

IJCoL
Italian Journal of Computational Linguistics
5-1 | 2019
Emerging Topics from the Fifth Italian Conference on
Computational Linguistics

State-of-the-art Italian dependency parsers based
on neural and ensemble systems
Oronzo Antonelli and Fabio Tamburini

Electronic version
URL: http://journals.openedition.org/ijcol/454
DOI: 10.4000/ijcol.454
ISSN: 2499-4553

Publisher
Accademia University Press

Printed version
Number of pages: 33-55

Electronic reference
Oronzo Antonelli and Fabio Tamburini, “State-of-the-art Italian dependency parsers based on neural
and ensemble systems”, IJCoL [Online], 5-1 | 2019, Online since 01 June 2019, connection on 28
January 2021. URL: http://journals.openedition.org/ijcol/454 ; DOI: https://doi.org/10.4000/ijcol.454

IJCoL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenEdition

https://core.ac.uk/display/430220847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://journals.openedition.org
http://journals.openedition.org
http://journals.openedition.org/ijcol/454
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

State-of-the-art Italian dependency parsers

based on neural and ensemble systems

Oronzo Antonelli⇤
Università di Bologna

Fabio Tamburini⇤⇤
Università di Bologna

In this paper we present a work which aims to test the most advanced, state-of-the-art syntactic
dependency parsers based on deep neural networks (DNN) on Italian. We made a large set
of experiments by using two Italian treebanks containing different text types downloaded from
the Universal Dependencies project and propose a new solution based on ensemble systems.
We implemented the proposed ensemble solutions by testing different techniques described in
literature, obtaining very good parsing results, well above the state of the art for Italian.

1. Introduction

Syntactic parsing of morphologically rich languages like Italian often poses a number of hard
challenges. Various works applied different kinds of freely available parsers on Italian training
them using different treebank resources and different methods to compare their results (Lavelli
2014; Alicante et al. 2015; Lavelli 2016) and gather a clear picture of the syntactic parsing task
performance for the Italian language. In this direction, it seems relevant to cite the EVALITA1

periodic campaigns for the evaluation of constituency and dependency parsers devoted to the
syntactic analysis of Italian (Bosco and Mazzei 2011; Bosco et al. 2014).

Other studies regarding the syntactic parsing of English (Nivre and McDonald 2008; Sur-
deanu and Manning 2010) or Italian (Lavelli 2013; Mazzei 2015) tried to enhance the parsing
performance by building some kind of ensemble systems.

By looking at the cited papers we can observe that they evaluated the state-of-the-art
parsers before the “neural networks revolution” not including, with few exceptions, the last
improvements proposed by new research studies.

The goal of this paper is twofold: first we would like to test the effectiveness of parsers based
on the newly-proposed technologies, mainly deep neural networks, on Italian; second, we would
like to propose an ensemble system able to further improve the neural parsers performance when
parsing Italian texts.

This paper is structured as follows: Section 2 describes the architectures of the nine parsers
we tested; Section 3 illustrates the datasets we employed for the evaluations; in Section 4 we will
show the results of the single parsers evaluation while in Section 5 we will describe the different
kind of ensemble systems that we propose to evaluate using the same datasets. In Section 6 we
will draw some provisional conclusions.

⇤ Dept. of Computer Science and Engineering - Mura Anteo Zamboni 7, 40126 Bologna, Italy.
E-mail: antonelli.oronzo@gmail.com

⇤⇤ Dept. of Classic Philology and Italian Studies - Via Zamboni 32, 40126 Bologna, Italy.
E-mail: fabio.tamburini@unibo.it

1 http://www.evalita.it

© 2019 Associazione Italiana di Linguistica Computazionale

Italian Journal of Computational Linguistics Volume 5, Number 1

2. The Neural Dependency Parsers

We considered nine state-of-the-art parsers representing a wide range of contemporary ap-
proaches to dependency parsing whose architectures are based on neural network models.

In (Chen and Manning 2014) it is proposed, for the first time, to represent words, Part-of-
speech (PoS) tags and dependency types through a dense encoding using embedding vectors. In
this way it is possible to automate the learning process of the features avoiding to extract them
following manually designed templates. The parser was developed using the transition-based
approach and it learns a classifier based on a neural network that chooses the correct transition
using the arc-standard system and a greedy deterministic parsing algorithm. Each word wi, PoS
tag tj and dependency type lk is represented by its respective embedding vector ewi , etj , elk. The
neural network chosen is a Multi-Layer Perceptron (MLP) with only one hidden layer. In the
three layers data are represented by the features vector [xw,xt,xl]. The x

w vector is composed
of 18 embedding vectors for words in a given stack or buffer position of a configuration, so
x
w = [ew1 ; . . . ; e

w
18]. The same is true for the vector xt = [et1; . . . ; e

t
18], which includes 18 PoS

embedding, and the x
l = [el1; . . . ; e

l
12], consisting of 12 dependency type embedding vectors.

The hidden layer h computes a linear combination of the input layer, a cubic activation function
is applied (g(x) = x3) and the result is merged into a softmax layer that predicts the transition
with the highest probability:

h = (Ww
1 x

w +W
t
1x

t +W
l
1x

l + b1)
3

p = softmax(W 2h)
(1)

The cubic activation function, in place of classical activations such as hyperbolic tangent (tanh)
and sigmoid function, is suitable for capturing the interactions between the three elements
considered in model learning: words, PoS tags and dependency types. The training set D(train) =
{(ci, ti)} consists of the configuration-transition pairs and does not use templates to transform
the configuration. The parameters of the network are learned by minimizing the cross-entropy
loss, using the l2 regularization and the AdaGrad optimization algorithm with mini-batches.

In (Dyer et al. 2015) a transition-based parser based on the arc-standard system is proposed.
This model try to learn the representation of the entire state of the parser, which is obtained
from the representation of the buffer, the stack and the history of the actions taken by the parser.
To represent the entire state it uses a technique that the authors called LSTM stack, based on
Recurrent Neural Networks (RNN), more specifically on Long Short-Term Memories (LSTM)
(Hochreiter and Schmidhuber 1997), and supports push and pop actions just like the elements of
the parser configuration (stack and buffer). The idea is to represent the S = stack(w1, . . . , wn)
through the final state of the RNN applied to the word sequence w1, . . . , wn contained in the
stack. The model uses three LSTM stack structures for each element of the configuration: one for
the stack S, one for the buffer B and the last for the history A. At each step t the parser uses the
representations st, bt,at of the elements S, B and A to determine the transition to apply. The
representation of the parser state at step t, called pt, is defined as

pt = max{0,W [st; bt;at] + d} (2)

Each token x relative to any element of a configuration, given as input to the RNN, is represented
by concatenating the embedding vector w of the word and the embedding vector t relative to its

34

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

PoS tag:

x = max{0,V [w; t] + b} (3)

To represent the edges of the partial dependency tree in A it uses a vector c obtained from the
composition of the embedding vectors h,d, r, which indicate the head, the dependent and the
type of dependency, respectively:

c = tanh(U [h;d; r] + e) (4)

Given the representation of the correct sequence of transitions z and the input phrase s, the parser
tries to minimize the negative conditional log-likelihood:

p(z|s) = �
|z|X

t=1

log p(zt|pt) (5)

where p(zt|pt) is the probability of performing a specific transition zt given the representation
of the status pt. Network parameters are learned via the Stochastic Gradient Descent (SGD)
optimization algorithm without mini-batches and applying a l2 regularization factor. The adopted
parsing algorithm can use a beam search.

In (Ballesteros, Dyer, and Smith 2015) a change to the representation of the equation (3) is
proposed: the embedding vector w of the word is replaced by a representation based on the single
characters from which the word is composed, through the application of a bidirectional LSTM.
Given a word, we call �!w the vector of the final state of the RNN that reads the characters from
left to right and �w the final state of the RNN that reads the characters in the opposite direction.
The representation of a token x in (3) is redefined as:

x = max{0,V [�!w ; �w ; t] + b} (6)

This modification also introduces an additional transition to the arc-standard system that allows
the production of dependency tree that are also non-projective.

