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Abstract

This paper studies the impact of financial innovations on real investment decisions. We
model an incomplete market economy comprised of firms, investors and an intermediary. The
firms face unique investment opportunities that are not spanned by the traded securities in the
financial market, and thus, cannot be priced uniquely using the no-arbitrage principle. The
specific innovation we consider is securitization; the intermediary buys claims from the firms
that are fully backed by cash flows from the new projects, pools these claims together, and then
issues tranches of secondary securities to the investors. We first derive necessary and sufficient
conditions under which pooling provides value enhancement and the prices paid to the firms are
acceptable to them compared to the no-investment option or the option of forming alternative
pools. We find that there is a unique pool that is sustainable, and may or may not consist of
all projects in the intermediary’s consideration set.

We then determine the optimal design of tranches, fully backed by the asset pool, to be
sold to different investor classes. We determine the general structure of the tranches. The
new securities created by the intermediary could have up to three components, one that is a
marketable claim, one that represents the arbitrage opportunities available in the market due
to special ability to design and sell securities to a subset of investors, and a third component
that is the rest of the asset pool which is sold at a price which does not exceed arbitrage based
bounds to investors. The presence of these three components in the tranching solution has direct
bearing upon the size of the asset pool, and therefore value creation due to financing additional
projects.
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1 Introduction

Do innovations in capital markets have an impact on real investment decisions, apart from providing

arbitrage opportunities to the innovators? In other words, do such innovations permit investments

in real assets that would otherwise not occur, because they are too costly to finance? The casual

evidence suggests that the answers to these questions are in the affirmative, based on examples

such as venture capital and private equity, project finance and securitization. In all these cases,

the innovations allow financing to be provided for projects that might not be undertaken in their

absence. Entrepreneurs and firm managers are able to undertake fresh investments in projects,

since their “cost of capital” has been reduced as a result of the innovations, thus making the net

present value of the projects positive.

The academic literature identifies three alternative mechanisms that may be responsible for the

improved attractiveness of projects as a result of a financial innovation. The first is the reduction in

the impact of market frictions, such as transaction costs, as a result of the innovation. The second

is the effect of the innovation on the amelioration of asymmetric information effects, particularly

in the context of the principal agent relationship between investors on the one hand and the

entrepreneur/manager on the other. The third effect is through the improvement in the spanning

across future states of world by the available securities in the market, as a result of the innovation.

While the first two mechanisms have been used in a variety of models proposed in the literature

to study the impact of financial innovations, such as venture capital funds, on real investment

decisions, the third mechanism has not been adequately studied thus far. In this paper, we focus

on the third argument based on incompleteness in markets, because we believe that it shows the

effect of financial innovations on real investments, without making explicit assumptions about

market frictions or information asymmetries. Instead, this line of argument explains the effect

of innovation on real investment decisions through the existence of arbitrage opportunities in an

incomplete market that are exploited by the innovating firm. Therefore, our paper provides the

value creation by intermediaries through supporting project financing in the context of incomplete

capital markets.

The phenomenon of securitization is now widespread in financial markets: mortgages, credit

card receivables and various types of corporate debt instruments have been securitized using a

variety of alternative structures. It began in the 1970s with the securitization of mortgage loans

by Fannie Mae, Ginnie Mae and Freddie Mac, but has since expanded to other fixed income
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markets, including the corporate debt market. The common feature of these structures is that an

intermediary purchases claims on cash flows issued by various entities, pools these claims into a

portfolio and then tranches them into marketable securities that cater to the investment needs of

particular clienteles of investors.

To take the example of collateralized debt obligations (CDOs), the basic structure is that

a financial intermediary sets up a special purpose vehicle (SPV) that buys a portfolio of debt

instruments - bonds and/or loans - and adds credit derivatives on individual “names.” This is

referred to as pooling. The SPV then issues various claims against the pooled portfolio, which

enjoy different levels of seniority; the claims issued range from a high-grade AAA claim, which has

a negligible, virtually zero, probability of not meeting its promised payment to a medium-grade

claim, say rated BBB+, which has a low but not negligible probability of such default; and finally,

to an equity security, which is viewed as risky. The structuring of the claims to match investor

tastes is referred to as tranching.

We study securitization in the context of an economy with firms, investors and financial in-

termediaries. In this economy, there are primary securities traded in the financial market at fair

(i.e., arbitrage-free) prices. Firms have opportunities to invest in certain unique assets, and their

objective is to maximize the present value of the cash flows from these assets. Investors are utility

maximizers. Intermediaries purchase claims from firms that are fully backed by their cash flows,

and issue two types of securities to be sold to investors. They can issue securities that are within

the span of the financial market (viz., marketable securities) , or create new securities that are

not spanned by the market (secondary securities). Throughout our analysis, we assume that firms

are not large enough to influence the prices of the securities traded in the market, i.e., they are

price-takers. We study whether, in an arbitrage-free setting, the transactions undertaken by the

intermediary create value for firms and investors. The value for firms is created by permitting

investments in real assets that would not be taken otherwise. The value to investors is created by

satisfying demand for consumption in states that are not served by the primary securities traded

in the financial market. We do not permit short sales of secondary securities by any agent and

tranching of primary securities by intermediaries.

In our model, a firm is willing to invest in a new project when the project has a positive net

present value, i.e., when the value of the project exceeds the value of the resources employed,

characterized as the reservation price of the firm. The value of the project is ‘traditionally’ derived
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from the capital market based on the twin assumptions that the cash flows from the project can

be replicated in the financial market and that all agents are price-takers with respect to financial

claims. When markets are incomplete, the cash flows from such unique investment opportunities

often cannot be fully replicated in the financial market; hence, only bounds can be placed on their

present values. Therefore, projects whose values are unambiguously greater than their reservation

prices are financed, while those whose values unambiguously fall below their respective reservation

prices are rejected. This raises the following questions: (i) What are the conditions under which

projects whose reservation prices lie inside the bounds on their values can be made acceptable

through securitization? (ii) What are the incentives to firms to be willing to transact with the

intermediary? Our paper addresses these questions. (iii) What is the structure of the securitization

transactions undertaken by the intermediary?

We carry out the analysis in two parts. First, we study the phenomenon whereby financial

intermediaries pool cash flows from the assets of several firms or divisions of a firm and issue

securities that are within the span of the market. We assume firms have reservation prices for

undertaking investments in opportunities that are unique to them. To simulate competition in the

intermediation process, we assume firms can form coalitions with some or all of the other firms.

Therefore, we formulate the firms’ decision problem as a cooperative game. We examine conditions

under which incentives can be structured such that all firms participate in the creation of the asset

pool, that is the cooperative game . We show that there is a simple condition which is necessary

and sufficient for all firms to participate in the game, which implies that all firms obtain at least

their reservation price and can not do better by breaking away from the grand coalition. When this

condition is not met, our analysis yields a strong result that there is a maximal pool of assets that

is sustainable in the cooperative game. This pool is the one that maximizes the value enhancement

provided by pooling. We characterize the composition of this pool and show that it may or may

not consist of all of the firms. Finally, we show how the intermediary can allocate the value of the

asset pool fairly among contributing firms.

We then study the joint pooling and tranching problem, in which a financial intermediary first

pools cash flows from several firms, and then issues securities against the pool. We expect pooling

and tranching to provide greater value than pooling alone. In this part of the paper, we develop

a method for determining the incremental value of tranching and the structuring of incentives so

that firms participate in this modified setting. Additionally, we determine the general structure of
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the optimal tranches be issued to investors. The new securities created by the intermediary could

have up to three components, one that is a marketable claim, one that represents the arbitrage

opportunities available in the market due to special ability to design and sell securities to a subset

of investors, and a third component that is the rest of the asset pool which is sold at a price which

does not exceed arbitrage based bounds to investors. The presence of these three components in the

tranching solution has direct bearing upon the size of the asset pool, and therefore value creation

due to financing additional projects.

It should be emphasized that the value creation studied in our paper is due to securities created

from the cash flows of new projects. This is different from profits that can arise in an incomplete

market from arbitrage of existing securities. We exclude such arbitrage in our analysis, since we

presume that it has already occurred prior to the innovation and is reflected in the initial equilibrium

in the market, prior to the innovation.

Our results can be applied to other examples of financial intermediation in the context of market

incompleteness, such as the choice of investments by a venture capitalist matched by the (optimal)

mix of claims issued against them to investors, or the optimal asset-liability mix of a bank. They

can also be applied to traditional corporate financial problems such as mergers and acquisitions,

optimal financing, and the valuation of real options. We discuss a few of these examples in §6.

This paper is organized as follows. Section 2 reviews the related literature on incomplete markets

and securitization. Section 3 presents the model setup and assumptions. Section 4 analyzes the

conditions under which there is value in pooling and firms willingly participate in the creation of the

asset pool. Section 5 analyzes the conditions under which there is value in pooling and tranching,

and determines the optimal tranching strategy, §6 presents a numerical example illustrating the

results of our paper, and §7 concludes with a discussion of the implications of our analysis.

2 Literature Review

Our research is mainly related to the fairly sparse literature on securitization, broadly defined,

i.e., the issuance of securities in the capital market that are backed or collateralized by a portfolio

of assets. Most of this research has focused on the rationale for the widespread use of pooling

and tranching in the asset-backed securities market. This rationale is largely based on market

imperfections, mainly based on transaction costs and information asymmetry. Specific examples of

securitization include the academic literature on “supershares” (i.e., tranches of the portfolio of all
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securities in the market), primes and scores (i.e., income and capital gains portions of a stock), and

“bull” and “bear” bonds.1 More recently, specific examples of securitization have been analyzed

by researchers, e.g., the assets of insurance companies (Cummins (2004)), and those of firms in

financial distress (Ayotte and Gaon (2004)).

As mentioned earlier, two alternative economic explanations have been proposed in the literature

for the securitization of assets. The first relates transaction costs to the welfare improvement that

can be achieved by designing, creating and selling securities to meet the preferences of particular

clienteles of investors or issuers. The other type of explanation has to do with some aspect of

information asymmetry and the ability of an financial intermediary to reduce the agency costs

resulting from it. The first type of explanation is typified by Allen and Gale (1991), who examine

the incentive of a firm to issue a new security when there are transaction costs. Allen and Gale

examine the incentive of a firm to issue claims that increase the spanning of states. They study an

exchange equilibrium that results in an incomplete market. In their model, firms do not behave as

price takers and also incur a cost of splitting the return from their asset into financial claims. If

the value of the firm is unaffected by splitting the return, as is the case in a complete market, the

firm has no incentive to do so. In an incomplete market, it may be possible to split the return into

financial claims, i.e., innovate, and benefit from selling the new claims to investors. But not every

firm needs to innovate. Even if a single firm amongst many similar ones, or a financial intermediary,

for that matter, does so, investors can benefit if short sales are permitted. The new claims result

in readjustment of consumption by investors, which, in turn, leads to a change in asset prices that

may benefit the firm. There are two implications of this: a) the ex-post value of similar firms may

be equal, thus reducing the incentive of any one firm to innovate, and b) the firm has an incentive

to innovate new claims only if the prices change, i.e., if competition is imperfect.

