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Abstract 
 

This paper examines the spreading and pricing of short-term interest rate futures 

contracts and shows how traditional types of calendar spread positions can emerge as explicit 

arbitrage solutions.   A specific set of intuitive spreading structures – “Pascal’s Spreading 

Triangle” – arises when the underlying daily risk factors are identified as the stochastic 

coefficients of a high-ordered polynomial approximation to the yield curve.  No empirically 

estimated hedge ratios are required for these arbitrage strategies. Application of this Pascal 

Spreads framework to pricing and trading the LIFFE’s Short Sterling deposit futures market 

over the 1989 to 1998 sample period reveals that the LIFFE’s Short Sterling arbitrage sector’s 

efficiency has improved markedly over time. The improvement over the decade coincides with 

the dramatic declines in futures trading transactions costs. As a byproduct, the framework 

extracts and measures the quantitative impact of the Y2K millennium-turn pricing distortion on 

the December 1999 Short Sterling futures contract.  



1. Introduction 

The trading volume and open interest of short-term deposit rate futures contracts dwarf 

those of other fixed income and equity-based contracts.  Since current and expected future 

levels of short-term interest rates affect almost every economic and financial decision, the scale 

of this activity should be no surprise.  Much of this deposit rate futures trading interest stems 

from two important forms of activity: contract calendar spreads and contract strips.  The quoted 

prices of deposit futures contracts form a discrete term structure of interest rates for successive 

three-month forward intervals.  Speculators express views on relative levels of interest rates at 

two or more points along this forward rate term structure through calendar spread trading.  

Hedgers can lock-in the current term structure of rates over a string of future periods through 

deposit futures contract strips. But regardless of their own hedging or speculative motives for 

trading, all end users of deposit futures contracts rely on an arbitrage sector to enforce fair 

relative pricing relationships.1  

For deposit contracts, arbitrage versus the interbank deposit market places some 

restrictions on individual deposit futures contract prices.2  However, relationships between 

adjacent futures contracts seem to be priced much tighter than can be motivated by interbank 

cash deposit market/deposit futures market arbitrage alone given the interbank market’s 

transaction bid-ask spread.   Low-cost deposit futures calendar spread trading alone appears to 

enforce the orderliness of deposit futures pricing in the major deposit futures markets.  Since 

hedgers and speculators alike benefit from the pricing results of such arbitrage trading, insight 
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into the underpinnings of deposit calendar spread pricing and trading is of general market 

interest. 

This paper develops an understanding of deposit futures contract calendar spread 

arbitrage within a particular representation of the futures yield curve. The specific context is a 

well-known mathematical formulation: a high-order polynomial approximation representation of 

the term structure.  But the paper’s focus on a deposit rate futures contract spreader’s risk 

perspective is a departure from the usual “curve-fitting” application of such a model.  Here, 

thinking first about multidimensional trading risks, and only later about curve-fitting precision, 

follows the general emphasis of factor models in understanding multiple risk dimensions.  

The analysis here produces some new insights into the natures of calendar spread 

trading design, arbitrage activity and risk structure along the yield curve. First, risk-controlled 

spread positions producing stationary value series relevant for spread trading do exist.  Second, 

the precise form of trading conforms to an analytical solution termed here as “Pascal’s 

Spreading Triangle.”  The solution collapses neatly to a series of sequential spreads in adjacent 

contracts: spreads; spreads of spreads; spreads of spreads of spreads; and so on.  Importantly, 

no empirically estimated hedge ratios are required to implement this spread trading paradigm.  

Thus, not only can the high-order polynomial approach “fit” a deposit contract strip arbitrarily 

well, but the approach delivers intuitive trading forms that can be applied by arbitrage traders to 

maintain pricing discipline.  

The paper applies the framework to examine changes in the pricing efficiency of the 

London International Financial Futures Exchange’s Short Sterling deposit futures contract 
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market over the period between 1989 and 1998.  For these ten years’ worth of Short Sterling 

deposit rate futures price data, the Pascal spread structures produce sensible results and reveal 

how the arbitrage sector’s efficiency has improved over time in this market.  

2. Hedging and Spreading   

Specific hedging and spreading solutions depend on specific analytical term structure 

frameworks. Two particular term structure representations examined here are (1) the factor 

model and (2) the high-order polynomial approximation.  The factor model describes the term 

structure as being generated by equilibrium pricing of a parsimonious number of risk factors.   

The empirical content of the model relies on the estimation – from historical data – of the term 

structure’s implicit factors via the statistical methods of factor analysis or principal components. 

Garbade (1996) and Litterman and Scheinkman (1991) apply the factor analytic framework to 

US Treasury yields.  Campbell, Lo and MacKinlay (1997) review the extensive application of 

the factor approach in equity valuation.  

Alternatively, from Weiestrass’s Approximation Theorem, a suitably high-order 

polynomial function can approximate the term structure over a given interval with an arbitrary 

degree of precision.3  Chambers, Carleton and Waldman (1984) apply polynomial functions of 

degrees one through five to the spot yield curve implied from US Treasury notes and bonds.4   

In contrast to their emphasis on using high-order polynomial functions for empirical curve-fitting 

ends, the strategy here focuses on this model’s implications for risk management.   

Consider a forward deposit rate contract strip consisting of n different maturities, where 

each successive strip maturity is equally spaced in time, one period unit apart.  Let N(1 x n) be the 
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potential (1 x n) vector of positions in the strip and let R(n x 1) be a (n x 1) vector of forward 

interest rates for each strip component.  Now, consider a general k+1 factor representation of 

this forward interest rate vector.  In particular, let 

     

R(n x 1) = T(n x k+1) * B(k+1 x 1)      (1)  

 

where T(n x k+1)  is a set of factor loadings and B(k+1 x 1)  is a k+1 x 1 vector of factors describing 

the current forward yield curve.  For a predetermined factor loading matrix, the portfolio’s value 

risk depends solely on changes in B(k+1 x 1), the vector of yield curve factors.   Thus, interest rate 

changes, dR(n x 1), are expressed as a function of dB(k+1 x 1), the vector of factor innovations: 

 

dR(n x 1) = T(n x k+1) * dB(k+1 x 1)      (2) 

  

Consider dV, the dollar payoff to a portfolio consisting of the (arbitrary) position vector N(n x 1), 

where q is a scalar denoting the dollar value of a forward rate move: 

 

dV  = q *  N(1 x n) * dR(n x 1) 

 = q *  N(1 x n) * T(n x k+1) *  dB(k+1 x 1)    (3) 

 

To hedge the position’s value risk against factor shifts, choose a hedge position such that   
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 N(1 x n) * T(n x k+1) = 0       (4) 

 

Ignore the trivial solution and normalize the position by choosing N1  = 1. Then, solve this 

homogeneous equation system by the usual matrix methods.  Under the hedge condition, the 

sum of the loadings on each of the k+1 factors weighted by the chosen positions in each 

contract equals zero.  

