
1 
12/3/01 

 

 

 

Testing the Duo-factor-model of Return and Volume 

K.J. Martijn Cremers and Jianping Mei1 

First Version: December 2001 
 

Abstract 

 Recent theoretical work by Lo and Wang (2000) shows that a multi-factor asset-

pricing model not only imposes factor restrictions on stock returns but on trading volume 

as well. We explicitly test their theoretical result using individual stock return and 

turnover data from NYSE and AMEX from 1962 to 1996. We introduce a recently 

developed consistent statistic by Bai and Ng (2001a) to determine the number of factors 

in a duo approximate multifactor model for return and turnover. While we find that the 

duo-factor model captures a great deal of common variation of trading volume, the data 

rejects a model restriction that excess return and turnover should have the same number 

of systematic factors. Using the duo-factor-model, we decompose excess return and 

turnover into systematic and idiosyncratic components.  Our empirical work discovers a 

significant increase in the variation of idiosyncratic turnover through time, analogous to 

the discovery of a noticeable increase in firm level volatility by Campbell, Lettau, 

Malkiel and Xu (2001). We also find significant co-movement between volatility and 

turnover at the systematic levels. Our findings support the view that trading volume is not 

purely random but driven by trading activities associated with macroeconomic and firm 

news.  
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Introduction 

 

While multifactor models, such as the intertemporal capital asset pricing model (ICAPM) 

and the arbitrage pricing model, have long been cornerstones of asset pricing, they have 

played minor roles in studies of trading volume. In a seminal paper, Lo and Wang (2000, 

LW henceforth) extend the mutual-fund separation theorem to trading volume. Their 

insight is that the popular multi-factor asset pricing models not only have strong 

implications for the cross section of expected returns, but for the cross section of trading 

volume as well. In contrast to much of the existing volume literature, which relies on 

specialized models to examine the relationship between volume-price/volatility, they 

derive an approximate K-factor structure for trading volumes, parallel to the classic K-

factor model for asset returns in the presence of a riskless asset. As a result, we now have 

a duo factor model for returns and trading volume. This paper examines the implications 

of the duo factor model for the behavior of equity return and trading volume. We hope to 

add to the literature in several ways.  

 First, a central issue in both the theoretical and empirical content of LW is the 

correct identification of the number of factors. Until now, this crucial parameter is often 

assumed rather than determined by the data.2  A small number of papers in the asset 

pricing literature have considered the problem of determining the number of factors in a 

multifactor model, but the present study differs from them in important ways. Roll and 

Ross (1980), for example, employ a likelihood ratio test using an exact factor model with 

normality assumptions. (See also Lehmann and Modest (1988), who test the APT for 5, 

10 and 15 factors.) Connor and Korajczyk (1993) develop a test for the number of factors 

in asset returns under sequential limit asymptotics, i.e., N converges to infinity with a 

fixed T and then T converges to infinity. Mei (1993) proposes a semi-autoregressive 

approach to determine the number of factors, but his approach could not obtain factor 

estimates for some periods due to the use of autoregressors. While Jones (2001) provides 

a new approach to the extraction of factors, he did not provide an estimate on the number 

                                                 
2 Brown and Weinstein (1983) emphasized the importance of obtaining the correct estimates on number of 
factors. They pointed out that the common practice of using a over estimate would cause spurious rejection 
of asset pricing models. They note “…the rejection of the five and seven factor versions is to be expected if 
the three factor version is correct.” 
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of factors.  This paper introduces a formal statistical procedure that can consistently 

estimate the number of factors from observed data.  This procedure is developed by Bai 

and Ng (2001a, BN thereafter) under the assumption that both N and T converge to 

infinity.3 This extension is of empirical relevance because it fully exploits the advantage 

of a large panel data set. In addition, our empirical study employs an approximate factor 

structure for both returns and trading volume. Our results hold under heteroskedasticity in 

both the time and the cross-section dimensions. This renders it more general than Connor 

and Korajczyk (1993) who assume homoskedasticity over time.4  Our results also hold 

under weak serial and cross-sectional dependence. 

 Second, we explicitly test the duo factor model using monthly turnover data for 

NYSE and AMEX securities from 1962 to 1996. Unlike Lo and Wang, our empirical 

study uses data from individual stocks rather than beta-sorted portfolios. By exploiting 

the advantage of a large cross-section of individual stocks, we get around the 

nonstationarity issue in turnover. Our results are robust to the presence of either a trend or 

a unit root in the systematic component of turnover. Berk (2000) has shown a significant 

drop in statistical power in asset pricing tests using firm characteristics sorted portfolios.5 

As our own empirical work shows, the number of factors in the duo factor model of 

return and turnover changes dramatically when individual stocks are used instead of beta-

sorted portfolios.  In addition, we use an EM algorithm to handle the problem of missing 

values for individual stocks (i.e. unbalanced panels) so that our study is less subject to a 

survivorship bias that is associated with balanced panels used in other studies.  

 Third, using the duo-factor-model, we decompose turnover into systematic and 

idiosyncratic turnover. Likewise, we also decompose individual stock volatility into 

systematic risk and idiosyncratic risk. These decompositions allow us to examine the 

relationship between return and turnover factors as well as the relationship between 

return and turnover betas. Such studies give us a deeper understanding on the relationship 

between different components of stock returns, risk and trading volume. Recently, there 
                                                 
3 Xu (2001) has also developed a Maximum Explanatory Components analysis to extract factors from 
security returns, which is similar in spirit to Bai and Ng. However, he did not study the duo factor model.  
4 Recently, Jones (2001) also provides a new factor estimate for an approximate factor model with 
heteroscedasticity. He does not, however, provide a test on the number of factors in the model. 
5 Brennan, Chordia, and Subrahmanyam (1998) also discover that “…inferences are extremely sensitive to 
the sorting criteria used for portfolio formation, so that results based on regressions using portfolio returns 
should be interpreted with caution.” 
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is an increasing interest in the study of the dynamics of stock returns, risk and trading 

volume.6 These studies shed important light on the different motives of trading and their 

impact on asset pricing. However, most of these studies use total return and turnover 

rather than their components. It is conceivable that macroeconomic shocks may induce 

more systematic trading across stocks for portfolio rebalancing while firm specific news 

may affect firm-specific turnover more due to information arbitrage. By decomposing 

return and volume into systematic and firm-specific components, we provide a new 

framework for studying liquidity, asymmetric information and their impact on asset 

pricing. 