We draw upon the model of Allen and Gale (1991), but our approach differs from theirs in

significant ways. First, our model does not use a general equilibrium approach. The reason is

that we are interested in obtaining more specific results, without considering the complex feedback

effects that a general equilibrium analysis would entail. Second, we use a game theoretic setting

to ensure participation by firms. Third, we do not explicitly model the cost of issuing claims,

since we wish to focus on value creation in a frictionless market. Fourth, our aim is to explicitly
1See Hakansson (1978), and Jarrow and O’Hara (1989) for details. For example, Hakansson (1978) argues that

options or supershares on the market portfolio improve the allocational efficiency of an existing market structure,

even if the market portfolio itself is not efficient.
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introduce a third type of agent - firms - into the exchange equilibrium and study how they can

benefit from intermediation. Moreover, in our framework, the problem for firms is not just whether

to issue new claims against returns from existing assets; rather, the problem is also to decide

whether to undertake new projects. Lastly, in order to study the effect of intermediation and

whether it helps more firms to undertake investments (or firms to invest in more projects), we

have to necessarily limit short sales of secondary securities by investors - otherwise, investors

can intermediate. Therefore, we confine the financial innovation activity to designated financial

intermediaries.

Many researchers have studied the effect of information asymmetry between issuers and investors

in the context of securitization [see, for example, DeMarzo and Duffie (1999), DeMarzo (2001) and

Leland and Pyle (1977)]. Pooling assets is considered beneficial to both an uninformed issuer and an

uninformed investor. The benefit to an uninformed issuer is that it reduces the issuer’s incentive

to gather information (Glaeser and Kallal (1997)). The benefit to uninformed investors is that

pooling reduces their adverse selection problem when competing with informed investors (DeMarzo

2001). In this context, Subrahmanyam (1991) shows that security index baskets are more liquid

than the underlying stocks. DeMarzo (2001) also shows that an informed issuer (or intermediary)

does not prefer pure pooling, because it destroys the asset-specific information of the informed

issuer. Instead, an informed intermediary prefers pooling and tranching to either pure pooling or

separate asset sales because pooling and tranching enable an intermediary to design low-risk debt

securities that minimize the information asymmetry between the intermediary and uninformed

investors. DeMarzo calls this the “risk diversification effect” of pooling and tranching. Pooling

and tranching are also beneficial to uninformed investors. For example, Gorton and Pennachi

(1990) show that uninformed investors prefer to split cash flows into a risk-less debt and an equity

claim. Unfortunately, even though these explanations might explain the structure of securities to

an extent, they do not provide the motivation to innovate or securitize, especially in the context of

originating firms, who then use the proceeds to undertake more projects.

To summarize, the differences between our paper and the prior work on securitization are as

follows. Our work in this paper is based on an arbitrage-free pricing framework; however, we

restrict the ability of some agents to take advantage of arbitrage opportunities. In our framework,

only those who are designated as financial intermediaries are able to take full advantage of these

opportunities. Also, our model assumes an incomplete securities market; but, we do not consider
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issues relating to transaction costs and information asymmetry, except in the indirect sense that the

financial intermediaries in our model can undertake certain transactions that other agents cannot.

Another difference is that our paper analyzes the simultaneous enhancement of the expected utility

of investors and the expansion of the set of value increasing projects undertaken by firms, due

to the intermediaries’ intervention through the securitization of unspanned claims. We, therefore,

consider multiple firms that have different assets (unlike Allen and Gale, who consider multiple

firms that have the same asset). We relate securitization to the problem of financing projects and

also to satisfying the needs of investor clienteles.

We have chosen to use the arbitrage-based approach of Harrison and Kreps (1979),2. It should

not be construed that we are advocating only this approach. Instead, we believe that our method-

ology shows how the set of projects that can be undertaken in an incomplete market expands due

to intermediation. Indeed, one can derive an alternative formulation of our framework, yielding

more specific conclusions, if we impose the additional restrictions on investor preferences or the

reward-to-risk ratio in the market. We illustrate these ideas with an example: Consider a firm that

wishes to undertake a project requiring an immediate investment, which results in uncertain and

unspanned cash flows in the future. From the preceding discussion, it is clear that the firm cannot

place an exact value on its cash flows, based on arbitrage-free pricing. The ambiguity regarding the

value of the project is the source of the problem considered in this paper. We do not rule out the

possibility that adopting one or the other more specific approaches described above might resolve

the decision problem unequivocally. However, by using an arbitrage-free framework, the question

we are able to answer is whether an intermediary can enhance the “value” by pooling assets from

different firms and tranching them for sale to investors.

3 Model Setup

We consider an Arrow-Debreu economy in which time is indexed as 0 and 1.3 The set of possible

states of nature at time 1 is Ω = {ω1, ω2, . . . , ωK}. For convenience, the state at time zero is denoted

as ω0. All agents have the same informational structure: The true state of nature is unknown at

t = 0 and is revealed at t = 1. Moreover, the K states are a complete enumeration of all possible
2See also Ross (1976) and John (1981).
3The model described below can be extended to a multi-period setting with some added complexity in the notation.

However, the basic principles and results derived would still obtain.
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events of interest, i.e., the subjective probability of any decision-maker is positive for each of these

states and adds up to one when summed over all the states.

3.1 Securities Market

We start with a market in which N primary securities are traded via a financial exchange. Security

n has price pn and payoff Sn(ωk) in state k. These securities are issued by firms and purchased by

investors through the exchange. The securities market is arbitrage-free and frictionless, i.e., there

are no transaction costs associated with the sale or purchase of securities. To keep the analysis

uncluttered, cash flows are not discounted, i.e., the risk-free rate of interest is zero.

From standard theory, the absence of arbitrage is equivalent to postulating that there exists a

set, Θ, of risk neutral pricing measures over Ω under which all traded securities are uniquely priced,

i.e., Eq[Sn] = pn, for all n and for all q ∈ Θ. It is well known that the set Θ is spanned by a finite

set of independent linear pricing measures.4 These are labelled {ql, l = 1, . . . , L}. In particular,

when the set Θ is a singleton, the market is complete, else it is incomplete.

We use the following additional notation in the sequel. Not every claim can be priced uniquely

in an incomplete market. When a claim cannot be priced uniquely, the standard theory provides

bounds for the price of a claim Z that pays Z(ωk) in state k. Let V −(Z) = max{E[S] : S ≤

Z, S is attainable}, and let V +(Z) = min{E[S] : S ≥ Z, S is attainable}. V −(Z) and V +(Z) are

well-defined and finite, and correspond to the lower and upper bound on the price of the claim

Z. Given that the set Θ is spanned by a finite set of independent linear pricing measures labelled

{ql, l = 1, . . . , L}, this can be formalized in the following Lemma. (All proofs are in the Appendix.)

Lemma 1. (i) V +(Z) = maxl∈L Eql
[Z].

(ii) V −(Z) = minl∈L Eql
[Z].

(iii) If the payoffs from the claim Z(ωk) are non-negative in all states, then these bounds are

unaffected by the inability of agents to short sell securities.

This lemma is needed for several proofs in the Appendix as well as for models in Sections 4 and

5. Remark: It can be shown that short sales restrictions do not affect the bounds if the payoffs of

the contingent claim are non-negative.
4A linear pricing measure is a probability measure that can take a value equal to zero in some states, whereas

a risk neutral probability measure is strictly positive in all states. Thus, the set Θ is the interior of the convex set

spanned by the set of independent linear pricing measures. The maximum dimension of this set equals the dimension

of the solution set to a feasible finite-dimensional linear program, and thus, is finite. See Pliska (1997).
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3.2 Agents

We consider three types of agents in our model: investors, firms, and intermediaries. Investors

are utility maximizers. Their decision problem is to construct a portfolio of primary securities

(subject to budget constraints), so as to maximize expected utility. Investors can buy or sell primary

securities, but cannot short secondary securities or issue securities. Firms own (real) assets and

issue primary securities that are fully backed by the cash flows from these assets. Firms can also

create new assets and sell claims against the cash-flows from these assets to intermediaries.5They

negotiate with intermediaries to get the highest possible value for their assets that is consistent with

the prices prevailing in the financial market. Intermediaries facilitate transactions between firms

and investors by repackaging the claims purchased from the firms and issuing secondary securities

traded on the over-the-counter securities market. We stipulate that the claims sold by firms to

the intermediaries must be fully backed by their asset-cash flows, and the claims issued by the

intermediaries should be fully backed by the assets purchased from firms. We also do not allow for

short sales of secondary securities or tranching of primary by intermediaries. These assumptions

enable us to isolate the roles of the three types of agents, and explicitly study the phenomenon

of securitization through the intermediaries. A secondary reason for these assumptions is to avoid

transactions that permit default in some states, because that would lead to complex questions

relating to bankruptcy and renegotiation, that are outside the purview of this paper.

Having broadly described the agents, we set out the details of their decision making problems

as below.

Investors: We model investors by classifying them into investor types. The set of investor types

is finite and denoted as I. Each investor of type i has endowment ei(ωk) in state k. The utility

derived by type i investors is given by a von Neumann-Morgenstern function Ui : <×< → <+. Ui is

assumed to be concave, strictly increasing and bounded above. Investors maximize their expected

utility, subject to the constraint that consumption is non-negative in every state.

Denote the consumption of type i investors in state k as xik and let the subjective probability of
5The new assets created by firms may also include assets that are already in place, but not yet securitized. For

example, the loans made a bank that are presently held on the asset side of its balance sheet may be candidates for

securitization in a collateralized loan obligations structure. The bank would be a “firm” in the context of our model.

In these cases, of course, the decision to acquire the assets in question has already been made and, to that extent,

part of the analysis in this paper would not apply directly.
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state k be Pi(ωk). Then, the investor derives expected utility equal to
∑K

k=0 Pi(ωk)Ui(xi0, xik). The

portfolio of primary securities held by a type i investor is denoted as the N -tuple of real numbers

(αi1, αi2, . . . , αiN ), where αin is the amount of security n in the portfolio. The type i investor’s

decision problem can be written as

max
K∑

k=0

Pi(ωk)Ui(xi0, xik)

subject to

xik = ei(ωk) +
N∑

n=1

αinSn(ωk), ∀ k = 1, 2, . . . ,K

xi0 = ei(ω0)−
N∑

n=1

αinp(n)

xik ≥ 0, ∀ k = 0, 1, 2, . . . ,K.

The first constraint equates the consumption in each state at time 1 with the cash flow provided

by the portfolio and the endowment. The second specifies the budget constraint for investment in

primary securities at time 0. The third constraint specifies that the cash flow in each state at time

1 should be non-negative.

