(�t)

� 6= 0 because the matrix �t has full
rank equal to one, this gives us

�t =
(bt � rt)

�t(�t)�

so that for all t,

���t = �t or

��t = 0:

So if we assume that the dividends at time t can be written as a regular function of
the productive asset's price, the unique equivalent martingale measure that can be
compatible with equilibrium is the so-called minimal martingale measure of Föllmer-
Schweizer [1991] denoted in this paper by P 0, which only involves the productive
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asset's price process. A fair pricing of contingent claims is then in this case a pricing
that doesn't take into account all �orthogonal� risk. Notice that in the case where the
rows of �t, thought of as vectors in Rd are orthonormal and in the kernel of �t; i.e.,
�t�

�
t = 0, like in Karatzas et al. [1991] (see footnote 1 p.11), the purely �nancial assets

satisfy the same stochastic di�erential equation under P as under P 0. As pointed
out in Hofmann-Platen-Schweizer [1992] (theorem 3.1), this is a characteristic of the
minimal martingale measure.

Let us now compare our result with the one concerning our problem obtained in
Pham-Touzi [1996]. They consider a model in which there is a bond S0, one risky
productive asset, whose price process S is described by a stochastic volatility model,
and one contingent claim completing the market. They �x the productive asset price
process S and the contingent claim's one and this determines a unique equivalent
martingale measure. Then they study the consistency of such a martingale measure
with an equilibrium model; they answer the question: do there exist utility functions
such that the price process S is an equilibrium price process? If the answer is yes,
they say that the martingale measure is viable, and they show that this induces strong
constraints on the coe�cients of the price di�usion process. More speci�cally related
to our problem, it is shown -see proposition 5.1- that in the positive dividend case,
as long as the coe�cients of the model respect the above mentioned constraints, the
minimal martingale measure of Föllmer and Schweizer is viable if and only if the
dividend process is in the form Dt = a (t)St + b (t) for some continuous functions
a (t) > 0 and b (t) � 0:
We have shown in section 6.2 that in a model which is not necessarily markovian
anymore, if the dividend process is a di�usion process then there exists a unique
admissible martingale measure. If we use the result of Pham-Touzi [1996], then we
obtain that in a stochastic volatility setting, if the dividend process is in the form
mentioned above, the minimal martingale measure being viable, it is necessarily the
unique viable martingale measure. This is what we �nd in section 6.3 if we adapt our
result to their speci�c setting and if we let the function d be an a�ne function.
Besides, we have shown that there is also a unique admissible price in any other case.

7. Extensions and remarks

We have so far assumed that there is an equilibrium and deduced properties that
the state price densities must then satisfy; we have in fact found a unique state
price density that could be compatible. We have only used necessary conditions.
Conversely, we shall now study under which conditions equilibrium can be reached in
our set-up (necessarily with this particular state price density).

7.1. Su�cient conditions for equilibrium

We shall use representative agent's theory to characterize equilibrium in our economy.
We have seen in theorem 4.7 that our full market is complete, so we can apply the
results of Huang [1987]. Our economy can be supported by a representative agent
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endowed with the aggregate individual endowments which consist of one unit of stock
S and whose preferences for consumption and terminal wealth are characterized by

U (c;X) = E

"Z T

0

u (t; ct) dt+ V (X)

#
:

where the aggregated utility functions u (t; :) and V (:) inherit regularity from that of
agents utility functions in the economy. From there, the problem of the existence and
of the characterization of an optimal strategy for the representative agent is reduced
to the study made in section 5, where a single agent is considered.

Following exactly the same approach as in section 6, and using the fact that
at equilibrium the optimal consumption process of the representative agent must
equal the dividend process, we obtain that a necessary and su�cient condition for an
equilibrium to be reached in our set-up is that there exists a positive real number 
�

such that

�t
�Mt = 
�uc (t;Dt) a:s: P 0 � t � T (7.1)

�T �MT = 
�V 0 (ST ) (7.2)

with no additional condition because in this case, the budget constraint is automati-
cally binding -see the end of the appendix for a precise proof.

We start by proving that we have not �worked on the empty set�. Let d denote,
like in section 6.3, a function of class C1;2 from T � R�+ to R+. We introduce the
following de�nition:

De�nition 7.1. A d-equilibrium is a price system
h
S0; S;

�
Ci
�
i=1;:::;d�1

i
satisfying

the assumptions A1, A2, A3 and A4 made in section 2 and such that the economy

de�ned by the dividend process fd (t; St) ; t 2 Tg is at the equilibrium.

We want to know under which conditions there exists a d-equilibrium.

Lemma 7.2. If there exist coe�cients b, r ,�, a and � and a dividend function d
satisfying the assumptions A1, A2, A3 and A4 of section 2 as well as the following

equalities 8>>>><
>>>>:

bt

h
1 + fx(t;St)

f(t;St)
St

i
= �t

bt � rt +
fx(t;St)
f(t;St)

St k�tk2 = 0

at = rt1(d�1) � fx(t;St)
f(t;St)

St�t�
�
t

d (T; ST )
M

= Iu [T; V
0 (ST )]

for �t
M

= � ft(t;St)
f(t;St)

+ fx(t;St)
f(t;St)

d (t; St) � fx(t;St)
f(t;St)

h
k�tk2 St

i
� 1

2
fxx(t;St)
f(t;St)

k�tk2 S2
t and

f (t; x)
M

= uc (t; d (t; x)), then there exists a d-equilibrium.
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Using this lemma, we consider the main types of utility functions and we show
that equilibrium is reached.
Notice that the utility functions we consider for the logarithmic and exponential cases
do not satisfy Assumption A; nevertheless it is easy to check that the approach that
we have adopted remains valid: as the utility functions given in examples 7:3 and
7:5 satisfy infx uc (t; x) = 0, we may de�ne Iu (t; �) to be the inverse of uc (t; �) from
(0; uc (t; 0)) onto (0;+1) and we extend the domain of Iu (t; �) by setting

Iu (t; y) = 0 for all y in [uc (t; 0) ;+1) .

