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Credit Rating Dynamics and Markov Mixture Models

Abstract: Despite overwhelming evidence to the contrary, credit migration matrices, used in many

credit risk and pricing applications, are typically assumed to be generated by a simple Markov process.

In this paper we propose a parsimonious model that is a mixture of (two) Markov chains. We estimate

this model using credit rating histories and show that the mixture model statistically dominates the simple

Markov model and that the differences between two models can be economically meaningful. The non-

Markov property of our model implies that the future distribution of a firm’s ratings depends not only on

its current rating but also on its past rating history. Indeed we find that two firms with identical current

credit ratings can have substantially different transition probability vectors.

1 Introduction

In the study of credit rating dynamics of firms, it is very convenient to assume that the ratings

process is Markov. For one, the credit migration or transition matrix, which characterizes past

changes in credit quality of these firms, is all that is needed to generate forecasts of the credit asset

portfolio distribution in the future. For another, given an estimate of this matrix over any horizon,

say one year, one may generate a forecast over any other horizon, say two years, by simply raising

that matrix to the appropriate power (in this case to the power two).

However, the evidence for non-Markovian behavior of a rating process is mounting. Altman and

Kao (1992), Carty and Fons (1993), Altman (1998), Nickell, Perraudin and Varotto (2000), Bangia

et al. (2002), Lando and Skødeberg (2002), Duffie and Wang (2003), Hamilton and Cantor (2004)

and others have shown the presence of non-Markovian behavior such as ratings drift, industry

heterogeneity and time variation due in particular to the business cycle. Christensen, Hansen and

Lando (2004) take a step towards addressing the non-Markovian behavior, albeit at the expense of

parsimony, by considering the possibility of hidden "excited" states for certain downgrades.

In this paper we present a non-Markovian model for credit ratings histories. The proposed

model is a mixture of (two) Markov chains, and we estimate the Markov mixture with credit rating

histories using methodology developed by Frydman (2004). We show that the mixture model

statistically dominates the simple Markov model and that the differences between two models

can be economically meaningful. The non-Markov property of our model implies that the future

distribution of a firm’s ratings depends not only on its current rating but also on the past history

of its ratings. Thus, unlike in a Markov model, all firms with a particular current rating are not

assigned the same future distribution of ratings. Instead, our approach provides a way of computing

firm or rating history specific future distributions of ratings. Indeed we find that two firms with

identical credit ratings can have substantially different transition probability vectors.
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A rating by a credit rating agency represents an overall assessment of an obligor’s creditwor-

thiness. There is some disagreement between the rating agencies about what exactly is assessed.

Whereas S&P evaluates an obligor’s overall capacity to meet its financial obligation, and is hence

best thought of as an estimate of probability of default, Moody’s assessment is said to incorporate

some judgment of recovery in the event of loss (Cantor and Packer (1995), BIS (2000)1).

Credit ratings and consequently credit migrations find wide applications in finance. These

include bond pricing models like Jarrow and Turnbull (1995) and Jarrow, Lando and Turnbull

(1997), credit derivative pricing models like Kijima and Komoribayashi (1998) and Acharya, Das

and Sundaram (2002), as well as credit portfolio models such as CreditMetrics
R°
by Gupton, Finger

and Bhatia (1997). This topic also has significant policy relevance given the pending new banking

regulation around the New Basel Capital Accord where capital requirements are driven in part by

ratings migration (BIS (2001, 2003)).

The algorithm for the maximum likelihood estimation of the mixture of Markov chains is pre-

sented in Frydman (2004) with an illustration that uses a small data set of Moody’s credit rating

histories. In this paper we go further and derive explicit expressions for the conditional distribution

of a firm’s ratings process by considering past ratings histories. We show that this distribution will

differ depending on the information available. One may know the entire history, only a subset (say

the last five years) or just the current rating. We then take the model to corporate credit rating

histories from Standard & Poor’s spanning 1981 to 2002, reject the Markov alternative against the

mixture model, document a strong aging effect by considering the time profile of mixture matrices,

find that there is significant industry heterogeneity in this time profile, and finally show that firm,

or rather rating history specific transition probabilities can vary a lot, a source of heterogeneity

which is obscured by the Markov approach. This is further illustrated using a bond pricing example.

The plan for the remainder of the paper is as follows: Section 2 defines a Markov mixture

model, discusses its estimation from continuous credit ratings histories and derives some of its

probabilistic properties. In Section 3 we provide a synopsis of the dataset, discuss the estimation

results, and compare a mixture model with a simple Markov model empirically and in terms of

economic implications. Section 4 provides some concluding remarks.

2 Markov Mixture Modeling

In this section we briefly summarize the methodology developed in Frydman (2004) by considering

a mixture of two continuous time Markov chains which captures population heterogeneity in the

rate of movement among states. A mixture of two Markov chains seems a natural extension of

a simple Markov chain as a model for bond ratings migration.2 We consider a continuous time

1See especially Annex I.B in BIS (2000).
2See Norris (1997) for an overview on Markov chains.
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version of the mixture model because the changes in ratings are recorded up to a calendar day thus

providing us with essentially continuous ratings histories.

The mixture process is a continuous time stochastic process X = {X(t), t > 0} with state space
R = {1, 2, ..., w}, representing the different credit ratings, which, conditionally on the initial state,
is a mixture of two continuous Markov chains, XQ = {XQ(t), t > 0} and XA = {XA(t), t > 0},
with generators A and Q, respectively. It is assumed that the generators are related by

A = ΓQ,Γ = diag(γ1, γ2,, ...γw). (1)

The discrete mixing distribution on these Markov chains is defined conditionally on the initial state.