Denote the derivatives of Ui with respect to xi0 and xik, k ≥ 1 as Ui1 and Ui2 respectively. We

shall assume, as customary, that the current period consumption is strictly bounded away from

zero for investor types. It follows that, at optimality,
K∑

k=1

Pi(ωk)
Ui2(xi0, xik)∑K

k=1 Pi(ωk)Ui1(xi0, xik)
Sn(ωk) ≤ pn.

Here, we obtain an inequality because of the restriction on consumption. The inequality suggests

that, in state k, type i investors are willing to buy an infinitesimal amount of consumption at a

price, mik given by

mik = Pi(ωk)
Ui2(xi0, xik)∑K

k=1 Pi(ωk)Ui1(xi0, xik)
.

These values are called the state prices (also called reservation prices) of investors. We require that

each security is present in the optimal portfolio of at least one investor type.

We note that the reservation price for an unspanned state may differ amongst investor types

due to the incompleteness of the market. We assume that an investor of type i is willing to buy not

only consumption that is specific to state k, but also secondary securities issued by the intermediary

if the price of the secondary security is below that given by valuing its state dependent cash flows,

using the investor’s reservation prices.
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Firms: Firms maximize the time 0 expected values of their investments. Firm j can create an

asset Xj that is unique to it. The asset provides a positive cash flow of Xj(ωk) in each state k, at

time t = 1. The firm can sell claims issued against Xj to the intermediary. Claims issued against

Xj should be fully backed by Xj ; in other words, the sum promised should not exceed the cash

flow from Xj in any state of nature. We assume that firm j has a reservation price rj on Xj .

The reservation price could be comprised of financial, physical and transaction costs, as well as

opportunity costs of the key decision-makers of the firm that are required to create the asset. The

firm invests in the asset, if the net present value, given by the difference between the selling price

offered by the intermediary and the reservation price, is positive. Additionally, firms cannot trade

with other firms directly and also cannot issue claims that are not fully backed by their assets. Let

J denote the number of firms that wish to undertake investment projects at time 0.

We assume that the total cash flow available from this set of firms in any state k,
∑J

j=1 Xj(ωk),

is small relative to the size of the economy. Each firm, therefore, behaves as a price-taker in

the securities market. However, when the asset cannot be priced precisely, it negotiates with the

intermediary for obtaining the highest possible price for securitization of the asset. In the rest of

this paper, we use Xj to refer to both the j-th asset and the cash flows from the j-th asset.

Intermediaries: Intermediaries are agents who have knowledge about the firms’ and investors’

asset requirements. Notice that such knowledge is different from receiving a private signal regarding

the future outcome. Hence, intermediaries have no superior information about future cash flows,

relative to other agents in the economy. The intermediaries purchase assets from firms and repackage

them to sell to investors. They seek to exploit price enhancement through securitization operations

that increase the spanning of available securities. They use this superior ability to negotiate with

the firms for the prices of their assets. They use the knowledge about the investors’ preferences to

create new claims and price them correctly. An important aspect of the model is that intermediaries

act fairly by paying the same price for the same asset, independent of which firm is selling it to the

pool, and charging the same price for the same product even though it is sold to different customers.

The rationale for these fairness requirements is the possibility of entry and competition from other

intermediaries. However, we do not explicitly model competition amongst intermediaries beyond

imposing the fairness requirements and the participation constraints by firms that are discussed in

the next section. Hence, in what follows, we consider the securitization problem from the viewpoint

of a single intermediary.
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Intermediaries purchase claims from firms, pool them and package them into different tranches

and sell them as collateralized secondary securities. Pooling is defined as combining the cash

flows from claims issued by different firms in a proportion determined by the intermediary. The

intermediary is not restricted to purchasing only all or none of a firm’s cash flows. Instead, can

purchase fractions (between 0 and 1) of the available assets. Tranching is defined as splitting the

pooled asset into sub-portfolios to be sold to different groups of investors, with the constraint that

the sub-portfolios be fully collateralized, i.e., fully backed by the claims purchased from the firms.

We assume that the intermediary can sell secondary securities to investors in a subset of the investor

classes, denoted I1 ⊂ I.

4 Value of Pooling

We attribute the beneficial role played by the intermediary to two factors: the value enhancement

provided by pooling alone, and the value provided by tranching. In this section, we consider the

former. We analyze the problem of pooling the cash flows of some or all firms and valuing the

pooled asset by replicating its cash flows in the securities market. We use the lower bound V −(·)

as a measure of value, and thus, compute the lowest price at which the pooled asset can be sold

without presenting opportunities for arbitrage. The reason why V −(·) is taken as a measure of

value is that it is the price at which the claim can be sold for sure in the market.6

From one perspective, there is value to pooling if the lower bound on the pooled asset exceeds

the sum of the lower bounds on the individual assets. This is likely to happen in an incomplete

market, because we expect a larger fraction of the pooled cash flows to be marketable compared

to the individual components. From an entirely different, and somewhat more subtle, perspective,

which is the focus of this paper, value gets created when more projects are undertaken by firms,

as a consequence of the innovation. We describe how this real effect could come about due to

intermediation.

Consider any given firm j. If rj ≤ V −(Xj), then clearly, firm j can profitably invest in asset Xj ,

even without pooling. If rj ≥ V +(Xj), then it does not make sense for the firm to invest in the asset

Xj . The interesting case is the one where V +(Xj) ≥ rj ≥ V −(Xj), because, in this case, the basis

for the decision to invest in Xj is ambiguous. For example, suppose that the cash flows of the pooled

6Of course, a price higher than this lower bound (but lower than V +(·)) is possible, but by no means guaranteed,

and may be the result of bargaining in the market.
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asset are given by X(ωk) =
∑

j Xj(ωk) for all k. Clearly, we have V −(X) ≥
∑

j V −(Xj).7 This

example shows that pooling improves the spanning of cash flows across states, and thus, provides

value enhancement. However, we still need to consider the reservation prices of firms to determine if

pooling reduces the ambiguity regarding investment in assets. We say that there is value to pooling

in this latter sense if there is a linear combination of assets with weight 0 ≤ αj ≤ 1 for asset j

such that even though for one or more j’s V −(Xj) < rj , we obtain V −(
∑

j(αjXj)) ≥
∑

j(αjrj)

and αj > 0 for at least one of the firms whose value is below its reservation price. Another

way of defining this type of value creation is that set of projects fully or partially financed from

payments derived from the asset pool is larger than the set of such projects prior to pooling. In

our formulation, firms need not behave altruistically in creating the asset pool; therefore, as an

additional condition for value creation, we require that the firms should have an incentive to pool

their assets because they can not benefit, individually or severally, from breaking away from the

pool.

Theorem 1 shows the necessary condition for creating value through pooling. The rest of the

section determines sufficient conditions for value creation.

Theorem 1. (i) If there is a q ∈ Θ such that rj ≥ Eq[Xj ] ∀ j, then value cannot be created by

pooling the Xj’s.

(ii) Conversely, if there is no q ∈ Θ such that rj ≥ Eq[Xj ] ∀ j, then value can be created by

pooling the Xj’s.

The first part of the theorem states that if the reservation price for each asset is higher than its

value under a common pricing measure then additional value cannot be created through pooling.

Conversely, if the condition in part (i) of the theorem fails to hold, then part(ii) states the positive

part of the result, that is, there exists a set of values {αj} such that value is enhanced through

pooling. There can be several such sets of values of {αj}. For ease of presentation, we initially

assume that the condition in Theorem 1(ii) holds for αj = 1 for all j, i.e., there is value in pooling

all the cash flows from all firms. We first present all the results under this assumption. Then,

we generalize them to the case when the condition in Theorem 1(ii) holds, but necessarily with

0 < αj < 1 to create value by pooling.

7The left hand side is given by minimizing the sum of the cash flows from all assets over the set of probability

measures; whereas the right hand side the sum of the minimum of each individual cash flow. The minimum of the

sum is always larger than or equal to the sum of minimums.
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As mentioned before, even when the value of the pooled asset exceeds the sum of the reservation

prices, the firms may be unwilling to participate in the asset pool. For example, this could happen

if one firm has a very high reservation price; therefore, the remaining firms are better off keeping it

out of the pool. To see this, note that adding firms to the pool might make the combined cash flows

more marketable. However, adding firms imposes incremental costs due to the additional payments

necessary, that may exceed the enhancement in value. This naturally leads to the following set of

questions: Can we characterize reservation prices such that there is an incentive for firms to pool

their assets? Can a fair price be set for each Xj? How many asset pools would be created and

what would be the composition of these asset pools? The remainder of this section answers these

questions.

We stipulate that firms will participate in the pool only if they cannot do better by forming

sub-coalitions amongst themselves. Therefore, the firms’ participation problem is a cooperative

game, G. Let Jw denote a subset of the set of all firms, J , wherein each firm j contributes a

fraction wj ∈ [0, 1] of its cash flows with proportional reservation price wjrj . Let Jc
w = J − Jw

denote the complement of Jw, wherein the contribution of each firm j is (1−wj)Xj and reservation

price is (1 − wj)rj . Also let X(Jw) =
∑

j∈Jw
wjXj . We consider the cooperative game in which

the value of each coalition, V (Jw), is defined as V −(X(Jw)). Following standard terminology for

cooperative games, we say that there is a solution to this game, i.e., its core is non-empty, if the

grand coalition of all firms cannot be blocked. The theorem below provides sufficient conditions

for the core of the game to be non-empty, as well as conditions that guarantee that payments can

be made to the firms to cover their reservation prices.

Theorem 2. (i) If rj ≤ V −(Xj) for all j, then the core of game G is not empty.

(ii) There is a solution in the core to G such that the payments to all firms exceeds their

reservation price if and only if for every subset Jw of J , we have V (J) ≥ max(V (Jw),
∑

j∈Jw
wjrj)+

max(V (Jc
w),
∑

j∈Jc
w
(1− wj)rj).

Theorem 2(i) is based on an argument from Owen (1975) and Samet and Zemel (1984). The

game G is a linear program (LP). These papers analyze the solution to games of this type.

Theorem 2(ii) essentially states that the necessary condition for the payments to firms to support

the core is also sufficient to guarantee its existence. It is easy to see that the condition implies

the condition in Theorem 1(ii). The necessary part of Theorem 2(ii) is immediate, because under

every solution in the core, each coalition Jw should get at least max(V (Jw),
∑

j∈Jw
wjrj). If this
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condition does not hold, then either some coalition does not get its value (and can do better on

its own) or the payment to the firms in some coalition cannot cover the sum of the reservation

prices. Part (ii) of the theorem shows that when the condition holds for all possible Jw, all firms

participate and all projects are financed in full. Notice that we do not need to verify the condition

in Theorem 2(ii) for all possible partitions of J . Instead, verifying the condition for partitions of

size two is sufficient.

