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Turning Over Turnover 
 

Abstract 
 

The methodology of Bai and Ng (2002, 2003) for decomposing large panel data into 

systematic and idiosyncratic components is applied to both returns and turnover. Combining 

this with a GLS-based principal components approach, we demonstrate that their procedure 

works well for both returns and turnover despite the presence of severe heteroscedasticity 

and non-stationarity in turnover of individual stocks. We then test Lo and Wang’s (2000) 

theoretical model’s restriction that returns and turnover should have the same number of 

systematic factors. This is strongly rejected by the data, suggesting stock price and trading 

volume may not be compatible under the existing multi-factor asset pricing-trading 

framework. We also demonstrate that several commonly used turnover measures may 

understate the price impact of stock trading. 
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I Introduction 

 

There is increasing interest in improving the understanding of turnover since its 

emergence as an important proxy for investor overconfidence. Extending this, Lo and 

Wang (2000, 2003) have developed a multi-factor model for turnover based on asset 

pricing models. Their model gives rise to a decomposition of turnover into systematic and 

idiosyncratic components, just like the usual return-decomposition. This has several 

interesting applications in finance.1 

 First, a better understanding of turnover can help provide more powerful asset 

pricing tests. Lo and Wang (2003) demonstrate that one can form a unique hedging 

portfolio by constructing turnover factors, which provides additional tests of an asset 

pricing model. Our paper shows how to estimate these factors using principal 

components, including a consistent estimate of the number of factors. 

 Second, decomposition of firm-level turnover into systematic and idiosyncratic 

components is useful for a large number of research questions. Adjusting turnover for 

firm-fixed effects is typically dealt with by de-trending total turnover (see, for example, 

Chen, Hong and Stein (2001). In this paper, we propose the systematic-idiosyncratic 

decomposition of turnover as an alternative approach, and provide a detailed comparison 

with de-trending. 

 Third, numerous studies have found common (that is, systematic) components in 

liquidity (For example: Chordia, Roll, and Subrahmanyam (1998), and Hasbrouck and 

Seppi (2001)). Our decomposition directly measures how much trading is driven by 

systematic factors and how much is due to firm-specific causes. If turnover is a proxy for 

information trading, we can relate idiosyncratic turnover to firm-specific news and obtain 

a proxy for the degree of information asymmetry across stocks. This allows us to evaluate 

the impact of the risk of information asymmetry and of price discovery on asset pricing. 

 Despite these interesting applications, studies of turnover have largely been 

limited to portfolios or to a small number of individual stocks. This may be due in part to 

                                                 
1  For theoretical models of turnover see, among others, Daniel, Hirshleifer, and Subrahmanyam (1998), 
Hong and Stein (2003), and Scheinkman and Xiong (2003). For empirical studies see Chen, Hong, and 
Stein (2002), Odean (1998), Ofek and Richardson (2002), and Mei, Scheinkman, and Xiong (2003). 
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the difficulty of implementing conventional multi-factor estimation procedures, which 

results from the severe heteroscedasticity and non-stationarity found in turnover data (see 

Lo and Wang (2000). However, applying procedures developed by Bai and Ng (2000, 

2003), we are able to consistently estimate the turnover factor model and test for non-

stationarity. We also can provide a close examination of turnover by “turning over” a 

large panel of individual stocks. 

 Our study undertakes to make a number of contributions to the turnover and 

factor model literature. 

 First, we demonstrate that for estimating the required number of factors, the Bai 

and Ng (2002) statistics work well for returns, but not for raw turnover. Instead, we 

introduce a modified GLS-like procedure that we show to be effective and simple to 

implement. We also show how to use the Bai and Ng (2003) method to test for non-

stationarity in both systematic as well firm-specific turnover components. 

 Second, we provide a new test of the theoretical work by Lo and Wang (2000). In 

particular, our empirical study uses data from a large panel of individual stocks rather 

than the beta-sorted portfolios they used. By exploiting the advantage of a large cross-

section of individual stocks, we get around the non-stationarity issue in turnover. As our 

empirical work shows, the number of systematic factors in return and turnover changes 

dramatically when individual stocks are used instead of beta-sorted portfolios.2 

 More specifically, we test Lo and Wang’s (2000) theoretical model’s restriction 

that returns and turnover should have the same number of systematic factors. This is 

strongly rejected by the data, suggesting stock price and trading volume may not be 

compatible under the existing multi-factor asset pricing-trading framework. 

 Third, our study complements recent studies in the market microstructure 

literature on the common variation in liquidity or trading volume (this issue was 

highlighted by the LTCM debacle, when there appeared to be a world-wide “flight-to 

quality” and a significant drop in trading volume across many assets). Chordia, Roll, and 

                                                 
2   Berk (2000) shows a significant drop in statistical power in asset pricing tests using firm-characteristics 
sorted portfolios. Also, Brennan, Chordia, and Subrahmanyam (1998) report “… inferences are extremely 
sensitive to the sorting criteria used for portfolio formation, so that results based on regressions using 
portfolio returns should be interpreted with caution.” 
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Subrahmanyam (2000) explore cross-sectional interactions in liquidity measures using 

quote data. They use the market portfolio to analyze the commonality in liquidity. 

Hasbrouck and Seppi (2001) use a multi-factor model to characterize relationships 

involving returns and order flows by using the Dow Jones Industrial Average of 30 

actively traded firms. These studies all use high-frequency data rather than the weekly 

data used in our study. 

 Fourth, we provide average weekly liquidity estimates similar to Pastor and 

Stambaugh (2003). Using idiosyncratic turnover estimated from a multi-factor turnover 

model, we demonstrate that several commonly used turnover measures may significantly 

understate the price impact of stock trading. 

 The paper is organized as follows. Section II introduces an approximate multi-

factor model for turnover. We then present a consistent statistic developed by Bai and Ng 

(2002) to determine the number of factors in the factor model and discuss how the 

PANIC framework of Bai and Ng (2003) can be employed in testing for non-stationarity 

in turnover data. In section III, we provide a description of the data set, followed by some 

evidence on the presence of severe heteroscedasticity and non-stationarity in turnover 

data. Then we discuss several statistical procedures to deal with these problems and 

provide a decomposition of turnover into systematic and idiosyncratic components. 

Monte Carlo Simulations are used to confirm our results. Section IV briefly describes the 

duo-factor-model of Lo and Wang and provides an explicit test of their theoretical results 

that the number of factors is the same for excess returns and turnover. We then show that 

several commonly used turnover measures may understate the price impact of stock 

trading. Section V concludes. 

 

II Methodology for Decomposing Turnover 

 

A. A Multi-factor Turnover Model 

Lo and Wang (2000, 2003) provide a multi-factor model for turnover. 

 

τjt = τj + δj1g1t + … + δjKgKt + ξjt                                                                  (1) 

 



 

 4

where δjk is the exposure of firm j to economy–wide trading shocks gkt and τj is a 

constant. Using terms common for discussing returns, we call δjk turnover betas. ξjt has 

mean zero and is assumed to be orthogonal to gkt. In addition, we assume ξjt satisfies the 

regularity conditions as given in the appendix. 

More concisely, we can write (1) as: 

 

τj,t - τj = Dj
'Gt + ej,t   j = 1,…,N;  t = 1,…,T                                                    (2) 

 

B. The Bai and Ng (2002) Statistic 

We first estimate the common factors in (1) using the asymptotic principal 

component method of Connor and Korajczyk (1988). Because the true number of factors 

K is unknown, we start with an arbitrary number kmax (kmax < min (N,T)). We estimate the 

k systematic factors and factor loadings that solve the following optimization problem: 
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where Gk denotes the k-vector of systematic factors and Dj
k denotes k-vector of factor 

loadings for firm j. 

To determine the number of factors, Bai and Ng propose the following information 

criterion (IC): 

 

K̂  = argmin 0<k<kmax IC1(k),                                                                        (4) 

 

where IC(k) equals the measure of the goodness-of-fit V(k) as used in (3) plus a second 

term that serves as an adjustment for the increase in the degrees of freedom that result 

from increasing k: 
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Bai and Ng show that K̂ , the value of k that minimizes the IC(k) statistic in (5), is a 

consistent estimate for the number of factors in the factor model.3 

 Intuitively, the estimation procedure treats the determination of the number of 

factors as a model selection problem. As a result, the selection criteria depend on the 

usual trade-off between goodness-of-fit and parsimony (or model size). The difference 

here is that we not only take the sample size in both the cross-section and the time-series 

dimensions into consideration, but also the fact that the factors are not observed. 

