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Abstract

This paper examines the spreading and pricing of short-term interest rate futures
contracts and shows how traditiond types of caendar Soread positions can emerge as explicit
arbitrage solutions. A specific sat of intuitive spreading structures — “ Pascal’ s Spreading
Triangle’ — arises when the underlying daily risk factors are identified as the stochastic
coefficients of ahigh-ordered polynomid approximation to the yield curve. No empiricaly
estimated hedge ratios are required for these arbitrage strategies. Application of this Pasca
Spreads framework to pricing and trading the LIFFE’ s Short Sterling deposit futures market
over the 1989 to 1998 sample period reved s that the LIFFE’ s Short Sterling arbitrage sector’s
efficiency hasimproved markedly over time. The improvement over the decade coincides with
the dramatic declinesin futures trading transactions costs. As a byproduct, the framework
extracts and measures the quantitative impact of the Y 2K millennium-turn pricing distortion on

the December 1999 Short Sterling futures contract.



1. Introduction

The trading volume and open interest of short-term depost rate futures contracts dwarf
those of other fixed income and equity-based contracts. Since current and expected future
levels of short-term interest rates affect dmost every economic and financia decision, the scale
of this activity should be no surprise. Much of this deposit rate futures trading interest sems
from two important forms of activity: contract cendar spreads and contract strips. The quoted
prices of depogit futures contracts form a discrete term structure of interest rates for successive
three-month forward intervals. Speculators express views on relaive levels of interest rates at
two or more points adong this forward rate term Structure through calendar spread trading.
Hedgers can lock-in the current term Structure of rates over astring of future periods through
deposit futures contract strips. But regardless of their own hedging or speculative motives for
trading, dl end users of deposit futures contracts rely on an arbitrage sector to enforce fair
rdaive pricing relationships*

For deposit contracts, arbitrage versus the interbank deposit market places some
restrictions on individua deposit futures contract prices? However, relationships between
adjacent futures contracts seem to be priced much tighter than can be motivated by interbank
cash deposit market/deposit futures market arbitrage aone given the interbank market's
transaction bid-ask spread. L ow-cost deposit futures caendar spread trading aone appears to
enforce the orderliness of deposit futures pricing in the mgor deposit futures markets. Since

hedgers and speculators dike benefit from the pricing results of such arbitrage trading, ingght



into the underpinnings of deposit calendar spread pricing and trading is of general market
interest.

This paper devel ops an understanding of deposit futures contract calendar spread
arbitrage within a particular representation of the futures yield curve. The specific context isa
well-known mathematicd formulaion: ahigh-order polynomia gpproximation representation of
the term Structure. But the paper’ s focus on a deposit rate futures contract spreader’ srisk
perspective is a departure from the usud “curve-fitting” gpplication of such amodd. Here,
thinking firgt about multidimensiond trading risks, and only later about curve-fitting precison,
follows the generd emphass of factor models in understanding multiple risk dimensions.

The andysis here produces some new insghts into the natures of caendar Soread
trading design, arbitrage activity and risk structure dong the yield curve. First, risk-controlled
spread positions producing stationary value series relevant for spread trading do exist. Second,
the precise form of trading conforms to an anaytica solution termed here as “Pascal’s
Spreading Triangle” The solution collgpses nestly to a series of sequentid spreadsin adjacent
contracts. spreads, spreads of spreads; spreads of spreads of spreads; and so on.  Importantly,
no empiricaly estimated hedge ratios are required to implement this spread trading paradigm.
Thus, not only can the high-order polynomia gpproach “fit” a depost contract Strip arbitrarily
well, but the approach ddiversintuitive trading forms that can be gpplied by arbitrage tradersto
maintain pricing discipline.

The paper applies the framework to examine changes in the pricing efficiency of the

London Internationd Financid Futures Exchange' s Short Sterling deposit futures contract



market over the period between 1989 and 1998. For these ten years worth of Short Sterling
deposit rate futures price data, the Pascal spread structures produce sensible results and revea
how the arbitrage sector’ s efficiency has improved over time in this market.

2. Hedging and Spreading

Specific hedging and spreading solutions depend on specific andytica term Sructure
frameworks. Two particular term structure representations examined here are (1) the factor
modd and (2) the high-order polynomia gpproximation. The factor modd describes the term
dructure as being generated by equilibrium pricing of a parsmonious number of risk factors.
The empirical content of the modd relies on the estimation — from historical data— of the term
gructure' simplicit factors via the satistical methods of factor andysis or principal components.
Garbade (1996) and Litterman and Scheinkman (1991) gpply the factor andytic framework to
US Treasury yidds. Campbell, Lo and MacKinlay (1997) review the extensive gpplication of
the factor gpproach in equity vauation.

Alternatively, from Welestrass s Approximation Theorem, a suitably high-order
polynomia function can gpproximate the term Structure over agiven interva with an arbitrary
degree of precison.® Chambers, Carleton and Waldman (1984) apply polynomia functions of
degrees one through five to the spot yidld curve implied from US Treasury notes and bonds.*
In contrast to their emphasis on using high-order polynomia functions for empirica curve-fitting
ends, the strategy here focuses on this mode’ s implications for risk management.