Then the equality

min
c�0

[cy � u (t; c)] = yIu (t; y)� u (t; Iu (t; y)) for all y in (0;1) and t in T

-where the minimum is uniquely attained at Iu (t; y)- remains true, so that the char-
acterization of optimal pairs of terminal wealth and consumption rate processes given
in proposition 5:2 and therefore the preceding lemma still hold.

Example 7.3. Logarithmic utility function:

We show here -like in Pham-Touzi [1996]- that equilibrium can be reached for
a constant interest rate process. Suppose u (t; c) = exp (��t)� log (c+ �), V (x) =
exp (��T ) log (x+ 1), Dt = �St for some positive constant �. As far as the terminal

condition is concerned, we have uc [T; �ST ] =
exp(��T )
ST+1 = V 0 (ST ). With the notations

of the lemma, f (t; x) = exp(��T )
x+1 . Then fx(t;St)

f(t;St)
St = � St

St+1 6= �1. We �nd �t =

�� �St
St+1 + St

St+1 k�tk2 � (St)
2k�tk2

(St+1)2
so that if

8<
:

bt = �+ St
St+1 k�tk2

rt = �
at = �1(d�1) +

St
St+1�t�

�
t

with � and � progressively measurable, uniformly bounded, and such that �t has full
rank equal to one and ��t is invertible, then the coe�cients satisfy assumptions A1,
A2, A3 and A4 and equilibrium is reached in our model.
Notice that the process � is not submitted to any restriction, apart from being pro-
gressively measurable and uniformly bounded.

Example 7.4. Power utility function

Suppose u (t; c) = c�

�
for � 2 ]0; 1[, V (x) = a(��1)

�
x� , Dt = aSt for some positive

constant a. We have Iu [T; V
0 (ST )] = [V 0 (ST )]

1
(��1) = aST . With the notations of the

lemma f (t; x) = (ax)��1. Then fx(t;St)
f(t;St)

St = (� � 1) 6= �1, �t = � 1
2� (� � 1) k�tk2 +

a (� � 1), so that if 8<
:

bt = � 1
2 (� � 1) k�tk2 + a(��1)

�

rt =
1
2 (� � 1) k�tk2 + a(��1)

�

at = rt1(d�1) + (1� �)�t�
�
t
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with � and � satisfying the same (regularity) conditions as in the preceding example,
then equilibrium is reached for our model of section 2.

Example 7.5. Exponential utility function

Suppose u (t; c) = 1 � exp (�c), V (x) = (1+x)�

�
, Dt = (1� �) log (1 + St) for

some � 2 ]0; 1[. Then uc [T;DT ] = (1 + ST )
��1

= V 0 (ST ). With the notations

of the lemma, we have f (t; x) = (1 + x)
��1

. Then fx(t;St)
f(t;St)

St = (��1)St
1+St

6= �1 and

�t = � (� � 1)
2 log(1+St)

1+St
�(� � 1) St

1+St
k�tk2� 1

2 (� � 1) (� � 2)
�

St
1+St

�2
k�tk2 so that

if 8>><
>>:

bt = � (� � 1)
2 log(1+St)

1+�St
� (� � 1) St

1+�St
k�tk2

h
1 + 1

2 (� � 2) 1
(1+St)

i
rt = bt +

(��1)St
1+St

k�tk2
at = rt1(d�1) � (��1)St

1+St
�t�

�
t

with � and � satisfying the usual regularity assumptions, then equilibrium is reached.

More generally, we obtain the following corollary which proves the existence of a
d-equilibrium under some restrictions on the utility function for terminal wealth. We
assume that V is of class C2.

Corollary 7.6. If there exist coe�cients b, r, �, a, � satifying the assumptions A1,

A2, A3 and A4 in section 2 as well as the following equalities8>><
>>:

bt

h
1 + V 00(St)

V 0(St)
St

i
= �Vt

rt = bt +
V 00(St)
V 0(St)

St k�tk2
at = rt1(d�1) � V 00(St)

V 0(St)
St�t�

�
t

where �Vt
M

= �V 00(St)
V 0(St)

h
k�tk2 St

i
+ V 00(St)

V 0(St)
Iu [t; V

0 (St)]� 1
2
V 000(St)
V 0(St)

k�tk2 S2
t , then there

exists a d-equilibrium -for d given by d (t; x) = Iu [t; V
0 (x)].

