View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by New York University Faculty Digital Archive

On the Asymptotic Power of the Variance Ratio Test
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Abstract: The variance ratio test statistic, which is based on k-period differences of the data, is
commonly used in empirical finance and economics to test the random walk hypothesis. We obtain the
asymptotic power function of the varianceratio test statistic when the differencing period & isincreasing
with the sample size n such that £/n — 6 > 0. We show that the test is inconsistent against a variety
of mean reverting aternatives, confirm the result in smulations, and then characterise the functional

form of the asymptotic power in terms of § and these alternatives.

1 Introduction

The random walk is one of the most important models in empirical finance and economics and several
tests have been developed to detect deviations from this model. Parsimonious tests of this model
have been developed for low frequency autocorrelations in the data, such as slow mean reverting
processes, by employing multiple horizon data. One of the popular tests of this genre is based on the
variance ratio (V' R) statistic, which is the sample variance of k-period differences, x; — x;_, of the
time series z;, divided by & times the sample variance of the first difference, x; — x;_1, for some

integer k. Under the null hypothesis that the series x; is a random walk, the corresponding population
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variance ratio, given by PV R (k) = Var (zy — x¢—x) / [V ar (z; — 24-1)], is 1 for any value of k.
Arguably, the V' R statistic has become the primary tool for testing the random walk hypothesis for
low frequency series. (See, for example, Campbell and Mankiw (1987), Cochrane (1988), Lo and
Mackinlay (1988) and Poterba and Summers (1988) among many others). The use of the V' R Statistic
can be advantageous when testing against several interesting alternatives to the random wak model,
most notably those hypotheses associated with mean reversion. In fact, a number of authors (e.g.,
Lo and Mackinlay (1989), Faust (1992) and Richardson and Smith (1991)) have found that the V R
statistic has optimal power against such alternatives.t

The practical implementation of the V R statistic is, however, less straightforward. The statistical
significance has been assessed using conventional asymptotic theory, that is, for fixed & and the
sample size n increasing to infinity. Unfortunately, the underlying asymptotic theory provides a poor
approximation to the small sample distribution of the V' R statistic. In fact, rather than being normally
distributed (when standardised by /), the statistics are severely biased and right skewed for large £,
which makes application of the statistic problematic. A seemingly attractive solution to this problem
is to use the result of Richardson and Stock (1989). They derived the asymptotic distribution of the
V' R statistic under the random walk null, assuming that both k& and n increase to infinity but in such
a way that k£/n converges to a positive constant 6 which is strictly less than 1. They showed that
the VR satistic, without any normalization, converges to a functional of Brownian motion. This
new distribution provides a far more robust approximation to the small sample distribution of the V R
statistic. Most current applications of the VR statistic cite the k/n — 6 result as justification for
using Monte Carlo distributions (i.e., set a k£ = én) as representative of the V R statistic’'s sampling

distribution.

! Richardson and Smith (1991) and Daniel (2001) explore a wider range of possible test statistics.
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This paper provides another look at the VR statistic and its statistical properties.? In particular,
we argue that the k/n — 6 result has some very poor properties under a wide class of interesting
aternatives. Similar to the distribution under the null hypothesis of a random walk, for mean reverting
aternatives with some random walk component, the k£/n — § asymptotic theory also implies nonde-
generate limiting distributions. Thus, even with a large sample size, the V R statistic should not be
expected to provide decisive evidence. Loosely speaking, in terms of the asymptotic theory, there is a
trade-off between size and power properties when using the fixed & asymptotics versus the k/n — 6
asymptotics.

The paper is organized as follows. In section 2, we define the V R statistic, review the exiting
literature on its asymptotic distribution, and provide the main theoretical result regarding its lack of
power. Section 3 then explores some of the practical implications of this result, in particular, through

simulation evidence for relevant alternative models to the random walk theory.

2. The Variance Ratio Statistic’'s Power

Given n + 1 observations xzg, x1, ..., z, Of a time series, the variance ratio statistic with a positive

integer k(< n) as differencing period is defined as
VR (k) =35, (k) /55 (F),
where

n X
n—k+1Mn-—k) i

G (k)= 7 (@ — xer, — kD)?,

2 Perron and Vodounou (2001) also looks at the VR statitistic’s properties under the Richardson and Stock (1989)
framework. Their approach, however, is different to the extent they keep the data span, n, fixed and then take a continuous-
time limit within this span. In other words, rather than assuming n — oo, they assume the sampling frequency of the data

goes to zero.
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~ 1 X ~
05 kK)=— (vt —24-1— M)z
n—1_
t=1
and
~_ 1
H=n (vt — w4-1).
t=1

In the usual fixed &k asymptotic treatment, under the null hypothesis that the {x;} follow a random
walk with possible drift, given by

Tr=ptx1te 1)

where 1 is a real number and {¢;} is a sequence of zero mean independent random variables, it is

possible to show (see, for example, Lo and Mackinlay (1988)) that

3 -

VR(VR(k)-1) 2 N 0, o2 |

where o2 is some simple function of k. This result extends to the case where the {¢;} are a martingale
difference series with conditional heteroscedasticity (see, for example, Campbell, Lo and MacKinlay
1997), though the variance o2 has to be adjusted a little. The fixed & asymptotic distribution is well
known to fare badly when & is large relative to n. (See Lo and MacKinlay, 1989).