(Kiperwasser and Goldberg 2016) follows the previous idea of representing the entire state
of the parser using a two-way deep LSTM with k levels instead of the LSTM stack. The parser is
developed in two versions: the first embodies a transition-based approach with an arc-hybrid and
a dynamic oracle, while the second relies on a graph-based approach with an arc-factored model.

Given a sentence of n words w1, . . . , wn with the relative PoS tags t1, . . . , tn, each word wi

and PoS tag ti are associated with the embedding vectors ewi and e
t
i, used to represent the input

sequence x1, . . . ,xn and calculate the context vi as:

xi = [ewi ; e
t
i]

vi = BiLSTM(xi)
(7)

The vi features are used to obtain a representation � that will be used as input for an MLP
classifier, with only one hidden layer, which will calculate the score:

MLP(�(x)) = W 2[tanh(W 2�(x) + b1)] + b2 (8)

35

Italian Journal of Computational Linguistics Volume 5, Number 1

In the case of the transition-based model the MLP network learns the score of a transition given
the �(c) representation of a configuration c, obtained by combining the embedding vectors vi

associated with the first three words at the top of the stack and the first on the buffer:

�(c) = [v�3 ;v�2 ;v�1 ;v�1] (9)

In the case of the graph-based model the MLP classifier learns the score of each single arc
(h, d) combining the embedding vector vi of the head h and the dependent d:

�(h, d) = [vh;vd] (10)

In the transition-based case they used a deterministic greedy parsing algorithm, while in the
graph-based case the Eisner algorithm (described in (McDonald, Crammer, and Pereira 2006))
is used. Parameters are learned by minimizing the hinge loss using the Adam optimization
algorithm.

In (Andor et al. 2016) a transition-based parser is proposed with an arc-standard system
based on a network with a feed-forward architecture. Transition systems are characterized by a
sequence of configurations c1, . . . cj with their transitions t1, . . . , tj . The idea behind the model
is to assume that there is a unique relationship between the sequence of transitions t1, . . . , tj�1
and the state cj . In other words, it is assumed that a state encodes the entire history of transitions.
The goal is to learn, through the feed-forward network, the function s(t1:j�1, tj) which calculates
the score of the next valid transition tj for c, given the sequence of previous transitions t1:j�1
(which is assumed to encode the configuration c). Let Tn be the set of valid transitions of length
n, the model tries to find the solution to the optimization problem

argmax
t1:n2Tn

pG(t1:n) = argmax
t1:n2Tn

nX

j=1

s(t1:j�1, tj) (11)

where pG defines a Conditional Random Field (CRF) probability distribution for the transition
sequence t1:n:

pG(t1:n) =

exp
nP

j=1
s(t1:j�1, tj)

P
t01:n2Tn

exp
nP

j=1
s(t01:j�1, t0j)

(12)

To approximate the argmax function a beam search is used to make learning easier. The
parameters are learned by minimizing the CRF loss and using the SGD optimization algorithm
with momentum.

(Cheng et al. 2016) proposes an arc-factored graph-based parser that makes use of a bidirec-
tional RNN with attention mechanism to analyze the sentence. The representation of each word
wi is obtained starting from the combination of the one-hot vectors ei of the word attributes to
which an LReLU activation function is applied:

xi = LReLU[P (Epos
e

pos
i +E

form
e

form
i +E

lemma
e

lemma
i + . . .)] (13)

36

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

LReLU(x) =

(
0.1x for x < 0

x for x � 0

The kind of RNN cell used for the components is the Gated Recurrent Unit (GRU) (Cho et al.
2014) with the LReLU activation function instead of the tanh. The state of the RNN is given by
hj = GRU(hj�1,xj), applied in both directions of the sentence so as to obtain h

l
j and h

r
j . In

this model one-hot encoding is preferred rather than dense encoding because, in this way, it is
possible to avoid establishing the dimension of the embeddings.

The parser consists of three components: memory, right-left queries, and left-right queries.
Given a sentence S = w0w1 . . . wn the parser constructs the m0,m1, . . . ,mn elements of the
memory component by combining the states obtained from the application of the RNN on the
sentence in both directions, so mj = [hl

j ,h
r
j].

Each qt element of the query components is used to query the mj elements of the memory
component and return a score at,j . The score indicates the weight of the attention relative to the
arc composed of the word in position t (dependent) and that in position j (head) for t = 1, . . . , n
and j = 0, . . . , n, and it is calculated as:

at,j = softmax(V tanh(Cmj +Dqt)) (14)

The authors defined the soft embedding of the elements of the memory component, similar
to the attention mechanism, as m̃t =

Pn
j=1 at,jmj and calculate the elements of the query

components as qt = GRU(qt�1, [m̃txt]). The representations of the two query components,
in both directions, are passed to a MLP network with a single hidden layer that returns the
probability of the head-dependent relationships as:

yt = softmax(U [m̃l
t; m̃

r
t] +W [ql

t; q
r
t]) (15)

where yt,1, . . . , yt,m are the probabilities of all m possible relationships. Analyzing all the head-
dependent combinations one can implicitly capture graph-based information of a higher order
than the first, even using an arc-factored model. The parsing algorithm used is the one proposed
by (Chu and Liu 1965)/(Edmonds 1967) and the parameters of the network are learned by
minimizing the cross-entropy loss using the Adam optimization algorithm.

(Dozat and Manning 2017; Dozat, Qi, and Manning 2017) proposed an arc-factored graph-
based parser based on the one of (Kiperwasser and Goldberg 2016). The difference is that instead
of using a similar MLP network they used biaffine layers. In the original approach the vi 2 Rd

state of the Equation (7) is used to calculate the si score of an arc by a linear transformation
si = Wvi + b where W 2 Rn⇥d and b 2 Rn. In the biaffine architecture the transformation
is obtained by introducing the product of two matrices HW 2 Rd⇥d instead of the single W

matrix and the product Hb 2 Rd instead of bias b. Before using biaffine transformation, the
vi state is given as input to different MLPs with three levels in order to eliminate irrelevant
information. The biaffine transformation is applied to the state generated by the MLP application

37

Italian Journal of Computational Linguistics Volume 5, Number 1

in order to predict the ŷ(arc)
i head of the word i as:

h
(arc-dep)
i = MLP(arc-dep)(vi)

h
(arc-head)
i = MLP(arc-head)(vi)

s
(arc)
i = H

(arc-head)
W

(arc)
h

(arc-dep)
i +H

(arc-head)
b

(arc)

ŷ(arc)
i = argmax

j
s(arc)
ij

(16)

After predicting the head, this method selects the type of dependency ŷ(rel)
i as follows:

h
(rel-dep)
i = MLP(rel-dep)(vi)

h
(rel-head)
i = MLP(rel-head)(vi)

s
(rel)
i = h

>(rel-head)
ŷ(arc)
i

U
(rel)

h
(rel-dep)
i +W

(rel)(h(rel-dep)
i � h

(rel-head)
ŷ(arc)
i

) + b
(rel)

ŷ(rel)
i = argmax

j
s(rel)
ij

(17)

The chosen MST algorithm for parsing is Chu-Liu/Edmonds. The parameters are learned by
training jointly the two biaffine classifiers and minimizing the sum of the cross-entropy loss.

In (Shi, Huang, and Lee 2017; Shi et al. 2017) the authors proposed a parser that combines
a compact representation of the features of three different parsing paradigms: the two arc-hybrid
and arc-eager systems of the transition-based approach and the arc-factored model for the graph-
based approach. For each sentence the embedding vectors of each word are derived, through the
use of a bidirectional LSTM network, starting from the character-level representation described
in (Ballesteros, Dyer, and Smith 2015). The graph-based model learns the score of the edges
following the deep biaffine architecture from (Dozat and Manning 2017) previously discussed.
The two transition-based models share the same configurations and the score is calculated using
a deduction system that learns the joint model, with initial axiom [0, 1] and final state [0, n+ 1].
The sequence with the highest score of the deduction system leading to the configuration
[0, n+ 1] constitutes the predicted sequence of transitions. The parameters are learned by
minimizing the hinge loss through the Adam optimization algorithm.