 Fourth, using a balanced panel of excess return and turnover data, our empirical 

study finds that there are as many as three systematic factors in excess returns and five 

factors in turnover.  While the duo-factor model of Lo and Wang captures a great deal of 

time variation of trading volume, the data rejects the model restriction that excess return 

and turnover have the same number of factors. In addition, we document significant co-

movements of volatility and turnover at the firm-level as well as at the systematic level. 

These results are consistent with the view that portfolio rebalancing as a result of 

macroeconomic shocks drives systematic turnover while firm specific news drives 

“abnormal” trading at the firm level. Overall, we find that the duo-factor model of Lo and 

Wang provides a parsimonious description of return and turnover data. Furthermore, 

There is stronger presence of commonality in turnover in the monthly data.            

 Our study complements recent studies in the market microstructure literature on 

the common variation in liquidity or trading volume.7 Chordia, Roll, and Subrahmanyam 

(2000) explore cross-sectional interactions in liquidity measures using quote data.  They 

use the market portfolio to analyze the commonality in liquidity. Hasbrouck and Seppi 

(2001) use a multi-factor model to characterize relationships involving returns and order 

flows by using the thirty actively traded Dow Industrial firms. The above studies all use 

high frequency data rather than the monthly data used in our study.  

                                                 
6 See for example, Amihud (2000), Brennan, Chordia and Subrahmanyam (1998), Chordia, Subrahmanyam 
and Anshuman (2001), Chordia, Roll and Subrahmanyam (2000), Hasbrouck and Seppi (2001).  
7 The issue of common factor in liquidity was highlighted during the LTCM debacle, when there appeared 
to be a world wide “flight-to quality” and significant drop in trading volume across many assets.  
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 The paper is organized as follows. We begin in section I by introducing the 

approximate multifactor model for both excess return and turnover. We provide the main 

theoretical results of LW that if mutual fund separation holds for stock returns then 

turnover satisfies an approximate linear K-factor structure as well. Section II discusses a 

recently developed consistent statistic by Bai and Ng (2001a) to determine the number of 

factors in the duo-factor-model for return and turnover. It also discusses our empirical 

methodology and provides a description of the data set. In section III, we use the 

principle component approach to extract systematic factors from the return and turnover 

data and provide an explicit test of the hypothesis that the numbers of factors are the 

same for excess returns and turnover. Using the duo-factor-model, section IV provides 

the empirical results of decomposing turnover and individual stock volatility into 

systematic and idiosyncratic components. We then study the relationship between stock 

returns, risk and turnover. Given the large body of empirical literature on asset pricing, 

our study will focus on the time and cross-sectional variation of turnover. Section V 

summarizes our results and concludes.  

 

I.  The Duo Multifactor Model For Return And Turnover 

 

        Following Lo and Wang, our analysis begins by denoting I investors indexed by i = 

1, ..., I and stocks indexed by j = 1, ..., N.  Assume that asset returns are generated by the 

following approximate K-factor model: 

 

           Rjt = Et(Rjt ) + f1t βj1 + ... + fKt βjK + ejt           j = 1,...,N;     t = 1,...,T.              (1)  

 

where ft '=(f1t,...,fKt) is a vector of unobservable pervasive shocks, (βj1,..., βjK) is a vector 

of factor loadings which are constant over the sample period, and ejt represents an 

idiosyncratic risk specific to asset j at time t. We also assume that ejt  has mean zero and 

is orthogonal to fkt.  To derive the consistency result of the BN statistic for the number of 

factors in the above model, some additional regularity conditions are imposed, which are 

provided in the appendix.  
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        As discussed in Chamberlain (1983), the above economy implies the following 

linear pricing relationship if there exist K well-diversified portfolios8: 

 

  Et( Rjt ) = rft + λ1t βj1 +...+ λKt βjK,                                     (2)  

 

where (λ1t,..., λKt) is a vector of risk premiums corresponding to the pervasive shocks  

(f1t,...,fKt), and rft is the return on a riskless asset. Denoting Ft
'=(f1t,...,fKt)+ (λ1t,..., λKt) 

and  Βi
'= ( βi1,..., βiK),  we obtain,  

 

            rj,t = Rj,t - rft =  Ft
'Βj

 + ej,t .                        j=1,..., N; t=1,...,T.                      (3) 

 

where rj,t is excess return for asset j at time t. For simplicity, we will now call Ft factors 

and ft systematic shocks in the paper. We stack the J time series of excess returns in the 

T×N matrix r. 

 To establish the link between asset returns and trading volume, we note that under 

the presence of K well-diversified portfolios, Chamberlain (1983) shows that the above 

asset pricing model also satisfies K-fund separation. To derive a parallel K-fund 

separation theorem for trading volume, we begin by denoting Qjt as the total number of 

shares outstanding for each stock j.  Without loss of generality, we assume that the total 

number of shares outstanding for each stock is constant over time.  For each investor i, let 

Si
jt denote the number of shares of stock j he holds at date t.  Finally, denote Xjt to be the 

total number of shares of security j traded at time t, that is, share volume, hence  

 

i
1jt

1

1i

i
jtjt SS

2
1X −

=
∑ −= , 

 

where the coefficient 1/2 corrects for the double counting when sum the shares traded 

over all investors.  The turnover τjt of stock j at time t is defined as Xjt /Qj, where Xjt is the 

                                                 
8 Connor (1984) derived a same result under the condition that the supplies of the assets are well 
diversified. 
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share trading volume of security j at time t and Qj is the total number of shares 

outstanding of stock j. We stack the N×T time series of turnover in the matrix τ. 