 To implement the model for pricing and hedging, estimate the unobservable implicit 

factors and their corresponding loadings for each element of the interest rate vector from a 

sample of historical data.  Garbade (1996) and Litterman and Scheinkman (1991) present such 

analyses for US Treasury market data.  They find that three factors approximate the data well, 

though Garbade’s evidence indicates the presence of a higher number of less important factors. 

Using the resulting factor loading estimates, the hedge positions follow from equation (4). 

 This “implicit factor” approach troubles some economists who believe that interest rate 

and securities price fluctuations should be tied to observable real and monetary variables.  For 

practitioners, the main concern is whether the estimated empirical system remains stable over 

time.  Current pricing and hedging decisions, even if the number of factors is known and 

constant, depend on the estimated factor loadings. These estimates – apparently unbiased and 

efficient in the historical sample period – may still be inappropriate for the future.  Because the 

hedge positions are constructed based upon historical estimates, future hedge performance is 

subject to potentially ruinous coefficient shifts.  Garbade’s evidence suggests that significant 

instability may exist in estimated coefficients over different time periods. 
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 Estimation specifics aside, the hedge solution will correspond to well-known spanning 

conditions. To span the set of k+1 risks in the forward interest rate curve, the hedge solution 

must invoke k+2 different contracts.  For example, the simplest risk model is a flat term 

structure (k=0).  Only the common “level” of forward rates fluctuates. Just two contracts are 

needed to hedge this risk structure (k+2=2).  In contrast, if a second factor (a “slope term”) 

also enters, three contracts are needed. If a third factor (a “curvature term”) enters, four 

contracts will be needed to span the portfolio’s risk structure. For hedging to be complete, the 

number of available contracts in the deposit rate strip under consideration must exceed the k+1 

number of hypothesized factors (n > k+1).  If n > k+2, then more than one set of k+2 contract 

strips can be constructed as factor-risk hedge positions. The evidence cited above that three 

factors explain the bulk of fluctuations in the US Treasury yield curve implies that positions in at 

least four contracts are needed to control the main sources of interest rate risk. 

3. Polynomial Interpretations  

A polynomial function is one special representation for the yield curve in (1).  Following 

Chambers, Carleton and Waldman, the vector of forward interest rates can be 

approximated by a suitably chosen high-order polynomial function of time to maturity. 

Denote the time to maturity of the ith contract by ti.  For a kth-degree model, populating 

the T(n x k+1) matrix is straightforward:
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   1 t1 t12 … t1k 

  1 t2 t22 … t2k 

T(n x k+1)  =  1 t3 t32 … t3k 

    .           .           .           …        . 

   1 tn tn2 … tnk 

 

Immediately, a polynomial representation has two virtues.  First, the T matrix is observable and 

predetermined. Second, the B(k+1 x 1) vector now implies more concrete indexes of yield curve 

level, slope, curvature, etc.    

One property of a polynomial yield curve representation is the precise form of the 

hedging solutions (4) for a strip with n equally spaced constant maturities.  Substituting the 

maturities (here measured as periodic distances versus the maturity of the first contract), T(n x k+1)  

becomes 

 

   1 0 0 … 0 

  1 1 1 … 1 

T(n x k+1)  =  1 2 4 … 2k 

    .           .           .           …        . 

   1 (n-1) (n-1)2 … (n-1)k 

 



 8

Given such a structure, the hedge solutions correspond to a progression of simple quantity 

differencings of adjacent contracts.  First differences – the (N1=1; N2 = -1) spread – will hedge 

shifts in the level of rates (dB0).  Second differences  – the (N1 =1; N2 = -2; N3 = 1) butterfly – 

will hedge both the level and slope shifts (dB0 and dB1). Third differences  – the (N1 = 1; N2 = - 

3; N3  = 3; N4 = -1) box – will hedge level, slope and curvature shifts (dB0, dB1 and dB2). 

Likewise, (k+1)-order differences – i.e., k+1 spreads involving k+2 contracts – will hedge 

shifts in k+1 pricing terms.  

Table 1 summarizes the problem’s hedge solutions for an increasingly higher-ordered 

kth-degree polynomial (given N1 = 1).  The diagram neatly reveals that the absolute magnitudes 

of the hedge solutions correspond to Pascal’s Triangle.  Overlaying an additional unit structure 

of alternating long and short contract positions (+ and - signs) delivers “Pascal’s Spreading 

Triangle.”   

 

  < Insert Table 1 Here> 

 

The polynomial curve representation of the deposit rate term structure implies that 

hedging and trading of short-term interest rate contracts reduces to analyzing sequences of 

adjacent spreads.  Each degree of higher polynomial order corresponds to another level of 

spreading: the simple spread; the butterfly; the box; the spread of boxes; etc.  Importantly, the 

hedge solution is constant over calendar time for a fixed value of k.  Thus, the initially 
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appropriate hedged position (say, a 4-contract box spread for k = 2) remains the appropriate 

structure throughout the trading lives of the contracts involved. 

Pascal spreads present an intuitive solution for controlling futures contract position risks 

for arbitrage trading.  While serving intuition may be a goal itself, this approach’s true advantage 

is its avoidance of estimation procedures.  Pascal spreads are predetermined and do not rely on 

coefficients estimated from historical data.  In contrast, factor models need not reduce to such 

simple trading rules.  And if the kth-degree polynomial approximation is accurately determined, 

the Pascal hedging and pricing results should be equivalent to those from the alternative factor 

approach. Of course, an appropriately large number of adjacent contracts must be included in 

the strip.  But since most major deposit futures markets list strips of eight, twelve, sixteen, or 

even forty contract maturities, the n > k+1 constraint should not be binding in practice. 