In (Nguyen, Dras, and Johnson 2017), a neural network model is proposed that can jointly
learn both the PoS tagging and the graph-based arc-factored dependency parsing. The basic idea
is that the more the PoS tags are accurate the better the performance of the parsing improves and,
vice versa, the structure of the dependency tree can solve some ambiguity of PoS tags.

Given an input sentence w1, . . . , wn consisting of n words, the embedding of each word
wi is built by concatenating the word embedding vector ewi to the vector e

c
wi

obtained by
embedding its representation in characters as in (Ballesteros, Dyer, and Smith 2015):

ei = [ewi , e
c
wi
]. (18)

The i-th word wi is represented by the vector vi obtained as vi = BiLSTM(ei). The score of the
edge with head wi and dependent wj is calculated as:

score(wi, wj) = MLP([vwi ;vwj]) (19)

38

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

The loss function Larc used to learn the parameters of the parsing task is the hinge loss. For the
PoS tagging the tag sequence is represented by the state obtained by applying a bidirectional
LSTM on the tag sequence and the loss function Lpos(t̂, t) to be minimized is the cross-entropy,
where t̂ is the sequence of the predicted PoS tags and t the real one. The parser uses the Eisner
MST parsing algorithm and the model parameters are learned by minimizing the sum of the two
loss functions Lpos and Larc through the Adam optimization algorithm.

It is worth mentioning the Italian dependency parser available in the package spaCy2 based
on DNN models. Unfortunately we could not include this parser into our evaluation because the
available models have been trained on different corpora and in different experimental conditions
and retraining new models would have required the production of a new parser using the spaCy
API.

In Table 1 we summarised the fundamental characteristics for all the nine parsers considered
in this study.

Table 1

All the neural parsers considered in this study with their fundamental features as well as their
abbreviations used throughout the paper. In this table “Tb/Gb" means “Transition/Graph-based",
“arc-s/h/f" means “arc-standard/hybrid/factored" and “cle" indicates the Chu-Liu/Edmonds algorithm.

Parser Reference Abbrev. Method Parsing

(Chen and Manning 2014) CM14 Tb: arc-s greedy
(Ballesteros, Dyer, and Smith 2015) BA15 Tb: arc-s beam search
(Kiperwasser and Goldberg 2016) KG16:T Tb: arc-h greedy
(Kiperwasser and Goldberg 2016) KG16:G Gb: arc-f eisner
(Andor et al. 2016) AN16 Tb: arc-s beam search
(Cheng et al. 2016) CH16 Gb: arc-f cle
(Dozat and Manning 2017) DM17 Gb: arc-f cle
(Shi, Huang, and Lee 2017; Shi et al. 2017) SH17 Tb: arc-h greedy-eager
(Nguyen, Dras, and Johnson 2017) NG17 Gb: arc-f eisner

3. Datasets

We set-up each parser using the data from the Italian Universal Dependencies (UD) treebanks,
UD Italian 2.1 (general texts) and UD Italian PoSTWITA 2.2 (tweets). These treebanks are an-
notated following the Universal Dependencies v2 format (Nivre et al. 2016). Before proceeding
with the experiments, all the treebanks were converted from the CoNLL-U format to the CoNLL-
X format (Buchholz and Marsi 2006), using the conversion script made available in the official
UD repository. This conversion was necessary because some parsers were developed previously
at the definition of the CoNLL-U format and accept only the CoNLL-X format.

3.1 UD Italian 2.1

This corpus contains generic domain texts3. The UD Italian treebank was obtained by converting
the corpus ISDT (Italian Stanford Dependency Treebank) from the Stanford Dependencies
annotation scheme to the Universal Dependencies scheme, as described in (Attardi, Saletti,

2 https://spacy.io/
3 https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2515

39

Italian Journal of Computational Linguistics Volume 5, Number 1

and Simi 2015). The ISDT was released for the first time during the dependency parsing task
at EVALITA 2014 and was derived from the conversion of the MIDT corpus (Merged Italian
Dependency Treebank) (Bosco, Montemagni, and Simi 2013). MIDT is the result of the merger
and conversion of two previously existing dependency treebanks for the Italian language:

r The Turin University Treebank (TUT) (Bosco et al. 2000);r The ISST-TANL treebank, initially released as ISST-CoNLL for the CoNLL 2007
shared task and developed from the Italian Syntactic-Semantic Treebank (ISST)
(Montemagni et al. 2003).

The whole corpus is composed of 13, 884 unique sentences, those already contained in the
ISDT treebank plus other new sentences added after the conversion in the UD format. The
subdivision of the entire corpus in Training, Development and Test sets is shown in Table 2.

Table 2

UD Italian 2.1 corpus splitting.
Sentences Words

Training set 12,838 270,703
Development set 564 11,908

Test set 482 10,417

3.2 UD Italian PoSTWITA 2.2

The second corpus we used contains social media texts4. The corpus, described in (Sanguinetti
et al. 2018), consists of texts taken from the Twitter Italian platform. UD Italian PoSTWITA was
created from a dataset used for the part-of-speech social media tagging in EVALITA 2016. The
subdivision of the corpus is shown in Table 3.

Table 3

UD Italian PoSTWITA 2.2 corpus splitting.
Sentences Words

Training set 5,368 99,441
Development set 671 12,335

Test set 674 12,668

4. Neural Parsers Evaluation

For all parsers, we used the default settings for training, following the recommendation of the
developers. Table 4 summarise the set up for each parser listing the values of each relevant
hyperparameter.

4 https://github.com/UniversalDependencies/UD_Italian-PoSTWITA

40

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

Table 4

Values of the parsers hyperparameters: ⌘ is the learning rate; � is the momentum factor; ✏,� 1,�2 are the
parameters for the Adam optimiser; b is the size of the mini-batch; p is the probability of dropout; h is the
width of the MLP hidden levels; k is the number of RNN levels; l the size of the RNN; � is the weight of
the regularization term.

Parser Hyperparameters

CM14 ⌘ = 0.01, ✏ = 10�6, b = 10.000, p = 0.5, h = 200,
iter = 20.000, � = 10�8

BA15 ⌘ = 0.1, k = 2, l = 100, iter = 5.500, � = 10�6

KG16 ⌘ = 0.1, ✏ = 10�8, �1 = 0.9, �2 = 0.999, k = 2,
l = 125, h = 100, epochs = 30, p = 0.5

AN16 ⌘ = 0.02, � = 0.9, h1 = h2 = 512, b = 8,
beam = 16, epochs = 10

CH16 ⌘ = 0.0004, h = 368, b = 1
DM17 ⌘ = 0.002, �1 = �2 = 0.9, ✏ = 10�12, k = 3,

l = 300, h = 100, b = 5.000, iter = 25.000, p = 0.33
SH17 ⌘ = 0.001, �1 = 0.9, �2 = 0.9999, ✏ = 10�8, k = 2,

l = 256, h = 128, b = 50, epochs = 20
NG17 ⌘ = 0.1, ✏ = 10�8, �1 = 0.9, �2 = 0.999, k = 2, l = 128,

h = 100, epochs = 30

The experiments were organized in three different setups:r
setup0: we trained and tested the parsing models on the generic Italian treebank
(UD Italian 2.1 dataset). This setup will be useful to compare the performance of
the parsers trained on generic texts with those obtained starting from texts coming
from social media;r
setup1: we trained and tested the parsing models on a treebank in Italian language
consisting solely of social media domain texts (UD Italian PoSTWITA 2.2);r
setup2: we trained the parsing models by joining the train and validation subsets
of the the previous setups together and keeping the test set for setup1.

Evaluation results were obtained using the Evaluation tool software DEPENDABLE5, de-
scribed in (Choi, Tetreault, and Stent 2015), based on the standard evaluation script eval.pl
of the CoNLL-X Shared Task.