 Under the assumptions that the separating stock funds are constant over time and 

the amount of trading in the separating portfolios is small for all investors, LW derive the 

proposition that the turnover of each stock has an approximate K’-factor structure. More 

formally, we have:  

 

 τjt  = τj +  δj1g1t + ... +  δjK’gK’t + ξjt              (4) 

 

Here, δjk is the exposure of firm j to economy–wide liquidity shocks gkt. gkt could be 

functions of fkt but it is not specified in the model and τj is a constant. Using similar term 

from asset pricing, we will call δjk turnover betas. ξjt has mean zero and it is assumed to 

be orthogonal to gkt. In addition, we assume that ξjt  also satisfy the regularity condition 

given in the appendix. For simplicity, we will call the multi-factor models of (3) and (4) 

the duo-factor model for return and volume.  

 Moreover, LW derive a easily testable hypothesis about the duo-factor-model of 

(3) and (4) that the two models should have exactly the same number of factors, i.e. K = 

K’. This test allows us to gain important insights on the number of pervasive factors 

determine asset return and trading volume. Moreover, using the duo-factor-model, we 

decompose turnover into systematic and idiosyncratic turnover. Likewise, we also 

decompose individual stock volatility into systematic and idiosyncratic risk. With this 

decomposition, we can examine the relationship between return and turnover factors and 

betas. Such analysis gives us a deeper understanding of the relationship between different 

components of stock returns, risk and trading volume.  

 

II. Estimation Procedure 

 

A. A Partial Solution to Nonstationarity in Turnover Data 

 To extract factors from the return and turnover data, LW apply principal 

components approach to the variance-covariance matrix of return and turnover among ten 
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portfolios.  As shown in LW and numerous other studies, aggregate turnover appears to 

be nonstationary, exhibiting a time trend and time-varying volatilities.  Thus, the 

variance-covariance matrix for turnover, var(τi ,τj), is not well defined when τit or τjt is 

nonstationary. As a result, conventional statistical inference may not apply.  

 This paper provide a partial solution to the nonstationary problem by taking 

advantage of a large cross-section of individual stocks. Rather than using the variance-

covariance matrix of turnover among ten portfolios, we will rely on the variance-

covariance matrix of turnover over different time periods. In other words, we will apply  

principal component approach to var(τt ,τs), where 

 

 ),)((, Var( isit
1

1
s st

N

i
t N ττττττ −−=) ∑

=

−  and )( it
1

t

N

i
s τττ −= ∑

=
.  

  

 As we can see from the above equation, var(τt ,τs) is well defined for give time 

period t and s, as long as the cross-sectional mean and variance for turnover exist. 

Intuitive speaking, var(τt ,τs) depends on N-consistency rather than T-consistency, which 

require stationarity. 

 

B.  The Bai and Ng (2001a) Statistic 

 We will begin by estimating the common factors in (3) using the asymptotic 

principal component method of Connor and Korajczyk (1988). Since the true number of 

factors K is unknown, we start with an arbitrary number kmax (kmax < min (N, T)). 

Denoting Bk and Fk are the estimates of k factors and factor loadings, respectively that 

solve the following optimization problem: 

  ∑∑
= =

−− −=
T

t

N

j

k
t

k
jjtFB
FBrNTkV

kk
1 1

211

,
)(min)(   (5) 

 

 To determine the number of factors, BN propose the following statistic based on 

information criteria (IC): 
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  K̂  = argmin 0<k<kmax PC1(k),     (6) 

 

where PC1(k) equals a measure of the goodness-of-fit V(k) in (5) plus a second term  that 

serves as an adjustment for the increased “degree of freedom” as a result of increasing k: 

 

( ) ( ) 





 +

+=
NT

TNkFkVkPC k 2
1 ˆˆ, σ ln 








+ TN
NT

.   (7) 

 
where 2σ̂  is the mean variance for idiosyncratic risk under kmax ( )(ˆ max

2 kV=σ ).  BN 

show that K̂  is a consistent estimate for the true number of factors in the factor model.9 

Intuitively, the estimation procedure treats the determination of factors as a model 

selection problem. As a result, the selection criterion depends on the usual trade-off 

between goodness-of-fit and parsimony. The difference here is that we not only take the 

sample size in both the cross section and the time series dimensions in consideration, but 

also the fact that the factors are not observed. There are three distinctive advantage of the 

BN approach comparing to the method of Connor and Korajczyk (1993). First, BN do not 

impose any restrictions between N and T, allowing for both large N and large T. Second, 

the results hold under heteroskedasticity in both the time and the cross-section 

dimensions. Third, the results also hold under both weak serial dependence and cross-

section dependence. In addition, the model selection procedure is easy to implement. The 

conditions under which the consistency of K̂  holds are given in the appendix. Bai and Ng 

(2001b) further point out that the consistency of K̂  holds in the presence of trend or unit 

root in Ft.  

                                                 
9 Bai and Ng also proposed two other asymptotically equivalent statistics as follows. Our empirical study 
has found that the PCs gave almost identical results in our balanced panel.   

 ( ) ( ) 





 +

+=
NT

TNkFkVkPC k 2
2 ˆˆ, σ ln NTC 2 , 

( ) ( ) 





 +

+=
NT

TNkFkVkPC k 2
3 ˆˆ, σ , 

Here, CNT is defined as min( TN , ). In addition, BN also proposed three other asymptotically 
equivalent statistics called ICs. Our own simulation studies has show that, while the ICs have the advantage 
of not having to specify kmax and estimating max)(ˆ 2 kV=σ , their estimates tend to be biased towards 
finding smaller number of factors in small samples. These results are available upon request.   
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C. Data Description 

 Following Lo and Wang, we use the CRSP Monthly Master File to construct 

monthly turnover series for individual NYSE and AMEX securities from July 1962 to 

December 1996.10 The choice of the monthly horizon makes our results comparable to 

earlier asset pricing studies and is a compromise between maximizing sample size while 

minimizing the day-to-day volume and return fluctuations that have less direct economic 

relevance. Since our focus is the implications of portfolio theory for volume behavior, we 

limit our attention to ordinary common shares on the NYSE and AMEX (CRSP share 

codes 10 and 11 only), omitting ADRs, REITs, closed-end funds, and others whose 

turnover may be difficult to interpret. We also omit NASDAQ stocks because of 

differences in market structure between the NASDAQ and the NYSE/AMEX exchanges.  