Finally, equation (1) views the strip of forward interest rates as an exact function of a 

limited number of common factors.  Relax this restriction by introducing a vector of individual 

contract transitory pricing disturbance terms, e(k+2  x 1).  Still, choose the polynomial order k 

correctly. Then, interpret the value for the properly differenced k+2 contract Pascal spread as a 

transitory pricing disturbance term equal to a weighted sum of individual disturbance terms of 

each included contract. The correctly differenced spread time series, es, is actually the weighted 

sum of the Pascal spread weights from Table 1, Ns
(1 x k+2), multiplied by e(k+2  x 1) , the individual 

transitory pricing disturbance terms on each contract included in the k+2 contract strip:  

 

es = Ns
(1 x k+2) * e(k+2  x 1).      (5) 
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For the correct choice of the polynomial order k, the appropriately differenced Pascal spread 

has a mean value of zero.  

The correctly differenced spread’s variance should equal that of the transitory pricing 

disturbance term, es. The separate time series dimension of the correctly differenced spread 

position invites analysis of potential arbitrage opportunities (around the appropriate zero mean).  

Analyzing arbitrage possibilities also entails delineating appropriate transactions costs for trading 

these structures. 

4. The Data 

This empirical investigation applies the Pascal spreading analysis to the United 

Kingdom’s Short Sterling deposit rate futures market. Short Sterling futures are traded on the 

London International Financial Futures Exchange (LIFFE).   Because the Bank of England 

tends to smooth out end-of-year shocks – at least prior to the Y2K event – December 

distortions have been nearly non-existent. Thus, interpreting December-inclusive strips involves 

no separate analysis of the average year-end price discount.5 The absence of year-end 

distortions in the UK makes the Short Sterling futures market extremely convenient for analyzing 

Pascal spreading.6  

 Contract values mark to the market daily against official daily settlement prices as 

determined by the exchange.  An expiring contract’s final settlement price is determined 

externally by the expiration day’s official British Bankers Association Sterling LIBOR fixing.  

The data are daily settlement prices on the first eight contracts (the front four settlement months 
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and the “red” or second four settlement months) from January 4, 1989 to September 15, 1998 

excluding contract expiration days.7  The sample includes 2,374 days of data. 

The analysis categorizes the Pascal spreads as constant strip position entities. Constant 

strip position entities organize the data solely by position in the strip.  For example, on a specific 

sample date – say, February 15, 1994 – classify the March94-June94 spread as the “first 

spread”; the June94-September94 spread as the “second spread”; and so on. Likewise, 

classify the March94-June-94-September94 as the “first butterfly”; the June94-September94-

December94 butterfly as the “second butterfly”; and so on.  The more highly differenced 

positions are tagged in a like manner.  For each spread type, a given number of strip contract 

positions exist: seven two-contract spreads; six three-contract butterflies; five four-contract 

boxes; and so on.  The time series for these constant maturity constructs span the entire length 

of the sample period.  

Of course, proper interpretation of all spread trading data requires understanding 

transactions costs.  Commission costs have fallen dramatically over the ten-year period under 

study.  Early in this sample period, an off-the-floor high-volume spread trader’s round-turn 

commission expenses for entry and exit of a Short Sterling contract would have been about 5 

pounds sterling (3 pounds for execution and 2 pounds for clearing charges and fees).  By the 

middle of the period, costs would have totaled nearer to 4 pounds per round turn. By the end of 

the sample period, costs would have been closer to 2.25 pounds per round turn.8  

To gauge the trading impact of such transactions costs, express them in terms of 

contract price basis points.  For the 3-month, 500,000 pounds sterling notional contract’s 1-
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basis point price change value of 12.5 pounds sterling, direct commission costs of 5 pounds 

equal 0.4 basis points; costs of 4 pounds equal .32 basis points; and 2.25 pounds equal .18 

basis points. The 1 by -4 by 6 by -4 by 1 fourth-differenced spread of boxes entails trading 16 

(= 1 + 4 + 6 + 4 +1) contracts.  Thus, the properly scaled round-turn transactions cost of the 

fourth-order spread structure would be 6.7 basis points (= 5/12.5 x 16) early on; 5.1 basis 

points (= 4/12.5 x 16) in mid-sample; and 2.9 basis points (= 2.25/12.5 x 16) more recently. 

Finally, some sensitivity is needed to properly interpret spread constructs generated with 

settlement price data. An exchange official fixes official daily settlement prices shortly after the 

close of the regular trading session. For front month contracts, the settlement prices reflect the 

volume-weighted trading price in the last thirty seconds of trading.  For less actively traded 

deferred contracts, the settlements respect the bids and offers in recognized spreads.  Because 

of these procedures, settlement prices are more orderly than transactions prices.  However, on 

average, successful value-oriented spread traders will tend to transact close to mid-market 

levels.9  Moreover, an apparently complex spread position can still be reasonably easy to 

transact.  Consider the five-maturity sixteen-contract position required by a fourth-order Pascal 

spread. The position can be executed as a spread of two butterflies: long the first-third-fifth 

butterfly and short four times as many second-third-fourth contract butterflies.10 

5.  Pascal Spread Results 

Table 2 reports summary statistics for seven types of Pascal spreads utilizing two- 

through eight-contract packages. These seven types of spreads are derived from first- through 

seventh-differences along the contract strip.  The contract weightings are those shown in the 
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“Pascal Spreading Triangle” of Table 1.  Here, the two-year contract strip availability delineates 

an eight-contract package as the limiting hedging order. 

  

   < Insert Table 2 Here> 

 

For the time series of each of the seven Pascal spread structures, Table 2 presents the 

estimated sample means, standard deviations, standard deviation of the mean, the chi-square 

statistic testing the restriction that the sample mean equals zero, and sample autocorrelations.  