After the influential paper from (Reimers and Gurevych 2017) it is clear to the community
that reporting a single score for each DNN training session could be heavily affected by the
system initialisation point and we should instead report the mean and standard deviation of
various runs with the same setting in order to get a more accurate picture of the real systems
performance and make more reliable comparisons between them.

For each parser we evaluated five different instances; counts include punctuation and report
the mean and standard deviation of the values obtained in the different runs for each setup. On
all models, the statistical significance level was calculated using DEPENDABLE and applying the
McNemar statistical test.

5 Available online: https://github.com/emorynlp/dependable

41

Italian Journal of Computational Linguistics Volume 5, Number 1

Table 5 shows the parsers’ performance on the test set for the three setups described above
executing the training/validation/test cycle for 5 times.

EVALITA 2014 results reported the best score that establishes the state of the art for the
dependency parsing in Italian: UAS 93.55% and LAS 88.76%6. The corpus used for setting up the
systems participating to the task was the ISDT (Italian Stanford Dependency Treebank), the same
corpus from which UD Italian was created. The UAS value for the best parser of experiments on
UD Italian 2.1 (setup0) slightly exceeds the state of the art established in EVALITA 2014, while
the LAS is 91.84%, 3.08% higher that the best parser in EVALITA 2014. However, it should be
noted that despite being built on the same corpus, the UD Italian does not coincide exactly with
the ISDT, so the comparison is not completely fair since the two treebanks have differences in
their construction as an annotation scheme and sentences added and corrected in the UD Italian
that do not appear in ISDT. In fact, in (Attardi, Saletti, and Simi 2015) it is shown how the
change from ISDT to UD Italian 1.2 generates better performance on experiments conducted
with statistical parsers. The results in the Attardi’s paper are the only evaluations published in
the literature on the UD Italian treebank, in version 1.2. Among the experiments conducted with
statistical parsers the best result on UD Italian 1.2 is the Mate parser (Bohnet 2010; Bohnet and
Kuhn 2012) with UAS evaluation 92.47% and LAS 90.22%. Even in this case we cannot make a
complete comparison with the results obtained using UD Italian 2.17. Notwithstanding that UD
Italian 1.2 and UD Italian 2.1 are similar, they do not completely match; however, the evaluations
obtained from the parser from (Dozat and Manning 2017) trained on UD Italian 2.1 are superior
to those of Mate on UD Italian 1.2 in both UAS and LAS.

The results on setup1 are much lower when compared with those of setup0, but this is
reasonable considering that the UD PoSTWITA treebank 2.2 is much smaller than the UD Italian
2.1 and that the syntactic analysis of tweets is linguistically more difficult than standard Italian.
On the other hand, if we consider the models learned from the union of the two treebanks, we
can see that there is still room for improvement with an increase of ⇠1.7% in UAS and ⇠2% in
LAS, compared to the models learned using only the UD Italian PoSTWITA 2.2. From this we
can deduce that to have good performance within a domain, specifically for social media texts, it
is essential to use as much data as possible, including domain data, to train the parsing models.
To further support this hypothesis, it can be noted that joining the two treebanks, UD Italian 2.1
and UD Italian PoSTWITA 2.2, we were able to get a nice performance improvement.

In any setup the DM17 parser exhibits the best performance, notably very high for general
Italian. As we can expect, the performance on setup1 were much lower than that for setup0 due
to the intrinsic difficulties of parsing tweets and to the scarcity of annotated tweets for training.
Joining the two datasets in the setup2 allowed to get a relevant gain in parsing tweets even if we
added out-of-domain data. For these reasons, for all the following experiments, we abandoned
the setup1 because it seemed more relevant to use the joined data (setup2) and compare them to
setup0.

5. An Ensemble of Neural Parsers

The DEPENDABLE tool in (Choi, Tetreault, and Stent 2015) is able to compute ensemble upper
bound performance assuming that, given the parsers outputs, the best tree can be identified by
an oracle “MACRO” (MA), or that the best arc can be identified by another oracle “MICRO”
(mi). Table 6 shows that, by applying these oracles, we have plenty of space to improve the

6 http://www.evalita.it/2014/tasks/dep_par4IE
7 For changes between versions you can see the Changelog of the UD Italian corpus:
https://github.com/UniversalDependencies/UD_Italian-ISDT

42

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

Table 5

Mean/standard deviation of UAS/LAS for each parser and for the three different setups by repeating the
experiments 5 times. All the results are statistically significant (p < 0.05) and the best values are showed
in boldface.

setup0

Valid. Ita Test Ita

UAS LAS UAS LAS
CM14 88.20/0.18 85.46/0.14 89.33/0.17 86.85/0.22
BA15 91.15/0.11 88.55/0.23 91.57/0.38 89.15/0.33
KG16:T 91.17/0.29 88.42/0.24 91.21/0.33 88.72/0.24
KG16:G 91.85/0.27 89.23/0.31 92.04/0.18 89.65/0.10
AN16 85.52/0.34 77.67/0.30 87.70/0.31 79.48/0.24
CH16 92.42/0.00 89.60/0.00 92.82/0.00 90.26/0.00
DM17 93.37/0.27 91.37/0.24 93.72/0.14 91.84/0.18
SH17 89.67/0.24 85.05/0.24 89.89/0.29 84.55/0.30
NG17 90.37/0.12 87.19/0.21 90.67/0.15 87.58/0.11

setup1

Valid. PoSTW Test PoSTW

UAS LAS UAS LAS
CM14 81.03/0.17 75.24/0.30 81.50/0.28 76.07/0.17
BA15 83.44/0.20 77.70/0.25 84.06/0.38 78.64/0.44
KG16:T 77.38/0.14 68.81/0.25 77.41/0.43 69.13/0.43
KG16:G 78.81/0.23 70.14/0.33 78.78/0.44 70.52/0.51
AN16 77.74/0.25 66.63/0.16 77.78/0.33 67.21/0.30
CH16 84.78/0.00 78.51/0.00 86.12/0.00 79.89/0.00
DM17 85.01/0.16 78.80/0.09 86.26/0.16 80.40/0.19
SH17 80.52/0.18 73.71/0.14 81.11/0.29 74.53/0.26
NG17 82.02/0.11 75.20/0.24 82.74/0.39 76.22/0.41

setup2

Valid. Ita+PoSTW Test PoSTW

UAS LAS UAS LAS
CM14 85.52/0.13 81.51/0.05 82.62/0.24 77.45/0.23
BA15 87.85/0.13 83.80/0.12 85.15/0.29 80.12/0.27
KG16:T 83.89/0.23 77.77/0.26 80.47/0.36 72.92/0.46
KG16:G 84.70/0.14 78.41/0.14 81.41/0.37 73.49/0.19
AN16 82.95/0.33 73.46/0.37 79.81/0.27 69.19/0.19
CH16 89.16/0.00 84.56/0.00 86.85/0.00 80.93/0.00
DM17 89.72/0.10 85.85/0.13 87.22/0.24 81.65/0.21
SH17 85.85/0.36 80.00/0.39 83.12/0.50 76.38/0.38
NG17 86.81/0.04 82.13/0.09 84.09/0.07 78.02/0.11

performance by building some kind of ensemble system able to cleverly choose the correct
information from the different parsers outputs and combine them improving the final solution.
This observation motivates our proposal.

43

Italian Journal of Computational Linguistics Volume 5, Number 1

Table 6

Results obtained by building an ensemble system based on the oracles mi e MA computed by the
DEPENDABLE tool considering all parsers outputs.

Validation Test

UAS LAS UAS LAS
setup0

mi 98.30% 97.82% 98.08% 97.72%
MA 96.62% 95.10% 96.31% 94.82%

setup2
mi 97.08% 96.02% 96.32% 94.73%
MA 94.62% 91.29% 93.27% 88.50%

To combine the parser outputs we tested three ensemble schemas proposed in literature:
voting, reparsing and distilling. The next three subsections discuss these techniques applied to
our problem and present the obtained results.