In addition to turnover, we also collect data on firm market price, capitalization, trading 

volume, and returns.  

 Like LW, we throw away firms that have no or problematic turnover data. In 

particular, we remove firms that have turnover with no, zero or extremely large standard 

deviation of turnover (respectively data errors 1, 2 and 3 in the table). As LW argue, such 

large standard deviations probably indicate data errors. This removes about 5% of the 

firms in the unbalanced panel. Table 1 presents some summary statistics about our 

sample section.  These include the number of securities in each sample, the percentage of 

securities with missing observation in returns and turnover. In addition, we also report  

the number of firms that were excluded from the sample for three different reasons: The 

first error indicates firms that have less than 25% of the data available, so have more than 

45 missing entries in either return or turnover over the 60 month period. The second error 

indicates firms that have constant turnover in the time period. The third error indicates of 

firms that have likely data entry problems as evidenced by an unusual large standard 

deviation (ten times the average standard deviation, see also the discussion on the Z-flag 

in Lo and Wang (2000)). 

Panel B provides summary statistics of the excess return and turnover of the 

value-weighted portfolio of all NYSE and AMEX ordinary common shares from July 

                                                 
10 Lo and Wang graciously provided us with MiniCRSP data manual.  



12 
12/3/01 

 

1962 to December 1996. We report the annualized mean, standard deviation and 

autocorrelation for each sample period.  Not surprisingly, we observe a particularly high 

market volatility during the 1987-1991 time period, which is largely due to the October 

1987 market crash. We also document a corresponding increase in the variation of 

turnover during the same time period.  Based on the mean turnover of the seven time 

periods, there seems to be a significant increase in trading volume over time. While the 

autocorrelation of the returns varies over time and is generally quite small, the 

autocorrelation for turnover is quite large and positive over time, suggesting that changes 

in turnover are quite persistent over time. These results are consistent with LW.  

     

III. Analysis of the Duo Multifactor Model  

 

A. Test On Number Of Factors in a Balanced Panel 

 The common factors in F are estimated non-parametrically by the method of 

asymptotic principal components, such that we select the eigenvectors corresponding to 

the kmax-largest eigenvalues of the T×T matrix r ⋅ r’ for returns, and τ ⋅ τ’ for turnover. 

Regressing the return and turnover data on their respective factors (eigenvectors) gives 

the beta’s. Finally, we compute the model selection criteria PC1 for both returns and 

turnover separately, for models including 1 to kmax = 10 factors.  

 Table 2 provides the results of the test of the number of factors in excess return 

and turnover. We report the incremental proportion of explained variation (R2) from the 

k-th factor  of the  return and turnover data of the NYSE and AMEX common shares for 

seven subperiods from July 1962 to December 1996. Note that in the case of the balanced 

panel, the incremental R2 from the k-th factor equals the k-th largest eigenvalue θk , k = 

1, …,10, of the covariance matrix of returns and turnover, respectively, where the 

eigenvalues are normalized to sum to 100%. The first principal component of returns 

typically explains between 11% and 36% in the variation of the normalized excess 

returns while the first principal component of turnovers typically explains between 11% 

and 24% in the variation of the normalized turnover.  This is quite different from LW, 

who use returns from broadly diversified portfolios and find their first principal 

component typically explains over 70% (sometimes as high as 90%) of the variation in 
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both returns and turnovers. Further examination of our results suggests that the second 

and third component still explains a fair amount of variation in excess returns and 

turnovers. For example, the third component still explains 6.13% of variation in turnover 

for the 1962-1966 period.  Similar to LW, we also find that the second, third and fourth 

principal components seem to be more important for the 1992-1996 time period. These 

results seem to indicate that we have more than one systematic factor in both returns and 

turnovers.  

 To determine the number of factors in excess returns and turnovers, we compute 

the “goodness-of-fit” statistic, PC1 of BN conditional on a wide range of included 

numbers of factors. Table 2 reports the number of factors corresponding to the minimum 

PC1 statistic. For example, comparing PC1(k) for k = 1, 2, … , 10 indicates that k = 2 

provides the minimum PC1(k) for turnover for the 1962-1966 sample period. This 

indicates that there are two systematic factors for turnover during the first sample period. 

It is reassuring to see that the number of factors identified by the PC statistic closely 

corresponds with the eigenvalues of the principal components. The eigenvalues typically 

exceed 3% for those principal components identified as factors.  In summary, the 

“goodness-of-fit” statistic suggests that there were two or three systematic factors in 

excess returns and there were four or five systematic factors in turnover during the 

various sample periods.  The difference in the number of factors between return and 

turnover seems to reject the restriction of the duo-factor model of LW. We will provide a 

more rigorous test of the restriction that the number of factors in returns and turnover is 

equal in section III B.  

 Our result of four or five factors in turnover is different from the results reported 

in Lo and Wang, who find one or two factors in turnover. This difference could be due to 

two reasons. First, LW use weekly data while our study is based on monthly data. 

Second, LW use beta-sorted portfolios while we use individual stocks. As a result, due to 

diversification their covariance matrix contains much less cross-section variation in 

excess return and turnover than our matrix. This will lead their principal components to 

explain more cross-section variation in excess returns and turnover.  As pointed out by 

Shukla and Trzcinka (1990), because beta-sorted portfolios tend to mask some cross-

section differences in exposure to other sources of systematic risk, the principal 
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components approach based on beta-sorted portfolios is biased towards finding small 

number of factors. While our test does not specifically identify what exactly the factors 

are, they do provide some guidance for theorists in their equilibrium model construction. 

Our results suggests that, while the two-factor model of Lo and Wang (2001) provides a 

best prediction of future market returns, they still leave out a few systematic factors in 

their model. This may help explain why their model does not fully capture the cross-

section of expected returns.  