 There are several distinctive advantages of the Bai and Ng approach compared to 

the methodology of Connor and Korajczyk (1993). First, Bai and Ng do not impose any 

restrictions between N and T, allowing for both large N and large T. Second, the results 

hold under heteroscedasticity in both the time and the cross-section dimensions. Third, 

the results also hold under both weak serial dependence and cross-section dependence. In 

addition, the model selection procedure is easy to implement. The conditions under which 

the consistency of K̂  holds are given in the appendix.4 

 

C. The Bai and Ng (2001) PANIC Test for Non-stationarity 

Bai and Ng (2001) develop a methodology to detect whether there is non-stationarity 

in the systematic or idiosyncratic components, or both. They make use of the factor 

structure of a large panel data set, crucially showing that the components can be 

consistently estimated using the panel even in cases where individual (non-stationary) 

series would produce spurious regressions. In particular, they show that common 

stochastic trends can be consistently estimated by the principal components method, 

regardless of whether the idiosyncratic series contain unit roots. Similarly, their proposed 

unit root test of the idiosyncratic series is valid regardless of whether any of the 

systematic factors contain a unit root. 

                                                 
3 They also proposed two other asymptotically equivalent statistics. Our empirical study finds these give 
similar results in our balanced panel, but the IC criterion has the best simulation results. Results are 
available on request.  
4  Jones (2001) introduces a heteroscedastic factor analysis (HFA) approach to extract factors but he does 
not provide a test on the number of factors, as Connor and Korajczyk (1993) do. 
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Using their approach, we start by testing whether the systematic turnover factors or 

the individual-firm turnover series contain a unit root. Differenced systematic factors are 

estimated using the differenced, standardized turnover panel, after which these factors are 

transformed into levels. Bai and Ng show that the standard Dickey-Fuller (1979) test 

statistics for testing for a unit root – with either a constant only or with a constant plus a 

linear time trend – in these systematic factors or in decomposed idiosyncratic turnover 

have the same limiting distribution as the regular test statistics for observed data series, as 

derived in Fuller (1976). As a result, the 5% asymptotic critical value of the Dickey-

Fuller unit root test of -2.86 applies. 

 

III. Dealing with Severe Heteroscedasticity and Non-stationarity in Turnover 

 

A. Data Description 

Following Lo and Wang (2000), we use the CRSP Daily File to construct weekly 

turnover series for individual NYSE and AMEX stocks from July 1967 to December 

2001. The choice of a weekly horizon makes our results comparable to Lo and Wang and 

is a compromise between maximizing sample size while minimizing the day-to-day 

volume and return fluctuations that have less direct economic relevance.5 

Because our focus is the implications of portfolio theory for volume behavior, we 

limit our attention to ordinary common shares on the NYSE and AMEX (CRSP share 

codes 10 and 11 only), omitting ADRs, REITs, closed-end funds, and others whose 

turnover may be difficult to interpret. We also omit NASDAQ stocks because of market 

structure differences relative to the NYSE and AMEX. Like Lo and Wang, we discard 

firms that have no or problematic turnover data. 

Panel A of Table 1 presents various summary statistics of our sample, including the 

number of securities in each sample, the number of securities with no missing 

observations in turnover, as well as number of firms with two types of problematic data. 

The first type includes firms that have constant turnover in the time period. The second 

are those firms that have likely data entry problems as evidenced by an unusual large 

                                                 
5     In addition to the weekly data, we conducted a parallel study of turnover by using monthly data. The 
results, briefly discussed in the next section, are similar. 
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standard deviation (specifically, 10 times the average standard deviation. See also the 

discussion on the so-called Z-flag in Lo and Wang. As they argue, such large standard 

deviations probably indicate data errors). 

Table 1 Panel B reports the distributional characteristics of return and turnover 

volatility. Excess returns tend to be more volatile than turnover for individual stocks. 

This result is similar to what Lo and Wang obtained for portfolios. A close examination 

of the cross-sectional variation in both return and turnover indicates that the turnover 

distribution is significantly more extreme. After scaling each firm-level series by its 

standard deviation, turnover generally displays much larger skewness as well as kurtosis. 

The only exception is 1987-91, when the October 1987 market crash gave rise to much 

higher skewness and kurtosis for return volatility. 

To develop a sense for cross-sectional differences in turnover, Figure 1 provides a 

graphic depiction of turnover for value-weighted size-sorted decile portfolios. For 

simplicity, we report only those for the first (smallest market capitalization) and tenth  

(largest) decile portfolios. There are several interesting patterns. 

First, turnover for small stocks increased after 1975 when fixed commissions were 

abolished, although it took some time to regain and stay above the levels prior to the 

1973-74 bear market. 

Second, the turnover of the tenth decile portfolio, which consists of the largest 

stocks, rises sharply during the mid-1960s, then falls suddenly in the late of 1960s and 

remains relatively low in the remaining sample periods. 

Third, turnovers for small stocks seem to display a strong presence of non-

stationarity. In particular, there appears to be a strong trend component in turnover, which 

we will examine in great detail in section IV. However, by performing several 

(augmented) Dickey-Fuller tests on individual stock turnover, we find no evidence of unit 

roots among any of the stocks in our sample for all of the seven time periods. That is, for 

all of the firm-level turnover time series, we could reject a unit root with and without a 

time trend present. Further, unit root tests on decomposed turnover confirm that neither 

the systematic factors nor any of the idiosyncratic turnover components have a unit root 

in any time period. As a result, we will not first-difference the data (First-differencing the 
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turnover data tends to increase noise in the idiosyncratic term when there is no unit root 

in turnover, and as a result can significantly increase estimation error). 

The strong presence of both heteroscedasticity and time trends in turnover 

considerably affect the estimation of the number of systematic turnover factors. 

Table 2 presents estimates of the number of factors for each sample period using raw 

and standardized turnover, as well as their detrended series. The standardization is 

conducted by first de-meaning and then normalizing each individual stock turnover series 

by its standard deviation over the sample period. The number of factors reported here 

corresponds to the number that minimizes the information criteria (IC) statistic developed 

by Bai and Ng. Specifically, in order to determine the number of systematic factors in 

turnover, we compute a goodness-of-fit statistic, IC, conditional on a wide range of 

included numbers of factors. For example, comparing IC(k) for k = 1,2,…,20 indicates 

that k = 5 provides the minimum IC(k) for standardized turnover for 1967-71. This 

indicates that there may be five systematic factors for standardized turnover during the 

first sample period. 

As can be seen from Table 2, the estimates of the number of factors for turnover are 

very sensitive to the standardization of the data, and somewhat sensitive to detrending. 

There seem to be an extraordinary large number of factors in raw turnover data. For 

example, there may be 16 systematic factors during 1967-71. In addition, detrending 

should not reduce the number of factors by more than one factor, but the results for raw 

turnover suggest otherwise. 

In marked contrast, the estimates of the number of factors for excess returns are 

robust to standardization. Since standardization should not change the number of factors 

found, we conclude that, due to the presence of severe heteroscedasticity in turnover, the 

Bai-Ng statistics do not work well for raw turnover. 

 

B. A panel approach to Trend in Turnover and a GLS solution to Severe 

Heteroscedasticity 

The main reason for the failure of the Bai and Ng (2002) procedure is the presence of 

severe heteroscedasticity as documented in raw turnover. Using raw turnover essentially 

gives the stocks with enormous swings in turnover a lot more weight in the sum-of-
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squared residuals in equation (3). This is mitigated by the standardization of raw 

turnover. This in effect amounts to using generalized least squares (GLS) rather than OLS 

in the turnover regression of equation (2). 

As Table 2 shows, the use of standardized turnover leads to a large drop in the 

number of factors. For example, for 1967-71 the estimated number of factors drops from 

16 for raw turnover to 5 for standardized turnover. Detrending standardized turnover does 

not result in a similar sharp drop in the number of systematic factors. In the next section, 

we will use Monte Carlo simulations to demonstrate that the principle components 

approach of Connor and Korajczyk, combined with the Bai-Ng statistics, has good small-

sample properties for standardized turnover and for raw or standardized returns, but not 

for raw turnover. 

The presence of possible time trends in turnover could affect the estimation of 

turnover factors. This is because, in the presence of a time trend, the time series variance-

covariance matrix for turnover among stocks or portfolios, var(τi,τj), is not well defined. 