5.1 Voting

The voting technique was proposed for the first time in (Zeman andŽabokrtsk ý 2005). Given
the sentence S = w1w2 . . . wn, each of m basic parsers contributes to the defined ensemble
by assigning one score to each candidate dependency relation (wi, r, wj), with 0 i, j n
and i 6= j, where wi is the dependent, wj is the head and r is the type of the dependency
relation. Dependency relations are contained among those available in the m trees predicted by
parsers. In the example of Figure 1 we consider three dependency trees (shown in the upper left)
produced by three different parsers. Starting from these, each individual distinct arc becomes
an arc classified in the list of candidate arcs. All the candidate arcs, therefore, appear in at least
one of the starting dependency trees. The sc score is the number of votes of each candidate arc,
calculated as the number of times that it is part of an individual dependency tree. After passing
the list of candidates with their scores, for each word contained in the sentence the arc that has
the maximum score is accepted and, in the event of a tie, the arc from the first parser is chosen.
In the example of Figure 1 there is a tie for the word proprietà whose three candidate arcs all
have sc = 1. This voting strategy is known as majority.

Since there is no restriction on the structure of the tree, the tree generated by the majority
strategy has no guarantee to be well formed. As you can see in Figure 1, starting from three well-
formed dependency trees a new dependency tree has been composed that is not well formed. To
avoid this problem it is possible to use the strategy of switching which consists in checking if the
final tree obtained through the majority strategy is well formed and, if not, replace it entirely with
the dependency tree produced by the first parser. In order to build a feasible ensemble applying
these techniques, we must consider at least the outputs of three different parsers.

As a preliminary analysis we try to capture and measure the diversity, or equivalently the
similarity, of the available parsers. The basic idea is to understand how many times the parsers
agree in predicting a certain relationship, this measure their agreement.

Consider two dependency trees T = (V,A) and T̃ = (V, Ã) for the same sentence S =
w0w1w2 . . . wn where the set of nodes V (the words in the sentence) are common to both trees
and the set of edges A and Ã can be different. It is possible to define the agreement between two

44

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

aiuta la piccola e la media proprietà .

root

det

nsubj

cc

det

amod

conj

punct

aiuta la piccola e la media proprietà .

root

det

amod

cc

det

amod

conj

punct

aiuta la piccola e la media proprietà .

root

det

amod

cc

det

conj

obj

punct

candidates sc
aiuta root ��� ROOT 3

la det ��� piccola 2

la det ��� proprietà 1

piccola nsubj ��� aiuta 1

piccola amod ��� proprietà 2
e cc ��� proprietà 2
e cc ��� media 1

la det ��� proprietà 2

la det ��� media 1

media amod ��� proprietà 2

media conj ��� piccola 1

proprietà conj ��� piccola 1

proprietà conj ��� aiuta 1

proprietà obj ��� aiuta 1

. punct ��� aiuta 3

ROOT aiuta la piccola e la media proprietà .

root det

amod

cc

det

amod

conj

punct

Figure 1

From the dependency trees obtained from three basic parsers (left) we establish the candidate arcs (right)
from which we can generate the final dependency (below). The final tree is not well formed because it is
not completely connected and presents the cycle piccola conj��! proprietà amod��! piccola.

dependency trees as:

agreement(T, T̃) =
1

|A|
X

(w,r,h)2A
(w,r̃,h̃)2Ã

(
1 if h = h̃ and r = r̃

0 otherwise
(20)

where (w, r, h) and (w, r̃, h̃) are the dependency relations in the T and T̃ tree for each word
w 2 {w1, . . . wn}. From the definition it follows that the agreement is a symmetrical measure,

45

Italian Journal of Computational Linguistics Volume 5, Number 1

so we have that agreement(T, T̃) = agreement(T̃ , T). In other words the agreement calculates
the percentage of the dependency relationships between two trees that have been labeled in the
same way. By extending the definition of agreements on a set of trees computing the average on
the whole treebank, we can calculate the agreement between the parsers using their predictions.
In Table 7 the agreement for each pair of parsers using the models learned in setup0 is reported,
while in Table 8 those in setup2.

Table 7

Agreement calculated on the development set starting from the predictions of the models learned in the
setup0 (UD Italian 2.1).

BA15 KG16:T KG16:G AN16 CH16 DM17 SH17 NG17
CM14 87.59% 87.88% 87.81% 81.19% 88.11% 88.30% 80.67% 85.74%
BA15 88.97% 90.26% 82.11% 89.85% 90.59% 82.85% 87.64%
KG16:T 91.25% 82.27% 90.25% 91.02% 82.61% 88.01%
KG16:G 82.85% 90.89% 91.92% 83.30% 88.81%
AN16 82.48% 83.56% 78.83% 84.32%
CH16 92.38% 83.98% 88.66%
DM17 85.38% 90.27%
SH17 83.70%

Table 8

Agreement calculated on the development set starting from the predictions of the models learned in the
setup2 (UD Italian 2.1+PoSTWITA 2.2).

BA15 KG16:T KG16:G AN16 CH16 DM17 SH17 NG17
CM14 83.79% 77.13% 76.95% 77.74% 83.73% 83.60% 74.33% 80.56%
BA15 78.34% 78.10% 78.65% 84.93% 85.58% 76.18% 82.98%
KG16:T 80.15% 77.46% 79.02% 79.85% 72.95% 80.22%
KG16:G 77.54% 79.02% 80.68% 72.90% 80.79%
AN16 78.76% 79.50% 72.34% 80.16%
CH16 87.19% 76.70% 83.66%
DM17 77.45% 84.60%
SH17 76.31%

The agreement depends largely on the performance of a parser because it is related to the
LAS metric, which can be defined as agreement(T,G), where G is the gold standard dependency
tree.

Even if the majority strategy could generate ill-formed parses, it will be considered to
provide a comparison with the switching strategy. In some cases even having a ill-formed tree,
but with a good accuracy, could be useful in some processes where a manual correction of the
dependency tree is provided, as happens, for example, in the semi-automatic annotation of a
treebank. For this reason we developed some experiments considering both the majority and the
switching strategy.

For the experiments the following voter configurations were analyzed:

r (DM17 + CH16 + BA15) considers the three best parsers, which are (Dozat and
Manning 2017), (Cheng et al. 2016) and (Ballesteros, Dyer, and Smith 2015);

46

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

r (AN16 + CM14 + SH17) considers the worst three parsers, which are (Andor et al.
2016), (Chen and Manning 2014) and (Shi, Huang, and Lee 2017);r (DM17 + CM14 + SH17) considers the best parser, (Dozat and Manning 2017),
combining it with those that have minor agreements, (Chen and Manning 2014)
and (Shi, Huang, and Lee 2017);r (AN17 + ALL) considers all parsers with (Andor et al. 2016) as the first parser;r (DM17 + ALL) considers all parsers with (Dozat and Manning 2017) as the first
parser.

Table 9 shows the performance of the ensembles built on the best results on validation set
obtained in the 5 training/test cycles considering both setup0 and setup2. Table 11 reports the
number of ill-formed trees for the majority strategy, while Table 10 reports the number of cases
when the ensemble combination output differs from the baseline, including both labeled (L) and
unlabeled (U) outputs. For the best results (DM17+ALL) the difference on setup0 and setup2 is
about 4%.

The results of the voting approach reported in Table 9 shows that the majority strategy is
slightly better than the switching strategy, although it must be taken into account that there
might be ill-formed dependency trees for the former. The percentage of ill-formed trees on
validation/test set vary from a minimum of 2% to a maximum of 8%. For this reasons the majority
strategy should be used when it is followed by a manual correction phase. The switching strategy
performs well if the first parser of voters is one of the best parsers, in fact the combinations
AN16+ALL and AN16+CM14+SH17 have worst performance than the counterparts using the
best parser (DM17) as the first voter. Overall, the highest performance is achieved using all
parsers together with DM17 as the first voter. For setup0 the increases were +0.19% in UAS e
+0.38% in LAS, while in setup2 are +0.92% in UAS e +2.47% in LAS with respect to the best
single parser (again DM17).