Notice also that the inequalities in Theorem 2(ii) must be tested not only for partitions where

wj = 0 or 1 but also for fractional values of wj , i.e., partitions where a firm belongs to two or more

subsets and divides its cash flows between them. Thus, there is a continuum of partitions making

it virtually impossible to use Theorem 2(ii) directly in practice to determine the composition of the

asset pool. However, this task can be avoided. We show that there is a simple condition which is

necessary and sufficient for all the inequalities in 2(ii) to be satisfied. Thus, under this condition,

the cash flows from each asset Xj are included fully in the pool and the core of the cooperative

game is not empty.

Theorem 3. Let q ∈ Θ be a pricing measure under which V −(
∑

j Xj) =
∑

j Eq[Xj ]. If Eq[Xj ] ≥ rj

for all j and some such q, then the sufficiency conditions in Theorem 2(ii) are satisfied. The

converse is also true.

We remark on the nice symmetry between this result and Theorem 1(i). The earlier result,

viz., Theorem 1(i), is that if under a common pricing measure each asset’s value is less than its

reservation price then there is no value in pooling. The new result is that if under the extreme

pricing measure that minimizes the value of the asset pool, the value of each asset equals or exceeds

its reservation price then value can be created by pooling all assets. Also, value is created (in the

sense of additional projects being undertaken) if some project whose value was below the reservation

price gets financed through the pooling effect.

While Theorems 2 and 3 show that there exist payment schemes such that firms are willing to

participate in the game G, we need to address the question of actually determining the payment

scheme to the firms, which we now turn to. It is possible to show that there could be many such

schemes but we also require the scheme to be ‘fair’. It is difficult to work with the concept of

‘fairness’ in full generality. However, a case can be made that if all firms are paid the same price

for a unit cash flow in state k, then the scheme is surely fair. We therefore restrict ourselves

to payments determined using a linear pricing measure, which does not compensate for pricing
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synergies across states. The following corollary complements the results so far, because it uses the

sufficient condition of the Theorem 3 to construct a linear pricing scheme.

Corollary 1. If a pricing measure qp exists which is either an extreme point of the set of risk

neutral probability measures, or a convex combination of such extreme points, such that
∑

j EqpXj =

V −(
∑

j Xj) and the reservation prices satisfy: rj ≤ EqpXj, then, the grand coalition of all firms

can be sustained when firm j is paid EqpXj.

Corollary 1 shows that value enhancement (from the first perspective) due to pooling can be

construed to be given by the change in the pricing measure that is necessary to value the assets

correctly. This is readily seen by assuming that rj ≥ V −[Xj ] = Eqj [Xj ], that is, firm j cannot

decide whether to invest in the project based on the minimum valuation. Notice that the measure

to determine the minimum value of each firm’s asset, qj , depends on the cash flow of the asset

which is being valued and it provides the lower bound V −[Xj ]. The measure to determine the

value when the project is considered to be part of the asset pool depends on the cash flow of the

entire asset pool. This yields a higher value. The firm surely gains when the reservation price

lies within these two bounds. Moreover, when we are restricted to compensate firms using the

same pricing measure, we are assured that the gain from pooling can be used to induce all firms to

participate when rj ≤ EqpXj . This is the second source of value creation.

There are other interesting aspects to the corollary. The scheme is fair because it uses the same

pricing formula for each firm. The measure also prices the traded securities correctly. Thus, the

firms can use a market benchmark to assure themselves that the intermediary is fair. In the next

section, we shall examine how far these results carry over when the intermediary can tranche the

pool to create secondary securities.

The above results characterize the situations in which all firms participate and contribute all

their assets. A critical condition for ‘full’ participation by firms is Eqp(Xj) ≥ rj for all j and qp as

defined in Theorem 3. Also, note that according to Theorem 1, there are situations where there

is value in pooling only fractions of cash flows of the firms. Further, there may be several sets of

values {αj} that provide value in pooling. The following corollary highlights one such solution. We

show that there exists a set of optimal values of {αj}, denoted {α∗
j}, that maximize the value of

the pool. Further, if we treat α∗
jXj ’s as the constituent assets instead of Xj ’s, then Theorems 2

and 3 still apply to this asset pool.
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Corollary 2. If the condition in Theorem 1 holds, then the value of pooling is maximized by

solving the linear program: max V −(
∑

j αj(Xj))−
∑

j αjrj, subject to 0 ≤ αj ≤ 1, ∀j. An optimal

solution to this linear program, {α∗
j}, is in the core of G. Assets of firms whose value exceeded

their reservation price will be included fully in this asset pool. Moreover, the leftover cash flows

{(1− α∗
j )Xj} do not provide any value in pooling.

Corollary 2 is consistent with Theorem 3 because if Eqp [Xj ] ≥ rj for all j then it can be shown

that setting α∗
j = 1 for all j gives an optimal solution to the linear program in Corollary 2. Of

course, it is difficult to construct a fair payment scheme because it will simultaneously require

limiting the fraction of assets purchased at that price. Value creation from the both perspectives is

possible. We do not discuss how firms that get only a fraction of their assets included in the pool

will finance the balance. For this reason, we also do not discuss whether value creation is more

likely due to increase in the value of the pool than due to the financing of additional projects.

In summary, this section fully characterizes the value in pooling. Theorem 1(i) and (ii) show

the conditions under which there is no value in pooling and those under which there is value in

pooling. In the latter case, Theorems 2 and 3 and Corollary 2 together show that there will only

be one coalition formed. This coalition achieves the maximum value of pooling. It includes all

the assets when the condition in Theorem 3 holds, and fractional assets otherwise. Corollary 1

guarantees the existence of a linear payment scheme for this coalition. The assets not included in

this coalition cannot be constituted as a separate value enhancing pool.

5 Value of Pooling and Tranching

In this section, we assume that in addition to tranches that are replicas of primary securities already

traded in the securities market, the intermediary can also sell new securities, fully backed by the

pool of assets, directly to investors. We call the former as marketable tranches and the latter as

non-marketable tranches or secondary securities.

In general, the cash flows from a given asset pool, say,
∑

j wjXj can be split into several

tranches, and each tranche offered to every investor type. Recall that mik denotes the state price

of investor type i for a unit consumption in state k. Let

m∗
k = max

i∈I1
mik.

where I1 is the subset of investor classes to whom the intermediary can sell secondary securities.
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It is clear that the cash flow in state k should be sold to the investor type that values it the most.

Therefore, the maximum price that the intermediary expects from a tranche sold in state k is m∗
k.

Given the asset pool, we formulate the problem of designing the optimal tranches that maximize

the value of the asset pool as follows:

V T (J) = max
∑

k

m∗
k(Yk − lk) +

∑
n

pnβn (1)

such that

Yk +
∑

n

βnSn(ωk) ≤
∑
j∈J

wjXj(ωk) for all k (2)

∑
n

βnSn(ωk) + lk ≥ 0, for all k (3)

Yk, lk ≥ 0, βn unrestricted for all k, n. (4)

Here, βn is the weight of primary security n in the marketable tranche, lk equals the amount

of negative cash flow from the marketable tranche in state k, and Yk − lk is the cash flow of

the non-marketable tranche in state k. The objective is to maximize the combined value of the

tranches. The objective function removes the cash flow, lk, from the intermediary’s profits to

prevent the intermediary from exploiting any arbitrage opportunities available in the market by

tranching primary securities. Constraints (2)-(3) specify that the tranches should be fully backed

only by the asset pool. In constraint (2), we state that the sum of cash flows of the tranches must

be less than the cash flow of the asset pool in each state k. In constraint (3), we preclude the

possibility that the intermediary may short primary securities and use the proceeds to create a

new non-marketable tranche. This formulation captures the constraint placed on SPV’s that any

security issued by an SPV should be backed by the asset pool and not from any market operation.8

Finally, the non-negativity constraints on Yk in (4) specify that short sales of secondary securities

are not allowed, i.e., the non-marketable tranche should only have positive components. This is

justified by recalling that consumption should be non-negative in all states.

The optimal tranching results are based on the dual of this problem. Therefore, we formulate

the dual problem as below:

DT (J) = min
∑

k

λk

∑
j∈J

wjXj(ωk) (5)

8A less stringent constraint, allowing for partial use of the proceeds of the short sales of primary securities to

augment the pool, would expand the feasible set. However, this would only introduce a somewhat different shadow

price, but would be qualitatively similar to the rest of the analysis presented here.
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such that

λk ≥ m∗
k for all k (6)

δk ≤ m∗
k for all k (7)∑

k

(λk − δk)Sn(ωk) = pn for all n (8)

λk, δk ≥ 0, for all k. (9)

Here, λk and δk are the dual variables corresponding to constraints (2) and (3), respectively, of

the primal problem. The dual program’s objective function states that λk are the state prices that

determine the optimal value of the asset pool realized by tranching. Constraint (8) implies that

(λ1 − δ1, . . . , λK − δK) ∈ Θ because this vector is non-negative and prices all primary securities

correctly. Thus, δk measure the distance of the state prices obtained by allowing tranching from

the set Θ. Let Sa be the set of states in which δk > 0 in the optimal dual solution.

The following lemma formally states that the optimal solution of the dual problem lies in

a bounded region, and therefore, by implication, the primal problem does not lead to infinite ar-

bitrage. For the purposes of this lemma, let SDT be the set of feasible solutions to the dual program,

and B be a bounded polyhedral convex set defined as
∏

k[0,max(1,maxk m∗
k)]×[0,max(1,maxk m∗

k)].

Lemma 2. The optimal solution to the dual problem is obtained by evaluating the value of the asset

pool at each extreme point of B
⋂

SDT and taking the minimum value as the solution.

From this lemma, the primal problem V T (J) has a finite optimal solution. This is so because

we disallow the intermediary to short sell primary securities for the issuance of new secondary

securities, and take advantage of arbitrage in an obvious way. However, we find that, even so, the

tranching solution exploits arbitrage opportunities in the securities market. The set Sa completely

characterizes such opportunities. The following theorem shows this result.

Theorem 4. (i) If there exists a non-negative contingent claim Z such that
∑

k′ m∗
k′Z(ω′

k) > V +(Z)

then Z is strictly positive in some state k ∈ Sa.

(ii) If there exists a non-negative contingent claim Z such that Z is strictly positive in some

state(s) k ∈ Sa and zero elsewhere, then
∑

k′ m∗
k′Z(ω′

k) ≥ V +(Z).