These results address two elemental questions.  First, in the model’s parlance, what is the 

appropriate k?   Essentially, find the order of differencing where the Short Sterling data delivers 

Pascal spreads consistent with the zero mean spread value restriction.  Second, does the 

polynomial term structure representation work equally well for all segments of the curve?  

Essentially, for a given k, examine whether biases emerge for Pascal spreads constructed over 

different ranges of included contracts. 

Begin by analyzing the results for the first- and second-order differencings of the Short 

Sterling futures price data. For both simple two-contract spreads and three-contract butterflies, 

the chi-square statistics strongly reject the hypothesis that the mean spread value equals zero in 

almost every case.  And even the exceptions – the third contract first-differenced spread and 

the fifth contract second-differenced spread – are suspect.  Note that these case’s close-to-

zero sample mean values can be viewed as axis intercept points in functions relating the mean 

spreads to time to maturity.  The high absolute values (16 basis points on the lead contract 
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simple spread; nearly 10 basis points in the second contract butterfly) of the estimated means 

indicate that the statistical rejections are economically significant.  

Third-differenced spreads – four-contract boxes – fare somewhat better than the 

traditional simple two-contract spreads and three-contract butterfly spreads.  While the data still 

soundly reject the zero mean restriction, the magnitudes of the estimated means (between one 

and five basis points) are generally lower than those for simple spread and butterflies.   

Fourth-differences – spreads of boxes – begin to reasonably approximate the 

restrictions of the appropriately differenced Pascal spread. Except for the lead contract spread, 

the estimated mean spread values are within two basis points of zero. The test statistic for the 

third contract spread cannot reject the zero-mean restriction, while that for the fourth contract 

spread just barely rejects at the one-percent confidence level. Moreover, because the fourth-

differenced spread’s autocorrelations dampen more quickly, this five-contract “spread of 

boxes” construct appears a better-specified structure for Short Sterling prices than the third-

differenced box spread. 

Fifth, sixth and seventh-order differencings produce similar results, though the estimated 

mean spreads involving the lead contract begin to become large again (about 10 basis points for 

fifth-differences; 12 basis points for sixth differences; and about 17 basis points for seventh-

differences).  

One consistent finding is that – for this sample period – spreads involving the front 

contract perform poorly.  For all orders of differencings, front contract spreads soundly reject 
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the zero mean restriction.  Furthermore, the estimated mean values for front contract spreads 

are large in absolute value. 

Table 3 reports summary statistics for the fourth-order Pascal spread – the spread of 

boxes – structure for five sub-periods:  1989-90; 1991-92; 1993-94; 1995-96; and 1997-98.  

These sub-period results reveal substantial shifts in the distribution of fourth-differenced Short 

Sterling spreads.  Compare the results for the initial 1989-90 period with those for the final 

1997-98 period.  For all four spreads, the estimated mean spreads are closer to zero in the 

latter sub-period.   Also, the estimated standard deviations are dramatically lower in the latter 

sub-period.   

 

 <Insert Table 3 Here> 

    

The shifts in the estimates for the front contract spread between the first and last sub-

periods are particularly interesting. The estimated mean front spread value falls from +32.3 basis 

points to -1.1 basis point.  The chi-square statistic on the zero mean restriction still rejects the 

null hypothesis in each case, but the computed statistic’s value falls from 682.4 in the early sub-

period to 22.7 in the final sub-period.  Thus, the more recent data are far more consistent with 

the zero mean value suggested by the fourth-order polynomial term structure specification.  

Moreover, the spread’s estimated standard deviation falls from 24.4 basis points to just 5.7 

basis points.   
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In sum, over most of the ten-year sample period studied, Pascal spreads based upon 

third- and, especially, fourth-order differences of Short Sterling deposit rate futures data 

provide reasonable descriptions of stationary series with mean values near zero. 

6. Value-Oriented Trading of Fourth-Order Spreads (“Arbitrage”) 

This section investigates the dynamics of fluctuations in fourth-order Short Sterling 

Pascal spreads and interprets changes in the volatility of such a “spread of boxes” in light of the 

transactions cost compression that has characterized futures trading over the last decade. 

A reliable risk-controlled spread package is a vehicle through which value-oriented 

spread traders may enforce pricing discipline.  Suppose that hedging or speculative pressures 

build in one particular contract maturity point. The individual price point pressures may become 

large enough for the market value of a risk-immunized spread construct to violate transactions 

cost bounds.  Such violations should induce value-oriented spread trading. In turn, such spread 

trading should smooth out the single price point disturbance by transmitting it to surrounding 

contracts. During the transmission process, the spread traders provide liquidity to offset the 

specific initial hedging or speculative pressure. These spread trades will be profitable if the initial 

pressure on the curve reverses sufficiently before the spread position is unwound.  Thus, the 

focus of the study now shifts from restrictions on the mean to the spread’s time series behavior. 

Figures 1 and 2 plot the fourth-differenced values for the front and fourth contract 

series, respectively, over the ten-year sample period. These figures clearly illustrate two points. 

First, the front spread’s volatility (see Figure 1) is much larger than that of the deferred spread 

(Figure 2). Second, the volatilities of both of these spreads have declined markedly over the 
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ten-year sample period.  Some interesting fluctuations occur at the tail end of the sample for the 

fourth contract spread. These shifts reflect the structural impact of Y2K problems on 

Millennium-end financing costs to be embedded in a discount to the otherwise fair December 

1999 contract’s price (see Section 7 below). 

Tables 4 and 5 present additional disaggregated results on the dynamics of fourth-order 

Short Sterling Pascal spreads for the first (1989-1990) and fifth (1997-1998) two-year sub-

periods.  Each sub-period’s daily spread data are ordered from highest to lowest and 

partitioned into value-ranked quintiles. Thus, in each table, the first quintile contains the richest 

spreads and the fifth quintile contains the cheapest spreads. Assume an ex ante mean spread 

estimate equal to zero. Then, from a value-oriented spread trader’s perspective, initial spread 

values greater than zero indicate a “rich” spread. Such rich spreads should be sold. The 

spreader will benefit if the spread falls over the period of time before the position is closed-out.  