As an alternative to the fixed k& asymptotics, Richardson and Stock (1989) develop an dternative
approach under £ — oo, n — oo and k/n — & > 0 asymptotics. Under the assumption that {z;}
follows (1), where {¢;} is a conditionally heteroscedastic martingale difference series, they show that

1 z

1
A= o7s W () =W (A = 8) = 6W (1))*dA, 2

VR (k) 2

where W () is standard Brownian motion. Thus, while the V' R statistic converges to 1 under the
fixed k treatment, here it has a nondegenerate limiting distribution. Clearly this distribution is non-
normal and instead can be characterised by a functional of Brownian motions. Through Monte Carlo
simulations, Richardson and Stock (1989) demonstrated that this aternate theory provides a much

better approximation to the small sample distribution of the V R statistic.



THE VARIANCE RATIO TEST 5

Of course, the problems of generating consistent tests when the statistic converges to a nondegener-
ate distribution are well known. In fact, as we show in Theorem 1 below, under a wide class of mean
reverting models, the V R statistic converges to a positive multiple of the limiting distribution in (2)
when k/n — 6 > 0. Thisimplies that the resulting test based on the V' R statistic will be inconsistent
for such alternatives when k is a constant fraction of the sample size n. In practical terms, this means
that no matter how large the sample size, the probability of detecting such an alternative is bounded

below some number strictly less than one, which is clearly an undesirable property.

Theorem 1 Let {e;} and {u;} be two series of zero mean independent processes with finite variance
o2 and o2 respectively which are independent of each other. Define the process {y;} by y; = Ay;_1+u;

where |A\| < 1. Let ry = p+1r,_1 + ¢, and
Ty =1y + Yp. ©)

If £ — 0o, n — oo and k/n — 6 > 0, then
(1+ \) 02 !

2
@+ N2 +202 (1525 o D WA=0)—oW@L)7dA @)

VR(k) 2
where W () is standard Brownian motion.

Proof of Theorem 1:

~_P _
Let Uy = o — x4 — ki = §=t_k+1 ej —ke+y —y_p — kn=t (yn — yo) . Thus,
n 6 -
ESVRNE S o S U P I U o D T
I R T Y T
By (A.6) on page 346 of Richardson and Stock(1989), for @ > 6,
7= ej = e [W(a) = W(a —06) —6W(1)], (6)

I e k1
Vi v T e
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where W («) is standard Brownian motion. Since {y;} is a stationary process, it is trivialy true that

3 -~

1 k y —
Eyn—yo _

75 Vel T Y-~ = 0. )
Hence, by (5), (6) and (7),
1
%U[ml = 0. [W(a) — W(a —6) — 6W(D)].
Furthermore, by the weak law of large numbers,
%:(JR — 21 — )’ 5 of +Var (y; — y—1) = 05 + %~

The same argument as that employed on page 329 of Richardson and Stock(1989) then yields the
required result.

Theorem 1 shows that the test based on the V R statistic when £ is a fraction of the sample size
will result in an inconsistent test for mean reverting aternatives of the form (3). Such mean reverting
aternatives are of the kind often imposed in finance applications (See, for example, Poterba and
Summers (1988) and Fama and French (1988)). The variable x; contains a permanent (i.e. random
walk) component r; and a temporary (i.e. stationary) component y;. It is aso obvious from (4) that
when the variance of the innovations of the temporary component, o2, is small relative to o2 the test
based on the V R statistic will have power which is barely larger than the nomina size of the test in
detecting the alternative even in infinitely large sample sizes.

A limiting result for V R similar to (4) in Theorem 1 can actually be obtained under much more
general conditions on {r;} and {y.} . One can alow both the first difference series {r; — 1} and
{y:} to be arbitrary stationary processes instead of the independent process {e, } and the autoregressive
process of order 1 respectively that was imposed in Theorem 1. Thus, the V R statistic can be shown
to be inconsistent for a very wide range of alternatives which might be of interest in detecting mean

reversion if k is a fraction of the sample size.
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3. Power Implications

The theorem in Section 2 above shows that the VR statistic is inconsistent against meaningful alter-
natives as k — oo, n — oo and k/n — & > 0. Moreover, equation (4) provides the form for the
asymptotic power function. In this section, we explore the implications of these results for the VR
statistic’s power.

As afirst step, Table 1 reports the small sample power of the VR statistic for the relevant case in
which its power is consistent. In particular, we consider the aternative model described in Theorem
1 under the assumption that o2 = 0, that is, there is no permanent component to z;. As seen from the
table, as n increases, the power approaches 100%. Interestingly, this increase is greater for smaller ¢
which is consistent with Theorem 1's main implication that, for consistency, k£/n — 0. Intuitively, in
small samples, even consistent alternatives are hard to distinguish and the large k& problem is attenuated.