Suppose for instance that V (x) = x�

�
for � 2 ]0; 1[, then V 00(St)

V 0(St)
St = (� � 1) 6= �1,

�t = � 1
2� (� � 1) k�tk2 + (� � 1) d(t;St)

St
which ensures the existence of a solution if8><

>:
bt = � 1

2 (� � 1) k�tk2 + (��1)
�

Iu[t;(St)(��1)]
St

rt = bt + (� � 1) k�tk2
at = rt1(d�1) � (� � 1)�t�

�
t

and if d(t;St)
St

=
Iu[t;(St)(��1)]

St
is uniformly bounded, which corresponds to the fact that

the dividend yield process is uniformly bounded (and which is the case for instance

if u (t; c) = c�

�
for � 2 ]0; 1[).

We have seen that we have not worked on the empty set: as a matter of fact,
we have seen that there exists a d-equilibrium for a large class of utility functions.
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Notice that the dividend functions that we have obtained (d (t; x) = ax for some
positive constant a or d (t; x) = (1� �) log (1 + x) for some � 2 ]0; 1[ ) are increasing
in x.

We shall now consider the problem in a di�erent way: for a �given� dividend
process, we study if there exists an equilibrium.

Proposition 7.7. For all dividend process D = fDt; t 2 Tg in the form

dDt = b0Dtdt+ �0DtdWt

for some constants b0 in R and �0 =
�
�10; :::; �

d
0

�
in Rd, for all utility functions u (t; �)

and V such that

V (�) = uc (T; �) and ~u : x 7! xuc (t; x) is increasing,

there exist price processes S0;
�
Ci
�
i=1;:::;d�1

and S in the form

St = s (t;Dt) for all t in T

where s (t; �) is increasing such that equations (7:1) and (7:2) are satis�ed.
If assumptions A1, A2, A3 and A4 are satis�ed, then the full market is in equilib-

rium.

Notice that the existence of price processes S0;
�
Ci
�
i=1;:::;d�1

and S in the form

St = s (t;Dt), where s (t; �) is increasing and such that the full market is in equilibrium

is equivalent to the existence of a d-equilibrium for d (t; �) = [s (t; �)]�1.

We prove now that equilibrium can be reached for a whole class of dividends
processes.

Lemma 7.8. For all dividend process D = fDt; t 2 Tg in the form

dDt = bDt dt+ �Dt dWt

where the coe�cients satisfy

bDt [� (t;Dt)] = � (t;Dt) + 
 (t;Dt)


�Dt 

2

for � =
h
I 0V � uc + IV �uc

uc

i
ucc, � = � (�) uct

ucc
� x, and


 = �1

2
IV � ucuccc

uc
� I 0V � uc

"
1

2
uccc +

(ucc)
2

uc

#
� 1

2
I 00V � uc (ucc)2 ,

there exist price processes S0;
�
Ci
�
i=1;:::;d�1

and S in the form St = IV [uc (t;Dt)] for

all t in T such that equations (7:1) and (7:2) are satis�ed.
If assumptions A1, A2, A3 and A4 are satis�ed, then the full market is in equilib-

rium.
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Notice that if � (t; x) 6= 0, then the coe�cient �Dt is not subject to any constraint.

Suppose for instance that V (x) = x�

�
for � 2 ]0; 1[; if

bDt
�
�V (t;Dt)

�
= �V (t;Dt) + 
V (t;Dt)



�Dt 

2
where �V = �

��1 [uc]
� ��2
��1 ucc 6= 0, �V = � �

��1 [uc]
� ��2
��1 uct � x and


 = � �

2 (� � 1)
(uc)

2��
��1 uccc � �

2 (� � 1)
2 (uc)

�2�+3
��1 u2cc

then equilibrium is reached.

7.2. Considering more than one productive asset

As we have mentioned in the introduction, our main result remains valid if there is
more than one productive asset.

We now consider a primitive market consisting of one bond with price at time t
denoted by S0

t such that
dS0

t = S0
t rtdt

and m stocks with price per share at time t denoted for each i = 1; :::;m by Sit such
that the m-dimensional process S =

��
S1; :::; Sm

�
t
; t 2 T	 satis�es the equation

dSt = diagSt [(bt � �t) dt+ �tdWt]

where W =
n�
W 1

t ; :::;W
d
t

��
; t 2 T

o
is still a d-dimensional Brownian motion on a

probability space (
; F; P ), the interest rate rt, the m-dimensional dividend rate

process paid by the stocks � =
n�
�1; :::; �m

��
t
; t 2 T

o
, the volatility (m� d)-matrix

� =
�
(�ij)t ; t 2 T; 1 � i � m; 1 � j � d

	
as well as the m-dimensional process b =n�

b1; :::; bm
��
t
; t 2 T

o
are the coe�cients of the model and are taken to be progres-

sively measurable with respect to (Ft)t2T and bounded uniformly in (t; !) in [0; T ]�
:
The number of sources of uncertainty is larger than the number of stocks, i.e., d � m.
We assume that for all t, the m � d volatility matrix �t has full rank equal to m so
that for all t, the matrix �t�

�
t is invertible.

Our full market consists then of the primitive market and of at least (d�m) purely
�nancial additional assets Ci such that the full market is complete. More precisely,
we assume that the prices Ci

t are governed by

dCt = diagCt [atdt+ �tdWt]

where the coe�cients are as follows: the process
n
�t =

�
�ij
�
t
; t 2 T

o
is an (Ft)t2T-

progressively measurable, uniformly bounded, (d�m)�d matrix-valued process such

that the d � d-augmented volatility matrix ��t
M

=
�
�t
�t

�
admits an inverse and the
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process
n
at =

�
a1t ; :::; a

d�m
t

��
; t 2 T

o
is an (Ft)t2T- progressively measurable, uni-

formly bounded (d�m)-dimensional vector process. Let �b
M

=
�
b
a

�
denote the d-

dimensional augmented stock appreciation vector.