Conversely, initial spread values less than zero indicate a “cheap” spread. Cheap spreads 

should be purchased.  Here, the spreader will benefit if the spread rises during the period before 

the position is unwound. 

For each sub-period, spread contract strip position, and quintile, the tables report the 

average initial spread; the average subsequent 1-day, 5-day, and 10-day value changes; and the 

percentage frequency that these subsequent 1-day, 5-day, and 10-day value changes moved in 

the direction predicted by the initial value criteria.  Only one serious contradiction of the simple 

“positive spread: richness” and “negative value spread: cheapness” rule occurs.  In the earliest 

1989-90 sub-period, the middle quintile’s average value equals +31.1.   The middle quintile 
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average values for the 1997-98 sub-period, as well as those for the 1991-92, 1993-94, and 

1995-96 sub-periods (not shown), never differ as much as five basis points from the presumed 

ex ante value rule’s presumed zero mean value.   Paralleling Table 3’s evidence of declining 

spread volatility throughout the ten-year period, the distance between the average spread 

richness (quintile 1 entries) and cheapness (quintile 5 entries) shrinks over time.  

The process by which initially mispriced spreads return to value takes time. But, with the 

exception of the front contract, 1989-90 results mentioned above, the return-to-value process 

exhibits easily interpretable dynamics. The tables report on two dimensions of this dynamic 

process: the percentage frequency of the correct direction of subsequent changes and the 

magnitudes of these changes.  In general, mispriced spreads move in the correct arbitrage-

consistent direction more than 50% of the time for 1-day-ahead changes; and the percentage of 

correct direction changes increases as the length of the period is increased from 1-day to study 

5-day and 10-day changes.  Moreover, the accuracy of the plus-spread/minus-spread value 

ranking in predicting the direction of subsequent changes is highest for the initially most 

mispriced spreads (quintiles 1 and 5). 

The holding period return to this type of term structure spread trading is uncertain.  

Unlike true arbitrage, initially misaligned spreads need not return to fair value prior to an 

individual position’s unwind date.  While the position unwind date is a choice variable, the 

limiting date is the maturity of the lead contract in the spread structure. On that maturity date, the 

structure breaks apart by definition.  The trader is forced to unwind or roll the remaining 

components into a new structure with an uncertain capital gain, but with known commissions 
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cost losses. Thus, transactions costs are crucial in determining a spread trader’s entry and exit 

strategies.  Furthermore, forced unwinds and rollovers entail consuming liquidity – trading at 

spreads worse than those implied by the settlement price data set.  From this perspective at 

least, front contract spreads are different. 

Rescaling the measured standard deviation of fourth-order spreads reported in Table 3 

into transactions cost units reveals how Short Sterling pricing efficiency has improved over the 

ten-year sample period. For example, given the 6.7 and 2.9 basis point transactions cost 

estimate, the second contract spread’s estimated standard deviation fell over the period from 

about 3 times costs (= 20.4/6.7 for 1989-90) to just 1.4 times costs (= 4/2.9 for 1997-98). 

7. Y2K in the UK: Millennium Turn Distortions in the Short Sterling Term Structure 

 Figure 2 reveals unusual volatility in the five-contract spread of boxes structure during 

the final segment of the sample.  A closer examination of the dating scheme of the affected 

spreads relates this unusual volatility to positions involving the December 1999 contract.  The 

observed volatility results from the impact of the market’s perception of unusual financing 

pressures over the “Millennium Turn.”  Such pressures would require the final mid-December 

three-month cash deposit rate – against which the December 1999 would have final cash 

settlement – to be set unusually high.  Of course, as a consequence of this unusually high deposit 

rate, the December 1999 futures price would end unusually low.   

 Consider three five-contract spreads of boxes constituted with positions in the crucial 

December 1999 contract: 
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 S1 = Dec98 – 4*Mar99 + 6*Jun99 – 4*Sep99 + Dec99   (6) 

 S2 = Mar99 – 4*Jun99  + 6*Sep99 – 4*Dec99 + Mar00  (7) 

 S3 = Jun99 – 4*Sep99  + 6*Dec99 – 4*Mar00 + Jun00.  (8) 

 

Assuming that the Millennium Turn effect-adjusted Pascal spread has a zero mean, the implied 

December 1999 price effect from each spread can be estimated: 

 

 Implied Dec99 Effect 1 =     S1     (9) 

 Implied Dec99 Effect 2 =  - (S2)/4    (10) 

Implied Dec99 Effect 3 =     (S3)/6.    (11) 

 

A clearer picture of the Millennium Turn impact emerges from grouping these spread positions 

and computing the average December 1999 contract price effect for the common June 18, 

1999 to September 15, 1999 sample period.  Figure 5 presents the average Millennium Turn 

effect implied by the variable S* defined as: 

 

 S* = (S1)/3 – (S2)/12 + (S3)/18.     (12) 

 

    <Insert Figure 5 Here> 

For the first half of the period, the Millennium Turn generated a December 1999 Short Sterling 

contract price discount between 0 and 2 basis points.  However, beginning in late July, the 
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discount grew until it peaked at 8 basis points in latter weeks of August (in the midst of the 

Russian GKO default crisis).   This December discount then receded toward its original 0 to 2 

basis point range by the end of the period.    

8. Summary and Conclusions  

This paper develops a pricing and spreading framework for short-term interest rate 

futures contracts within the context of the high-order polynomial approximation approach to the 

term structure.  The analysis produces some new insights into the natures of both spread trading 

design and risk structure along the yield curve. First, hedge positions producing stationary 

spread series relevant for value-oriented spread trading do exist.  Second, the precise form of 

hedged trading conforms to an analytical solution termed here as “Pascal’s Spreading Triangle.”  

The solution collapses neatly to spreading sequences of adjacent contracts.  Importantly, no 

empirically estimated hedge ratios are required to implement this spread trading paradigm.  

Thus, not only can the high-order polynomial approach price a deposit contract strip arbitrarily 

well, but the model also delivers intuitive trading forms that are easily applied to maintain pricing 

discipline. 