Consder aforward deposit rate contract strip conssting of n different maturities, where

each successve strip maturity is equally spaced in time, one period unit gpart. Let Ny « ) be the



potentid (1 x n) vector of podtionsin the strip and let R, x 1) be a(n x 1) vector of forward
interest rates for each strip component. Now, consider ageneral k+1 factor representation of

this forward interest rate vector. In particular, let

Rinx1 = Tinxken * Barrx 1) 1)

where T x k1) iISaset of factor loadings and By.1x 1) isak+1 x 1 vector of factors describing

the current forward yield curve. For a predetermined factor loading matrix, the portfolio’' s vaue

risk depends solely on changes in By x 1), the vector of yield curve factors.  Thus, interest rete

changes, dRx 1), are expressed as a function of dBy.1 x 1), the vector of factor innovations:

dR(n x1) = Tnxken) dB(k+1 x 1) %))

Consider dV, the dallar payoff to a portfolio congsting of the (arbitrary) position vector N x 1),

where q isascdar denoting the dollar value of aforward rate move:

av =0* Naxn* dRnxy

=d* Naxn* Toxen* dBreixy 3

To hedge the position’s vaue risk againg factor shifts, choose a hedge position such that



Naxn* Toxke = 0 (4)

Ignore the trivia solution and normalize the pogition by choosing N; = 1. Then, solve this
homogeneous equation system by the usud matrix methods. Under the hedge condition, the
sum of the loadings on each of the k+1 factors weighted by the chosen positionsin each
contract equals zero.

To implement the modd for pricing and hedging, estimate the unobservable implicit
factors and their corresponding loadings for each ement of the interest rate vector from a
sample of higtorical data. Garbade (1996) and Litterman and Scheinkman (1991) present such
andyses for US Treasury market data. They find that three factors gpproximate the data well,
though Garbade' s evidence indicates the presence of a higher number of lessimportant factors.
Using the resulting factor loading estimates, the hedge positions follow from equation (4).

This“implicit factor” gpproach troubles some economists who believe that interest rate
and securities price fluctuations should be tied to observable red and monetary variables. For
practitioners, the main concern is whether the estimated empirical system remains stable over
time. Current pricing and hedging decisons, even if the number of factorsis known and
congtant, depend on the estimated factor loadings. These estimates — gpparently unbiased and
efficient in the higtorica sample period — may il be ingppropriate for the future. Because the
hedge positions are constructed based upon historical estimates, future hedge performance is
subject to potentidly ruinous coefficient shifts. Garbade s evidence suggests that sgnificant

ingability may exist in estimated coefficients over different time periods.



Estimation specifics asde, the hedge solution will correspond to well-known spanning
conditions. To span the set of k+1 risksin the forward interest rate curve, the hedge solution
must invoke k+2 different contracts. For example, the smplest risk modd isaflat term
gructure (k=0). Only the common “level” of forward rates fluctuates. Just two contracts are
needed to hedge thisrisk structure (k+2=2). In contragt, if a second factor (a“dopeterm”)
aso enters, three contracts are needed. If athird factor (a* curvature term”) enters, four
contracts will be needed to span the portfolio’srisk structure. For hedging to be complete, the
number of available contracts in the depodt rate strip under consideration must exceed the k+1
number of hypothesized factors (n > k+1). If n> k+2, then more than one set of k+2 contract
strips can be constructed as factor-risk hedge positions. The evidence cited above that three
factors explain the bulk of fluctuationsin the US Treasury yidd curve implies that postionsin a
least four contracts are needed to control the main sources of interest rate risk.

3. Polynomial Interpretations
A polynomia function is one specid representation for theyield curvein (1). Following
Chambers, Carleton and Wadman, the vector of forward interest rates can be
gpproximated by a suitably chosen high-order polynomid function of time to maturity.
Denote the time to maturity of the i contract by t;. For ak™-degree modd, populating

the Tn x k+1) Matrix is straightforward:



1 t, t,? t,<
T(n x k+l) = 1 t3 t32 . tgk
1 t, t.2 t.K

Immediately, a polynomid representation has two virtues. Firs, the T matrix is observable and
predetermined. Second, the By.1 x 1) vector now implies more concrete indexes of yield curve
level, dope, curvature, etc.

One property of a polynomid yield curve representation is the precise form of the
hedging solutions (4) for a strip with n equaly spaced congtant maturities. Subgtituting the

maturities (here measured as periodic distances versus the maturity of the first contract), Tin x k+1)

becomes
1 0 0 0
1 1 1 1
T(nxk+l) = 1 2 4 2k
1 M) (n1)? ...  (nDX



Given such a gtructure, the hedge solutions correspond to a progression of smple quantity
differencings of adjacent contracts. First differences—the (N;=1; N, = -1) spread — will hedge
shiftsin the levd of rates (dBy). Second differences —the (N; =1; N, =-2; N3 = 1) butterfly —
will hedge both the level and dope shifts (dB, and dB,). Third differences —the (N = 1; N, = -
3; N3 = 3; Ny =-1) box — will hedge leve, dope and curvature shifts (dB,, dB; and dBy).
Likewise, (k+1)-order differences—i.e, k+1 spreads involving k+2 contracts — will hedge
ghiftsin k+1 pricing terms.

Table 1 summarizes the problem’ s hedge solutions for an increasaingly higher-ordered
k™-degree polynomia (given Ny = 1). The diagram nestly revedls that the absolute magnitudes
of the hedge solutions correspond to Pascd’ s Triangle. Overlaying an additiond unit structure
of dternating long and short contract pogitions (+ and - Signs) ddivers“Pasca’ s Spreading

Triangle”

< Insart Table 1 Here>

The polynomid curve representation of the deposit rate term structure implies that
hedging and trading of short-term interest rate contracts reduces to anayzing sequences of
adjacent spreads. Each degree of higher polynomia order corresponds to another level of
gpreading: the smple spread; the butterfly; the box; the spread of boxes; etc. Importantly, the

hedge solution is congtant over calendar time for afixed vaue of k. Thus, theinitidly



appropriate hedged position (say, a4-contract box spread for k = 2) remains the appropriate
Sructure throughout the trading lives of the contracts involved.