Adapting notations and de�nitions, all that we have done in sections 2-4 remains
valid: letting the d-dimensional vector processes � and �� be such that for all t in T

�t
4
= ��t (�t�

�
t )
�1

(bt � rt1m) a:s: P; and

��t
4
= (��t)

�1 ���bt � rt1d
��

a:s: P ,

we obtain the following results:

� All S-equivalent martingale measures, i.e., all equivalent probability measures

under which the m-dimensional process ~S =
n
~St; t 2 T

o
de�ned by

~Sit
4
= Sit exp

Z t

0

�
�is � rs

�
ds for all t 2 T and i 2 f1; :::mg

is a martingale, are given by the set MS= fP � ; � 2 K�g with dP �=dP =
ET (���).

� The unique equivalent probability measure under which the d-dimensional process
~Z
M

=
�
~S;C1=S0; :::; Cd�m=S0

�
is a martingale, is given by �P such that d �P=dP =

�MT = ET
����� :

� The primitive market is complete if and only if m = d and the full market is
complete.

Our economy consists of a �nite number n of agents, who all have utility functions
for consumption and terminal wealth that satisfy the regularity assumptions made
in section 5 and in particular Assumption A. If there is an equilibrium, then each
agent j, for j = 1; :::n, must be able to lead an optimal trading-consumption strategy�
��j ; c

�
j

�
. This optimal strategy must be such that there exist positive real numbers


�j > 0, for j = 1; :::n, for which

�t �Mt = 
�j (uj)c
h
t;
�
c�j
�
t

i
0 � t � T a:s: P (7.3)

or �
c�j
�
t
= Iuj

 
t;

1


�j
�t

�Mt

!
0 � t � T a:s: P:

On the other hand, if there is an equilibrium, markets must clear: the aggregated
optimal demands of the agents must equal the total supply available. More precisely,
an equilibrium consists in price processes S0; S =

�
S1; :::; Sm

�
; C =

�
C1; :::; Cd�m�

and trading-consumption choices�
(��j )

S1 ; :::; (��j )
Sm ; (��j )

C1

; :::; (��j )
Cd�m

; c�j
�
1�j�n
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which must be optimal for the agents and such that for all t in T, the following market
clearing conditions hold almost surely:

nX
j=1

�
c�j
�
t
=

mX
i=1

Di
t

nX
j=1

(��j )
Si

t = Sit 1 � i � m

nX
j=1

(��j )
Ci

t = 0 1 � i � (d�m)

nX
j=1

X
��j ;c

�

j

t =

mX
i=1

Sit .

Then if there is equilibrium in this set-up, there must exist positive constants 
�j > 0,
j = 1; :::n such that

nX
j=1

Iuj

 
t;

1


�j
�t �Mt

!
=

mX
i=1

Di
t: (7.4)

Then all results obtained in sections 6.2 and 6.3 remain true, replacing the dividend
process fDt; t 2 Tg by the so-called aggregate dividend process

~D =

(
mX
i=1

Di
t; t 2 T

)
.

We assume �rst that for all t 2 T, there exists i 2 f1; :::;mg such that bit 6= rt.
According to (7:4), the aggregate dividend process ~D must follow a di�usion process.

More precisely, if we denote by �
~D the volatility vector of the aggregate dividend

process, we obtain that there exists a progressively measurable positive process ~a
such that for all t in T

��t = ~at(�
~D
t )
�.

As �P belongs to the set MS , it can be written in the form P �� for some �� in K�.
Then �t�

��
t = �t�t = (bt � rt1m) and

~at =

�
bit � rt

�
(ei)

�
�t(�

~D
t )
�

for any i � m, where ei denotes as usual the vector whose components are all zero
except the ith, which is equal to one. Notice that the condition that for all t 2 T,
there exists i 2 f1; :::;mg such that bit 6= rt is equivalent to the assumption that for
all t 2 T, the matrix �t (�t)

�
is not equal to the null matrix.

If an agent knows the aggregate dividend process ~D, then he can fairly price, in
a unique way, all contingent claims in this market without any information on the
additional purely �nancial assets.
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If we now assume that the aggregate dividend process can be written in the form

Dt = d
�
t; S1

t ; :::; S
m
t

�
for some regular enough function d -for instance if, like in the case of a single produc-
tive asset, for all i, the dividend process Di can be written in the form Di

t = di
�
t; Sit

�
for all t for some regular enough function di- then we can apply Itô's lemma and ob-
tain that there exists a progressively measurable, m-dimensional process 
 such that
for all t in T

���t = (�t)
�
t.

This implies that for all t,


t = (�t�
�
t )
�1

(bt � rt1m)

and
���t = (�t)

� (�t��t )
�1 (bt � rt1m)

M

= �t:

Here again, we �nd that the unique equivalent martingale measure to be compatible
with equilibrium is the minimal martingale measure of Föllmer-Schweizer.