The approach is applied in a study of arbitrage efficiency in the LIFFE’s Short Sterling 

deposit futures market. Analysis of five two-year sub-periods of daily Short Sterling futures 

price data reveals that the value-oriented spread trading (“arbitrage”) sector’s efficiency has 

improved markedly over time. The improved pricing efficiency is coincident with dramatic 

declines in transactions costs.  Continued pressures on trading costs, driven by the momentum 
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toward screen-based trading, most likely will ensure that the Short Sterling market will maintain 

its spread pricing efficiency gains.   

Uncertainty related to the December 31, 1999 Y2K effect on Millennium-Turn 

financing costs caused significant distortions in the valuation of spread positions involving the 

December 1999 contract.  A measure of the importance of this effect and its evolution over time 

was presented.  While the passing of the December 1999 contract removes this specific 

distortion, new more subtle December effects for Short Sterling contracts may arise as the 

market anticipates a future UK entry into European Monetary Union and the concomitant 

conversion of Sterling deposit contracts into Euro deposit contracts.11   Thus, Short Sterling 

spreaders must now assess both the future date and probability of EMU entry as well estimate 

the fair value of each future December Euro contract’s year-end financing pressure price 

discount.  Unfortunately, as with all trading paradigms, real world complications tend to intrude.   
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Endnotes 

 

1.  Working (1962) emphasizes the interplay of carrying charge mispricings and hedging. See 

Merrick (1988) for an empirical study of returns on stock portfolio hedges using initially 

mispriced stock index futures contracts. 

2.  The familiar restriction is implied comparing the rate on an m+91-day term interbank 

deposit with the synthetic m+91-day rate achievable by rolling over an original m-day 

deposit for the 91-day tail period at a rate effectively locked-in on day 0 through the 

purchase of an m-day-ahead maturity 3-month deposit futures rate. 

3.  The underlying yield curve function must be continuously differentiable over the range. 

4.  Critiques of the fitted results may revolve around whether the estimates generate smooth 

forward rate curves and provide sensible extrapolations outside the fitted maturity range.   

Polynomial term structure approximations have certain drawbacks. Estimates of forward 

rate curves derived from high-order polynomial curves may produce cyclic forward rate 

term structures. Moreover, forward rates extrapolated for maturities beyond the originally 

fitted maturity range may head off quickly toward infinity or else even turn negative. 

Alternatively, a spline function – a knotted sequence of low-order polynomial functions – 

can be usefully applied to term structure modeling. For example, see McCulloch (1971), 

McCulloch (1975), Vasicek and Fong (1982) and Shea (1984). Many Wall Street 

practitioners promote spline functions as the basic building block for bond valuation.  
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5.  On average, the year-end bias in, say, December Eurodollar futures prices, was typically as 

high as fifteen basis points in the early 1990s. To gain more balance sheet freedom, the 

major dealing firms have gradually there own reporting dates off of the December 31st 

cycle. The typical year-end effect for December Eurodollar futures has shrunk closer to the 

five basis point level.  The Y2K distortion for the December 1999 contract is a separate 

phenomenon. 

6.  Short Sterling contract pricing maturity is also muddled even for post-1999 Decembers by 

the UK’s prospects for joining European Monetary Union.  Looking ahead, market 

participants must assess the probability and timing of a UK entry into EMU, and weigh the 

Bank of England’s traditional year-end rate smoothing practices against the level of year-

end distortions traditionally tolerated by the constituent central banks of the EMU countries 

(assuming the European Central Bank will behave as the constituent banks once did).   

7.  An additional four contracts (the “green” months) began trading in 1995.  A fourth quartet 

of contracts (the “blue” months) began trading in 1997.   

8.  Initial margin balances, which can be met with interest-earning government securities, 

typically are an unimportant part of the trading equation. For practical purposes, the most 

important problem would be an unanticipated sharp sudden increase in margins. 

9.  Transactions by value-oriented spread traders need to be categorized into liquidity-

producing trades and liquidity-consuming trades.  Liquidity-producing trades are limit orders 

left working on the floor at, by definition, better-than-market levels.  From time to time, real 

hedging and/or speculative demand – “paper” – appears with a need to trade large 
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quantities of particular contracts. Value-oriented spreaders might then be lifted out of their 

better-than-market order levels through such flows.  In contrast, liquidity-consuming trades 

represent transactions where spreaders must “pay up” to get desired trades done. Here, the 

spreaders would incur market impact costs, transacting at the full bid or offered side of the 

particular spread.  

10. Or combine three second-third-fourth contract butterflies with single first-second contract 

and fourth-fifth contract spreads. This latter formulation is transactions cost efficient. 

11. See footnote 6 above. 
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Table 1 

Pascal’s Spreading Triangle 

Strip Hedge Solutions for kth-degree Polynomial Term Structure Functions 

 
k+1   k+2      
Risks   Strip     Weightings on each adjacent contract in strip 
 
             1  

   1       2         1    -1 

   2       3      1   -2     1 

   3       4             1    -3     3    -1   

   4       5         1    -4     6     -4     1 

   5       6     1     -5    10   -10    5    -1 

   6       7             1   -6    15   -20    15   -6     1 

   7       8                                              1   -7    21   -35    35   -21   7    -1 

   .        .                                            .     .     .       .       .      .       .      .       . 
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Table 2  
Summary Statistics for Short Sterling Pascal Spread Structures  
Sample Period:  January 4, 1989 to September 15, 1998     
    
     
First Differences 
     Front   Second    Third   Fourth    Fifth    Sixth  Seventh 
Mean     -16.1       -9.8       -0.3        5.0        7.9       8.0       6.8 
Std. Dev.      46.4       39.3      31.4      26.5      21.8     17.9     14.5 
Std. Dev. of Mean                       1.0          0.8         0.6        0.5       0.4        0.4       0.3  
Chi-Square Statistic  270.9    144.2         0.2      82.0    294.7   435.5    472.5  
Autocorrelations 1 0.997      0.998     0.998    0.997    0.996   0.993    0.997 

5 0.987    0.987     0.987    0.986    0.983   0.973    0.986 
          10 0.976      0.978     0.975    0.974    0.968   0.952    0.974 