Pascal spreads present an intuitive solution for controlling futures contract position risks
for arbitrage trading. While serving intuition may be agod itsdf, this gpproach’s true advantage
isits avoidance of estimation procedures. Pasca spreads are predetermined and do not rely on
coefficients estimated from historical data. In contrast, factor models need not reduce to such
smpletrading rules. And if the k™-degree polynomia approximation is accurately determined,
the Pascal hedging and pricing results should be equivaent to those from the dternative factor
gpproach. Of course, an appropriately large number of adjacent contracts must be included in
the gtrip. But snce most mgor depost futures markets list strips of eight, twelve, Sxteen, or
even forty contract maturities, the n > k+1 congtraint should not be binding in practice.

Finally, equation (1) views the dtrip of forward interest rates as an exact function of a
limited number of common factors. Relax this restriction by introducing avector of individud
contract trangtory pricing disturbance terms, ey x 1) Still, choose the polynomia order k
correctly. Then, interpret the value for the properly differenced k+2 contract Pasca spread asa
trangtory pricing disturbance term equd to aweighted sum of individud disturbance terms of
each included contract. The correctly differenced spread time series, €, is actudly the weighted
sum of the Pascal spread weights from Table 1, Ny « k+2), multiplied by ey.2 « 1) , theindividud

trangtory pricing disturbance terms on each contract included in the k+2 contract strip:

€= Nuxw2) * €2 x 1) ®



For the correct choice of the polynomia order k, the appropriately differenced Pascd spread
has a mean value of zero.

The correctly differenced spread’ s variance should equa that of the trandtory pricing
disturbance term, €. The separate time series dimension of the correctly differenced spread
position invites andyss of potentia arbitrage opportunities (around the appropriate zero mean).
Andyzing arbitrage possibilities dso entails deinesting gppropriate transactions costs for trading
these Structures.

4. The Data

Thisempirica investigation applies the Pasca spreading andysisto the United
Kingdom's Short Sterling deposit rate futures market. Short Sterling futures are traded on the
London International Financia Futures Exchange (LIFFE). Because the Bank of England
tends to smooth out end-of-year shocks — at least prior to the Y2K event — December
digtortions have been nearly non-exigtent. Thus, interpreting December-inclusve grips involves
no separate analysis of the average year-end price discount.” The absence of year-end
digtortionsin the UK makes the Short Sterling futures market extremely convenient for analyzing
Pascal spreading.®

Contract vaues mark to the market daily againg officia daily settlement prices as
determined by the exchange. An expiring contract’s find settlement price is determined
externdly by the expiration day’s officid British Bankers Associaion Sterling LIBOR fixing.

The data are daily settlement prices on the first eight contracts (the front four settlement months
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and the “red” or second four settlement months) from January 4, 1989 to September 15, 1998
exduding contract expiration days.” The sample includes 2,374 days of data

The andys's categorizes the Pascd spreads as congtant strip position entities. Congtant
gtrip position entities organize the data solely by position in the strip. For example, on a specific
sample date — say, February 15, 1994 — classfy the March94- Juned4 spread asthe “first
spread” ; the Juned4- September94 spread as the * second spread”; and so on. Likewise,
classfy the March94- June-94- Septemberd4 as the “firgt butterfly”; the June94- September94-
December94 butterfly as the “second butterfly”; and so on. The more highly differenced
positions are tagged in alike manner. For each spread type, a given number of strip contract
positions exist: seven two-contract spreads; six three-contract butterflies; five four-contract
boxes, and so on. Thetime series for these constant maturity constructs span the entire length
of the sample period.

Of course, proper interpretation of al spread trading data requires understanding
transactions costs. Commission costs have falen dramaticdly over the ten-year period under
sudy. Early inthis sample period, an off-the-floor high-volume spread trader’ s round-turn
commission expenses for entry and exit of a Short Sterling contract would have been about 5
pounds sterling (3 pounds for execution and 2 pounds for clearing charges and fees). By the
middle of the period, costs would have totaled nearer to 4 pounds per round turn. By the end of
the sample period, costs would have been closer to 2.25 pounds per round turn.®

To gauge the trading impact of such transactions cogts, express them in terms of

contract price basis points. For the 3-month, 500,000 pounds sterling notiona contract’s 1-
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basis point price change vaue of 12.5 pounds sterling, direct commission cogts of 5 pounds
equa 0.4 basis points; costs of 4 pounds equa .32 basis points; and 2.25 pounds equal .18
basis points. The 1 by -4 by 6 by -4 by 1 fourth-differenced spread of boxes entailstrading 16
(=1+4+6+4+1) contracts. Thus, the properly scaled round-turn transactions cost of the
fourth-order spread structure would be 6.7 basis points (= 5/12.5 x 16) early on; 5.1 basis
points (= 4/12.5 x 16) in mid-sample; and 2.9 basis points (= 2.25/12.5 x 16) more recently.

Findly, some sengitivity is needed to properly interpret spread constructs generated with
settlement price data. An exchange officid fixes officid daily settlement prices shortly after the
close of the regular trading session. For front month contracts, the settlement prices reflect the
volume-weighted trading price in the last thirty seconds of trading. For less actively traded
deferred contracts, the settlements respect the bids and offersin recognized spreads. Because
of these procedures, settlement prices are more orderly than transactions prices. However, on
average, successful vaue-oriented spread traders will tend to transact close to mid-market
levels® Moreover, an apparently complex spread position can still be reasonably easy to
transact. Consder the five-maturity Sixteen-contract position required by afourth-order Pascal
spread. The position can be executed as a spread of two butterflies: long the firgt-third-fifth
butterfly and short four times as many second-third-fourth contract butterflies™
5. Pascal Spread Results

Table 2 reports summary satistics for seven types of Pascal spreads utilizing two-
through eight-contract packages. These seven types of spreads are derived from first- through

seventh-differences dong the contract strip. The contract weightings are those shown in the



“Pascal Spreading Triangle” of Table 1. Here, the two-year contract Strip availability delinestes

an eight-contract package as the limiting hedging order.