 Table 2 also reports the average R2 of regressing individual stock excess returns 

and turnovers on their respective systematic factors for each sample periods. For the 

1962-1966 period, a two-factor model explains on average about 28.9% of variation in 

excess returns of individual stocks, with a standard deviation of 13.3%. During the same 

time period, a four-factor model explains on average about 33.7% of variation in turnover 

of individual stocks, with a standard deviation of 16.6%.  The average R2 for returns and 

turnovers over the whole sample period are 33.8% and 36.4%, respectively. Thus, 

turnover factors are just as important as return factors in explaining the time variation of 

turnover across individual stocks. Comparing to empirical results about trading volume 

found in market microstructure studies by Hasbrouck and Seppi (2001), we have found a 

stronger presence of commonality in liquidity.11  

Since trading volume determines the transaction costs in the stock market, our 

results imply that trading volume may have a systematic impact on after-cost returns. 

This implies that liquidity risk could be a systematic risk that should be priced.  As a 

result, our results is consistent with the empirical results of Amihud (2001) and Pastor 

and Stambaugh (2001) that liquidity is an important risk factor in financial markets.  

 Table 2 also shows a significant drop in average R2 for excess returns for the last 

sample period, suggesting a significant increase in contribution of idiosyncratic risk to 

total return variation. This result is consistent with the result of Campbell, Lettau, Malkiel 

and Xu (2001, CLMX thereafter), who find a noticeable increase in firm level volatility 

                                                 
11 Hasbrouck and Seppi (2001) use order flow data from a sample of 30 Dow stocks during 1994 to study 
the common factors in stock prices and liquidity. They find the first three common factors explain about 
20% of the variation in order flows. They do not provide an explicit test for the number of factors in the 
factor model.  Chordia, Roll and Subrahmanyam (2000) also use transaction data from a sample of 1,169 
stock in 1992.  They examine the common movement in market depth using value- and equal- weight 
indices. They find the mean R2 to be less than 2%.  
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relative to market volatility in recent years. However, our results for excess returns 

suggest that CLMX may under-estimate the importance of systematic factors in returns, 

since the R2 obtained through their market model appears to be substantially below the 

average R2 found in our study under a multi-factor model.12   

 The most intriguing result of Table 2 is an apparent positive correlation (78.2%) 

between the average R2 of returns and the average R2 of turnover across different time 

periods. This means that when return factors explain a larger proportion of the variation 

in returns, turnover factors also tend to drive more turnover variation for individual 

stocks. This suggests a positive relationship between systematic return factors and 

systematic turnover factors.  

To further study the relationship between return and turnover factors, Panel B of 

Table 1 also decomposes monthly value-weighted portfolio of excess returns and 

turnovers into systematic and firm specific components, using return and turnover factors 

determined in Table 2. There appears to be a close relationship between volatility and 

turnover at the systematic level. Their correlation is 32%. With the exception of the last 

sample period, there also seems to be a rising trend in systematic volatility and turnover. 

We formally study the relationship between the various components of volatility and 

turnover in the next section.  

 

B. Monte Carlo Simulation and Test of Same Number of Factors in Excess Return and 

Volume 

 In this section, we first provide a simulation study to demonstrate that the PC 

estimates have good small sample properties.13 We then provide a formal test of the same 

number of factors in equation (3) and (4). Because a realistic model of how returns and 

volumes are added and deleted from the sample is not obvious, we restrict our attention in 

this section to the cases in which both return and turnover have no missing observations.  

                                                 
12 The contribution of the market to total volatility was 13.4% during the 1988-1997 in CLMX while the 
average R2 found in our study was 39.6% for the 1987-1991 period and 16.9% for the 1992-1996 period.  
However, difference in time period and weighting (CLMX used value-weighting while we use equal 
weighting in Table 2) may account for some of the difference in results. 
13 While Bai and Ng did provide a simulation study on the small sample properties of the PC estimator, 
they used a general data generating processes (DGP) that is not calibrated for stock return and turnover.  
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 The data generating processes (DGP) used in the simulations follows Jones 

(2001) and is designed to mimic the actual data as closely as possible. Rather than 

simulating factors under some arbitrary assumptions, bootstrap samples of factor 

estimates extracted from the actual data are used as the true factors in the simulations. 

Given estimates of the T×K matrix F of factor realizations, we sample (with replacement) 

T rows of F to use as the true factors in the simulations. Let Fi denote the ith bootstrap 

draw of the factor matrix. The factor betas assumed in the DGP are bootstrap samples of 

the least squares estimates of the betas from the actual data and we assume then to be 

constant over time. Denoting B to be the N × K matrix of OLS estimates of the factor 

betas from real data, we follow Jones (2001) by drawing with replacement N rows of the 

B matrix to use as the true betas in the simulations. We then draw the corresponding 

elements of the N×N diagonal matrix Ω, whose (j, j) element is the unconditional sample 

variance of the residual of stock j. We denote Bi to be the ith bootstrap draw of the beta 

matrix and Ωi the corresponding draw of Ω. As a result, the  N×T matrix of simulated 

excess returns Ri will then be generated by the equation 

 

  Ri =Bi Fi + Ψi * Ei                                                                    (9) 

 

where Ψi  is the Cholesky factor of Ωi  and Ei is an N× T matrix of independent standard 

normals. Here, we assume all alphas to be zero.  

 Similarly, given estimates of the T×K’ matrix G of factor realizations for 

normalized turnover, we sample (with replacement) T rows of G to use as the true factors 

in the simulations. Let Gi denote the ith bootstrap draw of the factor matrix. The factor 

betas assumed in the DGP are the bootstrap samples of the least squares estimates of the 

turnover betas from the actual data, which are assumed to be constant over time. 