      
Second Differences           
     Front    Second  Third   Fourth    Fifth    Sixth    
Mean      -6.3       -9.5       -5.2       -2.9       -0.1       1.2  
Std. Dev.    24.5      15.8       10.5        8.7        7.5       6.2  
Std. Dev. of Mean     0.5        0.3         0.2        0.2        0.2       0.1   
Chi-Square Statistic            153.5    742.3     532.0    258.0        0.6     93.3  
Autocorrelations 1         0.988    0.986     0.974    0.964    0.947   0.916  

5         0.946    0.945     0.914    0.893    0.859   0.789  
                                  10         0.900    0.909     0.844    0.827    0.784   0.727  
        
Third Differences      
        Front   Second   Third    Fourth    Fifth    
Mean       3.2       -4.3      -2.3       -2.8      -1.4   
Std. Dev.    20.6      11.0        8.7        8.7       7.6   
Std. Dev. Of Mean     0.4        0.2        0.2        0.2       0.2   
Chi-Square Statistic   16.4      96.7      45.9      67.3     21.2    
Autocorrelations 1         0.969    0.932    0.892    0.895    0.847   

5         0.878    0.796    0.717    0.750    0.644   
                                  10         0.791    0.654    0.536    0.627    0.540   
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Table 2  (Continued) 
Summary Statistics for Short Sterling Pascal Spread Structures  
Sample Period:  January 4, 1989 to September 15, 1998 
       
Fourth Differences       
     Front     Second    Third   Fourth    
Mean       7.5       -2.0         0.5       -1.5   
Std. Dev.    22.6       13.8       13.4      13.8   
Std. of Mean      0.5            0.3         0.3        0.3     
Chi-Square Statistic    70.9       14.0         1.0        7.5   
Autocorrelations 1         0.938     0.866     0.852    0.855   

5         0.798     0.646     0.653    0.671   
                                  10         0.672     0.392     0.465    0.547     
Fifth Differences       
     Front     Second    Third     
Mean                   9.5         -2.5         2.0    
Std. Dev.     30.8         24.1       24.9    
Std. of Mean       0.6         0.5         0.5    
Chi-Square Statistic    61.9         7.3         4.2    
Autocorrelations 1 0.899     0.846     0.849    

5 0.717     0.628     0.661    
                                  10 0.539     0.383     0.507      
Sixth Differences       
    Front       Second      
Mean     12.0           -4.5     
Std. Dev.    49.5        45.7     
Std. Dev. of Mean     1.0          0.9      
Chi-Square Statistic   38.9          6.5  
Autocorrelations 1         0.868      0.844     

5         0.663      0.641     
                                  10         0.440      0.437       
Seventh Differences       
    Front       
Mean     16.6      
Std. Dev.      88.6      
Std. Dev. of Mean                1.8         
Chi-Square Statistic    23.2      
Autocorrelations 1         0.850      

5         0.642      
                                  10         0.412      
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Table 3  
Summary Statistics for Short Sterling Fourth-Differences: “Spread of Boxes”  
Two-Year Sub-samples    
 
    
Period:  January 4, 1989 to December 31, 1990      
Fourth Differences 
     Front     Second   Third     Fourth    
Mean      32.3        -2.9       3.9        -4.5   
Std. Dev.     24.4       20.4      17.6       20.1   
Std. Dev. of Mean      1.1         1.0        0.8         0.9     
Chi-Square Statistic  682.4       13.2      32.3       32.4   
Autocorrelations 1 0.890     0.893    0.834     0.870   

5 0.617       0.725    0.623     0.720   
                                  10 0.356     0.507    0.394     0.578   
 
 
Sample:  January 2, 1991 to December 31, 1992     
Fourth Differences 
     Front    Second     Third    Fourth     
Mean        4.3        -4.1       -0.3       -0.9   
Std. Dev.     28.6       18.1       19.6      17.9   
Std. Dev. of Mean      1.3         0.8         0.9        0.8     
Chi-Square Statistic    15.0       34.0         0.2        1.8     
Autocorrelations 1 0.947     0.888     0.904    0.872   

5 0.800     0.616     0.701    0.645   
                                  10 0.704     0.321     0.557    0.511   
 
 
Sample:  January 4, 1993 to December 30, 1994    
Fourth Differences 
    Front     Second     Third    Fourth     
Mean      -0.9       -0.5         0.2        -1.9   
Std. Dev.    15.7       11.4         8.9         7.9   
Std. Dev. of Mean     0.7         0.5         0.4         0.4     
Chi-Square Statistic     2.2         1.3         0.3       37.7     
Autocorrelations 1         0.870     0.786     0.652     0.550   

5         0.652     0.556     0.378     0.146   
                                  10         0.408     0.221    -0.038    -0.051   
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Table 3  (Continued) 
Summary Statistics for Short Sterling Fourth-Differences: “Spread of Boxes”  
Two-Year Sub-samples  
      
       
Sample:  January 3, 1995 to December 31, 1996    
Fourth Differences 
     Front     Second     Third    Fourth     
Mean        3.7       -2.2         -3.1         0.7   
Std. Dev.       9.2           7.1          6.4         6.6   
Std. Dev. of Mean      0.4         0.3          0.3         0.3     
Chi-Square Statistic  103.4       63.8      144.5         7.0     
Autocorrelations 1 0.824       0.74      0.739     0.722   

5 0.615     0.471      0.538     0.540   
                                  10 0.544     0.388      0.383     0.444   
       
 
Sample:  January 2, 1997 to September 15, 1998   
Fourth Differences 
     Front     Second      Third     Fourth    
Mean       -1.1         -0.1 2.5        -0.9   
Std. Dev.       5.7        4.0 7.1        10.8   
Std. Dev. of Mean       0.3        0.2 0.3          0.5     
Chi-Square Statistic     22.7        0.4          80.6          4.3    
Autocorrelations 1  0.747    0.578        0.892      0.947   

5  0.352    0.234        0.800      0.884   
                                  10  0.025    0.148        0.775      0.890 
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Table 4           
Fourth-Differenced Short Sterling Spread Value Changes    
Data Sorted into Value Ordered Quintiles       
Sample Period: 1989-1990      
           