< Insart Table 2 Here>

For the time series of each of the seven Pasca spread structures, Table 2 presents the
estimated sample means, stlandard deviations, standard deviation of the mean, the chi-square
datistic testing the restriction that the sample mean equds zero, and sample autocorrelaions.
These results address two dementd questions. Firg, in the modd’ s parlance, what isthe
gopropriate k? Essentidly, find the order of differencing where the Short Sterling data ddivers
Pasca spreads consistent with the zero mean spread vaue restriction. Second, does the
polynomid term structure representation work equally well for al segments of the curve?
Essentidly, for agiven k, examine whether biases emerge for Pasca spreads constructed over
different ranges of included contracts.

Begin by andyzing the results for the first- and second-order differencings of the Short
Sterling futures price data. For both simple two-contract spreads and three-contract butterflies,
the chi-square statistics strongly reject the hypothesis that the mean spread vaue equals zero in
amogt every case. And even the exceptions — the third contract first- differenced spread and
the fifth contract second- differenced spread — are suspect. Note that these case's close-to-
zero sample mean vaues can be viewed as axis intercept points in functions relaing the mean

gpreads to time to maturity. The high absolute vaues (16 basis points on the lead contract
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sample spread; nearly 10 basis points in the second contract butterfly) of the estimated means
indicate that the statistica rgections are economicaly sgnificant.

Third-differenced spreads — four-contract boxes — fare somewhat better than the
traditional Smple two-contract spreads and three-contract butterfly spreads. While the data ill
soundly reject the zero mean redtriction, the magnitudes of the estimated means (between one
and five basis points) are generdly lower than those for smple spread and butterflies.

Fourth-differences — preads of boxes — begin to reasonably approximate the
restrictions of the appropriately differenced Pasca spread. Except for the lead contract spread,
the estimated mean spread values are within two basis points of zero. The test statistic for the
third contract spread cannot reject the zero-mean redtriction, while that for the fourth contract
spread just barely reects at the one-percent confidence level. Moreover, because the fourth-
differenced spread' s autocorrd ations dampen more quickly, this five-contract * spread of
boxes’ construct appears a better-specified structure for Short Sterling prices than the third-
differenced box spread.

Fifth, Sxth and seventh-order differencings produce smilar results, though the estimated
mean Spreads involving the lead contract begin to become large again (about 10 bag's points for
fifth-differences; 12 basis points for sixth differences, and about 17 basis points for seventh
differences).

One conggent finding is thet — for this sample period — spreads involving the front

contract perform poorly. For dl orders of differencings, front contract spreads soundly reject
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the zero mean redtriction. Furthermore, the estimated mean vaues for front contract spreads
arelargein absolute value.

Table 3 reports summary gatigtics for the fourth-order Pascal spread — the spread of
boxes — gructure for five sub-periods. 1989-90; 1991-92; 1993-94; 1995-96; and 1997-98.
These sub-period results reved subgtantid shiftsin the digtribution of fourth-differenced Short
Sterling soreads. Compare the results for the initid 1989-90 period with those for the find
1997-98 period. For dl four spreads, the estimated mean spreads are closer to zero in the
latter sub-period. Also, the estimated standard deviations are draméticaly lower in the latter

ub-period.

<lnsart Table 3 Here>

The shiftsin the estimates for the front contract spread between the first and last sub-
periods are particularly interesting. The estimated mean front spread vaue fdls from +32.3 basis
pointsto -1.1 basis point. The chi-sguare statistic on the zero mean restriction sill rejects the
null hypothesisin each case, but the computed gtatistic' s value fdls from 682.4 in the early sub-
period to 22.7 in the find sub-period. Thus, the more recent data are far more consistent with
the zero mean vaue suggested by the fourth-order polynomia term structure specification.
Moreover, the spread’ s estimated standard deviation fals from 24.4 bass pointsto just 5.7

basis points.



In sum, over most of the ten-year sample period studied, Pascal spreads based upon
third- and, especially, fourth-order differences of Short Sterling deposit rate futures data
provide reasonable descriptions of stationary series with mean vaues near zero.

6. Value-Oriented Trading of Fourth-Order Spreads (“ Arbitrage’)

This section investigates the dynamics of fluctuations in fourth-order Short Sterling
Pascd spreads and interprets changes in the volatility of such a* spread of boxes’ in light of the
transactions cost compression that has characterized futures trading over the last decade.

A reliable risk-controlled spread package is a vehicle through which vaue- oriented
gpread traders may enforce pricing discipline. Suppose that hedging or speculative pressures
build in one particular contract maturity point. The individua price point pressures may become
large enough for the market vaue of arisk-immunized spread congtruct to violate transactions
cost bounds. Such violations should induce vaue-oriented spread trading. In turn, such spread
trading should smooth out the single price point disturbance by tranamitting it to surrounding
contracts. During the transmission process, the spread traders provide liquidity to offset the
gpecific initid hedging or speculative pressure. These spreed trades will be profitable if the initid
pressure on the curve reverses sufficiently before the spread position is unwound. Thus, the
focus of the study now shifts from regtrictions on the mean to the spread’ s time series behavior.