Denoting D to be the N× K matrix of OLS estimates of the turnover betas from real data, 

we draw with replacement N rows of the D matrix that we use as the true betas in the 

simulations. We then draw the corresponding elements of the N×N diagonal matrix Σ, 

whose (j, j) element is the unconditional sample variance of the residual turnover of stock 

j.  
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 To maintain the correlation found in the data between residual excess return and 

residual turnover, we simulate residual turnover by the following equation,  

 

  ξjt = γi ej,t  + µjt,                                                                    (10) 

 

where γi is a scaling coefficient to make the correlation between ξjt and ej,t  to be ρj  and 

µjt is independent standard normal. Here, ρj is the sample correlation between residual 

excess return and residual turnover for stock j. We then further scale ξjt so that its 

variance equal to the jth diagonal element of Σ. As a result, the N×T matrix of simulated 

turnover Γi will then be generated by the equation 

 

  Γi =Di Gi +  Ηi                                                                    (11) 

 

where Ηi is the ith draw of the NxT matrix whose elements are ξjt. 

Table 3 presents the frequency on the number of factors that minimizes the PC1 

criterion for return and turnover data over 100 simulations. The value of kmax is again set 

to equal to 10. Conditional on the number of factors found in Table 2, each simulation 

involves the draw of a set of N × T individual return and turnover data for the 

corresponding sample period. For example, each simulation draws 1441 × 60 individual 

returns and turnovers for the 1992 - 1996 period, using equation (9)-(11).  

As the first row of the top panel shows, if the true number of factors is two, the 

PC criterion finds the right number of factors in 94% of the simulations using parameters 

calibrated to resemble the data in the 1962 - 1966 sample period. The mean of the 

estimated number of factors equal to 1.94 shows a slight downward bias compared to the 

true number of factors. The worst performance for the PC estimates is for the 1972 - 1976 

period, when the mean estimates of the number if included factors for returns is 2.64 

compared to the true number of factors of three. The PC criterion shows a similar degree 

of accuracy in estimating the number of factors in turnover. As the first row of the bottom 

panel shows, if the true number of factors is four, the PC criterion has a 89% chance of 

finding the right number of factors in the simulation using parameters calibrated to 
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resemble data during the 1962 - 1966 sample period. It worth noting that the accuracy of 

the PC approach depends upon N and T: as we increase the number of companies used in 

the sample or the length of the sample period, accuracy tends to improve.  

After examining the accuracy of the PC estimates, we now turn to a formal test of 

the hypothesis of Lo and Wang that the number of return factors equals the number of 

turnover factors in the duo factor model. While Table 2 documents some apparent 

differences in the number of return and turnover factors over the sample periods, one 

cannot be sure that these differences are statistically significant. To formally address this 

issue, Table 4 presents the Type I and Type II error estimates for the test of the difference 

between the numbers of return and turnover factors.  The error estimates are based on 100 

simulations for each time period and each simulation involves the draw of a set of N × T 

individual return and turnover data.  For type I error estimates, we assume that the true 

numbers of return and turnover factors are three. We choose the number three because 

that is the highest number of return factors found in the data.  For type II error estimates, 

we assume that the true numbers of return and turnover factors are the same as those 

found in the data.  Thus, the true difference is K-K’, which is based on the difference in 

the numbers of factors found in Table 2.  

As the first row of the panel A shows, if the true number of factors are the same 

for return and turnover, then the probability that the PC criterion finds a difference of two 

during the 1962 - 1966 sample period (period 1) is only 1%.  The only period the LW 

hypothesis is not rejected is for 1972 - 1976, when the significance level is 11%. While 

our test has statistical power in rejecting the hypothesis, our test seems to have poor 

power against the hypothesis that return has one less factor then turnover for the time 

periods of four of the seven sample periods considered, 1962 - 1966, 1967 - 1971, 1987 - 

1991, and 1992 - 1996.14 However, it is reassuring that the PC criterion has fairly small 

Type II errors conditional on the actual number of factors found in the data. The 

probability of accepting the null of same factors while it is not true never exceeds 5% for 

all sample periods. In summary, our simulation study indicates a strong rejection of the 

                                                 
14 This may be expected, however, since the actual number of return factors found in the data is two while 
these simulations force it to be three. As a result, the third factor drawn in the simulation is white noise, 
which may bias the PC criterion to find only two factors. 
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null hypothesis that there are same numbers of systematic factors in the duo factor model 

of return and turnover.   

The rejection of the “same number of factors” restriction should not be surprising, 

since the turnover factor model was derived based on k-fund separation, implying 

common mimicking factor portfolios held by all investors. To the extent that investors 

use private information to speculate on small stocks, this could lead to a violation of k-

fund separation and thus the violation of the turnover factor model. One possible 

explanation for the difference in the number of factors between returns and turnovers in 

the balanced panel could be the presence of private information.  For example, Llorente, 

Michaely, Saar, and Wang (2001) find that small firms tend to have high trading volume 

associated with private information.  Another explanation could be a sample selection 

bias. Since our sample exclude bonds and Nasdaq stock, our sample may not be able to 

reflect all systematic risks in the economy. For example, Fama and French (1993) find 

that with stocks only three factors are necessary but five factors are needed when bonds 

are included in asset pricing studies. To the extent that changing in rising sector demand 

(such as high technology) and interest rates may have a disproportionate impact on the 

return of excluded assets, investors may need to rebalance their position on all assets. As 

a result, we may observe systematic changes in turnover but fail to detect significant 

return impact on our sample.   

 
C. Test On Number Of Factors in an Unbalanced Panel 

 So far, our discussion has focused on balanced panels, which require the firms in 

panel to having no missing return and turnover data during the sample period. Obviously, 

this requirement will lead to a survivorship bias.  Fortunately, as discussed in Stock and 

Watson (1998) and BN, the problem can be solved easily by using an iterative EM 

algorithm to fill missing data with estimated values.  The idea is to replace return or 

turnover by their value as predicted by the parameters obtained from the last iteration 

when they are not observed. Using returns as an example, if Bj(m) and Ft(m) are 

estimated values of Bj and Ft from the mth iteration, let r*
jt(m – 1) = rjt if rjt is observed, 

and r*
jt(m – 1) = B′j (m – 1)Ft (m – 1) otherwise. We then minimize V*(k) with respect to 

F(m) and B(m), where V*(k) = (NT)–1 ∑T
j=1 ∑T 

t=1 (r*
jt(m – 1) - Bk

j(m) Fk
t (m))2.  This is 
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equivalent to compute the T x T matrix r*(m – 1) r*(m – 1)′ with projected and observed 

data and then extract their eigenvalues (and associated eigenvectors). We then iterate this 

process until convergence. 