As a result, in this case the conventional principal components approach based on 

var(τi,τj) may not obtain consistent factor estimates. This is an issue Lo and Wang (2000) 

did not address. We get around this by taking advantage of the large cross-section of 

individual stocks. Rather than using the variance-covariance matrix of turnover among 

portfolios, we rely on the variance-covariance matrix of turnover over different time 

periods. In other words, we apply a principal-component approach to var(τt,τs), where 
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Var(τt,τs) is well defined for any give time period t and s as long as the cross-sectional 

mean and variance for turnover exist. Intuitively, var(τt,τs) depends on N-consistency 

rather than T-consistency. This implies τjt could have serial correlation, as well as time-

varying mean and volatility. The factor estimates could still be consistent as long as the 

data satisfy some necessary moment conditions (for details, see Bai and Ng (2002), and 

the appendix). 
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C. The Number of Factors in Turnover 

Table 3 provides the results of the test of the number of factors in standardized 

turnover. We report the incremental proportions of the explained variation (that is, the 

average R2) from regressing the individual firm turnover series on 1 to 10 turnover 

factors. The first principal component of turnover typically explains between 6.5% and 

15.0% of the variation of the standardized turnover. This is quite different from Lo and 

Wang (2000), who use turnover from broadly diversified portfolios and find their first 

principal component typically explains over 70% (and sometimes as high as 86%) of the 

variation in turnover. Further examination of our results suggests that the fourth and fifth 

components still explain a fair amount of turnover variation. For example, the fifth 

component explains 1.95% of variation for 1967-71. 

The IC procedure selects a five-factor model for the first sample period, which is 

also reported in Table 3. It is reassuring to see that the number of factors identified by the 

IC statistic closely corresponds with the eigenvalues of the principal components. The 

eigenvalues of the statistically significant turnover factors typically exceed 1.95%. 

Our result of four or five factors in turnover (as also reported in table 2) is quite 

different from the results reported in Lo and Wang, who find only one or two significant 

systematic factors, although without formally testing for the number of factors. This 

difference seems due mainly to the fact they use factors extracted from 10 beta-sorted 

portfolios, while we use a large cross-section of individual stocks. As pointed out by 

Shukla and Trzcinka (1990), beta-sorted portfolios tend to mask some cross-section 

differences in betas to systematic factors. As a result, the principal-components approach 

based on beta-sorted portfolios is likely to be biased towards finding a smaller number of 

factors. 

While our procedure does not specifically identify what the factors are exactly, it 

does provide some guidance for equilibrium model construction. Our results suggest that, 

while the two-factor model of Lo and Wang (2003), which consists of a market factor and 

a hedging factor, provides a reasonable description of portfolio turnover, they still leave 

out a few systematic factors. This may help explain why their model does not fully 

capture the cross-section of average turnover. 
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Table 3 also reports the average R2 of regressing individual stock turnover on the 

selected systematic turnover factors for each sample period. For example, for 1967-71 a 

five-factor model explains on average about 25.5% of variation in turnover of individual 

stocks, where the R2 has a cross-sectional standard deviation of 12.9%. Comparing Table 

3 with Table 7 for returns, we find that turnover factors are just as important for 

explaining the time variation of turnover across individual stocks as return factors are for 

individual stock returns. 

In comparison to empirical results about trading volume found in market 

microstructure studies by Chordia, Roll and Subrahmanyam (2000), we find a stronger 

presence of commonality in turnover for most sample periods. Chordia et al use 

transaction data from a sample of 1,169 stocks in 1992. They examine the common 

movement in market depth using value- and equal- weight indices, and find the mean R2 

to be less than 2%. Hasbrouck and Seppi (2001) use order flow data from the 30 Dow 

stocks during 1994 to study the common factors in stock prices and liquidity. They find 

the first three common factors explain about 20% of the variation in order flows. 

However, they do not provide an explicit test for the number of factors in their factor 

model.  

Because trading volume determines transaction costs in the stock market, our results 

imply that trading volume may have a systematic impact on after-cost returns. Therefore, 

liquidity risk associated with trading volume could be a systematic risk factor that is 

priced. This is consistent with the empirical results of Amihud (2001) and Pastor and 

Stambaugh (2003), who find that liquidity is an important risk factor in financial markets. 

 

D. Monte Carlo Simulations 

While Bai and Ng did a simulation study on the small-sample properties of their IC 

statistics, they used a general data generating processes (DGP) that is not calibrated to 

typical stock return and turnover data. In this section, we provide a simulation study to 

demonstrate that the IC estimates have good small-sample properties for standardized 

turnover. The DGP used follows Jones (2001) and is designed to mimic the actual data as 

closely as possible. Thus, rather than simulating factors under some arbitrary assumption, 

bootstrapped samples of factor and beta estimates from the actual data are used. 
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Specifically, conditional on a model with K systematic factors and given estimates of 

the T×K matrix G of factor realizations, we sample (with replacement) T rows of G to use 

as the true factors in the simulations. Let Gi denote the ith bootstrap draw of the factor 

matrix. The factor betas assumed in the DGP are bootstrapped samples of the least-

squares estimates of the betas from the actual data. Denoting D as the N×K matrix of 

OLS estimates of the factor betas from the real data, we follow Jones by drawing with 

replacement N rows of the D matrix to use as the true betas in the simulations. We then 

draw the corresponding elements of the N×N diagonal matrix Σ, whose (j,j) element is the 

unconditional sample variance of the residual of stock j. We denote Di the ith bootstrap 

draw of the D matrix and Σi the corresponding draw of Σ. Finally, the N×T matrix of 

simulated turnover Γi is generated by 

 

Γi = DiGi + Πi * Ei                                                                                               (6) 

 

where Πi is the Cholesky-decomposition factor of Σi and Ei is an N×T matrix of i.i.d. 

standard normally distributed residuals. As a result, the systematic factors will (on 

average across bootstraps) explain the same amount of variation in the simulated turnover 

series as the actual factors do for the actual data. 

Table 4 presents the frequency of the number of factors estimated for standardized 

turnover data over 500 simulations. Conditional on the number of factors found in Table 

3, each simulation involves the draw of a set of N×T individual turnover data for the 

corresponding sample period. For example, for 1997-2001 this involves 500 draws of a 

1385 × 252 panel of firm-level turnover. 

As the first row of the table shows, if the true number of factors is 5, the IC criterion 

finds the right number of factors in 98.6% of the simulations, using parameters calibrated 

to resemble the data in the 1967-71 sample period. The mean of the estimated number of 

factors equals 4.99. It is worth noting that the accuracy of the IC approach depends on N 

and T: as we increase the number of companies used in the sample or the length of the 

sample period, accuracy tends to improve. 

To illustrate the importance of standardizing turnover when estimating the number of 

required factors, we compare these small-sample properties to those for raw turnover. 
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Table 5 presents the frequency on the number of factors estimated using raw turnover. As 

the first row shows, if the true number of factors is 16, the IC criterion finds the right 

number of factors only in 1% of the simulations. The mean of the estimated number of 

factors is 13.4, showing a large downward bias compared to the true number. Thus, we 

conclude that, despite the presence of severe heteroscedasticity and the presence of time 

trends in turnover, the Bai and Ng (2002) procedure has excellent small-sample 

properties for standardized turnover, but not for raw turnover. 

 

E. Understanding The Time Series Properties of Turnover Components 

An important question in the study of turnover is whether there is a systematic time 

trend. Some evidence is in table 2, which presents the number of systematic turnover 

factors for both the standardized data as well as the first detrended and then standardized 

data. If there is indeed a time trend in turnover, we expect the number of factors to be 

affected by detrending. Detrending could reduce the number of systematic factors by one 

if one of the systematic factors is a pure time trend. This is the case in four of seven time 

periods; in the other three, the number of factors is not affected by detrending.  

Next, we estimate whether there is a time trend in the factors extracted from the 

standardized (but not detrended) panel by regressing each factor on a constant, the lagged 

factor, and a time trend. 

Table 6 panel A presents the results:  in all time periods the majority of the 

systematic factors have a statistically significant time trend, with different factors having 

opposite signs for the same time period. These regressions include the lagged factor itself 

to ensure that the time trends are not merely an artifact of the large first-order 

autocorrelation. 

In Table 6 panel B the pervasiveness of time trends in turnover is made clear. When 

regressing raw turnover on a constant and a time trend for each firm separately, we find a 

statistically significant time trend in 47% (in 1982-86) to 69% (in 1991-96) of firms.  

Finally, taking out the systematic factors effectively removes about all occurrences 

of time trends. When regressing each firm’s idiosyncratic turnover on a constant and a 

time trend, in five of seven time periods all firms have statistically insignificant trend 
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coefficients. In the other two periods only 10% and 7% of firms show evidence of a 

statistically significant time trend in idiosyncratic turnover, using the same regression. 

