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On the Asymptotic Power of the Variance Ratio Test

Rohit S. Deo and Matthew Richardson

New York University

Abstract: The variance ratio test statistic, which is based on k-period differences of the data, is

commonly used in empirical finance and economics to test the random walk hypothesis. We obtain the

asymptotic power function of the variance ratio test statistic when the differencing period k is increasing

with the sample size n such that k/n→ δ > 0. We show that the test is inconsistent against a variety

of mean reverting alternatives, confirm the result in simulations, and then characterise the functional

form of the asymptotic power in terms of δ and these alternatives.

1. Introduction

The random walk is one of the most important models in empirical finance and economics and several

tests have been developed to detect deviations from this model. Parsimonious tests of this model

have been developed for low frequency autocorrelations in the data, such as slow mean reverting

processes, by employing multiple horizon data. One of the popular tests of this genre is based on the

variance ratio (V R) statistic, which is the sample variance of k-period differences, xt − xt−k, of the

time series xt, divided by k times the sample variance of the first difference, xt − xt−1, for some

integer k. Under the null hypothesis that the series xt is a random walk, the corresponding population
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variance ratio, given by PV R (k) = V ar (xt − xt−k) / [kV ar (xt − xt−1)] , is 1 for any value of k.

Arguably, the V R statistic has become the primary tool for testing the random walk hypothesis for

low frequency series. (See, for example, Campbell and Mankiw (1987), Cochrane (1988), Lo and

Mackinlay (1988) and Poterba and Summers (1988) among many others). The use of the V R statistic

can be advantageous when testing against several interesting alternatives to the random walk model,

most notably those hypotheses associated with mean reversion. In fact, a number of authors (e.g.,

Lo and Mackinlay (1989), Faust (1992) and Richardson and Smith (1991)) have found that the V R

statistic has optimal power against such alternatives.1

The practical implementation of the V R statistic is, however, less straightforward. The statistical

significance has been assessed using conventional asymptotic theory, that is, for fixed k and the

sample size n increasing to infinity. Unfortunately, the underlying asymptotic theory provides a poor

approximation to the small sample distribution of the V R statistic. In fact, rather than being normally

distributed (when standardised by
√
n), the statistics are severely biased and right skewed for large k,

which makes application of the statistic problematic. A seemingly attractive solution to this problem

is to use the result of Richardson and Stock (1989). They derived the asymptotic distribution of the

V R statistic under the random walk null, assuming that both k and n increase to infinity but in such

a way that k/n converges to a positive constant δ which is strictly less than 1. They showed that

the V R statistic, without any normalization, converges to a functional of Brownian motion. This

new distribution provides a far more robust approximation to the small sample distribution of the V R

statistic. Most current applications of the V R statistic cite the k/n → δ result as justification for

using Monte Carlo distributions (i.e., set at k = δn) as representative of the V R statistic’s sampling

distribution.

1 Richardson and Smith (1991) and Daniel (2001) explore a wider range of possible test statistics.
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This paper provides another look at the V R statistic and its statistical properties.2 In particular,

we argue that the k/n → δ result has some very poor properties under a wide class of interesting

alternatives. Similar to the distribution under the null hypothesis of a random walk, for mean reverting

alternatives with some random walk component, the k/n→ δ asymptotic theory also implies nonde-

generate limiting distributions. Thus, even with a large sample size, the V R statistic should not be

expected to provide decisive evidence. Loosely speaking, in terms of the asymptotic theory, there is a

trade-off between size and power properties when using the fixed k asymptotics versus the k/n→ δ

asymptotics.

The paper is organized as follows. In section 2, we define the V R statistic, review the exiting

literature on its asymptotic distribution, and provide the main theoretical result regarding its lack of

power. Section 3 then explores some of the practical implications of this result, in particular, through

simulation evidence for relevant alternative models to the random walk theory.