Initial      Avg.  % Times Correct      
Quintile    Spread Change Direction         Avg. Change               Avg. % Change 
   --------------------------------------Horizon------------------------------------------ 

         1-day  5-day  10-day     1-day  5-day 10-day      1-day   5-day   10-day 
 

Front Contract Spread          
1       65.0 57% 72% 69%      -2.6  -12.8    -18.1          -4%     -20%    -28% 
2       42.1 50% 47% 38%      -0.4     0.4       3.2          -1%        1%        8% 
3       31.1 46% 30% 39%      -1.3     5.1       3.1          -4%      16%      10% 
4       17.7 45% 37% 24%        1.4     7.4     12.1             8%      42%       68% 
5        -2.6 48% 53% 60%        5.7   12.4     25.1         -223%   -483%   -979% 
           
Second Contract Spread          
1       17.4 73% 77% 77%      -5.6     -9.6     -10.0          -32%    -55%    -58% 
2         4.2 62% 57% 62%      -1.4     -1.6        0.1          -34%    -39%       2% 
3        -3.0 54% 49% 50%        1.9      1.4        0.5          -62%    -47%    -15% 
4      -11.6 64% 68% 75%        2.7      5.4        8.6          -23% -47%     -74%  
5      -32.4 56% 63% 73%        3.0      7.5      10.3   -9% -23%     -32% 
           
Third Contract Spread          
1        31.9 58% 66% 73%      -3.6     -8.2     -13.8 -11% -26%  -43% 
2        11.4 58% 74% 69%      -3.5     -6.8       -7.7 -31% -60%  -67% 
3          2.9 62% 55% 54%      -1.5     -2.2       -0.9 -54% -76%  -30% 
4         -4.5 53% 52% 61%        0.7      2.3        3.8 -15% -51%  -86% 
5       -14.8 83% 89% 92%        7.4     12.8     15.0 -50% -86% -101%  
           
Fourth Contract Spread           
1        20.2 73% 76% 85%      -5.8      -9.8    -16.7 -29%  -49%    -83% 
2          3.5 59% 65% 62%       0.2      -3.2       -3.5     5%  -90%   -98% 
3         -2.9 51% 50% 53%      -1.2       0.9        1.2   41%  -30%   -40% 
4       -10.6 60% 63% 83%       3.0        5.7       9.6 -28%  -54%   -91% 
5       -36.0 69% 71% 69%       4.0        7.6       8.3 -11%  -21%   -23% 
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Table 5 
Fourth-Differenced Short Sterling Spread Value Changes    
Data Sorted into Value Ordered Quintiles       
Sample Period: 1997-1998       
           
Initial      Avg.  % Times Correct      
Quintile    Spread Change Direction         Avg. Change               Avg. % Change 
   -------------------------------------Horizon----------------------------------------- 

            1-day  5-day  10-day       1-day  5-day 10-day     1-day   5-day   10-day 
        
Front Contract Spread           
1   6.5 69% 72% 90%        -1.7    -3.8     -6.8       -26%     -59%   -105% 
2   1.8 68% 75% 72%        -1.4    -2.4     -3.2       -80%   -136%   -178% 
3  -0.7 47% 51% 55%         0.4    -0.7     -0.3       -48%      92%       41% 
4  -3.5 62% 71% 73%         0.9      2.2      2.7       -25%     -64%     -79% 
5  -8.7 74% 79% 88%         2.0      5.1      7.5       -22%     -59%     -86% 
           
           
Second Contract Spread           
1  5.2 79% 85% 88%        -2.4    -3.9     -4.6        -46%      -74%    -88% 
2             2.0 61% 69% 65%        -0.8    -1.1     -1.4        -40%      -54%    -69% 
3             0.2 49% 42% 55%         0.3     -0.4     -0.6       141%   -219%   -330% 
4            -2.0 63% 64% 71%         1.2      1.6       2.0       -61%     -80%   -102% 
5            -6.5 71% 79% 88%         1.8      4.0       5.3       -28%     -62%     -81% 
           
           
Third Contract Spread           
1            14.3 57% 51% 57%        -0.8     -1.2      -1.2        -6%       -9%       -9% 
2   3.3 74% 71% 68%        -1.8     -2.0      -1.7      -54%     -61%     -52% 
3   0.5 51% 53% 48%        -0.5     -0.9      -0.4      -83%    -158%    -78% 
4  -1.4 60% 55% 63%          0.9      0.9       1.0      -67%      -67%    -74% 
5   -4.1 71% 75% 81%          2.0      3.4       3.1      -48%      -81%    -75% 
           
           
Fourth Contract Spread           
1            11.4 63% 67% 63%        -1.1      -2.0      -2.0       -9%     -17%     -17% 
2              4.2 67% 76% 81%            -1.7      -2.3      -2.6     -40%     -55%     -64% 
3              1.2 45% 44% 53%          0.1       0.4      -0.3        9%       30%     -22% 
4             -1.6 71% 70% 67%          1.6       1.9       1.6     -98%    -118%   -102% 
5           -17.4 52% 48% 45%          1.0       0.7      -0.5      -6%        -4%        3% 
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Figure 1:  First Contract Spread of Boxes
Fourth-Differences of Adjacent Short Sterling Contract Prices
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Figure 2:  Fourth Contract Spread of Boxes
Fourth-Differences of Adjacent Short Sterling Contract Prices
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Figure 3
Estimated Millennium Turn Effect on December 1999 Short Sterling Price

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

19
-J

un
-9

8

24
-J

un
-9

8

29
-J

un
-9

8

02
-J

ul
-9

8

07
-J

ul
-9

8

10
-J

ul
-9

8

15
-J

ul
-9

8

20
-J

ul
-9

8

23
-J

ul
-9

8

28
-J

ul
-9

8

31
-J

ul
-9

8

05
-A

ug
-9

8

10
-A

ug
-9

8

13
-A

ug
-9

8

18
-A

ug
-9

8

21
-A

ug
-9

8

26
-A

ug
-9

8

01
-S

ep
-9

8

04
-S

ep
-9

8

09
-S

ep
-9

8

14
-S

ep
-9

8

B
as

is
 P

oi
nt

s

 
 
 