Figures 1 and 2 plot the fourth-differenced values for the front and fourth contract
series, respectively, over the tenryear sample period. These figures clearly illustrate two points.
Firg, the front spread’ s volatility (see Figure 1) is much larger than that of the deferred spread

(Figure 2). Second, the volatilities of both of these spreads have declined markedly over the
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ten-year sample period. Some interesting fluctuations occur at the tail end of the sample for the
fourth contract spread. These shifts reflect the structural impact of Y 2K problems on
Millennium-end financing costs to be embedded in a discount to the otherwise fair December
1999 contract’s price (see Section 7 below).

Tables 4 and 5 present additiond disaggregated results on the dynamics of fourth-order
Short Sterling Pascd spreads for the firgt (1989-1990) and fifth (1997-1998) two-year sub-
periods. Each sub-period’ s daily spread data are ordered from highest to lowest and
partitioned into vaue-ranked quintiles. Thus, in each table, the first quintile contains the richest
gpreads and the fifth quintile contains the cheapest spreads. Assume an ex ante mean spread
esimate equa to zero. Then, from avaue-oriented spread trader’ s perspective, initia spread
values greater than zero indicate a“rich” spread. Such rich spreads should be sold. The
Spreader will benefit if the spread fals over the period of time before the position is closed-out.
Conversdly, initid spread vaues less than zero indicate a“ chegp” spread. Chegp spreads
should be purchased. Here, the spreader will benefit if the spread rises during the period before
the pogition is unwound.

For each sub-period, spread contract strip position, and quintile, the tables report the
average initid spread; the average subsequent 1-day, 5-day, and 10-day vaue changes; and the
percentage frequency that these subsequent 1-day, 5-day, and 10-day vaue changes moved in
the direction predicted by the initid vaue criteria Only one serious contradiction of the smple
“podgitive spread: richness’ and “ negative va ue Spread: cheapness’ rule occurs. In the earliest

1989-90 sub-period, the middle quintile€ s average vadue equas +31.1. The middle quintile
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average values for the 1997-98 sub-period, as well asthose for the 1991-92, 1993-94, and
1995-96 sub- periods (not shown), never differ as much as five bas's points from the presumed
ex antevaue rule' s presumed zero mean vaue. Pardlding Table 3's evidence of declining
spread volatility throughout the ten-year period, the distance between the average spread
richness (quintile 1 entries) and chegpness (quintile 5 ertries) shrinks over time.

The process by which initidly mispriced spreads return to value takes time. But, with the
exception of the front contract, 1989-90 results mentioned above, the return-to-vaue process
exhibits eadlly interpretable dynamics. The tables report on two dimensions of this dynamic
process: the percentage frequency of the correct direction of subsequent changes and the
magnitudes of these changes. In generd, mispriced spreads move in the correct arbitrage-
congstent direction more than 50% of the time for 1-day-ahead changes; and the percentage of
correct direction changes increases as the length of the period is increased from 1-day to study
5-day and 10-day changes. Moreover, the accuracy of the plus-soread/minus-spread vaue
ranking in predicting the direction of subsequent changesis highest for the initidly most
mispriced spreads (quintiles 1 and 5).

The holding period return to this type of term structure spread trading is uncertain.
Unlike true arbitrage, initialy misaigned spreads need not return to fair value prior to an
individua position’sunwind date. While the position unwind date is a choice varidble, the
limiting date is the maturity of the lead contract in the spread structure. On that maturity date, the
structure breaks gpart by definition. The trader isforced to unwind or roll the remaining

components into a new sructure with an uncertain capitd gain, but with known commissons
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cost losses. Thus, transactions costs are crucid in determining a spread trader’ s entry and exit
drategies. Furthermore, forced unwinds and rollovers entall consuming liquidity — trading a
Spreads worse than those implied by the settlement price data set. From this perspective at
least, front contract spreads are different.

Rescding the measured stlandard deviation of fourth-order spreads reported in Table 3
into transactions cost units reveds how Short Sterling pricing efficiency has improved over the
ten-year sample period. For example, given the 6.7 and 2.9 basis point transactions cost
estimate, the second contract spread’ s estimated standard deviation fell over the period from
about 3 times costs (= 20.4/6.7 for 1989-90) to just 1.4 times costs (= 4/2.9 for 1997-98).

7. Y2K in the UK: Millennium Turn Digtortionsin the Short Sterling Term Structure

Hgure 2 reveds unusud voldility in the five-contract spread of boxes structure during
the final segment of the sample. A closer examination of the dating scheme of the affected
Spreads rdates this unusud volatility to postions involving the December 1999 contract. The
observed voldility results from the impact of the market’ s perception of unusud financing
pressures over the “Millennium Turn.”  Such pressures would require the find mid-December
three-month cash deposit rate — againgt which the December 1999 would have fina cash
Settlement — to be sat unusudly high. Of course, as a consequence of this unusudly high deposit
rate, the December 1999 futures price would end unusudly low.

Condder three five-contract spreads of boxes congtituted with positionsin the crucid

December 1999 contract:
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S1 = Dec98 — 4*Mar99 + 6* Jun99 — 4* Sep99 + Dec99 (6)
S2 = Mar99 —4*Jun99 + 6* Sep99 — 4* Dec99 + Mar00 @)

S3=Jun99 — 4*Sep99 + 6* Dec99 — 4* Mar00 + JunO0. (8

Asuming that the Millennium Turn effect-adjusted Pascal spread has a zero mean, the implied

December 1999 price effect from each spread can be estimated:

Implied Dec99 Effect 1 = s1 )
Implied DecO9 Effect 2= - (S2)/4 (10)
Implied Dec99 Effect 3= (S3)/6. (12)

A dearer picture of the Millennium Turn impact emerges from grouping these spread positions
and computing the average December 1999 contract price effect for the common June 18,
1999 to September 15, 1999 sample period. Figure 5 presents the average Millennium Turn

effect implied by the variable S* defined as:

S = (S1)/3 - (S2)/12 + (S3)/18. (12)

<Insert Figure 5 Here>
For thefirst haf of the period, the Millennium Turn generated a December 1999 Short Sterling

contract price discount between 0 and 2 bass points. However, beginning in late July, the
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discount grew until it peaked a 8 basis pointsin latter weeks of August (in the midst of the
Russian GKO default crisgs).  This December discount then receded toward itsorigind 0 to 2
bas's point range by the end of the period.