Table 2 reports the relevant power results for a variety of aternatives described by Theorem 1.
Severa observations are in order. First, the table reports small sample power for n ranging from 60
through 2880 observations, as well as the asymptotic power level. As Theorem 1 shows, and Table 2
demonstrates, the small sample power of the VR statistic is clearly limited, supporting the inconsistency
of it as atest statistic. Second, even though there is some increase in power as n increases, the gains
are very limited for alternative specifications with substantial permanent components. For example,
when the share of the variance captured by the mean-reverting component, -, is only 0.25 and 0.5,
respectively, the power is 14% and 38% as n — oo. Third, these power gains are worse for larger
8, which is consistent with the requirement that £/n — 0. As an illustration, for « equal to 0.25,
0.5 and 0.75, respectively, the power is 14%, 38% and 86% for 6 = 1/6 versus only 11%, 27% and
62% for 6 = 1/3. To get a more complete picture of this point, Figure 1 graphs the three-dimensional

relation between power, v and 6. As borne out by the figure, lower §’s increase power, with varying
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impact depending on the permanent component’s importance (i.e., level of ). For a fixed value of
~, the drop-off in the power, as ¢ increases, is quite dramatic. Finally, note that the mean-reversion
parameter, A, has no effect upon the asymptotic distribution as the VR statistic is consistent against
pure mean reversion aternatives (e.g., see Table 1). Table 2, however, shows that A is important in
small samples.

On the one hand, these results are fairly discouraging for developing tests against dow mean re-
verting alternatives. Given afixed 6, the VR statistic will have limited success. Within the Richardson
and Stock (1989) framework, however, Perron and Vodounou (2001) do manage to characterize the
maximal possible power by taking a continuous-time limit given a fixed data span, n. On the other
hand, and in contrast to the Perron and Vodounou (2001) result, Theorem 1 suggests an aternative
approach in which k is allowed to increase with n but at a slower rate. This guarantees consistency
against a wide range of alternatives. Practically, this means that, for power purposes, & cannot be too
large in small samples. The practical issue of how to then adjust the size of the statistics for a given

k in small samples remains a question for future research.
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Figure 1: Asymptotic Power versus Gamma and Delta
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This figure reports the asymptotic power of the variance-raio datigtic for a test of the
random wak null againg a specific dternative modd a the 5% level of dgnificance for a
range of d’'s and g's, where d represents the ratio of the variance horizon to the data
length and g represents the proportion of the variance due to the mean-reverting
component. In paticular, the dterngtive modd is x, =r,+y, whee r =r_ +e,
=1y, +u ad

_ 2s;
S W )strast




Table 1. This table reports the power of the variance-ratio datistic for a one taled test of
the random wak null agang a variety of dternatives a the 5% level of sgnificance for

d=1/6and d=1/3, where d represents the ratio of the variance horizon to the data

length. The dternativemodd is x, =y, where y, =1y , +u, ad s’=1.

nd=1/6

| =09 | =0.95 | =0.98
60 7 4 3
120 21 8 4
180 47 11 4
360 98 42 8
720 100 94 22
1440 100 100 69
2880 100 100 98

n,d=1/3 | =0.9 | =0.95 | =0.98
60 7 4 3
120 21 8 4
180 41 11 4
360 90 34 5
720 100 79 19
1440 100 98 47
2880 100 100 78




Table 2. This table reports the power of the variance-ratio statistic for a one tailed test of
the random wak null againg a variety of dternatives a the 5% level of sgnificance for
d=1/6and d=1/3, where d represents the ratio of the variance horizon to the data
length. The dternativemodd is x, =r, +y, where r, =r_, +e, y, =1y, , +u, ad

__ 2,
g (L+1)s2+2s5%"
d=1/6 | =0.9 | =0.95 | =0.98
n 0=025 ¢g=05 ¢g=075|g=025 ¢g=05 g=075|g=025 g=05 g¢g=075
60 4 5 6 4 5 4 4 3 4
120 6 9 14 6 4 6 3 4 3
180 9 12 23 6 7 9 6 4 3
360 9 21 51 7 13 23 6 5 5
720 12 28 69 10 21 48 5 8 12
1440 13 32 78 11 25 69 9 14 30
2880 16 37 83 14 30 81 10 26 55
¥ 14 38 86 14 38 86 14 38 86
d=1/3 | =0.9 | =0.95 | =0.98
n g=025 ¢g=05 ¢g=075| g=0. g=05 ¢g=075| g=025 ¢g=05 g=075
60 5 5 6 5 5 5 4 4 4
120 6 9 11 6 5 6 4 4 4
180 8 11 18 5 6 9 4 4 3
360 7 15 33 5 10 18 5 5 4
720 10 21 47 8 15 35 6 7 11
1440 12 24 55 10 18 43 7 11 19
2880 13 25 60 9 21 56 9 18 34
¥ 11 27 62 11 27 62 11 27 62