(iii) If there exists a non-negative contingent claim Z such that
∑

k′ m∗
k′Z(ω′

k) > V +(Z), then

there does not exist any q ∈ Θ such that qk ≥ m∗
k for all k.
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Theorem 4(i) shows that the set of states Sa characterizes arbitrage opportunities. The in-

termediary can short securities to create a contingent claim that pays off in these states and sell

the tranches to the subset of investors to realize an immediate profit. This is the consequence of

the value to the investors exceeding V +(Z). Theorem 4(ii) states the converse of (i) and, thus,

strengthens the characterization of the set of states Sa. It shows that if a claim does not have

positive cash flows in at least one of the states in Sa then the upper bound on the price of the claim

exceeds the value to the subset of investors. The last part of Theorem 4 is the dual characteriza-

tion which is mathematically the most useful of the three. Using this result, we can now state the

general structure of the secondary securities.

Let Y ∗
k , l∗k, β

∗
n denote the optimal solution to the primal problem and λ∗k, δ

∗
k denote the optimal

solution to the dual problem. We partition the optimal tranching solution into three parts that we

denote as T a, T I and Tm. Let T a
k = Y ∗

k − l∗k if δ∗k > 0 and zero otherwise, let T I
k = Y ∗

k − l∗k − T a
k ,

and let Tm
k =

∑
n βnSn(ωk).

To see the rationale for partitioning the non-marketable tranche into T a and T I , note that by

the complementary slackness condition applied to δ∗k, δ∗k > 0 implies that l∗k +
∑

n β∗nSn(ωk) = 0,

which further implies that Y ∗
k − l∗k =

∑
j wjXj(ωk), i.e., all the cash flows in state k are sold as

secondary securities. Thus, Theorem 4 implies that T a is positive if and only if there exists arbitrage

opportunities in the securities market due to te ability to design and sell secondary securities to a

subset of investors. Further, the complementary slackness conditions imply that the intermediary

tranches all of the cash flows in the asset pool in the states where there is arbitrage as secondary

securities. Indeed, the following theorem shows that while T a exploits arbitrage opportunities in

the securities market, Tm and T I do not.

Theorem 5. (i) Ta · Tm = 0. (ii) Ta · TI = 0.

From Theorem 5, we observe that the structure of the optimal tranches bears a remarkable

resemblance to the two-fund separation theorem even though this result comes about in a different

mathematical model. The cash flows from secondary securities, T a, have zero-covariance with the

cash flows from the marketable tranche, Tm, and the cash flows from the second type of secondary

securities, T I . Further, the optimal solution to the primal problem (of the intermediary) is separable

into one that corresponds to the tranches Ta and another to the rest The value of T a is independent

of changes in the cash flows of the asset pool in states S \ Sa, and likewise, the values of Tm and

T I are independent of the cash flows in states Sa. To see this, let Sa denote the subset of states
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in which δ∗k = 0. Define X̂(ωk) =
∑

j wjXj(ωk) − T a
k as the asset pool after tranching T a. Set

m̂∗
k = 0 for the states where δ∗k > 0, and m̂∗

k = m∗
k otherwise. Let D̂T denote the new dual problem.

Clearly, D̂T has a feasible solution in Θ. Due to the fact that T a is orthogonal to Tm and T I , the

optimal solution to DT is given by Tm and T I . Thus, the value of Tm and T I is independent of

the value of T a. In this manner, the asset pool decomposes into an ‘arbitrage part’, a marketable

part and a residual part. In securitization industry terminology, the first is often referred to as

‘bespoke’ tranches, while the last is referred to as ‘toxic waste’.

We can now specify the complete structure of the optimal tranching solution for a given asset

pool as stated in the theorem below.

Theorem 6. The optimal solution to the tranching problem is represented by (T a, Tm, T I) as

defined above. Further,

(i) If there exists q ∈ Θ such that qk ≥ m∗
k for all k, then T a

k = 0 for all k.

(ii) If there exists q ∈ Θ such that qk ≤ m∗
k for all k and qk < m∗

k for some k, then Tm
k = T I

k = 0

for all k.

(iii) Otherwise all three types of tranches may occur in the optimal solution.

Theorem 6 also shows the incremental value realized by tranching the asset pool
∑

j wjXj . In

case (i), λ∗ ∈ Θ, and thus, the optimal solution to the dual problem lies inside the price bounds

V −(
∑

j wjXj) and V +(
∑

j wjXj). By the constraints of the dual problem, this solution is obtained

in the set Θ
⋂
{(λ1, . . . , λK) : λk ≥ m∗

k for all k}. Since this is a subset of Θ, the value obtained

by pooling and tranching is at least as large as the value obtained by pure pooling or by pure

tranching. In case (ii), the optimal solution is given by Em∗ [T a], which is greater than V +(T a).

Further, the optimal solution is linear in the cash flows X(ωk). Thus, the solution degenerates into

a pure tranching solution and there is value from tranching, but there is no value from pooling. In

case (iii), the value of tranches Tm and T I is as in case (i) and the value of tranche T a is as in

case (ii). Due to the orthogonality of T a with Tm and T I , the total value is equal to the sum of

these two components. Thus, the value from pooling and tranching is higher than that from pure

pooling or pure tranching.

We note that in both cases (i) and (iii), the tranche Tm may not be the same as the portfolio

that realizes the value V −(X) in the pure pooling solution. This is due to the fact that the set Θ

shrinks due to the restrictions placed on the q’s. Also note that the differences among the three

types of solutions to the tranching problem do not depend on the cash flows in the asset pool,
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but only on the set Θ and the state prices m∗
k. Thus, an intermediary can verify the results in

Theorems 4-6 without knowing the cash flows in the asset pool or the willingness of individual firms

to participate in the asset pool. Interestingly, the tranches in Tm and T I are sold to different sets

of investors, while T a may be sold to the same set of investors as T I .

The solutions in Theorem 6(ii) and (iii) can be illustrated for some specific conditions based

on the prices of the primary securities. Corollary 4 shows that the optimal pooling and tranching

solution is of the type specified in Theorem 6(ii) if all primary securities are “mispriced” by m∗
k.

Corollary 3 shows that the the optimal pooling and tranching solution is of the type specified in

Theorem 6(iii) if some but not all primary securities are “mispriced” by m∗
k.

Corollary 3. If
∑

k m∗
kSn(ωk) ≥ pn for all securities, then there is a unique solution to the

tranching problem, namely, to sell the cash flows in each state to the highest bidder. Thus, the

value of each asset is uniquely given by
∑

k m∗
kXj(ωk), j = 1 to J . Every project whose reservation

price is below this value is financed. There is no value to pooling but value arises from tranching.

Corollary 4. If
∑

k m∗
kSn(ωk) > pn for some n then Θ

⋂
{(λ1, . . . , λK), λk ≥ m∗

k, k = 1 to K} = ∅.

**Intermediaries having access to different sets of investors.

**Fractional pooling versus full pooling.

Thus far, we have provided all results in this section for a given asset pool. We now consider

the cooperative game between firms and the resultant composition of the asset pool. In the case

when
∑

k m∗
kSn(ωk) > pn for all primary securities n, Corollary 3 shows that the cooperative game

has a degenerate solution because there is no value from pooling and the decision to participate in

the pool can be made independently for each firm. In the case when the condition in Theorem ??

holds, we find that the results of §4 can be applied to construct the asset pool. This is proved in

the theorem below. Finally, in the intermediate case ... the composition of the pool will have to be

solved for explicitly using the linear programs defined in this section and in §4.

Theorem 7. If the condition in Theorem ?? is met, i.e., if the set ΘT = {q : qk ≥ m∗
k, q ∈ Θ}

is not empty, then attention can be restricted to pricing measures in ΘT and all the results of §4

hold. If q∗ is the measure that minimizes the value of the pooled asset, then in the optimal solution

a secondary security is created with payoff in state k only if q∗k = m∗
k.

How are these secondary securities different from those considered in §4? Notice that the optimal

solution in this case is not simply to sell state by state. Instead, it is optimal to sell residuals after
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Table 1: Equilibrium investments and state prices prior to introduction of secondary securities

Equilibrium

demand

Investor for equity Consumptions Expected

type (S1, S2) c0 c1 State prices Utility

1 (0, 0.1289) 9.8711 (0.5289, 1.6, (0.1421, 0.0002, 9.7276

1.0645, 0.1934) 0.0049, 0.5703)

2 (0.2304, 0) 9.7696 (0.7304, 0.2304, (0.0519, 0.1580, 9.5696

0.2304, 0.2304) 0.3160, 0.4741)

creating tranches that resemble primary securities. For example, an intermediary may combine a

primary security and the residual(s) to create a security that adds to the payoffs from the primary

security. For example, if the primary security pays x, y, z in three states – we can create a secondary

security that pays x, y + a, z + b. This solution would apply even when there are transaction costs.

6 Numerical Example

Consider a market with four states at time 1 denoted Ω = {ω1, . . . , ω4} and two primary securities

with payoffs S1 = (1, 1, 1, 1) and S2 = (1, 0, 0.5, 1.5) at time 1 and prices p1 = p2 = 1 at time 0.

The set of risk neutral pricing measures over Ω is Θ = {(x + 3y, x− y, 0.5− 2x, 0.5− 2y)}
⋂

[0, 1]4

with two degrees of freedom denoted x and y. The set Θ is spanned by three linear pricing

measures, Q1 = (0, 1/3, 0, 2/3), Q2 = (1, 0, 0, 0) and Q3 = (0, 0, 1/2, 1/2). Q1 corresponds to

x = 1/4, y = −1/12, Q2 corresponds to x = 1/4, y = 1/4 and Q3 corresponds to x = 0, y = 0.

Consider two investor types in this market with identical preferences given by

Ui(c1, c2) = c0 − e−5c1 , for i = 1, 2,

where c0 denotes consumption at time 0 and c1 denotes consumption at time 1. The investor

types differ in their endowments in different states, being given as e1 = (10, 0.4, 1.6, 1, 0) and

e2 = (10, 0.5, 0, 0, 0). Both investor types have the same subjective probabilities for the four states

given as P = (0.4, 0.1, 0.2, 0.3). Each investor solves the decision problem specified in §3.2 in order

to maximize total expected utility. Table 1 shows the equilibrium investments and state prices of

the investor types.
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Suppose that there exist three firms willing to invest in assets X1 = (1, 1, 0, 0), X2 = (0, 0, 1, 0)

and X3 = (0, 0, 0, 1). The reservation prices of the firms are denoted r1, r2 and r3, respectively,

and will be specified later. X1, X2 and X3 are not spanned by Θ and thus do not have unique

prices in this market. The price bounds on X1 are V −(X1) = 0, V +(X1) = 1, those on X2 are

V −(X2) = 0, V +(X2) = 1/2, and those on X3 are V −(X3) = 0, V +(X3) = 2/3. Note that this is

a simple example since X1 + X2 + X3 gives us the risk-free bond, trivially showing the value of

pooling. However, this simple example suffices to illustrate values of reservation prices that yield

different pooled assets.

Conditions for the pooling of X1 and X2. First consider X1 and X2 only. Clearly, not all

values of r1 and r2 will lead to value creation. For example, suppose that r1 = 1/6 and r2 = 1/4.