This allows us to get around a trend-related complication in turnover data, which is 

the presence of strong autocorrelation. Lo and Wang (2000) show that both the weekly 

equally weighted and value-weighted turnover indices display strong positive 

autocorrelation after linear, log-linear, linear-quadratic, and seasonal detrending. For 

example, the 10th autocorrelation for the value-weighted index remains at a high 55.8% 

after a seasonal detrending using the Gallant, Rossi, and Tauchen (GRT) method. Lo and 

Wang also show that detrending using moving average, first differencing, or kernel 

regressions all introduce large negative autocorrelations at various lag length. 

Figure 2a displays the cross-sectional average of autocorrelation for raw turnover of 

individual stocks, from ρ1 to ρ10. For comparison, we also report the autocorrelation of 

(raw and GRT-detrended) turnover of the equally weighted index by Lo and Wang (they 

show that results for linear and log-linear detrending were similar but less successful than 

GRT detrending in removing persistence). The average autocorrelations of raw turnover 

of individual stocks display persistence similar to that of the index, but much smaller in 

magnitude. Linear detrending removes some of the autocorrelation, but significant 

autocorrelation remains (10%) even after the 7th lag. Furthermore, two popular 

approaches of removing market turnover (using ‘excess turnover’ or ‘idiosyncratic (VW) 

turnover’ computed by fitting a market model using VW turnover as the market turnover 

factor, as suggested by Lo and Wang) help little and may actually worsen the 

autocorrelation patterns of individual turnover series. 

Removing the systematic components, however, significantly reduces 

autocorrelation in the idiosyncratic turnover series. For example, the autocorrelation 

drops to 5% after the 5th lag. There are similar results when we examine the average of 

the absolute autocorrelation, given in Figure 2b (the same results for autocorrelation also 

hold for other time periods as well, and are available on request).  There is little 

difference between average autocorrelation and average absolute autocorrelation because 

autocorrelations are mostly positive for turnover. Thus, shocks to firm level (i.e., 

idiosyncratic) turnover die out in four weeks or so, much faster than what is suggested by 

the strong persistence at the index level. 
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It is worth noting that Jones (2001) introduces a heteroscedastic factor analysis 

(HFA) for extracting factors that allows for time-varying volatility in returns. While his 

simulation shows that an HFA may sometimes improve the accuracy of factor estimates, 

the methodology depends on the strong assumption that the idiosyncratic terms are 

uncorrelated over time. As shown in Figure 2, this assumption is seriously violated for 

turnover data. While the principle components approach of Connor and Korajczyk (1993) 

may not be as accurate as HFA in small samples, Bai and Ng have shown it is 

nonetheless consistent in the presence of autocorrelation and heteroscedasticity. The 

simulation results presented in this paper also show that the Connor-Korajczyk approach 

is quite accurate in estimating the number of factors in turnover. In our return application 

we also used this approach, as there is also strong evidence of return autocorrelation at 

the firm level, which has contributed to profits in momentum trading strategies (see, for 

example, Conrad, Hammed, and Niden (1994)).6 

  

IV. Testing the Duo Factor Model of Lo and Wang 

 

Although turnover data has long been available, researchers in finance have 

concentrated on “asset pricing” while paying scant attention to “asset quantity”. In their 

seminal paper, Lo and Wang (2000) attempt to address this imbalance by deriving 

theoretically the relationship between return and turnover. Lo and Wang (2003) further 

establish a theoretical link by modeling heterogeneous investors who hedge market risk 

and changing market conditions by trading a market portfolio and a hedging portfolio. 

Using weekly data from various portfolios, they tried to empirically identify the hedging 

portfolio using volume data. They found that the return of the hedging portfolio does 

seem to provide the best predictor of future market returns, but the model is less 

successful in determining the cross-section of asset returns. Below, we provide a new test 

of Lo and Wang (2000) and shed new light on the results of Lo and Wang (2003). 

 

A. The Duo Factor Model of Lo and Wang (2000) 

                                                 
6 It would be interesting to compare the accuracy of extracted factors of the HFA and the Connor-
Korajczyk approaches while allowing for serial correlation in idiosyncratic return and turnover. However, 
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Following Lo and Wang, we assume that returns are generated by the following 

approximate K’-factor model:7 

 

Rjt = Et(Rjt) + f1tβj1 + … + fK’tβjK’ + ejt    j = 1,…,N; t = 1,…,T.                        (7) 

 

where ft' = (f1t,…,fK’t) is a vector of unobservable pervasive shocks, (βj1,…,βjK’) is a 

vector of factor loadings that are constant over the sample period, and ejt represents an 

idiosyncratic risk specific to asset j at time t. We also assume ejt has mean zero and is 

orthogonal to fkt.  As discussed in Chamberlain (1983), the above economy implies the 

following linear pricing relationship if there exist K well-diversified portfolios:8 

 

Et(Rjt) = rft + λ1tβj1 + … + λK’tβjK’                                                                   (8) 

 

where (λ1t,…,λK’t) is a vector of risk premiums corresponding to the pervasive shocks 

(f1t,…,fK’t), and rft is the return on a riskless asset. 

Under the presence of K’ well-diversified portfolios, Chamberlain (1983) shows that 

the above asset-pricing model satisfies K-fund separation. Under the assumptions that 

these K’ portfolios are constant over time and the amount of trading in them is small for 

all investors, Lo and Wang derive the proposition that the turnover of each stock has an 

approximate K’-factor structure like equation (7). 

In particular, they derive an easily testable hypothesis about the duo-factor model 

(equations (1) and (7)) that the two models should have exactly the same number of 

factors, that is K = K’. The reasoning is that in equilibrium well-diversified investors hold 

the K’ separating funds and just trade them to hedge the systematic risk mimicked by the 

K’ factor portfolios. As a result, systematic turnover reflects the trading in these K’-funds 

in the market. Therefore, turnover also has a K’-factor structure, just like excess returns. 

                                                                                                                                                 
that is beyond the scope of this paper. 
7  To avoid confusion with the K-factor turnover model, we will use K’ to indicate the number of factors in 
the return model. 
8   Connor (1984) derived the same result under the condition that the supplies of the assets are well 
diversified. To derive the consistency result of the Bai-Ng statistic for the number of factors in the return 
model, some additional regularity conditions are imposed.  These are provided in the appendix. 
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Although Lo and Wang do not formally address the issue of idiosyncratic turnover, 

one way to justify its existence is the presence of noise traders in the economy who hold 

non-diversified portfolios. They trade on either information or speculation but their trades 

affect neither asset pricing nor the systematic turnover. In this case, by identifying 

idiosyncratic turnover at the firm level, one may learn about trading related to firm-

specific information as well as firm-specific speculation (see, for example, Michaely and 

Vila (1996) on trading volume in the presence of private valuation). 

 

B. Understanding Returns 

Table 7 provides the results of the test of the number of factors in excess returns. The 

firms used in the return sample are the same as those used in the turnover sample. To fill 

the missing observation in the return sample we use a standard EM algorithm. Similar to 

turnover, the first principal component of returns typically explains between 11% and 

26% of the variation of excess returns, while the second and third components each 

explain about 2%. For example, for 1967-71 a two-factor model explains on average 

23.4% (21.5% by the first factor) of the variation in weekly excess returns of individual 

stocks, with a standard deviation of R2 of 8.5%. This is quite different from Lo and 

Wang, who use returns from broadly diversified portfolios. Their first principal 

component typically explains over 70% of the variation in the portfolio returns. 

Table 7 documents a significant drop in average R2 for excess returns for the last two 

sample periods, suggesting a significant increase in contribution of idiosyncratic risk to 

total return variation. This result is consistent with the result of Campbell, Lettau, 

Malkiel, and Xu (2001), who find a noticeable increase in firm-level volatility relative to 

market volatility in recent years. However, our results for excess returns suggest that they 

may underestimate the importance of systematic factors in returns, as the R2 obtained 

through their market model appears to be substantially below the average R2 found in our 

study under a multi-factor model. The contribution of the market to total volatility was 

13.4% during the 1988-97 period covered by Campbell et al. In contrast, the average R2 

in our study was 28.5% for 1987-91 and 14.3% for 1992-96. Besides the different time 

periods, differences in weighting methods - Campbell et al use value-weighting, while we 

use equal weighting in Table 2 - may account for some of the difference in results. 
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Table 8 provides the results of a simulation study, which demonstrate that the IC 

estimates have good small-sample properties for raw as well standardized returns. The 

data generating processes are the same as previously described for turnover, and are 

designed to mimic the actual data as closely as possible. As Panel A shows, if the true 

number of factors is two, the IC criterion finds the right number of factors in 91% of the 

simulations, using parameters calibrated to resemble standardized returns in the 1967-71 

time period. The mean of the estimated number of factors is 1.91, which shows a slight 

downward bias compared to the true number. 