2. The Variance Ratio Statistic’s Power

Given n + 1 observations x0, x1, ..., xn of a time series, the variance ratio statistic with a positive

integer k(< n) as differencing period is defined as

V R (k) = σ̂2
b (k) /σ̂2

a (k) ,

where

σ̂2
b (k) =

n

k(n− k + 1)(n− k)

nX
t=k

(xt − xt−k − kµ̂)2 ,

2 Perron and Vodounou (2001) also looks at the VR statitistic’s properties under the Richardson and Stock (1989)

framework. Their approach, however, is different to the extent they keep the data span, n, fixed and then take a continuous-

time limit within this span. In other words, rather than assuming n →∞, they assume the sampling frequency of the data

goes to zero.
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σ̂2
a (k) =

1

n− 1

nX
t=1

(xt − xt−1 − µ̂)2

and

µ̂ = n−1
nX
t=1

(xt − xt−1) .

In the usual fixed k asymptotic treatment, under the null hypothesis that the {xt} follow a random

walk with possible drift, given by

xt = µ+ xt−1 + εt (1)

where µ is a real number and {εt} is a sequence of zero mean independent random variables, it is

possible to show (see, for example, Lo and Mackinlay (1988)) that

√
n (V R (k)− 1)

D→ N
³
0, σ2

k

´
,

where σ2
k is some simple function of k. This result extends to the case where the {εt} are a martingale

difference series with conditional heteroscedasticity (see, for example, Campbell, Lo and MacKinlay

1997), though the variance σ2
k has to be adjusted a little. The fixed k asymptotic distribution is well

known to fare badly when k is large relative to n. (See Lo and MacKinlay, 1989).

As an alternative to the fixed k asymptotics, Richardson and Stock (1989) develop an alternative

approach under k → ∞, n → ∞ and k/n → δ > 0 asymptotics. Under the assumption that {xt}

follows (1), where {εt} is a conditionally heteroscedastic martingale difference series, they show that

V R (k)
D→ 1

(1− δ)2 δ

Z 1

δ
(W (λ)−W (λ− δ)− δW (1))2 dλ, (2)

where W (λ) is standard Brownian motion. Thus, while the V R statistic converges to 1 under the

fixed k treatment, here it has a nondegenerate limiting distribution. Clearly this distribution is non-

normal and instead can be characterised by a functional of Brownian motions. Through Monte Carlo

simulations, Richardson and Stock (1989) demonstrated that this alternate theory provides a much

better approximation to the small sample distribution of the V R statistic.
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Of course, the problems of generating consistent tests when the statistic converges to a nondegener-

ate distribution are well known. In fact, as we show in Theorem 1 below, under a wide class of mean

reverting models, the V R statistic converges to a positive multiple of the limiting distribution in (2)

when k/n→ δ > 0. This implies that the resulting test based on the V R statistic will be inconsistent

for such alternatives when k is a constant fraction of the sample size n. In practical terms, this means

that no matter how large the sample size, the probability of detecting such an alternative is bounded

below some number strictly less than one, which is clearly an undesirable property.

Theorem 1 Let {et} and {ut} be two series of zero mean independent processes with finite variance

σ2
e and σ2

u respectively which are independent of each other. Define the process {yt} by yt = λyt−1+ut

where |λ| < 1. Let rt = µ+ rt−1 + et and

xt = rt + yt. (3)

If k →∞, n→∞ and k/n→ δ > 0, then

V R (k)
D→ (1 + λ)σ2

e

(1 + λ)σ2
e + 2σ2

u

1

(1− δ)2 δ

Z 1

δ
(W (λ)−W (λ− δ)− δW (1))2 dλ, (4)

where W (λ) is standard Brownian motion.