8. Summary and Conclusons

This paper develops a pricing and spreading framework for short-term interest rate
futures contracts within the context of the high-order polynomia approximeation gpproach to the
term structure. The andysis produces some new ingghtsinto the natures of both spread trading
design and risk structure dong the yield curve. Firt, hedge positions producing Stationary
goread seriesrelevant for vaue-oriented spread trading do exist. Second, the precise form of
hedged trading conforms to an anaytica solution termed here as “Pascd’ s Spreading Triangle.”
The solution collgpses nestly to spreading sequences of adjacent contracts. Importantly, no
empiricdly estimated hedge ratios are required to implement this spread trading paradigm.
Thus, nat only can the high-order polynomid approach price a deposit contract strip arbitrarily
well, but the modd aso ddiversintuitive trading forms that are easly gpplied to maintain pricing
discipline.

The gpproach is gpplied in astudy of arbitrage efficiency in the LIFFE' s Short Sterling
depogit futures market. Analysis of five two-year sub-periods of daily Short Sterling futures
price datarevedsthat the vaue-oriented spread trading (“arbitrage’) sector’ s efficiency has
improved markedly over time. The improved pricing efficiency is coincident with dramatic

declinesin transactions cogts. Continued pressures on trading cogts, driven by the momentum
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toward screen-based trading, most likely will ensure thet the Short Sterling market will maintain
its spread pricing efficiency gains.

Uncertainty related to the December 31, 1999 Y 2K effect on Millennium-Turn
financing cogts causad significant ditortions in the valuation of spread positionsinvolving the
December 1999 contract. A measure of the importance of this effect and its evolution over time
was presented. While the passing of the December 1999 contract removes this specific
digtortion, new more subtle December effects for Short Sterling contracts may arise as the
market anticipates afuture UK entry into European Monetary Union and the concomitant
conversion of Sterling deposit contracts into Euro deposit contracts™  Thus, Short Sterling
Spreaders must now assess both the future date and probability of EMU entry aswell esimate
the fair vaue of each future December Euro contract’ s year-end financing pressure price

discount. Unfortunately, as with al trading paradigms, real world complications tend to intrude.



Endnotes

. Working (1962) emphasizes the interplay of carrying charge mispricings and hedging. See
Merrick (1988) for an empirica study of returns on stock portfolio hedges using initidly
mispriced stock index futures contracts.

. Thefamiliar regtrictionis implied comparing the rate on an m+91-day term interbank
deposit with the synthetic m+91-day rate achievable by rolling over an origind m-day
deposit for the 91-day tail period at arate effectively locked-in on day O through the
purchase of an m-day-ahead maturity 3-month depost futures rate.

. Theunderlying yield curve function must be continuoudy differentiable over the range.

. Critiques of the fitted results may revolve around whether the estimates generate smooth
forward rate curves and provide sengble extrapol ations outs de the fitted maturity range.
Polynomid term Structure gpproximations have certain drawbacks. Estimates of forward
rate curves derived from high-order polynomia curves may produce cyclic forward rate
term structures. Moreover, forward rates extrapolated for maturities beyond the originaly
fitted maturity range may head off quickly toward infinity or ese even turn negative.
Alternatively, a spline function — a knotted sequence of low-order polynomid functions—
can be usefully gpplied to term structure modding. For example, see McCulloch (1971),
McCulloch (1975), Vasicek and Fong (1982) and Shea (1984). Many Wall Street

practitioners promote spline functions as the basic building block for bond vauation.
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. On average, the year-end bias in, say, December Eurodollar futures prices, was typicaly as
high asfifteen basis pointsin the early 1990s. To gain more baance sheet freedom, the
major dedling firms have gradually there own reporting dates off of the December 31%
cycle. The typicd year-end effect for December Eurodollar futures has shrunk closer to the
five basspoint level. The Y2K digtortion for the December 1999 contract is a separate
phenomenon.

. Short Sterling contract pricing maturity is aso muddied even for post-1999 Decembers by
the UK’ s prospects for joining European Monetary Union. Looking ahead, market
participants must assess the probability and timing of a UK entry into EMU, and weigh the
Bank of England’ straditiond year-end rate smoothing practices againg the levd of year-
end distortions traditionally tolerated by the constituent centra banks of the EMU countries
(assuming the European Centra Bank will behave as the congtituent banks once did).

. An additiond four contracts (the “green” months) began trading in 1995. A fourth quartet
of contracts (the “blue” months) began trading in 1997.

. Initid margin baances, which can be met with interest-earning government securities,
typicdly are an unimportant part of the trading equation. For practical purposes, the most
important problem would be an unanticipated sharp sudden increase in margins.

. Transactions by vaue-oriented spread traders need to be categorized into liquidity-
producing trades and liquidity-consuming trades. Liquidity-producing trades are limit orders
left working on the floor at, by definition, better-than-market levels. From timeto time, redl

hedging and/or speculative demand — “ paper” — appears with a need to trade large
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quantities of particular contracts. Vaue-oriented spreaders might then be lifted out of their
better-than-market order levels through such flows. In contragt, liquidity-consuming trades
represent transactions where spreaders must “pay up” to get desired trades done. Here, the
gpreaders would incur market impact costs, transacting at the full bid or offered sde of the
particular spread.