We apply this algorithm to return and turnover data for the unbalanced panel that 

includes missing observations. We set the starting values of these missing observations 

equal to the mean of that firm’s nonmising observations. Table 5 reports the number of 

factors corresponding to the minimum PC1 statistic. For example, the PC1(k) test 

indicates that k = 3 and k = 9 provide the minimum of PC1(k) for return and turnover, 

respectively, for the 1962-1966 sample period. This suggests that there are three 

systematic factors for returns and nine factors for turnover during the sample period. In 

contrast to our results reported in Table 2, we can see that there is a sizable increase in 

the number of factors for both returns and turnover. It is worth noting that the difference 

between the unbalanced and the balanced panel is that the latter consists of firms that by 

construction survived at least five years.  The unbalanced sample thus includes much 

more younger and less mature firms or delisted firms due to merger or bankruptcy. The 

difference in the selected number of factors suggests that the returns and turnover of 

mature and young firms are not driven by the same factors. 

Table 5 also reports the average R2 of regressing individual stock excess returns 

and turnovers on their respective systematic factors for each sample period. For the 1962-

1966 period, a three-factor model explains on average about 40.5% of variation in excess 

returns of individual stocks, with a standard deviation of 23.9%. During the same time 

period, a nine-factor model explains on average about 60.2% of variation in turnover of 

individual stocks, with a standard deviation of 24.9%. In contrast to the results reported 

in Table 2, we find a large increase in the average R2 (as well as its standard deviation) 

for the turnover model. We like to note, however, that one of the main results of Table 2, 

namely the positive correlation between average R2 of returns and average R2 of turnovers 

across different time periods, remains unchanged.   

  In summary, the results of Tables 2, 3, 4 and 5 indicate that, contrary to LW, a 

one-factor model for turnover cannot capture the commonality for the time-series and 

cross-sectional variation in turnover.  This calls into question the practice of estimating 

"abnormal" volume by using an event-study style "market model", for example, Bamber 
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(1986), Brennan, Chordia, and Subrahmanyam (1997), Jain and Joh (1988), Lakonishok 

and Smidt (1986), Richardson, Sefcik, Thompson (1986), Stickel and Verrecchia (1994), 

Tkac (1996), and Llorente, Michaely, Saar, and Wang (2001). We believe that a multi-

factor model similar to those of the three-factor model of Fama and French (1993) is 

needed in estimating "abnormal" volume for individual stocks.  

 

IV. The Determinants of Turnover  

 

A. A Graphic Presentation 

 In order to obtain a better understanding of the duo-factor model, Figure 1a-1d 

provide a graphic depiction of turnover for a value-weight portfolio and its respective 

systematic and idiosyncratic components using the number of factors determined in Table 

2.15  Here, turnover is decomposed into systematic and idiosyncratic components. We 

annualize turnover in percentages. Figure 1a presents turnover for the value-weighted 

portfolio. One distinguishing feature of turnover for the value-weighted portfolio is that it 

increases dramatically over the whole sample period, rising from 10% per annum in the 

1962-1966 period to over 70% in the 1992-1996 period.   

 Next, we examine the systematic turnover in Figure 1b. Not surprisingly, 

systematic turnover has similar patterns as total turnover in Figure 1a. The most 

intriguing results here are about idiosyncratic turnover, which are presented in Figure 1c 

and shows a dramatic increase in the variation of idiosyncratic turnover during the later 

sample periods. This is analogous to the result of CLMX, who find a noticeable increase 

in firm-level volatility over the sample period. This suggests a possibly close link 

between the increase in firm-level volatility and the increase in firm-level trading volume 

over time.  To remove the short-term fluctuations in idiosyncratic turnover, we take their 

absolute values and then plot their twelve-month moving average in Figure 1d. We see a 

resemblance of this chart to Figure 4 from CLMX for firm-specific risks, which also 

display a upward trend. Moreover, there also appears to be a close relationship between 

                                                 
15 To save space, we only provide the turnover charts. We also plotted similar charts for return volatility 
and their components. They are available upon request.  
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volatility and turnover at systematic level. We formally study these relationships between 

various components of volatility and turnover in the next section.  

 

B. The Determinants of Turnover Factors over Time 

 In order to understand the main drivers of turnover factors, Table 6 provides OLS 

coefficients as well as R2 of regressing return factors as well as turnover factors on Fama 

and French factors (henceforth FF-factors). Not surprisingly, the FF-factors have high 

explanatory power for the systematic factors extracted from the return data. What is 

interesting is that the FF-factors have fairly high explanatory power over systematic 

factors extracted from the turnover data as well.16 The fact that the FF-factors are 

significant in explaining turnover is consistent with Lo and Wang (1998). They develop a 

formal dynamic equilibrium asset-market model in which volume, prices, and other state 

variables evolve through time together in an economically consistent way.  They 

explicitly model the motives to trade as a function of preferences, endowments and 

economic conditions and demonstrate that trading volume satisfies an approximate three-

factor structure that includes the market factor.17 

 If return factors have a significant impact on stock turnover, then it is natural to 

assume that stock volatility also impacts trading volume. Possibly, macroeconomic news 

associated with systematic risk has a different impact on trading volume compared to 

company-specific news associated with idiosyncratic risk. Thus, we decompose stock 

volatility into systematic and idiosyncratic risk and examine their impact on turnover 

separately. The results are reported in Table 7. Given the presence of a trend term in 

turnover and idiosyncratic risk found in previous studies, we have de-trended all 

variables in Table 7.18 To simplify our presentation, we use the turnover of the value-

weighted portfolio and decompose total turnover into systematic and firm-specific 

                                                 
16 Here, we only report regression results for the first factor. The results for other factors are quite similar. 
We have also included innovations in some economic variables in the regression.  However, these 
economic variables are found to have little additional explanatory power over the variation of turnover 
factors and thus dropped from the regressions. They are available upon request. 
17 To further understand the relationship between return factors and turnover factors, we also conducted 
regression of return factors on turnover factors and vice versa for each sample period. Not surprisingly, we 
find that there is significant co-movement between return factors and turnover factors, suggesting return 
factors and trading volume are highly related. However, return factors and turnover factors do not span 
each other. These results are available upon request.  
18 Our results are quite similar using raw data.   
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turnover. Table 7 presents the results of regressing these turnover components on 

systematic and idiosyncratic risk. We also include volatility lags for predictive analysis. 