For the initial state i, there is a separate mixing distribution,

si = P (XA | X(0) = i),

1− si = P (XQ | X(0) = i) , 0 ≤ si ≤ 1,

that is, si is the proportion of firms with initial rating i that evolve according to XA, and 1− si is

the proportion evolving according to XQ.

The transition matrices PQ(t), PA(t) of Markov chainsXQ andXA are given by PQ(t) = exp(tQ)

and PA(t) = exp(tA), t ≥ 0, respectively and the transition probability matrix of the mixture

process over a time period (0, t) is given by

P (0, t) = SPA(t) + (I − S)PQ(t), t ≥ 0, (2)

where S = diag(s1, s2, ..., sw).

We consider a probabilistic interpretation of the relationship in (1). Generator Q is a matrix

with entries qij satisfying

qii ≤ 0, qij ≥ 0,
X
j 6=i

qij = −qii ≡ qi, i ∈ R,

and these entries have a probabilistic interpretation: 1/(−qii) is the expected length of time that
XQ remains in state i, and qij/qi is the probability that when a transition out of state i occurs, it

is to state j, i 6= j ∈ R. Thus, it follows from (1) that XQ and XA in general differ in the rates

at which they leave the states (i.e., qi 6= ai), but both chains, when leaving state i, have the same

probability distribution for entering state j, given by qij/qi = aij/ai, j 6= i. Thus, depending on

whether γi = 0, 0 < γi < 1, or γi > 1, the realizations of XA never move out of state i, move out

of state i at a lower, or at a higher rate, respectively, than those generated by XQ. In this way the

generators govern the migration speed of the firms. If γi = 0, 1 ≤ i ≤ w, the model reduces to a

particular two-component mixture known in the literature as a mover-stayer model (see Frydman

(1985) and Frydman and Kadam (2004)). If γi = 1, 1 ≤ i ≤ w, the mixture process collapses to a

simple Markov chain. In fact, this restriction will guide hypothesis testing later on.
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The EM algorithm for the maximum likelihood estimation of mixture parameters from a set

of continuously observed rating histories is presented in Frydman (2004). The algorithm esti-

mates the following parameters: (si, γi, qi, 1 ≤ i ≤ w). Denoting the MLEs of these parameters by

(ŝi, γ̂i, q̂i, 1 ≤ i ≤ w), the off-diagonal entries in the Q matrix are then estimated by

q̂ij =
Nij

Ni
q̂i, i 6= j ∈ R,

where Nij is the total number of i→ j transitions for all rating histories in a sample (i.e. aggregated

over all firms) and Ni =
P

j 6=iNij . The ML estimate of A is obtained from the relationship in (1).

Next, in order to compare empirically the mixture model with the simple Markov chain we will

carry out the test of the null hypothesis H0 : γi = 1, 1 ≤ i ≤ w, that the credit rating process is

a simple Markov chain, against the hypothesis that it is a mixture of two Markov chains. We will

also carry out a number of other tests concerning mixing parameters in which the null hypothesis

is of the general form H0 : γi = 1, i ∈ R0, where R0 ⊂ R is a relevant subset of credit ratings, for

example all investment grade ratings. All tests are based on the likelihood ratio statistic, which

under the null is asymptotically χ2 distributed with degrees of freedom equal to the number of

constraints imposed by a null hypothesis.3

An important feature of our model specifically and of Markov mixture models generally is that

the distribution of the future state of a mixture process X, conditional on its current state, does

depend on its past history in contrast to the Markov process. The ability to capture serial or path

dependence in the data is key not just for our application but for applications in economics and

finance more broadly.

We now derive the explicit expression for the conditional distribution of a future state of X and

illustrate its dependence on the past history of the process with examples. Suppose that at time t

the process is in state i, and we want to compute the probability distribution of its state, say, one

period from now:

P (X(t+ 1) = j | X(t) = i, It−) i, j ∈ R, (3)

where It− is available information about realization of X up to time t− . Clearly, under a Markov

assumption the information contained in It− would be irrelevant for the computation of (3); how-
ever, under a mixture assumption, past history, contained in It−, does matter for assessing future
behavior of a process currently in state i. Set Ii,t = It−∪{X(t) = i} to be the observed realization
of the rating path, i.e. the observed rating history, ending at time t in state i. We show in Appendix

A that

P (X(t+ 1) = j | Ii,t) = P (XA | Ii,t)pAij + P (XQ | Ii,t)pQij , j ∈ R, (4)

where pAij and pQij are entries in PA(1), PQ(1), respectively. We will refer to (4) as the basic fore-

casting equation. Thus, the distribution of a state one period later is a convex linear combinaton

3For details, see Frydman (2004).
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of one period transition probabilities of Markov chains. The weight P (XA | Ii,t) is the probabil-
ity of X evolving according to XA based on the information in Ii,t and its value depends on the
available information. The set It− may represent the complete information about the past, partial
information or may be empty. In the last case we only know that at present time t the firm has

rating i but have no information on its rating history.

In Appendix A we show that in the case of complete information, that is, when It− = {X(s), 0 ≤
s ≤ t−}, or equivalently, Ii,t ≡ {X(s), 0 ≤ s ≤ t}, the weight is given by

P (XA | Ii,t) = si0LA

si0LA + (1− si0)LQ
, (5)

where i0 is the initial state and

LA = P (Ii,t | XA, i0), LQ = P (Ii,t | XQ, i0),

are the likelihoods of observing the realization Ii,t under XA and XQ respectively, conditional on

initial state i0. To compute these likelihoods we use the following information derived from the

observed realization Ii,t:

nkj = # k → j transitions for Ii,t, k 6= j ∈ R

τk = total time in state k for Ii,t, k ∈ R,

that is nkj are the transition counts from state k to state j for a particular firm with history Ii,t.
With this information the likelihood functions are

LQ =
Y
k 6=j
(qkj)

nkj
Y
k

exp(−qkτk),

LA =
Y
k 6=j
(akj)

nkj
Y
k

exp(−akτk). (6)

We see from (6) that the probability in (4) is realization-specific: two realizations currently in

state i have different probability distributions of a future state unless they have identical transition

counts (nkj), total times in states (τk), and initial states.