10. Or combine three second-third-fourth contract butterflies with Sngle first-second contract
and fourth-fifth contract spreads. Thislatter formulation is transactions cost efficient.

11. See footnote 6 above.
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Tablel
Pascal’s Spreading Triangle
Strip Hedge Solutions for k™-degree Polynomial Term Structure Functions

k+1  k+2

Risks Strip Weightings on each adjacent contract in strip
1

1 2 1 -1

2 3 1 -2 1

3 4 1 -3 3 -1

4 5 1 4 6 -4 1

S 6 1 -5 10 -10 5 -1

6 7 1 -6 15 -20 15 6 1

7 8 1 -7 21 -3 35 -21 7 -1
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Table2
Summary Statisticsfor Short Sterling Pascal Spread Structures
Sample Period: January 4, 1989 to September 15, 1998

First Differences
Front Second Third Fourth Fifth Sxth Seventh

Mean -16.1 -98 -03 5.0 79 80 68
Std. Dev. 46.4 393 314 265 218 179 145
Std. Dev. of Mean 1.0 0.8 0.6 05 04 04 03

Chi-Square Statistic 2709 1442 0.2 820 294.7 4355 4725

Autocorrdeions 1 0.997 0998 0.998 0.997 0.99 0.993 0.997
5 0987 0.987 0.987 0.986 0.983 0.973 0.986
10 0976 0978 0975 0974 0968 0952 0.974

Second Differences
Front Second Third Fourth Fifth Sxth

Mean -6.3 -95 52 -29 -01 12
Std. Dev. 24.5 158 105 8.7 75 6.2
Std. Dev. of Mean 0.5 0.3 0.2 0.2 02 01
Chi-Square Statistic 1535 7423 5320 258.0 06 933
Autocorrdeions 1 0988 0986 0974 0.964 0947 0.916

5 0946 0945 0.914 0.893 0.859 0.789
10 0.900 0909 0844 0.827 0.784 0.727

Third Differences
Front Second Third Fourth Fifth

Mean 3.2 -43 -23 -28 -14
Std. Dev. 20.6 110 8.7 87 76
Std. Dev. Of Mean 04 0.2 0.2 02 02
Chi-Square Statistic 164 96.7 459 673 212

Autocorrdeions 1 0969 0932 0.892 0.895 0.847
5 0878 0796 0.717 0.750 0.644
10 0.791 0654 0.536 0.627 0.540
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Table2 (Continued)
Summary Statisticsfor Short Sterling Pascal Spread Structures
Sample Period: January 4, 1989 to September 15, 1998

Fourth Differences
Front Second Third Fourth

Mean 7.5 -2.0 05 -15
Std. Dev. 22.6 138 134 138
Std. of Mean 0.5 0.3 0.3 0.3
Chi-Square Statistic 70.9 14.0 1.0 7.5

Autocorrdations 1 0.938 0.866 0.852 0.855
5 0.798 0.646 0.653 0.671
10 0.672 0.392 0.465 0.547
Fifth Differences
Front Second Third

Mean 9.5 -25 2.0
Std. Dev. 30.8 241 249
Std. of Mean 0.6 05 05
Chi-Square Statistic 61.9 7.3 4.2
Autocorreetions 1 0.899 0.846 0.849

5 0.717 0.628 0.661
10 0.539 0.383 0.507
Sixth Differences

Front Second
Mean 12.0 -4.5
Std. Dev. 49,5 457
Std. Dev. of Mean 1.0 0.9
Chi-Square Statistic 38.9 6.5

Autocorrdations 1 0.868 0.844
5 0.663 0.641
10 0.440 0.437

Seventh Differences

Front

Mean 16.6
Std. Dev. 88.6
Std. Dev. of Mean 18
Chi- Square Statigtic 23.2
Autocorrdations 1 0.850
5 0.642

10 0.412
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Table3
Summary Statisticsfor Short Sterling Fourth-Differences: “ Spread of Boxes’
Two-Year Sub-samples

Period: January 4, 1989 to December 31, 1990
Fourth Differences
Front Second Third Fourth

Mean 32.3 -29 39 -4.5
Std. Dev. 24.4 204 176 20.1
Std. Dev. of Mean 11 1.0 0.8 0.9
Chi-Square Statidtic 682.4 132 323 324

Autocorrelaions 1 0.890 0.893 0.834 0.870
5 0617 0.725 0.623 0.720
10 0356 0.507 0.394 0.578

Sample: January 2, 1991 to December 31, 1992
Fourth Differences
Front Second Third Fourth

Mean 4.3 -41  -03 -09
Std. Dev. 28.6 181 196 179
Std. Dev. of Mean 1.3 0.8 0.9 0.8
Chi-Square Statistic 15.0 34.0 0.2 18

Autocorrdations 1 0.947 0.888 0.904 0.872
0.800 0.616 0.701 0.645
10 0.704 0.321 0557 0.511

ol

Sample: January 4, 1993 to December 30, 1994
Fourth Differences
Front Second Third Fourth

Mean -0.9 -0.5 0.2 -1.9
Std. Dev. 15.7 11.4 8.9 7.9
Std. Dev. of Mean 0.7 0.5 0.4 0.4
Chi-Square Statistic 2.2 1.3 03 377

Autocorrdations 1 0.870 0.786 0.652 0.550
0.652 0.556 0.378 0.146
10 0.408 0.221 -0.038 -0.051

ol



Table3 (Continued)
Summary Statisticsfor Short Sterling Fourth-Differences: “ Spread of Boxes’
Two-Year Sub-samples

Sample: January 3, 1995 to December 31, 1996
Fourth Differences
Front Second Third Fourth