On a practical point of view, if the aggregate dividend process is somewhat dif-
�cult to compute, the aggregate consumption can be observed and gives us a link
between the unique equivalent martingale measure and the productive assets price
processes. Moreover, if we assume that the dividends processes only depend on the
productive assets price processes, the pricing of contingent claims is reduced to taking
expected values with respect to the minimal martingale measure which only involves
the productive assets prices.

Besides, on a theoretical point of view, the economic interpretation is interest-
ing as it tells us that the unique martingale measure that can be compatible with
an economic equilibrium -and therefore the unique �fair� price- appears to be only
dependent on the real economy, as opposed to the �nancial one.

29



APPENDIX
Proof of lemma 3.2 1) Let us �rst show that Q is an equivalent probability
measure if and only if it is such that dQ=dP = ET (�) for some process � = f�t; t 2 Tg
in M2

d (T).
One implication is immediate: as � belongs to L2

d (T), the random variable ET (�) is
well de�ned. As it is nonnegative, it can be expressed as a measure density respectively
to P , i.e., we can de�ne on (
; F ) a measure denoted by P � given by dP �=dP = ET (�)
and as E [ET (�)] = 1 -because � belongs to M2

d (T)- this measure P � is a probability
measure. As M� is positive, the probability measure P � is equivalent to P:
For the converse implication, we shall denote dQ=dP by MT and consider the process

M = fMt; t 2 Tg given by Mt
M

= E [MT j Ft] for all t in T: The process fMt; t 2 Tg is
well de�ned because MT 2 L1 (
; F; P ); it is in an obvious way a continuous (Ft)t2T-
martingale and (Ft)t2T is the P -augmentation of the �ltration generated by W so,
by the fundamental martingales representation theorem (see Karatzas-Shreve [1988],
p.170), M can be written as a stochastic integral with respect to W : there exists a
process f
t; t 2 Tg in L2

d (T) such that

Mt = E [MT ] +

Z t

0

(
s)
� dWs 0 � t � T

so Mt = 1 +
R t
0 (
s)

�
dWs: As MT > 0, the process M satis�es Mt > 0 for all t in T,

so we can apply Itô's lemma and obtain for all t in T

lnMt = lnM0 +

Z t

0

(
s=Ms)
�
dWs � 1=2

Z t

0

k 
s=Ms k2 ds

orMt = exp
nR t

0
(�s)

� dWs � 1=2
R t
0
k �s k2 ds

o
= Et (�) for the d-dimensional process

� = f�t; t 2 Tg in L2
d (T), de�ned by �t

M

= 
t
Mt

for all t in T: As E [MT ] = 1 = E [ET (�)],

the process � belongs to M2
d (T) and this completes the proof.

So we can index the set of equivalent probability measures by M2
d (T) and for each

process � = f�t; t 2 Tg in M2
d (T) denote by P � the equivalent probability measure

such that dP �=dP = ET (�).

2) Let us now show the lemma: by Girsanov's theorem (see e.g. Karatzas-
Shreve [1988], p.191), for all process � in M2

d (T), the d-dimensional process WP�

=�
WP�

t ; t 2 T	 de�ned for all t in T by

WP�

t

M

= Wt �
Z t

0

(�s) ds

is a P �- Brownian motion for (Ft)t2T. As d ~St = ~St [(bt � rt) dt+ �tdWt], we have for

all process � in M2
d (T), d

~St = ~St
�
(bt � rt + �t�t) dt+ �tdW

P�

t

�
; de�ning the process

f�t; t 2 Tg by �t
M

= � (�t + �t) for all t in T; we have d ~St = ~St
���t�tdt+ �tdW

P�

t

�
and ~S is a P �-martingale for (Ft)t2T if and only if �t�t = 0 for all t. This ends the
proof of the lemma:2
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Proof of lemma 3.3 Analogous to lemma 3.2 in the primitive market for d = 1:
As a matter of fact, replacing � with �� and � with ��, if we let

K �� M

=
�
� 2 L2

d (T) such that ��t�t = 0 for all t and � ��� + �
� 2M2

d (T)
	
,

then K �� = f0g ; because �� admits an inverse. So there exists a unique equivalent
martingale measure which is in the form given above.2

Proof of proposition 4.4 See Karatzas [1989]: the proof uses a representation
result and is analogous to the proof of the completeness of the full market, given in
theorem 4.8 below.2

Proof of theorem 4.7 We �rst state a representation result, which is an easy
corollary of the fundamental martingales representation theorem:

� Lemma Let Y = fYt; t 2 Tg be a �P�martingale for (Ft)t2T : Then there exists

a d-dimensional process � in L2
d (T) such that

Yt = Y0 +

Z t

0

(�s)
�
dW

�P
s 0 � t � T:

Proof of the lemma Apply the martingales representation theorem (see
Karatzas and Shreve [1988]) to the process �MtYt, which is a continuous P -
martingale for (Ft)t2T, where (Ft)t2T is the P -augmentation of the �ltration
generated by W and the lemma is obtained through the use of Itô's lemma (see
lemma 8.4 in Karatzas-Lehoczy-Shreve [1990] for a detailed proof).2

We now prove the theorem
2: For each contingent claim B; we consider the process X given for all t in

T by Xt =
1
�t
E

�P [�TB j Ft]. The process �X = f�tXt; t 2 Tg is in a trivial way a
�P�martingale for (Ft)t2T : Using the lemma, we can write �X in the form