Proof of Theorem 1:

Let Ut = xt − xt−k − kµ̂ =
Pt
j=t−k+1 ej − kē+ yt − yt−k − kn−1 (yn − y0) . Thus,

1√
n
U[nα] =

1√
n

[nα]X
j=1

ej − 1√
n

[n(α−δ)]X
j=1

ej − k
n

1√
n

nX
j=1

ej +
1√
n

³
y[nα] − y[n(α−δ)]

´
− k
n

yn − y0√
n

. (5)

By (A.6) on page 346 of Richardson and Stock(1989), for α > δ,

1√
n

[nα]X
j=1

ej − 1√
n

[n(α−δ)]X
j=1

ej − k
n

1√
n

nX
j=1

ej ⇒ σe [W (α)−W (α− δ)− δW (1)] , (6)
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where W (α) is standard Brownian motion. Since {yt} is a stationary process, it is trivially true that

1√
n

³
y[nα] − y[n(α−δ)]

´
− k
n

yn − y0√
n

⇒ 0. (7)

Hence, by (5), (6) and (7),

1√
n
U[nα] ⇒ σe [W (α)−W (α− δ)− δW (1)] .

Furthermore, by the weak law of large numbers,

1

n

nX
t=1

(xt − xt−1 − µ̂)2 P→ σ2
e + V ar (yt − yt−1) = σ2

e +
2σ2
u

1 + λ
.

The same argument as that employed on page 329 of Richardson and Stock(1989) then yields the

required result.

Theorem 1 shows that the test based on the V R statistic when k is a fraction of the sample size

will result in an inconsistent test for mean reverting alternatives of the form (3). Such mean reverting

alternatives are of the kind often imposed in finance applications (See, for example, Poterba and

Summers (1988) and Fama and French (1988)). The variable xt contains a permanent (i.e. random

walk) component rt and a temporary (i.e. stationary) component yt. It is also obvious from (4) that

when the variance of the innovations of the temporary component, σ2
u, is small relative to σ2

e the test

based on the V R statistic will have power which is barely larger than the nominal size of the test in

detecting the alternative even in infinitely large sample sizes.

A limiting result for V R similar to (4) in Theorem 1 can actually be obtained under much more

general conditions on {rt} and {yt} . One can allow both the first difference series {rt − rt−1} and

{yt} to be arbitrary stationary processes instead of the independent process {et} and the autoregressive

process of order 1 respectively that was imposed in Theorem 1. Thus, the V R statistic can be shown

to be inconsistent for a very wide range of alternatives which might be of interest in detecting mean

reversion if k is a fraction of the sample size.
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3. Power Implications

The theorem in Section 2 above shows that the VR statistic is inconsistent against meaningful alter-

natives as k → ∞, n → ∞ and k/n → δ > 0. Moreover, equation (4) provides the form for the

asymptotic power function. In this section, we explore the implications of these results for the VR

statistic’s power.

As a first step, Table 1 reports the small sample power of the VR statistic for the relevant case in

which its power is consistent. In particular, we consider the alternative model described in Theorem

1 under the assumption that σ2
e = 0, that is, there is no permanent component to xt. As seen from the

table, as n increases, the power approaches 100%. Interestingly, this increase is greater for smaller δ

which is consistent with Theorem 1’s main implication that, for consistency, k/n→ 0. Intuitively, in

small samples, even consistent alternatives are hard to distinguish and the large k problem is attenuated.

Table 2 reports the relevant power results for a variety of alternatives described by Theorem 1.

Several observations are in order. First, the table reports small sample power for n ranging from 60

through 2880 observations, as well as the asymptotic power level. As Theorem 1 shows, and Table 2

demonstrates, the small sample power of the VR statistic is clearly limited, supporting the inconsistency

of it as a test statistic. Second, even though there is some increase in power as n increases, the gains

are very limited for alternative specifications with substantial permanent components. For example,

when the share of the variance captured by the mean-reverting component, γ, is only 0.25 and 0.5,

respectively, the power is 14% and 38% as n → ∞. Third, these power gains are worse for larger

δ, which is consistent with the requirement that k/n → 0. As an illustration, for γ equal to 0.25,

0.5 and 0.75, respectively, the power is 14%, 38% and 86% for δ = 1/6 versus only 11%, 27% and

62% for δ = 1/3. To get a more complete picture of this point, Figure 1 graphs the three-dimensional

relation between power, γ and δ. As borne out by the figure, lower δ0s increase power, with varying
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impact depending on the permanent component’s importance (i.e., level of γ). For a fixed value of

γ, the drop-off in the power, as δ increases, is quite dramatic. Finally, note that the mean-reversion

parameter, λ, has no effect upon the asymptotic distribution as the VR statistic is consistent against

pure mean reversion alternatives (e.g., see Table 1). Table 2, however, shows that λ is important in

small samples.