In the second example we assume no information is available other than the current state so

that It− = ∅. The appropriate weight for this example is

si(t) ≡ P (XA | X(t) = i, It−) = P (XA | X(t) = i),

and is equal to (see Appendix A),

si(t) =

P
x sxp

A
xi(t)πxP

x πx

h
sxpAxi(t) + (1− sx)p

Q
xi(t)

i , k ≥ 0, i ∈ R, (7)
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where pAxi(t)
³
pQxi(t)

´
is the (x, i) entry in the PA(t), (PQ(t)), and πx = P (X(0) = x) is the initial

distribution of X. Note that si(t) is the probability that a realization in state i at time t evolves

according to XA, so that si(0) = si. The corresponding one period transition probability in this

example is

P (X(t+ 1) = j | X(t) = i) = si(t)p
A
ij + (1− si(t))p

Q
ij , i, j ∈ R. (8)

Putting conditional probabilities in (8) into a matrix gives a period (t, t + 1), i.e. (t+ 1)st period

transition matrix of the mixture process in the form

P (t, t+ 1) = S(t)PA + (I − S(t))PQ, t ≥ 0, (9)

where PA ≡ exp(A) and PQ ≡ exp(Q), and S(t) is the diagonal matrix with entries si(t). This

example shows that a one-period transition matrix changes over time measured on the age scale of

a realization.

In our final example we assume that in addition to the current state we may also know the

initial state of the realization. In this case the weight can be obtained from (7) by setting πi0 = 1

to get

P (XA | X(t) = i,X(0) = i0) =
si0p

A
i0,i
(t)

si0p
A
i0,i
(t) + (1− sx)p

Q
i0,i
(t)

.

The realization-specific transition probability distribution given by (4) and (5), and the age-

specific transition matrices in (9) as well as other quantities of interest can be easily estimated

by substituting maximum likelihood estimates for the true values of the parameters. In the next

section we estimate a mixture of Markov chains as well as the related quantities for modeling credit

ratings migration.

3 Data, Estimation and Results

Our data set of S&P ratings histories, CreditPro V. 6.2, is the same as used in Jafry and Schuermann

(2004) and is described in some detail in Bangia et al. (2002). The dataset contains rating histories

from January 1, 1981 to December 31, 2002 of mainly large corporate institutions around the world.

Ratings for sovereigns and municipals are not included, leaving 9,929 unique obligors. The share

of the most dominant region in the data set, North America, has steadily decreased from 98% to

60%, as a result of increased coverage of companies domiciled outside U.S. For our analysis we will

restrict ourselves to U.S. obligors only to control for an important source of heterogeneity (see, for

instance, Nickell, Perraudin and Varotto (2000)); there are 6,776 unique U.S. domiciled obligors in

the sample yielding 75,278 firm years of data, including withdrawn ratings, and 1,013 defaults of

which 842 were from a rating, for an average default rate of 1.35%. If we exclude the withdrawn

ratings the average default rate is 1.66%.
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3.1 Estimating and comparing the models

We estimate Markov and two-regime mixture models at the whole rating level meaning that rating

modifiers (+/-) are ignored. Credit ratings CCC through C are grouped into CCC. This is customary,
largely because of limited sample size. Including rating modifiers and all C-subgrades would increase
the migration matrix from 9 × 9 to 21 × 21. We do, however, include the ’not rated’ or ’rating
withdrawn’ category as a state, denoted by NR. The last column in Table 1 contains the number
of firm years by rating, and here it is clear that the total CCC-states are visited rarely: only 945
firm years were spent in this state, just 1.3% of the total. By contrast the NR state is visited quite

frequently: 24,677 firm years, about one-third of the total.

Transitions to NR may be due to any of several reasons, including expiration of the debt,

calling of the debt, etc. Unfortunately, however, the details of individual transitions to NR are not

known. In particular, it is not known whether any given transition to NR is "benign" or "bad."

Bad transitions to NR occur, for example, when a deterioration of credit quality known only to

the bond issuer (debtor) leads the issuer to decide to bypass an agency rating. Carty (1997), using

Moody’s data from 1920-96, claims that only 1% of all rating withdrawals may have been due to

deteriorating credit quality.

Table 1 summarizes the parameter estimates for the mixture model and reports the initial

distribution of firms by rating. The first column contains the initial mixing proportions for the

model. These proportions will change over time according to (7). All firms that have initial rating

AAA or CCC are driven entirely by regime A as sAAA and sCCC both equal one. The fourth column
denoted 1/qi gives the expected duration (in years) in rating i under regime Q while the fifth column

denoted 1/ (qi · γi) gives the expected duration in i under regime A. It is clear that for more than

half of the rating categories the A regime is slower or stickier than the Q regime, exceptions being

BBB, BB and B. This can also be seen by looking at the third column denoted γi. Recall that if

0 < γi < 1 then regime A is slower than Q, but if γi > 1 then A is faster than Q.