�tXt = E
�P [�TB] +

Z t

0

(�s)
� dW �P

s , 0 � t � T

for some d-dimensional process � in L2
d (T). De�ning the process � by

�t = (1=�t)
�
���1
t

��
�t, 0 � t � T

we get that � is a portfolio process and that

�tXt = E
�P [�TB] +

Z t

0

�s (�s)
� ��sdW

�P
s ,

which shows that X is the wealth process corresponding to the trading strategy (�; 0)

with initial value E
�P [�TB], i.e., X = XE

�P [�TB];�;0 -see equation (4:2) : The termi-
nal value satis�es XT = B and as X is nonnegative, the trading strategy (�; 0) is
admissible.
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1: The proof is analogous to the proof of 2: and can be found for instance in
Musiela-Rutkowski [1997], p.250. 2

Proof of proposition 4.8 See Karatzas [1989].

Proof of proposition 4.9 We consider the following quantities

x1
M

= E
�P

"Z T

0

�tctdt

#
and x2

M

= x� x1 = E
�P [�TX ] ,

for which it is easy to see that we have c 2 D (x1) and X 2M (x2).
As c belongs to D (x1), according to proposition 4:4, there exists a unique trading
strategy �1 such that (�1; c) is in A (x1) and the corresponding wealth process satis�es
Xx1;�1;c
T = 0:

As X belongs to M (x2), according to proposition 4:9, there exists a unique pair
(�2; c2) in A (x2) such that Xx2;�2;c2

T = X and it satis�es c2 � 0:

We then consider the strategy � given by �
M

= �1 + �2 and it is easy to check that
(�; c) belongs to A (x) and that

Xx;�;c
T = Xx1;�1;c

T +Xx2;�2;c2
T = X

which completes the proof.
We can sketch the proof of a direct approach, that leads to the same result using the
martingales representation theorem: consider the martingale process(

Mt
M

= E
�P

"Z T

0

�scsds+ �TX j Ft
#
; t 2 T

)
.

Using the martingale representation theorem, Mt can be written in the form

Mt = E
�P

"Z T

0

�scsds+ �TX

#
+

Z t

0

�s�
�
s��sdW

�P
s

for some portfolio process �. Then, according to equation (4:2),Xt
M

=Mt�
R t
0 �scsds =

�tX
x;�;c
t and Xx;�;c

T = X:2

Proof of corollary 4.10 Immediate using the proof of the preceding theorem

and considering x
M

= E
�P
hR T

0 �scsds+ �TX
i
.2

Proof of proposition 5.1 By the Saddle Point Theorem (see Du�e [1994],
p.231) and the strict monotonicity of U , (c�; X�) 2 A solves our problem if and only
if there is a Lagrange multiplier 
 > 0 such that (c�; X�) solves the unconstrained
problem

sup
(c;X)2A

U (c;X)� 
E
�P

"Z T

0

�tctdt+ �TX � x

#
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with the complementary slackness condition

E
�P

"Z T

0

�tctdt+ �TX

#
= x.

Then, by Fubini's theorem, the fact that c is an adapted process, the law of iterated
expectations and the fact that the process

�
�Mt; t 2 T

	
is a martingale, we get that

E
�P

"Z T

0

�tctdt+ �TX

#
= E

"
MT

 Z T

0

�tctdt+ �TX

!#

= E

"Z T

0

MT�tctdt+MT�TX

#

= E

"Z T

0

Et [MT ]�tctdt+MT�TX

#

= E

"Z T

0

Mt�tctdt+MT�TX

#

which completes the proof.2
Proof of proposition 5.2 As conditions (5:2) and (5:3) are equivalent to

c�t = Iu
�
t; 
��t �Mt

� 8t 2 T and X� = IV
�

��T �MT

�
, (7.5)

we only need to check that the solution of the optimization problem (5:1) is given by
(c�; X�) like in (7:5). We easily get from elementary calculus that for all t in T;

min
c�0

[cy � u (t; c)] = yIu (t; y)� u (t; Iu (t; y)) for all y in (0;1)

and that for all y in (0;1), the minimum is uniquely attained at Iu (t; y), so that

u (t; Iu (t; y)) � u (t; c) + y [Iu (t; y)� c] for all c � 0 and all y in (0;1) ,

the inequality being strict for c 6= Iu (t; y). Then

u (t; c�t ) � u (t; ct) + 
��t �Mt

�
Iu
�
t; 
��t �Mt

�� ct
�
and

E

"Z T

0

u (t; c�t )� 
��t �Mtc
�
t dt

#
� E

"Z T

0

u (t; ct)� 
��t �Mtctdt

#

the inequality being strict for c 6= c�, which proves our proposition.2

Proof of lemma 6.2 1: As any contingent claim B belongs to M
�
EP 0

[�TB]
�
,

proposition 4.9 tells us that in the case d = 1, all contingent claims are redundant:
for any contingent claim B, there exists a trading strategy � such that (�; 0) is in

A
�
EP 0

[�TB]
�
, �XEP0 [�TB];�;0 is a martingale and X

EP0 [�TB];�;0
T = B. Then, by
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absence of arbitrage opportunity, the price for B at time 0 is necessarily equal to
EP 0

[�TB] :