5.2 Reparsing

A different approach for building ensemble systems, proposed in (Sagae and Lavie 2006), is
reparsing. In this approach we try to overcome the limitation of the majority strategy, related to
the possibility of generating trees that are not well formed, exploiting the same methodologies
used in some parsing algorithms. This technique builds a directed graph with all the distinct
candidate arcs provided by the single parsers, where the edge weights are obtained from a specific
voting algorithm. Finally, classical parsing techniques are applied to the graph using an MST
algorithm that generates a well-formed dependency tree.

We will consider two types of MST algorithms for the experiments: the first is the Chu-
Liu/Edmonds algorithm, which searches the entire space of non-projective dependency trees, so
the generated tree can also be non-projective. For this type of approach we can also use different
techniques to assign the vote, which will influence the weight attributed to the arc in the graph.
We will use the three different voting weighting methods proposed in (Hall et al. 2007):

r w2: equally weighted;r w3: weighted according to the total labeled accuracy on the validation set;r w4: weighted according to labeled accuracy per coarse grained PoS tag on the
validation set.

47

Italian Journal of Computational Linguistics Volume 5, Number 1

Table 9

Results of ensembles using switching and majority approaches on the best models in setup0 and setup2.
The baseline is defined by the best results of DM17.

setup0

Validation Test

Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/maj. 94.20% 92.27% 93.77% 92.13%
DM17+CH16+BA15/swi. 94.11% 92.16% 93.79% 92.14%
AN16+CM14+SH17/maj. 90.43% 87.96% 91.03% 88.47%
AN16+CM14+SH17/swi. 89.44% 86.77% 90.17% 87.43%
DM17+CM14+SH17/maj. 93.84% 92.03% 93.82% 92.27%
DM17+CM14+SH17/swi. 93.76% 91.94% 93.82% 92.25%
AN16+ALL/maj. 94.37% 92.65% 93.83% 92.27%
AN16+ALL/swi. 93.99% 92.15% 93.43% 91.73%
DM17+ALL/maj. 94.42% 92.67% 93.94% 92.41%
DM17+ALL/swi. 94.38% 92.60% 93.91% 92.37%
DM17 (baseline) 93.74% 91.66% 93.75% 92.03%

setup2

Validation Test

Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/maj. 90.57% 87.16% 88.21% 83.64%
DM17+CH16+BA15/swi. 90.51% 87.10% 88.13% 83.51%
AN16+CM14+SH17/maj. 86.90% 83.60% 84.09% 79.78%
AN16+CM14+SH17/swi. 86.01% 82.50% 82.58% 77.94%
DM17+CM14+SH17/maj. 90.35% 87.21% 88.07% 83.64%
DM17+CM14+SH17/swi. 90.27% 87.11% 87.99% 83.52%
AN16+ALL/maj. 90.30% 87.26% 88.36% 84.13%
AN16+ALL/swi. 89.70% 86.45% 87.46% 83.06%
DM17+ALL/maj. 90.64% 87.60% 88.51% 84.42%
DM17+ALL/swi. 90.65% 87.62% 88.50% 84.20%
DM17 (baseline) 89.82% 85.96% 87.59% 81.95%

As noted by (McDonald et al. 2005), searching the entire space of non-projective depen-
dency trees can sometimes be counterproductive. Although some languages allow non-projective
relationships, they are still mostly projective. So, looking through all the non-projective trees, we
run the risk of finding dependency trees that are not desirable even if they are well formed. For
example, the training set of the UD Italian corpus contains 564 non-projective dependency tree
on the entire corpus of 12838 dependency tree (⇠4.4%). For this reason we consider a second
MST algorithm that searches only the projective dependency tree, the Eisner algorithm.

For the reparsing experiments we will consider only the best three parsers (DM17 + CH16
+ BA15) and ALL parsers (the order in this case is not important).

Table 12 shows the performance of the ensembles built on the best results on validation set
obtained in the 5 training/test cycles considering both setup0 and setup2, while Table 13 reports
the number of cases when the ensemble combination output differs from the baseline, including
both labeled (L) and unlabeled (U) outputs.

48

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

Table 10

Numbers of cases when there is a different output between the ensemble systems, using switching and
majority, and the baseline DM17.

setup0

Validation Test

/11.908 /10.417
Voters/Strategy U L U L
DM17+CH16+BA15/maj. 208 61 188 46
DM17+CH16+BA15/swi. 192 52 175 39
AN16+CM14+SH17/maj. 1.006 424 783 336
AN16+CM14+SH17/swi. 1.130 489 870 371
DM17+CM14+SH17/maj. 170 37 139 15
DM17+CM14+SH17/swi. 157 33 129 13
AN16+ALL/maj. 382 126 328 105
AN16+ALL/swi. 460 164 386 133
DM17+ALL/maj. 356 117 282 81
DM17+ALL/swi. 312 97 255 72

setup2

Validation Test

/24.243 /12.668
Voters/Strategy U L U L
DM17+CH16+BA15/maj. 597 219 470 213
DM17+CH16+BA15/swi. 521 185 394 172
AN16+CM14+SH17/maj. 2.757 1.329 1.805 941
AN16+CM14+SH17/swi. 2.976 1.429 1.986 1.033
DM17+CM14+SH17/maj. 490 140 337 93
DM17+CM14+SH17/swi. 453 121 300 73
AN16+ALL/maj. 1.377 624 897 440
AN16+ALL/swi. 1.610 741 1.063 534
DM17+ALL/maj. 1.156 502 784 378
DM17+ALL/swi. 920 374 614 280

Table 11

Number of ill-formed trees obtained by using the majority strategy for both setups.
setup0 setup2

Voters Valid. Test Valid. Test

/564 /482 /1235 /674
DM17+CH16+BA15 9 7 31 31
AN16+CM14+SH17 45 25 88 77
DM17+CM14+SH17 6 6 19 23
AN16+ALL 18 17 73 63
DM17+ALL 17 11 75 57

49

Italian Journal of Computational Linguistics Volume 5, Number 1

The results of the reparsing approach reported in Table 12 shows that the Chu-Liu/Edmonds
algorithm is slightly better than the Eisner algorithm. In this case, the choice of the strategy
that will be used depends on our decision of requesting the presence or the absence of non-
projectivity. The percentage of non-projective dependency trees on valid./test set for Chu-
Liu/Edmonds vary from a minimum of 7% to a maximum of 12% compared with the average for
the Italian corpora of 4%. Overall, the highest performance are achieved using Chu-Liu/Edmonds
algorithm. For setup0 the increases are +0.25% in UAS and +0.45% in LAS, while in setup2 are
+0.77% in UAS and +2.30% in LAS with respect to the best single parser (DM17).

Table 12

Results of the proposed ensembles built by using reparsing approaches on the best models in setup0 and
setup2. The baseline is again defined by the best results of DM17.

setup0

Validation Test

Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/cle-w2 93.82% 91.85% 93.54% 91.83%
DM17+CH16+BA15/cle-w3 93.89% 91.82% 93.78% 92.06%
DM17+CH16+BA15/cle-w4 94.20% 92.28% 93.72% 92.04%
DM17+CH16+BA15/eisner 94.05% 92.05% 93.46% 91.78%
ALL/cle-w2 94.31% 92.53% 93.85% 92.23%
ALL/cle-w3 94.16% 92.41% 94.00% 92.48%
ALL/cle-w4 94.29% 92.58% 93.95% 92.38%
ALL/eisner 94.31% 92.53% 93.95% 92.35%
DM17 (baseline) 93.74% 91.66% 93.75% 92.03%

setup2

Validation Test

Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/cle-w2 90.33% 86.95% 87.69% 83.31%
DM17+CH16+BA15/cle-w3 89.82% 85.96% 87.59% 81.95%
DM17+CH16+BA15/cle-w4 90.41% 86.99% 87.94% 83.32%
DM17+CH16+BA15/eisner 90.50% 87.05% 88.04% 83.51%
ALL/cle-w2 90.52% 87.53% 88.36% 84.25%
ALL/cle-w3 89.90% 86.75% 87.79% 83.54%
ALL/cle-w4 90.42% 87.46% 88.19% 84.11%
ALL/eisner 90.45% 87.41% 88.31% 84.08%
DM17 (baseline) 89.82% 85.96% 87.59% 81.95%