Table 8 panel B presents the frequency on the number of factors estimated using raw 

returns.  For example, for the first time period, if the true number of factors is two, the IC 

criterion finds the right number of factors in 99% of the simulations. As a result, we 

conclude that the Bai and Ng (2002) procedure of estimating the number of systematic 

factors works well for raw as well as standardized returns. 

The discovery of only two or three pervasive factors in the economy has interesting 

implications for unconditional asset pricing tests. Studies by Fama and French (1993), 

Jegadeesh and Titman (1993), and Pastor and Stambaugh (2003) report the presence of 

market, size, book-to-market, momentum, and liquidity factors. While our study has 

found only two or three systematic return factors, the discrepancy could come from our 

exclusion of NASDAQ stocks. It is also possible that some of these factor premiums 

might actually come from mispricing. However, further investigation of such issues is 

beyond the scope of this paper. 

 

C. Is There Compatibility of Price and Trading Volume in US Stock Data? 

Since Tables 3 and 7 document some apparent differences in the number of return 

and turnover factors, we will now formerly examine the Lo-Wang duo-factor model's 

hypothesis that the number of return and turnover factors should be equal. Table 9 

presents the Type I and Type II error estimates of a formal test. The error estimates are 

based on 500 simulations for each time period, where each simulation involves the draw 

of a set of N×T individual return and turnover data. 

For the type I error estimates, we set the true numbers of return and turnover factors 

equal to three. This is chosen because it is the highest number of return factors found in 
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the seven studied time periods. For type II we set the true numbers of return and turnover 

factors equal to those found in the data. Therefore, the true difference is K-K’, which 

equals the difference of the numbers of return and turnover factors as reported in Tables 3 

and 7. To maintain the correlation found in the data between excess return and turnover, 

an elaborate sampling scheme is used to mimic the actual data as closely as possible. (See 

Appendix II for details). 

Overall, our simulation study indicates a clear and unambiguous rejection of the null 

hypothesis that there are same numbers of systematic factors in returns and turnover in all 

time periods. In all seven time periods, if the simulated number of factors are the same 

for return and turnover, then the probability that the IC criterion finds a difference equal 

to those as estimated in the actual data is 0%. 

Table 9 Panel B show that the IC criterion has almost no Type II errors conditional 

on the actual number of factors found in the data. The probability of accepting the null of 

same factors while it is not true is zero for all time periods. 

The rejection of the “same number of factors” restriction is not surprising, as the 

turnover factor model was derived based on K-fund separation, implying common 

mimicking factor portfolios held by all investors. To the extent that investors use private 

information to speculate on small or internet stocks, this could lead to a violation of K-

fund separation and thus to the violation of the turnover factor model. For example, 

Llorente, Michaely, Saar, and Wang (2002) find that small firms tend to have high 

trading volume associated with asymmetric information. 

Another possible explanation could be sample selection. Since our sample excludes 

bonds and NASDAQ stocks, our return sample may not be able to reflect all systematic 

risks in the economy. For example, Fama and French (1993) find that, with stocks, only 

three factors seem sufficient to explain their cross-section, but five are needed when 

bonds are included in asset pricing studies. To the extent that new technology and 

changing interest rates may have a systematic impact on the return of assets outside our 

sample, investors may need to rebalance their position on all assets. As a result, we may 

observe systematic changes in turnover but fail to detect their impact on returns in our 

sample. 
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Although our study cannot provide a definite test of the duo-factor model, the tests 

on the number of factors and non-stationarity outlined here provide useful tools for the 

analysis of return and turnover. For example, the test on the number of factors may help 

us understand that the failure of the two-factor model of Lo and Wang (2003) to explain 

the cross-section of returns could be due to missing factors. 

 

D. Measuring the Price Impact of Stock Trading 

Our results indicate that a one-factor model for turnover cannot capture the 

commonality for the time-series and cross-sectional variation in turnover. This calls into 

question the common practice of estimating "abnormal" volume by using an event-study 

style "market model". (See for example Brennan, Chordia, and Subrahmanyam (1997), 

Stickel and Verrecchia (1994), Tkac (1996), and Llorente, Michaely, Saar, and Wang 

(2002).) 

Here, we demonstrate that failing to fully decompose turnover may lead to an 

underestimation of the price impact of stock trading. Following Pastor and Stambaugh 

(2003), we measure the price impact of stock trading by running the following 

regression,9 

 

,)( 1,,,,1, ++ +++= ti
e

ti
e
tii

e
tiii

e
ti rsignrr ετγφθ                                                      (9) 

 

where re
i,t is the (excess or otherwise) return on stock i and τei,t is a measure of the firm-

specific turnover for stock i. Here, γi measures the price impact of order flow for stock i, 

constructed by using volume signed by the contemporaneous return. 

Regression (9) estimates the average effect that week t trading has on the return in 

week t+1. Campbell, Grossman, and Wang (1993) show that a less liquid market would 

have a more negative γi due to the larger return reversal resulting from the larger price 

impact of trading. Intuitively, the measure of trading in (9) can be interpreted as signed 

                                                 
9     We have also followed Pastor and Stambaugh (2003) by using ri,t rather than re

i,t as the first regressor in 
equation (10). The results are similar. 
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order flow, and greater liquidity is interpreted as a weaker tendency of trading in the 

direction of returns in t to be followed by opposite price changes in t+1. 

Llorente, Michaely, Saar, and Wang (2001) show that this volume-return relation 

may also reflect firm-level information asymmetry. While γi generally tends to be 

negative, they demonstrate it could be positive if the price impact of information trading 

dominates the liquidity effect. Therefore, market participants often pay close attention to 

the volume of trading to help distinguish portfolio-rebalancing trades from speculative 

trades based on private information. Following Pastor and Stambough, we simply call γi a 

measure of liquidity, where a larger (less negative) γi means less liquidity or a smaller 

price impact of trading. 

To gauge the impact of different return and turnover measures on γi estimates, we set 

re
i,t equal to either the excess return over the market, re

i,t = ri,t - rm,t, or to the idiosyncratic 

return in the multi-factor model of (7), ejt. We also use five different measures of firm 

turnover: 

 

(A) τei,t is the de-meaned raw turnover for stock i during week t, 

(B) τei,t = τi,t - τvw
mt is turnover in excess of the value-weighted market turnover, 

(C) τei,t is detrended turnover for stock i, 

(D) τei,t (idio (VW)) is the residual turnover in the one-factor model of Lo and Wang      

(2002), with value-weighted turnover used as the market factor. 

(E) τei,t = ζi,t is the idiosyncratic turnover in the multi-factor model of (1). 

 

Table 10 Panel A presents the cross-sectional average of the estimates of γi for the 

seven sample periods using excess return over the market, re
i,t = ri,t - rm,t, and five 

different measures of turnover. It also provides the t-tests for the hypotheses that the 

mean of γi under specifications A, B, C or D equal the mean of γi under E. 

For idiosyncratic turnover (E), we can see that the average price impact was the 

smallest during 1967-71, then liquidity dropped sharply in 1972-76, but it has been 

improving ever since. For example, a 10% increase in weekly signed turnover would, on 

average, cause a 7.43% reversal in excess return re
i,t over 1972-76 but only 1.38% over 

1997-2001. On the other hand, a 10% increase in weekly signed turnover, would on 
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average cause a 3.09% reversal in idiosyncratic return ejt over 1972-76, but only 0.64% 

over 1997-2001. 

If we compare the average estimates of γi based on E with A, B, C, and D, we find 

that all four alternative measures tend to provide less negative (or smaller in absolute 

value) estimates of γi, suggesting a smaller price impact. For example, the average γi was 

–0.591 under excess turnover B compared to –0.743 for idiosyncratic turnover (E) for 

1971-76. The difference has a significant t-stat of –3.28. This suggests that, using market 

turnover to compute excess turnover may understate the price impact if one is interested 

in firm-specific trading volume. The same holds for using the residual from a market 

factor model (D). The reason for the smaller price impact is the fact that all four turnover 

measures contain portions of systematic turnover. It is not surprising that the price impact 

would be smaller if some trading were systematic, presumably because of risk sharing. 

The results for using idiosyncratic returns given in Panel B were similar, but they 

generally tend to be smaller in absolute value. 