Theorem 1(i) tells us whether there is value in pooling X1 and X2 in some proportion. To apply

the theorem, we seek to determine a pricing measure q ∈ Θ such that

Eq[X1] ≤ r1 ⇒ 2x + 2y ≤ 1/6 and

Eq[X2] ≤ r2 ⇒ 0.5− 2x ≤ 1/4.

The solution (x, y) = (1
4 ,− 1

12) gives a q ∈ Θ. Therefore, Theorem 1(i) holds for r1 = 1/6 and

r2 = 1/4 and there cannot be value from pooling. If r1 + r2 decreases, for example, if r1 + r2 < 1/3,

then there does not exist any q ∈ Θ such that Eq[X1] ≤ r1 and Eq[X2] ≤ r2. Then value can be

created by pooling.

Pooling of X1, X2 and X3 (formation of a grand coalition). We now illustrate Theorem 3

by considering the pooling of all three assets. The grand coalition is the riskless bond. Let the

convex combination used be a of Q1, b of Q2 and the rest of Q3. Any such combination prices the

riskless bond correctly. By Theorem 3:

a/3 + b ≥ r1

− a/2− b/2 ≥ r2

+ a/6− b/2 ≥ r3

a, b ≥ 0

Let r1 = r2 = r3 = 1/3. Then the above system of inequalitites gives a feasible solution (set

a = 0, b = 1/3), and the grand coalition is sustainable.
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Now consider the reservation prices r1 = 1/4, r2 = 1/2 and r3 = 1/4. Now there is no no

feasible solution to the above system of inequalities, showing that the grand coalition is no longer

sustainable. In order to find an asset pool given these reservation prices, consider the LP:

max z − a/4− b/2− c/4

such that

1/3a + 2/3c ≥ z

a ≥ z

1/2b + 1/2c ≥ z

a, b, c ≥ 0

The optimal solution is a = 1/2 and b = 1. The LP has an optimal value of 1/8. The asset pool is

given by (1/2, 1/2, 0, 0) + (0, 0, 0, 1) = (1/2, , 0, 1). The expected value under the extreme measures

are 5/6, 1/2 and 1/2. The convex combination 1/4 of Q2 and 3/4 of Q3, yields the measure,

q = (1/4, 03/8, 3/8), under which Eq[1/2X1] = 1/4 and Eq[X3] = 3/8, both of which are greater

than or equal to the corresponding reservation prices

Linear payment scheme for pooling X1 and X2. If only X1 and X2 are pooled together, then

the pooled cash flow is (1, 1, 1, 0) and the value of the pooled cash flow is given by V −(X1 + X2) =

1/3. This value is achieved by constructing the replicating portfolio obtained by buying one unit

of S1 and selling 2/3 units of S2, resulting in offsetting cash flows of (1/3, 1, 2/3, 0). The remaining

cash flows of (2/3, 0, 1/3, 0) constitute an equity tranche that can be retained by the intermediary.

This value of the pooled cash flows is achieved at Q1. Thus, according to Corollary 1, the linear

payment scheme that subdivides the value of the pool between the participating firms is given by

Eqp [Xi] = EQ1 [Xi] for each asset Xi. Thus, the payments to the firms are EQ1 [X1] = 1/3 and

EQ1 [X2] = 0. In this example, there is a single feasible linear payment scheme if r1 ≤ 1
3 , r2 = 0.

This payment scheme ensures that the coalition of firms 1 and 2 cannot be broken because firm

2 cannot do better on its own. Note that there can be other payment schemes because firm 1

also cannot do better on its own, however, these payment schemes will not correspond to pricing

measures in Θ.

In contrast to this, note that if all three assets, X1, X2 and X3 are pooled together and r1 =

r2 = r3 = 0, then all q ∈ Θ give linear payment schemes such that the grand coalition cannot be
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broken. Thus, there are infinite ways of dividing the value of the pool amongst the three firms, and

all three firms may receive non-zero compensation for participating in the pool. Contrariwise, it

can be verified that there is no linear pricing scheme when r1 = 1
4 , r2 = 1

2 , r3 = 1
4 . However, there

is such a scheme when all three equal one-third.

Optimal pooling and tranching of X1 and X2. We now illustrate the results of §5. Again

suppose that X1 and X2 are pooled together. If both investor types are considered, we determine

m∗ = (0.1421, 0.1580, 0.3160, 0.5703). Both X1 and X2 are priced above their market price under

m∗. Therefore, we find that the unique solution is to sell the tranche (1,0,0,0) to investors of type

1 and (0,1,1,0) to the other type. In fact, there is no interaction between investor types in this

solution and no interaction between assets because each asset can be priced uniquely. This, in

turn, implies that projects will be financed either in full or not at all. Moreover, the maximum

reservation price for X1 is 0.3001(= 0.1421 + 0.1580). The maximum price for X2 is 0.3160. Thus,

instead of the fractional solution found without tranching, we get a ‘full financing’ solution under

less stringent conditions. In this economy, only secondary securities are created. There is arbitrage

possible using primary securities but cannot be exploited according to the equilibrium.

Now, assume that the intermediary has access to investors of type 1 only. Security 1 is under-

priced according to the state prices for this investor (Em1 [S1] = 0.7175). Security 2 is correctly

priced. We construct the new set of pricing measures: q1 + q2 + q3 + q4 = 1, q1 + 0.5q3 + 1.5q4 =

1, q1 ≥ 0.1421, q2 ≥ 0.002, q3 ≥ 0.0049 and q4 ≥ 0.5703. The optimal solution is 0.4297. The unique

pricing measure that yields this solution is (0.1421, 0.2827, 0.0049, 0.5703).

This does not guarantee full pooling unless the reservation prices are each smaller under this

measure. Suppose that r1 = 0.42 and r2 = 0.004. Then both projects will be included in the pool.

The following tranches will be created in the optimal solution: go long one unit of S1 and short 2/3

units of S2, sell the surplus cashflows, (0.6666, 0, 0.3333, 0), as tranches to investors of type 1. The

intermediary could as well have sold the security that pays (0.6666, 0, 0.3333, 0) to the investors.

These securities could be viewed as paying more in states in which investors value the payment

the most. The value realized upon selling the surplus cash flows is 0.0964, and the maximum and

minimum price bounds on (0.6666, 0, 0.3333, 0) are 0.0667 and 0.0. Since the value lies between

the price bounds, no arbitrage opportunity is created.

Finally, suppose that the intermediary can sell to investors of type 2 only. In this case, we find

that the optimal solution is to sell (1,1,1,0) as a secondary security to the investors. The value
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realized by the intermediary is 0.553, which is higher than the price bounds on (1,1,1,0). Thus, the

solution lies outside the set Θ and there is arbitrage possible.

7 Discussion and Conclusion

In this paper, we have studied the effect of securitization on real investment decisions in an incom-

plete market. We use the fact that incompleteness causes the market to place a premium on assets

or asset combinations that augment the set of traded claims. Thus, we provide a rationale for

securitization, independent of transaction costs or information asymmetry. Our results show that

there is a benefit from pooling if and only if under every market pricing measure, the reservation

price of at least one firm is not larger than the value of its assets. Moreover, there is a unique

asset pool that is sustainable in the cooperative game between firms. This pool consists of all or

fractions of the cash flows of participating firms. The value creation by pooling can be augmented

by tranching the pooled asset and issuing new securities to investors. The insight provided by solv-

ing the tranching problem is that the inducement is stronger if the investor classes are dissimilar.

Our paper shows that securitization leads to the financing of new projects that were otherwise un-

profitable. We derive specific conditions on how securitization expands the set of set of reservation

prices of firms allowing new projects to be financed. Finally, we find that the value enhancing effect

of securitization depends collectively on the consideration set of investment opportunities and their

reservation prices.

The predictions of our model are broadly consistent with observations from the securitization

market. However, since we consider a stylized model, some implications of our analysis differ in

detail from the securitization phenomenon observed in practice. For example, Cummins (2004)

describes the general structure of asset-backed securities (ABS) that applies across industries and

asset types. According to him, securities issued by a financial intermediary are structured to

appeal to various classes of investors in recognition of their different investment tastes. Thus, ABS

transactions include several tranches of securities, with different degrees of seniority with respect

to the underlying cash flows. Our model also determines the optimal design of tranches, given the

demand from investors for cash flows in different states as shown in §5. Further, securitization helps

to create new classes of securities based on events that are not otherwise traded in the securities

market, such as prepayment, credit, or catastrophe risk. Securities based on such risks would be

consistent with the predictions from our model. However, there is a subtle difference between the
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tranches derived in our analysis and those that are typically observed: we find that the optimal

tranches partition the cash flows in different states, whereas securitization observed in practice

allocates cash flows in each state to multiple tranches in a particular order of priority.9 This

difference can be reconciled by imposing transaction costs or information restrictions in our model.

Another difference between our model and the securitization observed in practice is that due to our

assumptions the dissimilarity of the investor classes goes to the advantage of the firms, it might

equally go to the investors or the intermediary.

Our model and results have several applications to common financial problems relating to the

valuation of assets, real and financial. One such problem relates to venture capital/private equity

funds. Such funds pool a number of investments in individual companies into a portfolio. They then

sell claims to different classes of investors, typically general and limited partners. Our argument

here is that the fund derives a valuation benefit from pooling the cash flows of several firms that not

currently traded, since in an incomplete market, the fund achieves synergies across states. Another

application of our framework is the valuation of real options in incomplete markets. We show that,

due to market incompleteness, the existing assets of a firm can affect the value of new investments

(even when they do not affect the cash flows of new investments). This further influences the firm’s

investment decisions, and leads to more projects being undertaken.

Our paper can be extended in subsequent research in several ways. First, while the results in this

paper are obtained under the strict definition of arbitrage, our analysis could be combined with price

bounds derived under approximate arbitrage as in the recent literature (see Bernardo and Ledoit

2000, Cochrane and Saa-Requejo 2000). Under approximate arbitrage, market incompleteness

should still continue to provide a rationale for seeking value enhancement through pooling and

tranching. However, the imposition of a constraint that precludes “approximate arbitrage”, instead

of arbitrage, would restrict the set of feasible solutions to the optimization problems considered

in this paper. Additional analysis is required to determine the optimal pooling and tranching

strategies when subjected to the tighter constraints.

Second, in the analysis in this paper, we have not dealt with the problems of information

asymmetry. For instance, in our model, the tranches constructed by the intermediary need to be

verifiable for our results to hold. If investors can verify whether the claim has positive payoffs in

a state and if investors value consumption equally in every state, then the resulting partition of
9This is also true in the model proposed by DeMarzo (2005), based on asymmetric information.
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claims will resemble the tranches offered in the CLO market. Of course, given the issues relating

to verifiability of the states, intermediaries need to handle the associated agency problems and be

more innovative in creating tranches – for example, those that pay when the economy is doing well

and those when it is doing poorly. We defer these issues to subsequent research.