5.3 Distilling

Recently, in (Kuncoro et al. 2016), an approach has been proposed for the construction of a
voting-based ensemble, later defined as distilling, which allows the training of a single model
starting from different parsers independently trained. The technique consists of learning a single
parsing model from a cost matrix based on the votes of the m parser, using a particular cost
function that considers the uncertainty of the prediction. The basic idea is that the disagreement
among parsers can be a signal that the relation in question is ambiguous. Training a distilling
model takes a long time, but it has the advantage of creating a final model that does not need
to query the individual parsers from which it was built. In the ensembles considered so far the

50

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

Table 13

Numbers of cases when there is a different output between the ensemble systems, using reparsing
approaches, and the baseline DM17.

setup0

Validation Test

/11.908 /10.417
Voters/Strategy U L U L
DM17+CH16+BA15/cle-w2 360 129 307 90
DM17+CH16+BA15/cle-w3 96 0 89 1
DM17+CH16+BA15/cle-w4 267 76 247 52
DM17+CH16+BA15/eisner 375 130 327 103
ALL/cle-w2 400 131 333 103
ALL/cle-w3 351 108 299 79
ALL/cle-w4 383 126 307 87
ALL/eisner 411 133 333 106

setup2

Validation Test

/24.243 /12.668
Voters/Strategy U L U L
DM17+CH16+BA15/cle-w2 1.056 496 800 424
DM17+CH16+BA15/cle-w3 0 0 0 0
DM17+CH16+BA15/cle-w4 603 264 491 236
DM17+CH16+BA15/eisner 1.047 443 789 376
ALL/cle-w2 1.347 599 882 417
ALL/cle-w3 1.261 537 804 363
ALL/cle-w4 1.274 576 822 389
ALL/eisner 1.367 607 916 436

composition time of the final dependency tree is a function of the sum of the parsing times of
the m parser used to build the ensemble. In the case of distilling, the model is created only once
starting from the m parser that will no longer be used.

The results of the distilling strategy using all the available parsers are reported in Table
14: unlike the previous ensemble proposals this technique exhibits worse outcomes which score
below the baseline (DM17).

Table 14

Results of distilling approach on the best models in setup0 and setup2. In brackets are reported the
differences between the distilled models, built by considering all parsers, and the best results of DM17, as
baseline.

Setup UAS LAS
setup0 92.50% (–1.25%) 89.93% (–2.10%)
setup2 86.73% (–0.86%) 81.39% (–0.56%)

51

Italian Journal of Computational Linguistics Volume 5, Number 1

6. Discussion and Conclusions

For a clear comparison between the different ensemble techniques tested in our experiments, the
best results have been summarised in Table 15.

Table 15

The table summarises the best results obtained for the different ensemble strategies on the test set both for
setup0 and setup2. Improvements with respect to the baseline (DM17) are shown in brackets. The largest
improvements are marked in bold for both setups.

setup0

strategy UAS LAS
DM17+ALL/majority 93.94% (+0.19%) 92.41% (+0.38%)
DM17+ALL/switching 93.91% (+0.16%) 92.37% (+0.34%)
ALL/cle-w3 94.00% (+0.25%) 92.48% (+0.45%)
ALL/eisner 93.95% (+0.20%) 92.35% (+0.32%)
ALL/distilling 92.50% (–1.25%) 89.93% (–2.10%)

setup2

strategy UAS LAS
DM17+ALL/majority 88.51% (+0.92%) 84.42% (+2.47%)
DM17+ALL/switching 88.50% (+0.91%) 84.20% (+2.25%)
ALL/cle-w2 88.36% (+0.77%) 84.25% (+2.30%)
ALL/eisner 88.31% (+0.72%) 84.08% (+2.13%)
ALL/distilling 86.73% (–0.86%) 81.39% (–0.56%)

The distilling approach shows lower results than the baseline and, in general, lower than the
other methods. The best results are obtained through the majority approach which brings with
it the problem of not ensuring that the tree generated is well formed. The difference between
the two setups is that in setup0 the improvements do not exceed 0.5%, while in setup2 they
obtained a 2.5% of gain in LAS. As for reparsing methods, both in setup0 and in setup2 the Chu-
Liu/Edmonds algorithm turns out to be slightly better than Eisner’s procedure. All the techniques
return more or less the same improvements, with oscillations of a few decimal points.

Therefore, the choice of the strategy is due, in part, to the properties we desire in the final
tree. If we are not interested in the correctness of the tree structure, because it will be manually
corrected, we can safely use the majority technique. If instead we want a correct tree and we have
a parser exhibiting good performance, we could use the switching technique selecting it as the
first parser. If the language can contain many non-projective structures, we might want to direct
our choice on reparsing with the Chu-Liu/Edmonds algorithm or, if we prefer to get projective
trees, on the Eisner algorithm. As far as distilling is concerned, it has not proved to be a good
method to use for models obtained from different parsers but, as the author suggests, it could be
useful when we consider several models obtained from different instances of the same parser.

We have studied the performance of some neural dependency parsers on generic and social
media domain. Using the predictions of each single parser we combined the best outcomes to
improve the performance in various ways. The ensemble models give an improvement of ⇠ 1%
in UAS and ⇠ 2.5% in LAS in the mixed setup (2).

The improvement of LAS is, in most cases, at least twice the value of UAS. This could
mean that ensemble models catch with better precision the type of dependency relations rather
than head-dependent relations, since the candidates relations are taken from existing dependency

52

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

trees and not generated from scratch. This consideration needs, however, further studies in order
to be verified.

All the proposed ensemble strategies, except for distilling, perform more or less in the same
way, therefore the choice of the strategy to use is due, in part, to the properties that we want to
obtain on the combined dependency tree.

Our proposal was inspired by the work of (Mazzei 2015). Unlike from his study, we use a
larger set of state-of-the-art parsers, all based on neural networks, in order to gain more diversity
among the models used in the ensembles; furthermore we have experimented the distilling
strategy and the Eisner reparsing algorithm and we built ensembles on larger datasets using both
generic and social media texts.

Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan
Xp GPU used for this research.

References

Alicante, Anita, Cristina Bosco, Anna Corazza, and Alberto Lavelli. 2015. Evaluating Italian Parsing
Across Syntactic Formalisms and Annotation Schemes. In Roberto Basili, Cristina Bosco, Rodolfo
Delmonte, Alessandro Moschitti, and Maria Simi, editors, Harmonization and Development of
Resources and Tools for Italian Natural Language Processing within the PARLI Project. Springer
International Publishing, Cham, pages 135–159.

Andor, Daniel, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally Normalized Transition-Based Neural Networks. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 2442–2452, Berlin, Germany, August. ACL.

Attardi, Giuseppe, Simone Saletti, and Maria Simi. 2015. Evolution of Italian Treebank and Dependency
Parsing towards Universal Dependencies. In Proceedings of the Second Italian Conference on
Computational Linguistics CLiC-it 2015: 3-4 December 2015, 2015. Torino: Accademia University
Press.

Ballesteros, Miguel, Chris Dyer, and Noah A. Smith. 2015. Improved Transition-based Parsing by
Modeling Characters instead of Words with LSTMs. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 349–359, Lisbon, Portugal, September.
ACL.

Bohnet, Bernd. 2010. Top accuracy and fast dependency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational Linguistics (COLING 2010), pages 89–97,
Beijing, China, August 23-27.

Bohnet, Bernd and Jonas Kuhn. 2012. The Best of BothWorlds – A Graph-based Completion Model for
Transition-based Parsers. In Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), pages 77–87, April 23-27, Avignon, France.