We conduct a number of likelihood ratio tests. We state the null hypothesis in terms of the

constraints on the gamma parameters and test it against the alternative hypothesis that the data

follow an unconstrained mixture model. We first test Markov chain (the null hypothesis specifies

all gammas to be one) against a mixture model. This test overwhelmingly rejected Markov chain

in favor of the mixture model (LR = 392; p < 0.001). These results are consistent with Frydman

(2004) who used a much smaller sample of Moody’s ratings over a shorter sample window (1985 -

1995). Motivated by the fact that the estimates of gammas for BBB, BB, B and AA, are relatively
close to 1, we next test the null hypothesis that γAA = γBBB = γBB = γB = 1. This time we can not

reject the null hypothesis at the 99% confidence level (LR = 10.05; p = 0.018). Hence it appears

that expected durations in these ratings are the same for all firms. Nevertheless we proceed with

the unconstrained model for the remainder of the analysis.
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Constraining additional gammas to be equal to one results in the rejection of the null hypothesis.

Thus, the strong rejection of the Markov chain is due to very different behavior of regime A and

Q firms in the ratings AAA, A and CCC. The best and worst ratings, AAA and CCC respectively,
and rating A indeed have values of γ most different from one: γAAA = 0.219, γA = 0.638 and

γCCC = 0.178. Natural subsets such as all investment grade gammas restricted to one (or all sub-

investment grade gammas) result in similar rejections. Finally we see that there are two very

different behaviors in state NR (γNR = 0.056). This may be interpreted as reflecting different

reasons for rating withdrawal. In a Markov chain generated by A, NR acts as an absorbing

state corresponding to debt expiration wheras in a Markov chain generated by Q, NR represents

temporary rating withdrawal caused, say, by non-payment of a required fee.

Just how different are the Markov and mixture transition matrices? In Tables 2a and 2b we show

the one-year Markov and mixture (for the second year4) migration matrices, and in Tables 2c and

2d we show the one-year migration matrices for the two regimes, PA ≡ exp(A) and PQ ≡ exp(Q).5
The diagonal entries, denoting no migration, are bolded for clarity. Recall that the mixture matrix

P = SPA + (I − S)PQ, where S = diag(sAAA, sAA, ..., sNR), the initial weights given by the first

column in Table 1. Comparing first the Markov with the mixture matrices, Tables 2a and 2b, the

differences are small with the exception of the CCC and NR states where, for example, the staying

probability pCCC is 41.99% for the Markov model and 49.07% for the mixture. The A regime

dominates the Q in the mixture with an estimated 78.68% of firms moving according to regime

A.6 These results are also consistent with the proportions reported in Frydman (2004), albeit on a

shorter sample using histories from a different rating agency.

The differences are more marked when comparing the migration matrices of the two regimes,

PA and PQ shown in Tables 2c and 2d, especially for those ratings where the value of γi is most

different from unity, namely for AAA and CCC. For example, the one-year probability of default for
CCC-rated firms is 31.67% under the A regime but 67% under the Q regime. The default likelihood

for an AAA-firm is more than 60 times higher in the Q (0.403%) than in the A regime (0.006%)

and is, in fact, nearly twice as large as the default probability for a BBB-rated firm, at 0.215%,
in the Q regime. The likelihood of exiting the NR state for a firm governed by the A regime is

much smaller (1 − 0.9916 = 0.84%) than for the Q regime (1 − 0.86 = 14%), so over time the

fraction of NR governed by A should increase. Indeed it does 76.84% in year 1 to 86.74% by year

10, as can be computed using (7). However, many other cells are very similar or nearly identical.

4Since no firm starts in category NR, we do not estimate the initial proportion s for NR (see Table 1). Thus, in

the first year transition matrix the entries in the NR row are not defined. However, we do have an estimate of this

proportion, see (7), for any later time. In order to compare the entries in the NR row of the Markov and mixture

transition matrices, we display the second year transition matrix (i.e. the matrix in (9) when t = 1).
5The last row is trivially the unit vector, needed to make the matrix square, and has been omitted in the tables.
6The estimated overall proportion of histories (0.7868) moving according to regime A was computed by weighing

the estimated mixing proportions by the initial distribution (see Table 1).
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For example, pBBB→AA = 0.25% for both the A and Q regime. This makes clear the difficulties

in casually comparing high dimensional objects such as credit migration matrices. We therefore

make use of the scalar metric developed by Jafry and Schuermann (2004) in obtaining a measure

of migration "size" which we briefly describe here.

Jafry and Schuermann (2004) propose a metric for comparing migration matrices based on

singular values. Let P be the migration matrix of dimension w, and define the mobility matrix

P̃ = P − I, where I is an identity matrix of dimension w, i.e. the static (no migration) matrix.

Subtracting the identity matrix from the migration matrix leaves only the dynamic part of the

original matrix, which reflects the "magnitude" of the matrix in terms of the implied mobility. The

final metric MSVD is simply the average of the singular values of P̃ :

MSVD(P ) =
1

w

wX
i=1

p
λi, (10)

where λi are the eigenvalues of P̃ 0P̃ . Jafry and Schuermann (2004) show that MSV D approximates

the average migration probability in P and satisfies several criteria for metrics M proposed in

the literature including monotonicity (larger off-diagonal probabilities should yield larger values of

M) and distribution discriminatory (the metric M should be more sensitive to far than to near

migrations).

Denote PM to be the Markov migration matrix and recall that P (t) is the mixture model migra-

tion matrix for the tth year, with PA and PQ the two regime migration matrices. ThenMSV D(PM) =

0.199, MSV D(P (2)) = 0.190, MSVD(PA) = 0.184 and MSVD(PQ) = 0.300. This makes quite clear

just how different the Q regime is from the A regime or the mixture which is, of course, dominated

by the A regime.