2: As B = Xx;�;0
T for some x in (0;1) and some pair (�; 0) in A (x), by absence

of arbitrage opportunity, the contingent claim B must have a price equal to x, so we
only need to compute the value of x. As the corresponding discounted wealth process
�Xx;�;0 is a P 0-martingale, we have

x = Xx;�;0
0 = EP 0

h
�TX

x;�;0
T

i
= EP 0

[�TB] ,

which is the result announced.2
Proof of lemma 7.2 Our approach is similar to the one adopted in Karatzas-
Lehoczky-Shreve [1990]. We know that a necessary and su�cient condition for an
equilibrium to be reached in our set-up is that there exists a positive real number 
�

such that

�t �Mt = 
�uc (t;Dt) a:s: P 0 � t � T (7.6)

�T �MT = 
�V 0 (ST ) :

We can take without loss of generality uc (0; D0) = 1 so that 
� = 1. We have

d (T; ST )
M

= Iu [T; V
0 (ST )], so that we only need to prove the �rst equality for Dt =

d (t; St).
As the process

�
�t �Mt; t 2 T

	
is the unique solution of the stochastic di�erential equa-

tion
dXt = Xt

h
�rtdt�

�
��t
��
dWt

i
satisfying X0 = 1, there is equilibrium if

df (t; St) = f (t; St)
h
�rtdt�

�
��t
��
dWt

i
where f (t; x)

M

= uc (t; d (t; x)). With the regularity assumptions made on the utility
functions as well as on the function d, the function f is of class C1;2 and we can apply
Itô's lemma:

df (t; St) =

�
ft (t; St) + fx (t; St) (bt � �t)St +

1

2
fxx (t; St) k �t k2 S2

t

�
dt

+fx (t; St)St�tdWt

which we can write in the form

df (t; St) = f (t; St) [�Atdt�BtdWt]

with

At
M

= � 1

f (t; St)

�
ft (t; St) + fx (t; St) (bt � �t)St +

1

2
fxx (t; St) k �t k2 S2

t

�

Bt
M

= � 1

f (t; St)
[fx (t; St)St�t] .
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So, if we can let the interest rate be given by

rt = At for all t in T (7.7)

and the coe�cients of the assets price processes be such that�
��t
��

= Bt for all t in T (7.8)

then f (t; St) = uc (t;Dt) = �t �Mt and equilibrium is reached. We shall now try to
make these conditions clearer.

Conditions (7:7) and (7:8) are satis�ed if8<
:

rt = At

��t
M

= ��t � �t = 0
(�t)

�
= Bt

Notice that we �nd the equivalent martingale measure �P to be equal to the martingale
measure P 0, which is coherent with what we have seen in section 6.3.
These conditions are satis�ed if the coe�cients of the price processes are such that8>><

>>:
bt

h
1 + fx(t;St)

f(t;St)
St

i
= �t

bt � rt = � fx(t;St)
f(t;St)

St k�tk2
at = rt1(d�1) � fx(t;St)

f(t;St)
St�t�

�
t

where at denotes like in section 2.2 the purely �nancial assets appreciation rates and

�t
M

= � ft(t;St)
f(t;St)

+ fx(t;St)
f(t;St)

d (t; St)� fx(t;St)
f(t;St)

h
k�tk2 St

i
� 1

2
fxx(t;St)
f(t;St)

k�tk2 S2
t . 2

Proof of corollary 7.6 Immediate using the lemma and noticing that in this
case f (t; x) = V 0 (x).2

Proof of proposition 7.7 We must have s (T; x) = IV [uc (T; x)]. Adopting
the same approach as in the proof of lemma 7:2, it is easy to obtain that there is
equilibrium if the coe�cients satisfy

rt = �At
M

= � 1

uc (t;Dt)

�
uct (t;Dt) + ucc (t;Dt) b

D
t +

1

2
uccc (t;Dt) k �Dt k2

�

bt � rt
�t��t

�t = �ucc (t;Dt)

uc (t;Dt)
�Dt

at = rt1(d�1) � ucc (t;Dt)

uc (t;Dt)
�t
�
�Dt
��

We can let r (and the corresponding price process S0) be given by the �rst equation;
the coe�cient a and � can be chosen as to satisfy the third equation; we shall prove
that there exist increasing functions s (t; �) such that St = s (t;Dt) and such that the
second equation is satis�ed.
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As St = s (t;Dt) for all t, using Itô's lemma, we must have

dSt =

�
st (t;Dt) + sx (t;Dt) b

D
t +

1

2
sxx (t;Dt)



�Dt 

2
�
dt+ sx (t;Dt)�

D
t dWt

= St [(bt � �t) dt+ �tdWt] .

We are then reduced to �nding an increasing solution to the stochastic di�erential
equation

st (t;Dt) + sx (t;Dt) b
D
t +

1

2
sxx (t;Dt)



�Dt 

2 +Dt � �Ats (t;Dt)

= �ucc (t;Dt)

uc (t;Dt)
sx (t;Dt)



�Dt 

2 , (7.9)

with terminal condition s (T; x) = IV [uc (T; x)].
This is in turn equivalent to

(suc)t (t;Dt) + bD (suc)x (t;Dt) +
1

2



�Dt 

2 (suc)xx (t;Dt) = �Dtuc (t;Dt) (7.10)

with terminal condition (suc) (T;DT ) = IV [uc (T;DT )]uc (T;DT ).
Writing Y for suc, and using the speci�c form of the considered dividend process, we
want to solve the partial di�erential equation

xuc (t; x) + Yt (t; x) + b0xYx (t; x) +
1

2
k�0k2 x2Yxx (t; x) = 0 (7.11)

with terminal condition Y (T; x) = H (x)
M

= IV [uc (T; x)]uc (T; x).