Therefore, we conclude that several commonly used turnover measures may 

significantly understate the price impact of stock trading. As a result, a multi-factor 

model is needed in estimating "abnormal" trading volume as well as its impact on asset 

prices. 

O’Hara (2003) argues that microstructure effects such as liquidity and price 

discovery risk are important for asset pricing. While numerous studies have examined the 

impact of liquidity effects on asset pricing, few have examined the risks of price 

discovery. This is because it is hard to disentangle the two. However, as Easley et al 

(2002) and O’Hara (2003) pointed out, the risk of price discovery is closely related to 

asymmetric information. 

To gauge the extent of information asymmetry among investors, it is helpful to 

separate trading related to public information from that related to private information. 

While the turnover decomposition developed in this paper only allows us to separate 

trading into systematic and idiosyncratic components, it is conceivable that idiosyncratic 

turnover is related to firm-specific risks that are largely driven by information asymmetry 

(For example, O’Hara (2003) shows idiosyncratic trading among informed and 

uninformed investors is driven by the presence of informed investors and whether price is 
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fully revealing (p 1347, equation (10)). Therefore, if idiosyncratic turnover is closely 

related to private information trading, our decomposition could provide a useful measure 

of the difference in information asymmetry across firms. 

 

E. Summary of Empirical Results on Monthly Data 

In addition to weekly data, we looked at return and turnover using monthly data for 

NYSE and AMEX stocks. Here we briefly summarize our results. 

First, the Bai-Ng statistics are quite robust and consistent in estimating the number of 

factors in monthly data for the balanced panel. We find four or five systematic factors 

driving firm turnover and, on average, 36.5% of firm turnover is determined by common 

turnover factors. Second, we find there are two or three systematic factors driving excess 

returns, so we again reject the restriction of Lo and Wang that excess return and turnover 

should have the same number factors in the duo-factor model. Third, idiosyncratic risk on 

average explains 32% of idiosyncratic turnover (detailed results available on request). 

This supports O’Hara (2003) that private-information risk can affect stock-specific 

trading among informed and uninformed investors. It suggests that there is an 

“inextricable link” between trading activity and return volatility at the firm level.  

 

V.  Conclusion 

 

This paper looks at two statistical procedures developed by Bai and Ng (2002, 2003) 

to estimate an approximate factor model for turnover and test for non-stationarity. We 

document the presence of severe heteroscedasticity and non-stationarity in turnover data 

of individual stocks. We find the Bai and Ng (2002) information criteria works well for 

raw returns but not for raw turnover for estimating the required number of systematic 

factors. However, a modified GLS-type approach of standardizing turnover is effective in 

dealing with the problems in turnover data. The approach is also robust to the presence of 

correlation and heteroscedasticity at both time and cross-section dimensions. 

Using this approach, we provide a new test of the duo-factor model developed by Lo 

and Wang (2002) on return and trading volume. An important element of our 

methodology is the use of data from individual stocks rather than from beta-sorted 
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portfolios. In particular, by exploiting the advantage of a large cross-section of individual 

stocks we are able to get around the non-stationarity problems inherent in dealing with 

turnover data. 

Based on a balanced panel of return and turnover data from NYSE and AMEX 

stocks, we find several results. First, systematic turnover factors are quite useful in 

explaining the variation of turnover for large panel data set. There are four or five 

systematic factors driving stock turnovers. These common factors explain 15% to 26% of 

trading volume. Second, we reject the restriction of Lo and Wang’s theoretical model that 

excess returns and turnovers have the same number factors. This implies that stock price 

and trading volume are incompatible under the existing standard multi-factor asset 

pricing-trading framework.  Fourth, we show that several commonly used turnover 

measures may significantly understate the price impact of stock trading. 

There are several issues that remain to be examined. If the duo-factor model provides 

a parsimonious description of weekly data, it is interesting to know whether it works 

equally well on higher-frequency data. Second, our decomposition can provide firm-

specific parts of turnover related to price momentum. It will be interesting to see if the 

firm-specific turnover can be used to identify different firm-specific stages of 

momentum-value cycles, as in Lee and Swaminathan (2000). Finally, if firm-level 

asymmetric information drives idiosyncratic volume and risk, then by using the return 

and turnover decomposition developed in this article we may obtain a proxy for 

measuring the degree of information asymmetry across stocks and thus be able to 

evaluate the impact of price discovery risk on asset pricing (see Llorente, Michaely, Saar, 

and Wang (2002) and O’Hara (2003)). 
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Appendix I 
 
 To derive the consistency result of the statistic for the number of factors in the 

APT model of (3), Bai and Ng (2002) introduce the following assumptions: 

 
Assumption A: Factors 
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Assumption D: Weak dependence between factors and idiosyncratic errors 
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 Assumption A and B are fairly standard for factor models and their ensure that 

each factor would have a bounded and non-trivial contribution to the variance of asset 

returns (or turnover). While we only consider non-random factor loadings here, the 

results still hold when B is random, provided they are independent of the factors and 

idiosyncratic errors. Assumption C allows for limited time series and cross section 

dependence in the idiosyncratic risks. Heteroscedasticity in both the time and cross 

section dimensions are also allowed. Therefore, our model is more general than a strict 

factor model of Ross (1976) that assumes no correlation across eit. BN has shown that the 

above assumption C is consistent with the approximate factor model of Chamberlain and 

Chamberlain and Rothchild (1983) in the sense that it ensures that the largest eigenvalue 

of the N x N covariance matrix for the idiosyncratic risks must be bounded. While 

Chamberlain and Rothchild did not make any explicit assumption about the time series 

behavior of the factor, BN allows for serial correlation and heteroscedasticity. They have 

shown that Assumption C3 maintains the condition that the largest eigenvalue of the 

covariance matrix for the idiosyncratic risks will be bounded, thus their results is 

consistent with the approximate factor pricing model of Chamberlain and Rothchild.  

Here our discussion focus on the return factor model of (3), but the same assumptions A-

D should also apply to the turnover factor model of (4) for estimating the number of 

factors.  

 
Appendix II 
 

Here we briefly discuss the simulation procedures used to test Lo and Wang 

(2000, LW). 

Given estimates of the T×K’ matrix F of factor realizations, we sample (with 

replacement) T rows of F to use as the true factors in the simulations. Let Fi denote the 

ith bootstrap draw of the factor matrix. The factor betas assumed in the DGP are 
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bootstrap samples of the least squares estimates of the betas from the actual data and we 

assume then to be constant over time. Denoting B to be the N × K’ matrix of OLS 

estimates of the factor betas from real data, we follow Jones (2001) by drawing with 

replacement N rows of the B matrix to use as the true betas in the simulations. We then 

draw the corresponding elements of the N×N diagonal matrix Ω, whose (j, j) element is 

the unconditional sample variance of the residual of stock j. We denote Bi to be the ith 

bootstrap draw of the beta matrix and Ωi the corresponding draw of Ω. As a result, the 

N×T matrix of simulated excess returns Ri will then be generated by the equation 

 

  Ri =Bi Fi + Ψi * Ei                                                                    (9) 

 

where Ψi  is the Cholesky-decomposition factor of Ωi  and Ei is an N× T matrix of 

independent standard normals. Here, we assume all alphas to be zero.  

 Similarly, given estimates of the T×K matrix G of factor realizations for 

normalized turnover, we draw T rows of G to use as the true factors in the simulations, 

maintaining the same order as returns. Let Gi denote the ith bootstrap draw of the factor 

matrix. The factor betas assumed in the DGP are the bootstrap samples of the least 

squares estimates of the turnover betas from the actual data, which are assumed to be 

constant over time. Denoting D to be the N× K matrix of OLS estimates of the turnover 

betas from real data, we draw the same N rows as returns of the D matrix that we use as 

the true betas in the simulations. We then draw the corresponding elements of the N×N 

diagonal matrix Σ, whose (j, j) element is the unconditional sample variance of the 

residual turnover of stock j.  

 To maintain the correlation found in the data between residual excess return and 

residual turnover, we simulate residual turnover by the following equation,  

 

  ξjt = ωi ej,t  + µjt,                                                                    (10) 
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where ωi is a scaling coefficient to make the correlation between ξjt and ej,t  to be ρj  and 

µjt is independent standard normal. Here, ρj is the sample correlation between residual 

excess return and residual turnover for stock j. We then further scale ξjt so that its 

variance equal to the jth diagonal element of Σ As a result, the N×T matrix of simulated 

turnover Γi will then be generated by the equation 

 

  Γi =Di Gi +  Ηi                                                                    (11) 

 

where Ηi is the ith draw of the NxT matrix whose elements are ξjt. 
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Table 1: Summary Statistics 
Panel A: Number of Stocks on NYSE&AMEX during each time periods, Number of 
firms with no missing observation in turnover, Number of firms with problem data in 
turnover (those with CRSP Z flag), and number of firms used in the sample. Common 
shares are selected from CRSP share using codes 10 and 11. 