3.2 Dynamic evolution of the mixture model

A feature of the mixture model is that the migration matrix is not static over time. The first

period matrix will be different from the T -period matrix as the mixing proportions of the A and

Q regimes will change over time. While MSVD(P (2)) = 0.190, the average over twenty years

MSVD

³
P (t) = 0.189

´
, meaning that the mixture matrix is less dynamic than the Markov matrix.

In Figure 1 we show the evolution of MSV D(P (t)) for t = 2, ..., 21, with MSV D(PM) included as a

visual reference.

The mixture model displays a clear vintage effect of ratings. Ratings dynamics are initially

high and then decline rapidly over the first three to four years only to rise again after about a

dozen years or so. By the time firms have been in the sample twenty years, their rating dynamics

are similarly high as in the initial years. Altman (1998) argued for the importance of an aging or

vintage effect in considering credit ratings migration, and here we are able to document for the first

time more precisely this time profile. Altman also speculated what the impact of the NR category
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Figure 1: Time evolution of Markov and mixture matrices as measured by MSV D

might be on the measured rating matrices and their dynamics. We re-compute the Markov and

mixture matrices by following the usual approach in the literature: we proportionately re-allocate

the probability of migration to NR to all other probabilities in that row. The results do change

qualitatively. For instance, the mixture model curve in Figure 1 retains its shape but is shifted

downwards reflecting the absence of a state with a high into migration rate, reducing the migration

metric MSVD.

3.3 Conditional mixture models: red or blue

Any given firm’s rating evolution is governed by either the A or the Q process in the mixture

model. However, since these regimes are not directly observed, there is no straight forward way

to assign a particular firm to a regime. Put another way, a firm is either "red" or "blue", but we

know neither its color nor the markers which might determine its color. A full treatment of this

issue is well beyond the scope of this paper. However, it is well known that firm rating dynamics

exhibit heterogeneity with regard to industry (Nickell, Perraudin and Varotto (2000)), and so we

estimate Markov as well as mixture models by major industry groupings. Of the seven groups, two

(agriculture, mining & construction, non-durable manufacturing) did not have sufficient number

of observations for the EM algorithm to converge. Hence we report results only for the other five

industry groups.
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These results are summarized in Table 3 where we show the value of MSV D by industry for the

Markov and mixture models. As a benchmark we include the unconditional (all industries) model

in the first column. The difference in dynamics between the A and Q regime is quite large: the

MSVD of PA and PQ for all industries differ by 63% while the Markov and the average (over 20

years) mixture model MSVD differ by only 5.1%. Conditioning on industry seems to have a big

impact for some but not all industry groups, suggesting that industry is a useful but not sufficient

marker to help identify whether a firm is "blue" or "red." Focusing on the last two rows of the

table across the different industries, we see that MSVD (PA) and MSV D (PQ) differ little for the

finance, insurance and real estate (FIRE) sector (%∆ = 37%) and service sector (%∆ = 18%)

compared with durable manufacturing (%∆ = 75%) and wholesale, retail and trade (%∆ = 73%).

The FIRE sector is the least dynamic, whether using the Markov (MSV D = 0.189) or the mixture

model
³
MSVD

³
P (t)

´
= 0.173

´
. The wholesale, retail and trade sector is the most dynamic for the

Markov, and here the difference between the Markov and mixture models are most pronounced:

%∆
h
MSVD (PM) ,MSVD

³
P (t)

´i
= 10.2%, twice as much as for the "all industries" model. Indeed

the dynamics implied by the Markov model of this sector (MSV D (PM) = 0.223) are nearly the same

as for the services sector whereMSVD (PM) = 0.221. These two sectors are much more differentiated

in the mixture model: MSV D

³
P (t)

´
is 0.186 for wholesale, retail and trade and is 0.217 for the

services sector.

Not only are there differences between the Markov and the average mixture model, but the time

profile of the mixture models by industry also exhibit heterogeneity. This is captured in Figure 2

where the "all industries" time profile appears in the middle for easy comparison. All of the sectors

share the convex MSVD time profile with the "all industries" model except for communication,

electric & gas which has a concave profile. This is likely due to the prevalence of long-maturity

bonds in this industry, in turn driven by long lived assets (e.g. power stations). What is striking

either way is how varied these profiles are, a source of heterogeneity that is clearly ignored by the

Markov model.

3.4 Firm-specific migration vectors

At the extreme the mixture approach allows one to estimate firm or firm-history specific migration

vectors. What is the range of one-year migration vectors across all firms of a given rating, say

A? We compute the one-year migration vector for all firms in our sample at the end of the

sample period, namely December 31, 2002, conditional on the rating history available for each firm.

These computations are done with the basic forecasting equation (4) using the weights in (7). The

variation and range of those migration probabilities is rather substantial and is summarized in

Table 4a for firms whose current rating is investment grade, AAA through BBB, and in Table 4b
for speculative (high yield) grades BB and below. The range from min to max in particular can be
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Figure 2: Time evolution of mixture matrices by major industry group (MSV D)

dramatic for the important default state. For example, the one-year ahead default probability for

A-rated firms ranges from 0.010% to 0.153%. While the relative difference is large, the absolute

difference is not. This changes when we move down the rating spectrum towards the speculative

grades. For instance, the default probability for B-rated firms ranges from 4.110% to 6.467%. This

is non-trivial since more firms were "born" with this rating than with any other rating (column 6

in Table 1). Moreover, about half of the corporate bond high yield market is rated B (including B+
and B−, of course).7 For the CCC-rated firms the range is 31.67% to 66%! In fact, the probability

of no change has an even wider range: from 4.70% to 53.83%.