Finally, an interesting aspect of securitization is when the pool has to be created and managed

dynamically. The problem of determining when and how much of each asset to include, remove or

add is a problem faced by venture fund managers. In the dynamic case, the major differences are

that firms within the pool might not have the option to leave the pool, while firms that enter later

might enjoy greater bargaining power. Firms and the intermediary might have only an imperfect

forecast about which assets will become available in the future.
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Appendix

Proof of Lemma 1. We prove part (i). The proof for part (ii) is similar. Consider the linear

program:

min z

subject to

z ≥
K∑

k=1

ql(ωk)Z(ωk) l = 1, . . . , L

z unsigned.

If z ≥
∑

k ql(ωk)Z(ωk) for all l, then
∑

l δlz ≥
∑

l

∑
k δlql(ωk)Z(ωk) for all δl ≥ 0,

∑
l δl = 1.

Thus, z ≥ supq∈Θ Eq[Z(ωk)]. Therefore, the optimal solution to the linear program must be greater

than or equal to V +(Z). On the other hand, z = maxl∈L Eql
[Z] is a feasible solution to the linear

program. But maxl∈L Eql
[Z] ≤ supq∈Θ Eq[Z(ωk)]. Thus, V +(Z) = maxl∈L Eql

[Z].

For the proof of part (iii), Consider the problem of maximizing the minimum marketable value

of a claim Z that pays Z(ωk) is state k.

max
∑

n

αnpn

subject to ∑
n

αnSn(ωk) ≤ Z(ωk) ∀ k

αn unrestricted ∀ n

.

The objective is to maximize the market value of a portfolio that is less than that of the claim

Z, subject to the constraint that the portfolio pays less than the claim in every state k. The dual

of this problem is given by:

min
∑

k

λkZ(ωk)

subject to ∑
k

λkSn(ωk) = pn ∀ n

λk ≥ 0.
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We require,
∑

k λ∗kSn(ωk) = pn for every security n in the optimal dual solution. But, that

condition, by definition, implies that the optimal dual solution is a pricing measure that belongs to

the set Θ. The proof follows by applying part (i) of the Lemma. The validity of the upper bound

can be proved similarly. 2

Proof of Theorem 1. To prove (i) of the theorem, we show the equivalent statement that if

value can be created by pooling, then there does not exist any q ∈ Θ such that Eq[Xj ] ≤ rj for all

j. Consider the linear program:

max v −
∑

j

αjrj

subject to

−
∑

k

ql(ωk)
∑

j

αjXj(ωk) + v ≤ 0, l = 1, . . . , L

αj ≥ 0, j = 1, . . . , J.

Here, the vector (αj) denotes the proportion in which the assets (Xj) are pooled together, and

v denotes the value of the asset pool in the securities market. The value of the asset pool is

defined as V −(
∑

j αjXj) because this is the minimum price that the asset pool commands in the

securities market. We have used Lemma 1 by requiring the expected value under each extreme

pricing measure, ql, be greater than or equal to the value v (each of the first L constraints). The

linear program seeks to obtain the combination of assets that will maximize the difference between

its value v and the combination of reservation prices required to create the asset pool,
∑

j αjrj .

If value can be created by pooling, then there exist weights αj such that the linear program is

feasible and

v −
∑

j

αjrj > 0. (10)

Let θl ≥ 0 be any set of weights such that
∑

l θl = 1. Multiply each of the L constraints with the

corresponding weight θl and add. Because the linear program is feasible, we get

−
∑

k

∑
l

θlql(ωk)

∑
j

αjXj(ωk)

+ v ≤ 0. (11)

Here,
∑

l θlql is a pricing measure in Θ, which we denote by q. Hence, (11) can be rewritten as

−Eq

∑
j

αjXj

+ v ≤ 0. (12)
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Combining (10) and (12), we get Eq

[∑
j αjXj

]
>
∑

j αjrj . Equivalently, there exists j such that

Eq [Xj ] > rj .

Since θl are arbitrary and there is a one-to-one mapping between the sets {(θl) : θl ≥ 0,
∑

l θl =

1} and Θ, we conclude that, if value can be created by pooling, then there does not exist any q ∈ Θ

such that Eq[Xj ] ≤ rj for all j.

To prove (ii) of the theorem, consider the dual of the above linear program. The dual variables

µl will be associated with each of the constraints related to the expected value under extreme

pricing measure ql. The dual problem is:

min 0

subject to

∑
l

µl = 1∑
k

∑
l

µlql(ωk)Xj(ωk) ≤ rj , j = 1, . . . , J

µl ≥ 0.

We wish to show that if no value can be created by pooling, then there exists q ∈ Θ such that

Eq[Xj ] ≤ rj for all j. Notice that by choosing all αj = 0, the primal problem is always feasible

and has a lower bound of zero. The only question is whether the primal has a bounded solution –

which by strong duality theorem can only be zero from the dual program’s objective function – or

an unbounded solution. The former situation is the one where pooling does not create value (and

the dual is feasible), and the latter situation is the one where pooling leads to value creation (and

the dual is infeasible). Thus, if no value can be created by pooling, then the primal has a bounded

solution and the dual is feasible. From the dual constraints, we observe that dual feasibility implies

that there exist weights µl such that under the pricing measure
∑

l µlql, we have E[Xj ] ≤ rj for all

j. This proves the converse. 2

Proof of Theorem 2. We first show the proof of this theorem for partitions where wj = 0 or 1

and then extend it to the case of fractional wj . Since we restrict wj to be 0 or 1, we denote the

cash flows for any subset Jw of J simply as
∑

j∈Jw
Xj and the corresponding reservation prices as∑

j∈Jw
rj .

The proof of part (i) of the theorem follows from the work of Owen (1975) and Samet and Zemel

(1984). We sketch the proof for completeness. Consider the problem of maximizing the value of
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the portfolio formed from the assets of coalition Jw by selling tranches of primary securities against

it. The maximum value is given by solving the linear program:

max
∑

n

βnpn

subject to ∑
n

βnSn(ωk) ≤
∑
j∈Jw

Xj(ωk), k = 1, . . . ,K

βn ≥ 0, i = 1, . . . , N.

The dual to this problem is

min
∑

k

λk

∑
j∈Jw

Xj(ωk)

subject to ∑
k

λkSn(ωk) ≥ pn, n = 1, . . . , N

λk ≥ 0, k = 1, . . . ,K.

Notice that the constraints to the dual program do not depend on the coalition formed because

the Xj ’s enter only the objective function. Moreover, the dual is feasible because the market is

arbitrage-free, that is, any q ∈ Θ will satisfy the dual constraints, i.e.,
∑

k qkSn(ωk) = pn,∀n, q ∈ Θ.

Finally, as Xj(ωk) ≥ 0 for all j, the solution to the dual program is finite, as it cannot drop below

zero. Solve the problem for the grand coalition of all firms and obtain the optimal dual solution λ∗k.

As Xj(ωk) ≥ 0 for all j, by applying the same reasoning as in Lemma 1(iii), we can also assume

that these dual values constitute a pricing measure in Θ.

Consider the following solution to the cooperative game: Let firm j receive the payment∑
k λ∗kXj(ωk). This is surely greater than or equal to V −(Xj) and therefore, by assumption,

larger than rj . By definition, the coalition Jw receives the sum of the payments to the firms in the

coalition. This sum equals or exceeds the maximum value obtained by solving the linear program

for just the coalition because: (a) the λ∗k’s constitute a dual feasible solution to the problem for

all Jw ⊆ J because, as noted earlier, the constraints of the dual problem do not depend on the

coalition formed; and (b) all dual feasible solutions are greater than or equal to the primal optimal

solution (by weak duality). This proves part (i).

For the proof of part (ii), the problem is to demonstrate the existence of a payment scheme that

works for all coalitions simultaneously. Redefine the value of a coalition without loss of generality to
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be V (Jw) = max(V −(Jw),
∑

j∈Jw
rj). We first show that if the condition stated in part (ii) applies

to partitions comprised of two subsets, then it also applies to any arbitrary partition. That is, if

for every subset Jw of J , we have V (J) ≥ max(V (Jw),
∑

j∈Jα
rj)+max(V (Jc

w),
∑

j∈Jc
w

rj), then for

every partition J1, J2, . . . , Jk of J , the same inequalities hold. (Note that the reverse statement can

also be proven, implying that the two conditions are equivalent.) The proof is by contradiction.

Assume that the condition does not hold for some partition, J1, J2, . . . , Jk. Thus, by assumption,

V (J) <
∑

i

max

V −(Ji),
∑
j∈Ji

rj

 .

Without loss of generality, assume that for i = 1, 2, . . . . , h, max(V −(Ji),
∑

j∈Ji
rj) = V −(Ji), and

for i = h + 1, h + 2, . . . . , k, max(V −(Ji),
∑

j∈Ji
rj) =

∑
j∈Ji

rj . Then, by super-additivity of the

value function (which follows from the definition of V −),

V −

(
h⋃

i=1

Ji

)
≥

h∑
i=1

V −(Ji).

Let Jw =
⋃h

i=1 Ji. By the condition given in part (ii) of Theorem 2, the definition of V (·), and the

discussion above, we have

V (J) ≥ V (Jw) + V (Jc
w)

≥
i=h∑
i=1

V −(Ji) +
k∑

j=h+1

∑
j∈Ji

rj

=
∑

i

max(V −(Ji),
∑
j∈Ji

rj).

This provides the necessary contradiction. The proof of part (ii) now appears to be immediate

because, under every solution in the core, each coalition Jw gets at least max(V (Jw),
∑

j∈Jw
rj).

Thus, the payment is sufficient to cover the reservation price. However, it must further be shown

that this can be done simultaneously for every coalition and not just coalition by coalition.

Consider the primal problem:

min 0

subject to ∑
j∈Jw

πj ≥ V (Jw), for all Jw ⊆ J,

∑
j

πj = V (J),

πj ≥ 0, for all j.
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This program if feasible determines the payment schedule for the firms, i.e., firm j receives a

payment πj . The dual problem is:

max
∑

Jw⊆J

λJwV (Jw) + λV (J)

subject to ∑
Jw:j∈Jw

λJw + λ ≤ 0, j = 1, . . . , J,

λJw ≥ 0, λ unsigned.

The dual variables λJw correspond to the first set of constraints in the primal problem, and the

dual variable λ corresponds to the second constraint. Obviously, the dual problem is always feasible

(set all variables equal to zero). The dual solution will equal zero. Moreover, λ has to be less than

or equal to zero. All we need to show is that zero is the maximum possible solution to the dual. If

not, then the dual will be unbounded (by scaling all variables as large as desired), and therefore,

the primal will be infeasible. We proceed to show that the solution to the dual problem is bounded.