Dates 

Number of firms in 

NYSE&AMEX 

Firms with No

Missing data

Firms with 

Problem data

Number of firms 

Used in Sample 

Mean Weekly

Turnover (%)

1967-1971 2510 1592 6 1586 0.89 

1972-1976 2527 1912 0 1912 0.53 

1977-1981 2288 1753 0 1753 0.72 

1982-1986 2141 1514 0 1514 1.00 

1987-1991 1977 1400 1 1399 1.04 

1992-1996 2249 1530 2 1528 1.06 

1997-2001 2502 1391 6 1385 1.43 

 
Panel B: Cross-sectional Distribution of return and turnover volatility of NYSE and 
AMEX common shares for January 1967 to December 2001. Return and Turnover are 
measured in percentages. Volatility is measured as time series standard deviation of 
return/turnover over the sample period. 
 Turnover Volatility   Excess Return Volatility 

Dates Mean S.D. Skewness Kurtosis  Mean S.D. Skewness Kurtosis

1967-1971 0.89 0.91 2.71 15.81  5.50 1.88 0.66 3.05 

1972-1976 0.53 0.49 3.25 18.14  5.58 1.63 0.63 3.17 

1977-1981 0.72 0.59 3.09 20.33  4.76 1.35 0.62 3.17 

1982-1986 1.00 0.70 2.18 9.98  4.71 1.30 0.97 5.75 

1987-1991 1.04 0.78 1.96 8.77  4.77 1.58 2.01 16.87 

1992-1996 1.06 0.89 2.80 15.56  4.07 1.56 1.37 5.54 

1997-2001 1.43 1.16 2.29 10.67  6.12 2.38 1.31 5.54 

 



 

 33

 

Table 2: Impact Of Heteroscedasticity And Nonstationarity On Estimates Of 
Number Of Factors For Turnover 
We use turnover for NYSE and AMEX ordinary common shares from January 1967 to 
December 2001. Common shares are selected from CRSP share using codes 10 and 11. 
We use raw as well as standardized return and turnover.  

 Turnover Excess Returns 

Time Raw  Raw  Standardized Standardized Raw Standardized

Period Level detrended Level + detrended   

1967-1971 16 16 5 4 2.0 2.0 

1972-1976 16 15 4 4 2.0 2.0 

1977-1981 11 10 5 4 2.0 2.0 

1982-1986 8 8 4 3 2.0 2.0 

1987-1991 11 8 3 3 2.0 2.0 

1992-1996 12 10 4 3 2.0 2.0 

1997-2001 12 11 4 4 3.0 3.0 
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Table 3: Test of number of factors in turnover  
Incremental R2, θk , k = 1,…,10 of the covariance matrix of weekly turnover of NYSE and AMEX ordinary common shares for seven 
subperiods from July 1967 to December 2001. We also report the number of factors selected by the IC criterion and cross-sectional 
average R2 for the selected factor model for each sample periods. 
 
 Standardized Turnover 

Period θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 # factors average R2 STD R2 

1 11.14% 5.71% 4.45% 2.23% 1.95% 1.64% 1.47% 1.31% 1.27% 1.16% 5 25.47% 12.93% 

2 15.03% 7.30% 2.25% 2.15% 1.69% 1.66% 1.42% 1.30% 1.23% 1.15% 4 26.74% 14.18% 

3 11.48% 4.29% 3.22% 2.18% 1.95% 1.58% 1.47% 1.39% 1.23% 1.14% 5 23.13% 12.32% 

4 10.73% 5.59% 2.39% 2.28% 1.68% 1.41% 1.26% 1.19% 1.10% 1.09% 4 21.00% 11.26% 

5 11.45% 4.07% 2.89% 1.90% 1.80% 1.45% 1.20% 1.15% 1.08% 1.05% 3 18.41% 13.01% 

6 6.54% 3.90% 2.81% 2.22% 1.83% 1.55% 1.41% 1.29% 1.17% 1.10% 4 15.47% 10.35% 

7 10.79% 4.00% 3.13% 2.47% 1.92% 1.64% 1.50% 1.29% 1.22% 1.14% 4 20.39% 14.02% 
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Table 4: Simulation Test for the number of factors extracted for standardized 

turnover Using IC Criterion 

The table presents the frequency on the number of factors extracted from turnover data 
over 500 simulations. Each simulation involves the draw of a set of NxT individual 
turnover data. 
Standardized 

Turnover Frequency (%) found in 500 simulation studies 

 True K 1 2 3 4 5 6 Mean K Std K 

1967-1971 5.0 0.0 0.0 0.0 1.4 98.6 0.0 4.99 0.12 

1972-1976 4.0 0.0 0.0 0.0 100.0 0.0 0.0 4.00 0.00 

1977-1981 5.0 0.0 0.0 0.0 7.4 92.6 0.0 4.93 0.26 

1982-1986 4.0 0.0 0.0 2.2 97.8 0.0 0.0 3.98 0.15 

1987-1991 3.0 0.0 0.0 100.0 0.0 0.0 0.0 3.00 0.00 

1992-1996 4.0 0.0 0.0 1.0 99.0 0.0 0.0 3.99 0.10 

1997-2001 4.0 0.0 0.0 0.0 100.0 0.0 0.0 4.00 0.00 
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Table 5. Simulation Test For The Number Of Factors Extracted Using Raw Turnover  

The table presents the frequency on the number of factors extracted from turnover data over 500 simulations. Each simulation  
involves the draw of a set of NxT individual turnover data. 
 
RAW  Turnover                  Frequency (%) found in 500 simulation studies   

 True K 5 6 7 8 9 10 11 12 13 14 15 16 Mean K Std K

1967-1971 16 0 0 0 0 0 1 3.6 13 30.6 35.4 13.6 2.8 13.48 1.13

1972-1976 16 0 0 0 0.4 1.2 5.4 14 28.8 27.6 15.2 5.8 1.6 12.52 1.39

1977-1981 11 0 0 0.8 7.6 30.2 44.6 16.8 0 0 0 0 0 9.69 0.87

1982-1986 8 0.4 11.4 49.4 38.8 0 0 0 0 0 0 0 0 7.27 0.67

1987-1991 11 0.2 2.4 13 28.6 33.2 18.4 4.2 0 0 0 0 0 8.64 1.13

1992-1996 12 0 0.6 4.6 17.6 29.6 27.6 17 3 0 0 0 0 9.42 1.21

1997-2001 12 0 0 1.2 6.6 24.8 37.4 24.8 5.2 0 0 0 0 9.94 1.04
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Table 6: Time Trend Test for Turnover Components 
 
Panel A: Test of trend in Systematic Turnover 

Period Trend coefficients on the systematic turnover factors 

Period T-statistics for the trend coefficients 

1 1.59 7.52 -5.97 -2.74 0.68 

2 -1.87 -5.23 -6.43 5.89 -- 

3 3.08 3.58 -3.16 3.63 4.73 

4 1.68 4.32 8.28 -2.90 -- 

5 -3.17 -7.81 5.07 -- -- 

6 -10.99 -5.35 7.69 1.80 -- 

7 -9.30 2.05 -4.94 5.75 -- 

Note: The systematic factors are computed using the turnover data in levels directly. All 
trend coefficients are estimated in a regression that ALSO included the once lagged series 
and a constant. We have multiplied the trend coefficient by 1,000. 
 