Mean 3.7 -2.2 -3.1 0.7
Std. Dev. 9.2 7.1 6.4 6.6
Std. Dev. of Mean 0.4 0.3 0.3 0.3
Chi-Square Statistic 103.4 63.8 1445 7.0

Autocorrdations 1 0.824 0.74 0.739 0.722
5 0.615 0471 0538 0.540
10 0.544 0.388 0.383 0.444

Sample: January 2, 1997 to September 15, 1998
Fourth Differences
Front Second Third Fourth

Mean -11 -0.1 2.5 -0.9
Std. Dev. 5.7 4.0 7.1 10.8
Std. Dev. of Mean 0.3 0.2 0.3 0.5
Chi-Square Statistic 22.7 04 80.6 4.3

Autocorrdations 1 0.747 0578 0.892 0.947
5 0.352 0.234 0.800 0.884
10 0.025 0.148 0.775 0.890
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Table4

Fourth-Differenced Short Sterling Spread Value Changes
Data Sorted into Value Ordered Quintiles

Sample Period: 1989-1990

Initial Avg. % TimesCorrect

Quintile Spread  ChangeDirection Avg. Change Avg. % Change
Horizon
1-day 5-day 10-day 1-day 5-day 10-day 1-day 5-day 10-day

Front Contract Spread

1 65.0 5% 72% 69% -26 -128 -181 -4% -20% -28%
2 42.1 50% 47% 38% -04 04 3.2 -1% 1% 8%
3 31.1 46% 30% 39% -1.3 51 31 -4% 16% 10%
4 17.7 45% 37% 24% 14 74 121 8% 42%  68%
5 -2.6 48% 53% 60% 5.7 124 251 -223% -483% -979%

Second Contract Spread

1 17.4 73% 7% 77% -56 -96 -10.0 -32% -55% -58%
2 4.2 62% 57% 62% -14 -16 0.1 -34% -39% 2%
3 -3.0 54% 49% 50% 19 14 0.5 -62% -47% -15%
4 -11.6 64% 68% 75% 27 54 8.6 -23% -47% -74%
5 -32.4 56% 63% 73% 30 75 103 -9% -23% -32%
Third Contract Spread

1 31.9 58% 66% 73% -36 -82 -138 -11% -26% -43%
2 114 58% 74% 69% -35 -68 -7.7 -31% -60% -67%
3 29 62% 55% 54% -15 -22 -09 -54% -76% -30%
4 -4.5 53% 52% 61% 0.7 23 3.8 -15% -51% -86%
5 -14.8 83% 89% 92% 74 128 150 -50% -86% -101%

Fourth Contract Spread

1 20.2 73% 76% 85% -5.8 -9.8 -16.7 -29% -49% -83%
2 3.5 59% 65% 62% 02 -32 -35 5% -90% -98%
3 -2.9 51% 50% 53% -12 09 12 41% -30% -40%
4 -10.6 60% 63% 83% 3.0 5.7 96 -28% -54% -91%
5 -36.0 69% 71% 69% 4.0 76 83 -11% -21% -23%
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Table5

Fourth-Differenced Short Sterling Spread Value Changes

Data Sorted into Value Ordered Quintiles

Sample Period: 1997-1998

Initial Avg.
Quintile Spread

% Times Correct
Change Direction

1-day 5-day 10-day

Front Contract Spread

1 6.5 69%
2 18 68%
3 -0.7  47T%
4 -35 62%
5 -8.7 T74%
Second Contract Spread

1 52 7%
2 20 61%
3 02 49%
4 -20 63%
5 -65 71%
Third Contract Spread

1 143 57%
2 33 74%
3 05 51%
4 -1.4  60%
5 41 71%
Fourth Contract Spread

1 114 63%
2 42 67%
3 12 45%
4 -16 71%
5 -17.4  52%

12%
75%
51%
71%
79%

85%
69%
42%
64%
79%

51%
71%
53%
55%
75%

67%
76%
44%
70%
48%

90%
72%
55%
73%
88%

88%
65%
55%
71%
88%

5%
68%
48%
63%
81%

63%
81%
53%
67%
45%

-1.7
-14
04
0.9
2.0

-24
-0.8
0.3
1.2
1.8

-0.8
-1.8
-0.5
0.9
2.0

-11
-1.7
0.1
16
1.0

Avg. Change
Horizon

Avg. % Change

-3.8
-24
-0.7
2.2
5.1

-3.9
-11
-04
16
4.0

-1.2
-2.0
-0.9
0.9
34

-2.0
-2.3
04
1.9
0.7

1-day 5-day 10-day

-6.8
-3.2
-0.3
2.7
7.5

-4.6
-14
-0.6
2.0
5.3

-1.2
-1.7
-0.4
1.0
31

-2.0
-2.6
-0.3

16
-0.5

1-day 5-day 10-day

26%
80%
48%
25%
22%

-46%
-40%
141%
-61%
-28%

-6%
-54%
-83%
-67%
-48%

-9%
-40%
9%
-98%
-6%

-59%
-136%
92%
-64%
-59%

-74%

-54%
-219%
-80%
-62%

-9%
-61%
-158%
-67%
-81%

-17%
-55%
30%
-118%
-4%

-105%
-178%
41%
-79%
-86%

-88%
-69%
-330%
-102%
-81%

-9%
-52%
-78%
-74%
-15%

-17%
-64%
-22%
-102%
3%



Figure 1: First Contract Spread of Boxes
Fourth-Differences of Adjacent Short Sterling Contract Prices
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Figure 2. Fourth Contract Spread of Boxes
Fourth-Differences of Adjacent Short Sterling Contract Prices
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Figure 3
Estimated Millennium Turn Effect on December 1999 Short Sterling Price
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