Consider the constraint to the dual corresponding to j = 1. This constraint along with λ ≤ 0

implies that: ∑
Jw:1∈Jw

λJwV (Jw) + λ max(V (Jw) : 1 ∈ Jw, Jw ⊆ J) ≤ 0.

Similarly, the constraint corresponding to j = 2 yields∑
Jw:2∈Jw and 1∈Jc

w

λJwV (Jw) + λ max (V (Jw) : 2 ∈ Jw and 1 ∈ Jc
w, Jw ⊆ J) ≤ 0.

We can write analogous inequalities for larger values of j. In general, we have∑
Jw:j∈Jw and {1,...,j−1}⊆Jc

w

λJwV (Jw)+λ max (V (Jw) : j ∈ Jw and {1, . . . , j − 1} ⊆ Jc
w, Jw ⊆ J) ≤ 0.

The sets where the maximum is attained over (Jw : j ∈ Jw and {1, . . . , j − 1} ⊆ Jc
w, Jw ⊆ J) are

disjoint and their union is less than or equal to J . Adding up these inequalities gives∑
Jw⊆J

λJwV (Jw)+λ(max(V (Jw) : 1 ∈ Jw, Jw ⊆ J)+max (V (Jw) : 2 ∈ Jw and 1 ∈ Jc
w, Jw ⊆ J)+. . .) ≤ 0.

Recalling that V (J) is greater than equal to the sum of the V (Ji)’s over any partition of J we

obtain ∑
Jw⊆J

λJwV (Jw) + λV (J) ≤ 0.
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Therefore, the optimal value of the dual problem is bounded above by zero. This implies that the

dual problem is feasible and bounded, and therefore, has an optimal solution. Therefore, by strong

duality theorem, the primal has a feasible solution.

This proves the theorem for wj = 0 or 1 for all j. The same proof applies for the case of

fractional wj when the number of subdivisions of each asset is finite. Thus, if each asset is broken

into finite number of parts, treating each subdivided asset as a ‘undivided’ asset we get the result

(we need to check over all partitions of J into two subsets – in these partitions we need to recombine

the subdivisions of each asset that are in the same partition). Now, by taking limits, we get the

result for countable sub-divisions of assets. Thus, using the continuity of the function V (Jw) in the

w)j’s, the verification has to be done for every partition Jw and Jc
w; where wj ’s can take any value

between 0 and 1. 2

Proof of Theorem 3. Consider a partition of the assets, such that one coalition pools
∑

j wjXj

with a reservation price of
∑

j wjrj and the other
∑

j(1−wj)Xj with a reservation price of
∑

j(1−

wj)rj . By assumption,
∑

j Eql
wjXj ≥

∑
j wjrj , and by definition

∑
j Eql

wjXj ≥ V −(
∑

j wjXj).

Thus,
∑

j Eql
wjXj ≥ max(

∑
j wjrj , V

−(
∑

j wjXj)). Similarly,
∑

j Eql
(1 − wj)Xj ≥ max(

∑
j(1 −

wj)rj , V
−(
∑

j(1−wj)Xj)). Adding these up we get, V −(
∑

j Xj) ≥ max(V −(
∑

j wjXj),
∑

j wjrj)+

max(V −(
∑

j(1− wj)Xj),
∑

j(1− wj)rj). This proves the sufficiency part of the theorem.

For the necessity, suppose the condition does not hold but the solution with wj = 1 is in the

core. Assume that for the unique extreme pricing measure ql that yields the minimum value of the

grand coalition, there is some j, such that Eql
Xj < rj . Without loss of generality, assume that the

measure is q1 and this inequality holds for j = 1. Let Z =
∑

j 6=1 Xj . Consider the following linear

program:

max v − w1r1

subject to

v − w1Eql
(X1) ≤ Eql

(Z) for all l,

w1 ≤ 1,

v unsigned, w1 ≥ 0.

This LP seeks the optimal fraction (w1 ∈ [0, 1]) of X1 to add to the contingent claim Z if we can

buy the claim for its reservation price r1 and the objective is to maximize the value of the modified
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claim. The ql are the extreme risk-neutral pricing measures. The dual program is

min
∑

l

λlEql
(Z) + γ

subject to ∑
l

λl = 1

−
∑

l

λlEql
(X1) + γ ≥ −r1

λl, γ ≥ 0.

In this formulation, the λl’s are the dual constraints corresponding to the first set of primal con-

straints and γ is the dual variable corresponding to the second primal constraint. Set λ1 = 1.

Clearly, γ = 0 satisfies the second constraint. However, the constraint has slack. By complemen-

tary slackness, the primal variable w1 should be equal to zero in all optimal primal solutions.

Thus, we see that V −(Z) + r1 > V −(X1 + Z). This violates the necessary condition for the

solution to be in the core, i.e., Theorem 2(ii) ( consider the partition X1 and Z).

Note that if the primal solution is not unique, the proof still goes through by a simple calculation:

Consider the solution to the dual that sets λl such that
∑

l lambdalQl = q, where q is the value

minimizing measure for the pool of all assets. The dual objective function value is EqZ because

γ = 0 by assumption (EqX1 < r1). By the fact that the value of any feasible solution to the dual,

this is greater than the value of any feasible primal solution, therefore, also V −(Z + X1) − r1,

yielding the same conclusion. 2

Proof of Corollary 1. The choice of qp in part (i) follows from Lemma 1. Notice that when

the lower bound, V −(
∑

j Xj) is achieved at several extreme points then a linear mixture of these

measures also gives the same lower bound. The second part follows from part (ii) of Theorem 2.

To see this, the optimal solution to the full coalition’s problem is the highest value that can be

obtained by pooling all assets, which must equal Eqp(
∑

j Xj). Moreover, any linear pricing measure

that supports the core must be an optimal dual solution to the problem of determining V −(
∑

j Xj).

Also, all optimal solutions to the dual problem are obtained as convex combinations of the optimal

extreme points solutions. Thus, if one such pricing measure can be found that not only supports

the core but also gives a value of each Xj larger than rj then all firms will willingly participate in

creation of the pool. 2

40



Proof of Corollary 2. The value is maximized because this is the highest surplus that can be

generated after meeting all the reservation prices. The set of projects financed is maximal because

if another project could be added to the set with an increase to the objective function then the

current solution is not optimal.

Finally, let q be the measure under which the pooled assets attain their minimal value. Then, if

asset j is at a positive level in the pool then, EqXj > rj otherwise the dual constraint of the form

−EqXj + γ > −rj will have slack, which will mean that the asset j is at zero level in the primal

solution. Also, the set of assets wjXj satisfy the conditions of Theorem 3.

Finally, to show that the remaining assets cannot be pooled to create value, observe that under

the extreme pricing measure that minimizes the value of the pooled fractions of assets, the expected

value of the unpooled fractions of each asset is below its reservation price. Thus, applying Theorem

1(i) we get the result. 2

Proof of Lemma 2. We require the following result to prove this lemma.

Lemma 3. The feasible optimal solution to the dual problem DT (J) is located in the bounded

convex set given by the intersection of the set of feasible region of problem DT (J) and B =∏
k[0,max(1,maxk m∗

k)]× [0,max(1,maxk m∗
k)].

Proof of Lemma 3. The proof follows from the fact that qk ≤ 1 thus we may bound the region

in which we search for an optimum by a hypercube that can contain the largest values of λk and

δk. 2

The proof of Lemma 2 now follows from the facts that the dual solution is bounded above by

Lemma 3 and the minimum is attained at an extreme point of B (cf: Lemma 1). 2

Proof of Theorem ??. Consider the constraints, call this problem P1:

λk ≤ m∗
k∑

k

λkSn(ωk) = pn

λk ≥ 0.

We shall show that these constraints define a non-empty set, which will establish the theorem.

Assume that the objective is to minimize 0. The dual of these constraints is, say, P2:
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max
∑

k

m∗
kZk +

∑
n

βnpn

Zk +
∑

n

βnSn(ωk) ≤ 0

Zk ≥ 0, βn unrestricted.

P2 is always feasible and has zero as a possible solution. We need to show that this is the unique

optimum and that the optimal value is thus bounded. This in turn will prove that P1 is feasible.

Assume that there is a solution to P2 such that the value of the objective function is positive.

Multiplying the set of second constraints by any q ∈ Θ, we get:

∑
k

qkZk +
∑

n

βnpn ≤ 0.

Equivalently, supq Eq[Z] +
∑

n βnpn ≤ 0. This is the same as V +(Z) +
∑

n βnpn ≤ 0. Therefore,

by assumption,
∑

k m∗
kZk +

∑
n βnpn ≤ 0. This is a contradiction. Therefore, the primal problem

must be feasible.

2

Proof of Corollary 4. Notice that for each (x1, x2, . . . , xN ) such that xk ≥ m∗
k for all k,∑

k xkSn(ωk) is strictly higher than pn. Thus, no such x can belong to Θ. 2

Proof of Corollary 3. Follows from the facts that any solution that satisfies λk ≥ m∗
k will satisfy∑

k λkSn(ωk) ≥ pn and λk = m∗
k is the cheapest such solution. 2

Proof of Theorem 7. The key observation is that we do not need to restrict tranching of primary

securities as there is no arbitrage possible Therefore, we can formulate the original problem without

the additional constraints that restrict tranching:

m∗
k = max

i
mik.

The optimization problem can be written as:

V T (J) = max
∑

k

m∗
kYk +

∑
n

pnβn (13)
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such that

Yk +
∑

n

βnSn(ωk) ≤
∑
j∈J

wjXj(ωk) for all k

Yk ≥ 0, βn unrestricted for all k, n.

The dual of this problem is:

min
∑

k

λk

∑
j∈J

wjXj(ωk) (14)

such that

λk ≥ m∗
k for all k∑

k

λkSn(ωk) = pn for all n

λk, ≥ 0, for all k.

This problem is known to be feasible by assumption and has a finite optimal solution due to

the lower bound on the λ’s.

2

I added a proof and made several edits. I think the characterization is coming along nicely. We

have to decide whether the proof needs to be made more rigorous or is it alright? Also, whether

the story we have is consistent and makes sense in the market?

Depending on this we may have to change the intro and discussion.

The numerical example may have to be changed to reflect the three types and demonstrate the

theorems.

Does the new characterization explain the hierarchy? Yes, in the following sense. We can (I

dont know whether we discuss – please check) sometime have Tm and T I going to the same set of

investors. In that case we will get hierarchy – eg

1,1,1,1,0,0 is the market security 1,1,1,1,1, 0 is sold to one class and 1,1,1,1,0,0 to another.

Of course only 2 can be created.

We also may have to say what the optimal pooling solution is for case 2? I think it is as follows

– use the extreme dual solutions and see if the pool can be formed??? Needs some thought. Can

we say what happens to T a part vis-a-vis the rest?

I hope to send this to Stanford by end of week.
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