Let Z (t; x)
M

= Y [T � t; exp (�x+ �t)] with � = 1p
2
k�0k and � = 1

2 k�0k2� b0. Then,

equation (7:11) can be written in the following form

�Zt (t; x) = Zxx (t; x) + F (t; x)

with initial condition Z (0; x) = H
�
exp 1p

2
k�0kx

�
M

= ~H (x) where

F (t; x)
M

= exp (�x+ �t) uc (T � t; exp (�x+ �t)) .

The solution of this partial di�erential equation (see Cannon [1984]) is given by

Z (t; x) =

Z +1

�1
K (t; x� y) ~H (y) dy +

Z t

0

Z +1

�1
K (t� � ; x� y)F (� ; y) dyd� (7.12)

where

K (x; t) =
1p
4�t

exp

�
�x

2

4t

�
.
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We now need to check that the solution Z found can be such that the associated
functions s (t; �) are increasing in x. As Y M

= suc, we want
Y
uc

to be increasing in x or
Yxuc�Y ucc � 0. We know that Y is positive and that ucc is negative so that we only
need to prove that Yxuc � 0 or Yx � 0 or equivalently Zx � 0. According to (7:12),
the solution Z obtained satis�es

Zx (t; x) =

Z +1

�1
Kx (t; x� y) ~H (y) dy +

Z t

0

Z +1

�1
Kx (t� � ; x� y) f (� ; y) dyd�

= K (t; �) � ~H 0 (x) +
Z t

0

K (t� � ; �) � fx (� ; �) (x) d� ,

so that if ~H 0 (x) � 0 and Fx (t; x) � 0, then Zx (t; x) � 0. Now, ~H 0 (x) � 0 if and
only if H 0 (x) � 0 or equivalently if IV [uc (T; x)]uc (T; x) is increasing in x. Besides,
the relation Fx � 0 holds if

� exp (�x+ �t)uc (T � t; exp (�x+ �t))+

[exp (�x+ �t)]
2
ucc (T � t; exp (�x+ �t)) � 0

or if uc+xucc � 0 or if ~u : x 7! xuc is increasing. Taking V : x 7! uc (T; x), we obtain
that if for all t, the function xuc (t; x) is increasing, then the function s that we have
found is increasing in x, which completes the proof of the proposition.2

Proof of lemma 7.8 Using the proof of the preceding proposition, and especially
equation (7:9), we know that the full market is in equilibrium for a dividend process

D in the form dDt = bDt dt + �Dt dWt and a price system
h
S0; S;

�
Ci
�
i=1;:::;d�1

i
with

St = s (t;Dt) = IV [uc (t;Dt)] if and only if, with the same notations, the equality

st (t;Dt) + sx (t;Dt) b
D
t +

1

2
sxx (t;Dt)



�Dt 

2 +Dt � �Ats (t;Dt)

= �ucc (t;Dt)

uc (t;Dt)
sx (t;Dt)



�Dt 

2
holds for all t. Replacing s (t; x) with its value IV [uc (t; x)] gives us the relation
wanted.2

Proof of the characterization of equilibrium with representative agent's
theory We have to check that in this case, the budget constraint is automatically
binding: as a matter of fact, as d ~St = ~St�tdW

�P
t ;we have, using Itô's lemma and the

fact that the process ~S is a martingale under �P

d

�
~St exp

�
�
Z t

0

�sds

��
= ��t ~St exp

�
�
Z t

0

�sds

�
dt+

exp

�
�
Z t

0

�sds

�
~St�tdW

�P
t :
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As � and � are uniformly bounded and E

�
sup
t2T

St
2

�
<1; we get

E

�Z t

0

k exp
�
�
Z t

0

�sds

�
~St�t k2

�
<1

so E
�P
hR T

0 exp
n
� R t0 �sdso ~St�tdW

�P
t

i
= 0 and

E
�P

"
~ST exp

(
�
Z T

0

�sds

)#
= E

�P
h
~S0

i
�E

�P

"Z T

0

�t ~St exp

�
�
Z t

0

�sds

�
dt

#

= S0 �E
�P

"Z T

0

�t ~St exp

�
�
Z t

0

�sds

�
dt

#
(7.13)

Then, using Fubini's theorem and the fact that the processes D and � are (Ft)t2T-
adapted

E

"Z T

0

�Mt�tDtdt

#
= E

"Z T

0

Et

�
�MT�tDt

�
dt

#

= E

"Z T

0

�MT�tDtdt

#

= E
�P

"Z T

0

�t�tStdt

#

so that

E

"Z T

0

�Mt�tDtdt+ �MT�TST

#

= E
�P

"Z T

0

�t ~St exp

�
�
Z t

0

�sds

�
dt

#
+E

�P

"
~ST exp

(
�
Z T

0

�sds

)#

which, according to equation (7:13), is equal to S0 and this completes the proof
because the initial endowment of the representative agent is equal to S0.2
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