Bosco, Cristina, Felice Dell’Orletta, Simonetta Montemagni, Manuela Sanguinetti, and Maria Simi. 2014.
The EVALITA 2014 Dependency Parsing task. In Proceedings of the Fourth International Workshop
EVALITA 2014, pages 1–8, Pisa, Italy, December.

Bosco, Cristina, Vincenzo Lombardo, Daniela Vassallo, and Leonardo Lesmo. 2000. Building a Treebank
for Italian: a Data-driven Annotation Schema. In Proceedings of the Second International Conference
on Language Resources and Evaluation, LREC 2000, Athens, Greece, 31 May - June 2.

Bosco, Cristina and Alessandro Mazzei. 2011. The EVALITA 2011 Parsing Task. In Working Notes of
EVALITA 2011. CELCT, Povo, Trento.

Bosco, Cristina, Simonetta Montemagni, and Maria Simi. 2013. Converting Italian Treebanks: Towards an
Italian Stanford Dependency Treebank. In Proceedings of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse, pages 61–69, Sofia, Bulgaria, August. ACL.

Buchholz, Sabine and Erwin Marsi. 2006. CoNLL-X Shared Task on Multilingual Dependency Parsing. In
Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL-X), pages
149–164, New York City, June. ACL.

Chen, Danqi and Christopher Manning. 2014. A Fast and Accurate Dependency Parser using Neural
Networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

53

Italian Journal of Computational Linguistics Volume 5, Number 1

Processing (EMNLP), pages 740–750, Doha, Qatar, October. ACL.
Cheng, Hao, Hao Fang, Xiaodong He, Jianfeng Gao, and Li Deng. 2016. Bi-directional Attention with

Agreement for Dependency Parsing. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2204–2214, Austin, Texas, November. ACL.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October, 25–29. Association
for Computational Linguistics.

Choi, Jinho D., Joel Tetreault, and Amanda Stent. 2015. It Depends: Dependency Parser Comparison
Using A Web-based Evaluation Tool. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 387–396, Beijing, China, July. ACL.

Chu, Y.J. and T.H. Liu. 1965. On the Shortest Arborescence of a Directed Graph. Science Sinica,
14:1396–1400.

Dozat, Timothy and Christopher D. Manning. 2017. Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of the 2017 International Conference on Learning Representations, Toulon,
France, April 24-26.

Dozat, Timothy, Peng Qi, and Christopher D. Manning. 2017. Stanford’s Graph-based Neural Dependency
Parser at the CoNLL 2017 Shared Task. In Proceedings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, pages 20–30, Vancouver, Canada, August. ACL.

Dyer, Chris, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015.
Transition-Based Dependency Parsing with Stack Long Short-Term Memory. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 334–343, Beijing, China,
July. ACL.

Edmonds, Jack. 1967. Optimum Branchings. Journal of Research of the National Bureau of Standards,
71B:233–240.

Hall, Johan, Jens Nilsson, Joakim Nivre, Gülsen Eryigit, Beáta Megyesi, Mattias Nilsson, and Markus
Saers. 2007. Single Malt or Blended? A Study in Multilingual Parser Optimization. In Proceedings of
the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 933–939, Prague, Czech Republic,
June. ACL.

Hochreiter, Sepp and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Kiperwasser, Eliyahu and Yoav Goldberg. 2016. Simple and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations. Transactions of the Association for Computational
Linguistics, 4:313–327.

Kuncoro, Adhiguna, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2016. Distilling
an Ensemble of Greedy Dependency Parsers into One MST Parser. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 1744–1753, Austin, Texas,
November. ACL.

Lavelli, Alberto. 2013. An Ensemble Model for the EVALITA 2011 Dependency Parsing Task. In
Bernardo Magnini, Francesco Cutugno, Mauro Falcone, and Emanuele Pianta, editors, Evaluation of
Natural Language and Speech Tools for Italian, pages 30–36, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Lavelli, Alberto. 2014. Comparing State-of-the-art Dependency Parsers for the EVALITA 2014
Dependency Parsing Task. In Proceedings of the Fourth International Workshop EVALITA 2014, pages
15–20, Pisa, Italy, December.

Lavelli, Alberto. 2016. Comparing State-of-the-art Dependency Parsers on the Italian Stanford
Dependency Treebank. In Proceedings of the Third Italian Conference on Computational Linguistics
(CLiC-it 2016), pages 173–178, Napoli, Italy, December.

Mazzei, Alessandro. 2015. Simple Voting Algorithms for Italian Parsing. In Roberto Basili, Cristina
Bosco, Rodolfo Delmonte, Alessandro Moschitti, and Maria Simi, editors, Harmonization and
Development of Resources and Tools for Italian Natural Language Processing within the PARLI
Project. Springer International Publishing, Cham, pages 161–171.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. 2006. Spanning Tree Methods for Discriminative
Training of Dependency Parsers. Technical Report MS-CIS-06-11, University of Pennsylvania
Department of Computer and Information Science, January.

54

Antonelli and Tamburini SOTA Italian dependency parsers based on neural and ensemble systems

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005. Non-Projective Dependency
Parsing using Spanning Tree Algorithms. In Proceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Processing, pages 523–530, Vancouver,
British Columbia, Canada, October. ACL.

Montemagni, Simonetta, Francesco Barsotti, Marco Battista, Nicoletta Calzolari, Ornella Corazzari,
Alessandro Lenci, Antonio Zampolli, Francesca Fanciulli, Maria Massetani, Remo Raffaelli, Roberto
Basili, Maria Teresa Pazienza, Dario Saracino, Fabio Zanzotto, Nadia Mana, Fabio Pianesi, and Rodolfo
Delmonte. 2003. Building the Italian Syntactic-Semantic Treebank. In Anne Abeillé, editor, Treebanks:
Building and Using Parsed Corpora. Springer Netherlands, Dordrecht, pages 189–210.

Nguyen, Dat Quoc, Mark Dras, and Mark Johnson. 2017. A Novel Neural Network Model for Joint POS
Tagging and Graph-based Dependency Parsing. In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, pages 134–142, Vancouver, Canada,
August. ACL.

Nivre, Joakim, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A Multilingual Treebank Collection. In Proceedings of the
Tenth International Conference on Language Resources and Evaluation (LREC 2016), Portorož,
Slovenia, May.

Nivre, Joakim and Ryan McDonald. 2008. Integrating Graph-Based and Transition-Based Dependency
Parsers. In Proceedings of ACL-HLT 2008, pages 950–958, Columbus, Ohio, June. Association for
Computational Linguistics.

Reimers, Nils and Iryna Gurevych. 2017. Reporting Score Distributions Makes a Difference: Performance
Study of LSTM-networks for Sequence Tagging. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 338–348, Copenhagen, Denmark, September. ACL.

Sagae, Kenji and Alon Lavie. 2006. Parser Combination by Reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 129–132,
New York, New York, June. ACL.

Sanguinetti, Manuela, Cristina Bosco, Alberto Lavelli, Alessandro Mazzei, Oronzo Antonelli, and Fabio
Tamburini. 2018. PoSTWITA-UD: an Italian Twitter Treebank in Universal Dependencies. In
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan, May, 7-12. European Language Resources Association (ELRA).

Shi, Tianze, Liang Huang, and Lillian Lee. 2017. Fast(er) Exact Decoding and Global Training for
Transition-Based Dependency Parsing via a Minimal Feature Set. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 12–23, Copenhagen,
Denmark, September. ACL.

Shi, Tianze, Felix G. Wu, Xilun Chen, and Yao Cheng. 2017. Combining Global Models for Parsing
Universal Dependencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 31–39, Vancouver, Canada, August. ACL.

Surdeanu, Mihai and Christopher D. Manning. 2010. Ensemble Models for Dependency Parsing: Cheap
and Good? In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 649–652, Los Angeles, California,
June. ACL.

Zeman, Daniel and ZdeněkŽabokrtský . 2005. Improving Parsing Accuracy by Combining Diverse
Dependency Parsers. In Proceedings of the Ninth International Workshop on Parsing Technology, pages
171–178, Vancouver, British Columbia, October. ACL.

55