The minima and maxima should broadly correspond to one of the underlying Markov mixture

matrices, i.e. PA and PQ, shown in Tables 2c and 2d respectively. For example, the maximum

staying probability for AAA is 89.94% which corresponds to the A-regime staying probability;

similarly for the AA rating. However, the maximum upgrade to AAA probability computed for

AA-rated firms, pAA→AAA at 0.51%, corresponds to the Q-regime. Thus one regime does not

necessarily correspond to either the mimimum or maximum migration probability. Perhaps the best

7As of April 2004, the B rating made up about 54% of the Merrill Lynch U.S. high yield index by number of

issuers and about 45% by amount outstanding. For the BB rating it was 26% (33%) by issuers (amount) and for the

CCC (and lower) rating 20% (21%). The total size of the high yield market as measured by the Merrill Lynch U.S.

high yield index was around $580bn.
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illustration of this regime mixing is the B-rating (Table 4b). The maxima for the non-downgrade
probabilities, namely pB→AAA through pB→B correspond to the Q-regime, while the maximum

probabilities pB→CCC and pB→NR correspond to the A-regime. The reverse is true for the minima.

The CCC rating state seems more unusual than the others as it exhibits the most significant
variation in migration vectors across firms. Firms "born" as CCC firms have a longer average
duration (1.6 years) than firms downgraded into CCC (about 312 months). This is consistent with
evidence presented by the rating agencies. For instance, Mah and Verde (2004) at Fitch find that an

issuer rated CCC or lower that had been downgraded the previous year had a nearly 60% probability
of defaulting the subsequent year.

3.5 Financial impact of mixture models

It is one thing to show that the Markov model is rejected by the mixture model; but does it matter

economically? By way of illustration, we take fictitious three-year coupon paying corporate bonds

(coupons are paid once a year), one per rating category, and compute their value at the end of

one year using three different transition vectors. The baseline is, of course, the vector given by the

Markov model. This is compared to the vector implied by the maximum and minimum staying

probability from the mixture model, denoted by V1 and V2 in Table 5, which turns out to be the

same as the max/min default probability for a given rating. Since the NR rating is not priced,

we follow the conventional approach and re-allocate pNR proportionately across the other ratings

which assumes that transition to NR are non-informative (Carty (1997)).

We take the credit spreads and risk-free rate (proxied by the 10Y U.S. constant maturity

Treasury rate) that prevailed on March 23, 2004, and assign coupons so that pricing does not

depart too significantly from par = 100. The forward rate is derived in the standard way using

the expectations hypothesis (see Saunders and Allen (2002)). In the event of default we assume a

40% recovery rate on par. The results are summarized in Table 5. The second column gives the

price under the Markov model, the third and fifth under the mixture model, and the second and

fourth columns shows the percentage differences to the Markov model. The last column contains

the coupon payments. What stands out is the difference in pricing for the CCC rating: it can
range from nearly 5% to 20% relative to the value implied by the Markov model. The difference

is noticably less for the other rating categories, though it approaches one percentage point for the

B category. Interestingly, γ alone is not a sufficient guide for anticipating pricing differences as
γB = 1.079 is not very different from unity. To be sure, this is merely illustrative, and different

term structures of credit spreads would generate different valuation differences, some higher, some

lower.
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4 Concluding Remarks

We have presented a method for generating firm or rating history specific transition vectors using

an alternative to the popular Markov approach to estimating credit transitions, namely Markov

mixture models. We showed that the Markov model is rejected in favor of the mixture model.

Indeed we find that two firms with identical credit ratings can have substantially different transition

probability vectors. The model differences matter especially for the extreme ratings: AAA and

CCC.
The mixture model we estimate contains two regimes. More complicated regime structure could

be explored, although it is not clear if the reduction in parsimony is merited. These regimes are

not directly observed, but we can assess the likelihood of belonging to a regime for a given firm

conditional on its rating history. The remaining challenges are the classification of firms, possibly

with exogenously observable variables or markers. This is a natural topic of future research.
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Table 1

Parameter Estimates for Mixture Model

Initial Total firm

Credit Rating si qi γi 1/qi 1/ (qi · γi) Distribution years

AAA 1.000 0.485 0.219 2.062 9.415 311 2,495

AA 0.941 0.153 0.821 6.520 7.937 652 6,940

A 0.935 0.197 0.638 5.065 7.941 1,283 13,556

BBB 0.820 0.150 1.146 6.675 5.823 1,171 10,606

BB 0.675 0.221 1.285 4.533 3.527 1,333 7,445

B 0.645 0.262 1.079 3.814 3.534 1,915 8,612

CCC 1.000 3.498 0.178 0.286 1.604 111 945

NR 0.000 0.155 0.056 6.450 115.108 — 24,677

Parameter estimates for the Markov mixture model and descriptive statistics

of the sample by rating category.

S&P U.S. corporate obligor histories, 1981-2002.

Table 2a

Markov Migration Matrix

(in percent)

Credit Rating AAA AA A BBB BB B CCC NR D
AAA 89.73 5.03 0.56 0.07 0.08 0.01 0.00 4.50 0.016

AA 0.50 88.11 6.81 0.62 0.10 0.08 0.01 3.74 0.018

A 0.08 1.82 87.90 5.19 0.47 0.18 0.01 4.31 0.024

BBB 0.04 0.24 4.09 84.88 4.69 0.75 0.08 5.10 0.118

BB 0.04 0.11 0.58 4.97 77.30 7.94 0.74 7.71 0.619

B 0.01 0.08 0.27 0.49 3.99 76.45 5.16 9.10 4.464

CCC 0.07 0.01 0.30 0.53 1.08 6.55 41.99 9.65 39.824

NR 0.03 0.08 0.26 0.40 0.42 0.38 0.03 97.69 0.700

Annual Markov credit migration matrix

S&P U.S. corporate obligor histories, 1981-2002.
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Table 2b