Panel B: Test of trend in Raw as well as Idiosyncratic Turnover 

Period Obs % with trend in raw τit % with trend in idio. τit 

1 1586 60.21% 0.00% 

2 1912 57.74% 10.46% 

3 1753 49.46% 0.00% 

4 1514 47.42% 0.00% 

5 1399 56.25% 7.15% 

6 1528 68.78% 0.00% 

7 1385 64.40% 0.00% 

Note:  
1) “% with trend in raw τit ” stands for percentage of the raw turnover series with 

statistically significant trend coefficients if regressed on a constant and a time trend.  
2)  “% with trend in idio. τit” stands for percentage of the idiosyncratic turnover series 

with statistically significant trend coefficients.  
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Table 7: Test of number of factors in excess return data 
Incremental R2, θk , k = 1,…, 10 of the covariance matrix of weekly returns of NYSE and AMEX common shares in percentages for 
seven subperiods from July 1967 to December 2001. We also report the number of factors selected by the IC criterion and cross-
sectional average R2 for selected model for each sample periods. 
  Excess Returns 

Period θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 # factors average R2 stdev R2 

1 21.47% 1.90% 1.66% 1.07% 1.08% 0.91% 0.82% 0.78% 0.74% 0.72% 2 23.36% 8.52% 

2 22.33% 2.80% 1.68% 1.26% 1.03% 0.99% 0.91% 0.87% 0.87% 0.83% 2 25.13% 10.10% 

3 19.62% 2.75% 1.74% 1.58% 1.02% 0.81% 0.75% 0.75% 0.72% 0.70% 2 22.37% 11.00% 

4 17.68% 2.71% 1.90% 1.35% 0.99% 0.94% 0.83% 0.82% 0.77% 0.74% 2 20.39% 11.15% 

5 25.73% 2.79% 1.57% 1.32% 1.15% 1.02% 0.91% 0.88% 0.83% 0.78% 2 28.52% 14.77% 

6 10.92% 3.36% 1.76% 1.44% 1.28% 1.21% 1.02% 0.95% 0.87% 0.86% 2 14.28% 11.58% 

7 13.32% 3.50% 2.54% 1.63% 1.52% 1.33% 1.05% 1.06% 0.91% 0.90% 3 19.36% 13.24% 
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Table 8. Simulation Test For The Number Of Factors Extracted Using IC Criterion 
The table presents the frequency on the number of factors extracted from return data over 
500 simulations. Each simulation involves the draw of a set of NxT individual return data. 

 
A. Test for Standardized Returns 

Standardized 
Return                  Frequency (%) found in 500 simulation studies  

 True K’ 1 2 3 4 5 Mean K’ Std K’ 

1967-1971 2.0 9.0 91.0 0.0 0.0 0.0 1.91 0.29 

1972-1976 2.0 0.6 99.4 0.0 0.0 0.0 1.99 0.08 

1977-1981 2.0 0.6 99.4 0.0 0.0 0.0 1.99 0.08 

1982-1986 2.0 0.0 100.0 0.0 0.0 0.0 2.00 0.00 

1987-1991 2.0 0.0 100.0 0.0 0.0 0.0 2.00 0.00 

1992-1996 2.0 0.0 100.0 0.0 0.0 0.0 2.00 0.00 

1997-2001 3.0 0.0 0.0 100.0 0.0 0.0 3.00 0.00 

 
B. Test for Raw Returns 

RAW 
Return                  Frequency (%) found in 500 simulation studies  

 True K’ 1 2 3 4 5 Mean K’ Std K’ 

1967-1971 2.0 1 99 0 0 0 1.99 0.10 

1972-1976 2.0 0 100 0 0 0 2.00 0.00 

1977-1981 2.0 0.4 99.6 0 0 0 2.00 0.06 

1982-1986 2.0 0 100 0 0 0 2.00 0.00 

1987-1991 2.0 13.2 86.8 0 0 0 1.87 0.34 

1992-1996 2.0 15.6 84.4 0 0 0 1.84 0.36 

1997-2001 3.0 0 0.6 99.4 0 0 2.99 0.08 
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Table 9: Simulation Results on the Factor Number Difference Using PC Criterion 
The table presents the Type I and Type II Error Estimates for test on the difference 
between the number of return factors and the number of turnover factors based on 500 
simulations for each time period. Each simulation involves the draw of a set of NxT 
individual return and turnover data. The bold-faced numbers give the probability of error. 
 

Panel A: Type I Error Estimates based on 500 Simulation for Each Time Period 

Frequency (%) Found 
Time 
period 

 
Specified

K-K’ -3 -2 -1 0 1 2 

1 0 0 0 9 91 0 0 

2 0 0 0 0.6 99.4 0 0 

3 0 0 0 0.6 99.4 0 0 

4 0 0 0 0 100 0 0 

5 0 0 0 0 100 0 0 

6 0 0 0 0 100 0 0 

7 0 0 0 0 100 0 0 

 

Panel B: Type II Error Estimates based on 500 Simulation for Each Time Period 

Frequency (%) Found 
Time 
period 

 
Specified

K-K’ -4 -3 -2 -1 0 2 

1 -3 10.4 88.2 1.4 0.0 0 0 

2 -2 0.0 1.0 99.0 0.0 0 0 

3 -3 0.2 92.4 7.4 0.0 0 0 

4 -2 0.0 0.0 97.8 2.2 0 0 

5 -1 0.0 0.0 0.0 100.0 0 0 

6 -2 0.0 0.0 99.0 1.0 0 0 

7 -1 0.0 0.0 0.0 100.0 0 0 

 
 
  

 



  
 

 

Table 10. Average Estimates Of Price Impact Using Five Different Turnover 
Measures of Turnover 
This table provides the cross-sectional average of the iγ estimates for the seven sample 
periods using two different measures of returns and five different measures of turnover. 
The t-stats in the parentheses provide the tests of the hypothesis that the mean of iγ  under 
specification A, B, C, D equal to the mean of iγ  under specification E. 
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Panel A: 1,1,1, +++ −= tmti
e
ti rrr  

 A B C D E  

Turnover Raw Excess  Detrended Idio.(VW) Idio.  

1 -0.023 -0.105 -0.006 -0.014 -0.012  

 (0.75) (2.81) (-0.52) (0.16)   

       

2 -0.739 -0.591 -0.792 -0.760 -0.743  

 (-0.16) (-3.28) (2.35) (0.79)   

       

3 -0.232 -0.215 -0.271 -0.235 -0.415  

 (-14.87) (-10.06) (-13.23) (-14.6)   

       

4 -0.146 -0.165 -0.137 -0.155 -0.173  

 (-2.92) (-0.57) (-4.28) (-1.97)   

       

5 -0.139 -0.180 -0.145 -0.141 -0.197  

 (-5.60) (-0.77) (-5.80) (-5.43)   

       

6 -0.073 -0.092 -0.078 -0.075 -0.100  

 (-3.30) (-0.39) (-3.59) (-3.16)   

       

7 -0.082 -0.116 -0.081 -0.085 -0.138  

 (-5.57) (-1.61) (-6.70) (-5.24)   
 



  
 

 

Panel B: ∑ +++++ +−== )( 111,1,1, ktktiktiti
e
ti fBrer λ  

  A B C D E 

Turnover  Raw Excess Detrended Idio.(VW) Idio. 

1  -0.023 -0.076 -0.022 -0.035 -0.052 

  (-1.89) (0.87) (-2.23) (-1.13)  
       

2  -0.217 -0.231 -0.234 -0.226 -0.309 
  (-4.67) (-2.55) (-4.28) (-4.36)  
       
3  -0.087 -0.123 -0.100 -0.087 -0.164 
  (-7.42) (-2.43) (-7.04) (-7.52)  

       
4  -0.059 -0.098 -0.062 -0.066 -0.092 

  (-4.13) (0.54) (-4.00) (-3.35)  
       

5  -0.044 -0.071 -0.058 -0.047 -0.081 
  (-4.09) (-0.51) (-3.15) (-3.90)  
       

6  -0.018 -0.024 -0.027 -0.020 -0.039 
  (-2.70) (-0.85) (-2.14) (-2.52)  

       

7  -0.030 -0.056 -0.036 -0.032 -0.064 
  (-4.11) (-0.65) (-4.17) (-3.81)  

Note: The five different measures of firm turnover as defined as follows: 

(A) e
ti,τ  is the demeaned raw turnover for stock i during week t, 

(B) vw
mtti

e
ti τττ −= ,,  is turnover in excess of the value-weighted market turnover, 

(C) e
ti,τ  is detrended turnover for stock i,  

(D) e
ti,τ ( idio.(VW)) is the residual turnover in one-factor model of Lo and Wang 

(2002). We use the value-weighted turnover as the market factor.  

(E) ti
e
ti ,, ξτ =  is the idiosyncratic turnover in the multi-factor model of (1).



  
 

 

Figure 1: Raw Turnover for Smallest and Largest Decile Portfolios (Value Weighted)   
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Figure 2a: Average Autocorrelations for EW Turnover Index (Raw and GRT detrended) and Individual Turnovers (Raw, 
Detrended, Idiosyncratic (VW), and Idiosyncratic(multi-factor))  
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Figure 2b: Average Absolute Autocorrelations for Raw, Detrended, and Idiosyncratic Turnover (1997-2001) 
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