On the one hand, these results are fairly discouraging for developing tests against slow mean re-

verting alternatives. Given a fixed δ, the VR statistic will have limited success. Within the Richardson

and Stock (1989) framework, however, Perron and Vodounou (2001) do manage to characterize the

maximal possible power by taking a continuous-time limit given a fixed data span, n. On the other

hand, and in contrast to the Perron and Vodounou (2001) result, Theorem 1 suggests an alternative

approach in which k is allowed to increase with n but at a slower rate. This guarantees consistency

against a wide range of alternatives. Practically, this means that, for power purposes, k cannot be too

large in small samples. The practical issue of how to then adjust the size of the statistics for a given

k in small samples remains a question for future research.
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Figure 1: Asymptotic Power versus Gamma and Delta

 
 
This figure reports the asymptotic power of the variance-ratio statistic for a test of the 
random walk null against a specific alternative model at the 5% level of significance for a 
range of δ’s and γ’s, where δ represents the ratio of the variance horizon to the data 
length and γ represents the proportion of the variance due to the mean-reverting 
component. In particular, the alternative model is ttt yrx +=  where  t1tt err += − ,  

t1tt uyy +λ= −  and 
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Table 1: This table reports the power of the variance-ratio statistic for a one tailed test of 
the random walk null against a variety of alternatives at the 5% level of significance for 

6/1=δ and 3/1=δ , where δ represents the ratio of the variance horizon to the data 
length. The alternative model is tt yx =  where  t1tt uyy +λ= −  and  2

uσ =1. 
 

n; 6/1=δ  9.0=λ  95.0=λ  98.0=λ  
60 7 4 3 
120 21 8 4 
180 47 11 4 
360 98 42 8 
720 100 94 22 
1440 100 100 69 
2880 100 100 98 

n; 3/1=δ  9.0=λ  95.0=λ  98.0=λ  
60 7 4 3 
120 21 8 4 
180 41 11 4 
360 90 34 5 
720 100 79 19 
1440 100 98 47 
2880 100 100 78 

 
 
 



 
 
 
Table 2: This table reports the power of the variance-ratio statistic for a one tailed test of 
the random walk null against a variety of alternatives at the 5% level of significance for 

6/1=δ and 3/1=δ , where δ represents the ratio of the variance horizon to the data 
length. The alternative model is ttt yrx +=  where  t1tt err += − ,  t1tt uyy +λ= −  and 

( ) 2
u

2
e

2
u

21
2

σ+σλ+
σ

=γ . 

 
6/1=δ  9.0=λ  95.0=λ  98.0=λ  

n 25.0=γ  5.0=γ  75.0=γ  25.0=γ  5.0=γ  75.0=γ  25.0=γ  5.0=γ  75.0=γ
60 4 5 6 4 5 4 4 3 4 
120 6 9 14 6 4 6 3 4 3 
180 9 12 23 6 7 9 6 4 3 
360 9 21 51 7 13 23 6 5 5 
720 12 28 69 10 21 48 5 8 12 
1440 13 32 78 11 25 69 9 14 30 
2880 16 37 83 14 30 81 10 26 55 

∞  14 38 86 14 38 86 14 38 86 
3/1=δ  9.0=λ  95.0=λ  98.0=λ  

n 25.0=γ  5.0=γ  75.0=γ  25.0=γ  5.0=γ  75.0=γ  25.0=γ  5.0=γ  75.0=γ
60 5 5 6 5 5 5 4 4 4 
120 6 9 11 6 5 6 4 4 4 
180 8 11 18 5 6 9 4 4 3 
360 7 15 33 5 10 18 5 5 4 
720 10 21 47 8 15 35 6 7 11 
1440 12 24 55 10 18 43 7 11 19 
2880 13 25 60 9 21 56 9 18 34 

∞  11 27 62 11 27 62 11 27 62 
 
 