Markov Mixture Migration Matrix (2nd Year)∗

(in percent)

Credit Rating AAA AA A BBB BB B CCC NR D
AAA 89.88 4.95 0.54 0.07 0.07 0.01 0.00 4.47 0.007

AA 0.50 88.11 6.82 0.62 0.10 0.08 0.01 3.76 0.015

A 0.08 1.82 87.96 5.16 0.47 0.18 0.01 4.30 0.023

BBB 0.04 0.25 4.09 84.86 4.69 0.76 0.08 5.11 0.126

BB 0.04 0.11 0.58 4.99 77.31 7.96 0.69 7.64 0.688

B 0.01 0.08 0.29 0.52 4.04 76.55 4.52 9.04 4.944

CCC 0.06 0.02 0.27 0.48 0.96 5.74 49.07 8.41 35.000

NR 0.05 0.14 0.43 0.68 0.72 0.64 0.03 96.11 1.197

Annual Markov mixture credit migration matrix

∗ The 2nd year is used since no firm starts in category NR, we do not estimate the initial proportions
for NR (see Table 1). Thus, in the first year transition matrix the entries in the NR row are not defined.

However, we do have an estimate of this proportion, see (7), for any later time.

S&P U.S. corporate obligor histories, 1981-2002.

Table 2c

PA ≡ exp(A), Migration Matrix for Regime 1
(in percent)

Credit Rating AAA AA A BBB BB B CCC NR D
AAA 89.94 4.93 0.54 0.06 0.07 0.01 0.00 4.45 0.006

AA 0.50 88.24 6.75 0.60 0.09 0.07 0.01 3.72 0.009

A 0.08 1.76 88.36 4.98 0.45 0.17 0.01 4.18 0.013

BBB 0.04 0.25 4.20 84.50 4.75 0.78 0.09 5.28 0.105

BB 0.04 0.11 0.62 5.29 75.70 8.44 0.89 8.32 0.593

B 0.00 0.08 0.26 0.49 4.02 75.83 5.92 9.29 4.108

CCC 0.05 0.01 0.23 0.41 0.84 5.21 53.83 7.74 31.670

NR 0.01 0.03 0.10 0.15 0.15 0.14 0.01 99.16 0.255

Annual Markov mixture credit migration matrix for regime 1 (A)

S&P U.S. corporate obligor histories, 1981-2002.
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Table 2d

PQ ≡ exp(Q), Migration Matrix for Regime 2
(in percent)

Credit Rating AAA AA A BBB BB B CCC NR D
AAA 61.65 18.50 2.32 0.51 0.52 0.24 0.01 15.83 0.403

AA 0.50 85.98 7.86 0.91 0.18 0.14 0.01 4.30 0.113

A 0.10 2.65 82.42 7.69 0.76 0.32 0.01 5.89 0.159

BBB 0.03 0.25 3.61 86.42 4.39 0.70 0.03 4.35 0.215

BB 0.03 0.11 0.52 4.38 80.58 6.97 0.29 6.24 0.882

B 0.02 0.09 0.32 0.58 4.07 77.87 1.98 8.60 6.473

CCC 0.11 0.10 0.65 1.16 2.13 10.79 3.28 14.80 66.996

NR 0.18 0.50 1.53 2.46 2.60 2.31 0.09 86.00 4.322

Annual Markov mixture credit migration matrix for regime 2 (Q)

S&P U.S. corporate obligor histories, 1981-2002.
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Table 3

MSVD Comparisons

All Durable Communic., Wholesale, FIRE∗∗ Service

Industries∗ Mfg. Electric & Gas Retail & Trade

# of firms 6,776 1,307 1,033 601 1,577 651

PM 0.199 0.208 0.202 0.223 0.189 0.221

P (2)∗∗∗ 0.190 0.196 0.190 0.201 0.175 0.217

P (t) 0.189 0.199 0.191 0.200 0.173 0.212

PA 0.184 0.173 0.187 0.186 0.224 0.211

PQ 0.300 0.303 0.312 0.321 0.307 0.250

%∆ [PA, PQ] 63% 75% 67% 73% 37% 18%

%∆
h
PM , P (t)

i
5.1% 4.2% 5.3% 10.2% 8.7% 4.4%

Comparison of matrix metric MSVD across matrices and industries. MSVD defined in equation (10).

∗ "All industries" also includes two sectors, agriculture, mining&construction, non-durable manufacturing

that did not have enough observations to allow for estimation of a separate mixture model.

∗∗ FIRE: finance, insurance and real estate.
∗∗∗ Markov mixture matrix for year 2 (as in Table 2b above)

S&P U.S. corporate obligor histories, 1981-2002.
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Table 4a

Firm-specific Migration Vectors Under Mixture Model

Investment Grade Firms

(in percent)

State at T + 1

State at T AAA AA A BBB BB B CCC NR D
AAA bµ 89.78 5.01 0.55 0.07 0.07 0.01 0.0001 4.52 0.012bσ 0.79 0.38 0.05 0.01 0.01 0.01 0.0003 0.32 0.011

min 83.63 4.93 0.54 0.07 0.07 0.01 0.000 4.45 0.010

max 89.94 7.95 0.94 0.17 0.17 0.06 0.002 6.99 0.097

AA bµ 0.49 88.10 6.82 0.62 0.10 0.07 0.01 3.75 0.016bσ 0.002 0.21 0.11 0.03 0.01 0.01 <0.001 0.06 0.010

min 0.49 86.34 6.75 0.60 0.09 0.07 0.01 3.72 0.010

max 0.51 88.24 7.69 0.86 0.17 0.14 0.01 4.21 0.094

A bµ 0.08 1.83 87.87 5.20 0.48 0.18 0.02 4.32 0.022bσ 0.003 0.12 0.79 0.36 0.04 0.02 0.001 0.23 0.020

min 0.08 1.76 82.70 4.98 0.45 0.17 0.01 4.18 0.010

max 0.10 2.61 88.36 7.57 0.75 0.31 0.02 5.81 0.153

BBB bµ 0.04 0.25 4.07 84.93 4.67 0.76 0.08 5.07 0.134bσ 0.002 <0.001 0.11 0.35 0.07 0.01 0.01 0.17 0.020

min 0.03 0.25 3.61 84.51 4.39 0.71 0.03 4.35 0.110

max 0.04 0.25 4.20 86.41 4.75 0.78 0.09 5.28 0.219

Descriptive statistics for firm-specific migration vectors using Markov mixture model

at the end of the sample period. Investment grades.

S&P U.S. corporate obligor histories, 1981-2002.
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Table 4b

Firm-specific Migration Vectors Under Mixture Model

Speculative Grade Firms

(in percent)

State at T + 1

State at T AAA AA A BBB BB B CCC NR D
BB bµ 0.04 0.12 0.58 4.97 77.44 7.92 0.67 7.58 0.639bσ 0.002 0.002 0.02 0.16 0.86 0.26 0.11 0.37 0.51

min 0.03 0.11 0.52 4.38 75.70 6.98 0.28 6.25 0.590

max 0.04 0.12 0.62 5.29 80.56 8.44 0.89 8.32 0.879

B bµ 0.01 0.08 0.28 0.53 4.04 76.58 4.46 9.04 4.980bσ 0.003 0.004 0.01 0.01 0.01 0.30 0.59 0.10 0.353

min <0.001 0.07 0.26 0.49 4.02 75.83 1.97 8.60 4.110

max 0.02 0.10 0.32 0.59 4.07 77.87 5.92 9.29 6.467

CCC bµ 0.07 0.02 0.28 0.50 0.99 5.85 48.00 8.55 35.745bσ 0.01 0.02 0.07 0.13 0.22 0.97 8.80 1.23 6.152

min 0.06 0.01 0.23 0.41 0.84 5.21 4.70 7.74 31.670

max 0.11 0.10 0.64 1.14 2.09 10.63 53.83 14.60 66.005

Descriptive statistics for firm-specific migration vectors using Markov mixture model

at the end of the sample period. Speculative grades.

S&P U.S. corporate obligor histories, 1981-2002.
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Table 5

Bond Pricing Example

Markov V1 Mixture % ∆ V1 to V2 Mixture % ∆ V2 to Coupon

Markov Markov (annual)

AAA 101.973 101.909 0.063% 101.969 0.004% 2

AA 102.635 102.583 0.051% 102.634 0.001% 2.5

A 102.986 102.910 0.073% 102.985 0.0004% 3

BBB 104.600 104.557 0.042% 104.594 0.006% 4

BB 104.431 104.316 0.109% 104.424 0.006% 5

B 103.998 103.028 0.933% 104.080 0.079% 6.5

CCC 87.103 70.905 18.597% 90.827 4.275% 8.5

Example of pricing two bonds, V1 and V2, using Markov and mixture models.

V1 and V2 were chosen to correspond to the maximum and minimum migration to default

probability of the firm-specific migration vectors respectively.

S&P U.S. corporate obligor histories, 1981-2002.
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A Appendix

We first derive the basic forecasting equation in a slightly more general form than stated in (4). Let

pAij(s) denote the i, j th entry in the transition probability matrix PA(s) and similarly for p
B
ij(s).

Lemma: For any two times τ > t,

P (X(τ) = j | Ii,t) = P (XA | Ii,t)pAij(τ − t) + P (XQ | Ii,t)pQij(τ − t), i, j ∈ R. (11)

Proof :

P (X(τ) = j | Ii,t) = P (X(τ) = j,XA | Ii,t) + P (X(τ) = j,XQ | Ii,t)
= P (X(τ) = j | XA, Ii,t)P (XA | Ii,t)

+P (X(τ) = j | XQ, Ii,t)P (XQ | Ii,t)
= P (XA | Ii,t) pAij(τ − t) + P (XQ | Ii,t) pQij(τ − t),

where the first equality follows by the law of total probability, the second by the property

of conditional probability and the last one by the Markov property of XA and XQ.

The equation in (4) is obtained by setting τ = t + 1 and pAij = pAij(1). In (11) the weight

P (XA | Ii,t) depends on the information Ii,t. Below we derive this weight under two different

scenarios.

In the first scenario Ii,t = {X(s), 0 ≤ s ≤ t}, and the weight is

P (XA | Ii,t) =
P (XA, Ii,t)
P (Ii,t)

=
P (Ii,t | XA, i0)P (XA | i0)

P (Ii,t | XA, i0)P (XA | i0) + P (Ii,t | XQ, i0)P (XQ | i0)
=

P (Ii,t | XA, i0)si0
P (Ii,t | XA, i0)si0 + P (Ii,t | XQ, i0)(1− si0)

=
si0LA

si0LA + (1− si0)LQ
,

which is (5).

When the information set is Ii,t = {X(t) = i} the weight becomes

P (XA | Ii,t) =

P
x P (XA,X(t) = i,X0 = x)

P (X(t) = i)

=

P
x P (X(t) = i | XA,X0 = x)P (XA | X0 = x)P (X0 = x)

P (X(t) = i)

=

P
x πxsxp

A
xi(t)P

x πx

h
sxpAxi(t) + (1− sx)p

Q
xi(t)

i ,
which gives (7). In the above two derivations we used the property of conditional probability and

the law of total probability.
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