The results show that systematic turnover is affected mostly by contemporaneous 

systematic risk. We find that the higher the systematic volatility, the larger the systematic 

turnover.  This is certainly consistent with the view that changes in trading volumes over 

time are driven by portfolio re-balancing needs as a result of systematic changes in risk-

return trade-off.  The table also shows that idiosyncratic turnover on the value-weighted 

portfolio is affected by contemporaneous systematic risk as well. Somewhat surprisingly, 

changes in idiosyncratic risk do not seem to have a significant impact on the idiosyncratic 

turnover of the value-weighted portfolio. We conjecture that this could be the result of 

averaging over a large number of stocks, which could mask the impact of firm risks on 

idiosyncratic turnover. We will further study the issue using individual stock data in 

section C.  

 

C. The Determinants of Turnover in the Cross-section 

 To develop a sense for cross-sectional difference in turnover, Figure 2 provides a 

graphic depiction of turnover for value-weight decile portfolios. For simplicity, we only 

report those for the first, fourth, seventh and tenth decile portfolios. Figure 2 is similar to 

Figure 3a of LW, which provides a graphic representation of turnover for decile 

portfolios. There are several interesting patterns. First, turnover for the 10th decile 

portfolio, which consists of the largest 10 percentile of stocks, rises sharply during the 

mid-1960s, then falls suddenly in the late of 1960s and remained relatively low  in the 

remaining sample periods. The dramatic rise and fall in turnover for large stocks reflect 

the “nifty-fifty” craze for large-cap growth stocks in the mid-1960s, when stocks like 

IBM were traded much like internet stocks in the late 1990s. Second, there is a dramatic 

increase in turnover for decile 1 and 4 portfolio for small stocks over time, especially 

after 1975 when fixed commissions were abolished.   

 It is clear from Figure 2 that turnover varies across stocks. LW examine the cross-

sectional relationship between turnover and a set of firm variables, including Jensen’s α, 

market beta, idiosyncratic risk using the market model, dividend yield and four other 

firm-specific variables. This paper further examines the impact of risks on turnover by 
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using the multi-factor model (3) for measuring systematic and idiosyncratic risk. Our 

motivation is motivated by the idea that realized returns often generate portfolio 

rebalancing needs such that the various components of return volatility should be 

positively related to turnover.19  

 Table 8 contains the coefficients as well as R2 of the cross-sectional regression 

model of mean turnover. We estimate two regression models for each sample period. The 

first model only includes turnover betas as regressors. The second model includes 

turnover betas as well as return betas. As one can see from the first regression, the multi-

factor model of equation (4) provides a fair explanation of the cross-sectional variation of 

turnover. Specifically, all turnover betas are statistically significant. The explanatory 

power of these cross-sectional regressions ranges from 1.37% (1992-1996) to 16.5% 

(1972-1976), comparable to the R2’s of typical cross-sectional return regressions.  A 

close inspection of data and Figure 3 reveals that while there is great variation in firm 

turnover, ranging from 0.26% to 21% a month, the variation in firm turnover betas is 

much smaller.20 As a result, the differences in firm exposure to systematic changes in 

turnover only explain a small proportion of the cross-sectional variation in firm turnover.  

 The second regression of Table 8 reveals that the systematic risk Br,j has a 

significant impact on turnover in all sample periods. The inclusion of return betas 

significantly increases the explanatory power of these cross-sectional regressions in some 

time periods – as measured by R2- from 7.32% to 35.9 % in the 1982 – 1986 period. And 

the regression coefficients of almost all return betas are statistically significant. Thus, the 

firm’s exposure to systematic risk has an important and statistically significant impact on 

mean trading volume. In addition to the time series evidence found in LW and in Table 6 

and 7 of this paper, these R2’s at the cross-sectional level provide some confidence that 

variations in mean turnover are not purely random but are related to economic factors.  

                                                 
19 Turnover may also relate to systematic risk indirectly through expected excess return. Amihud (2000), 
Brennan, Chordia and Subrahmanyam (1998), Chordia, Subrahmanyam and  Anshuman (2001), Chordia, 
Roll and Subrahmanyam (2000), Hasbrouck and Seppi (2001), and Hu (1997) have shown that expected 
excess return may contain a premium associated with liquidity. Wang (1994) and He and Wang (1995) 
have also shown that heterogeneous information are associated with expected excess return and trading 
volume.  
20 Here, in order to make a clearer presentation on the variation of turnover betas, we have shifted β1, β2, 
and β3 up by adding 30, 20, and 10 to their respective values.  The data is sorted by turnover.  
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 Note that the cross-sectional relationship between residual turnover in equation 

(4) and idiosyncratic risk is particularly strong. Table 9 reports the coefficients as well as 

R2 of the cross-sectional regression of residual turnover on idiosyncratic risk.  The highly 

significant coefficients provide clear evidence that firm-specific turnover is strongly 

related to news about the firm cash flow and risks. The explanatory power of these 

cross-sectional regressions ranges from 6.12% (1987-1991) to 59.5% (1967-1971). These 

results are consistent with Chordia, Roll, Subrahmanyam (2000) who find that recent 

market volatility exerts a strong influence on stock trading activity. Our contribution here 

is the decomposition of market volatility into systematic risk and residual risk and the 

focus on the impact of volatility on trading activity at the firm level. Here, our results 

reaffirm our earlier discovery in Figure 2 that there is strong co-movement between 

volatility on trading activity at the firm level.  

 

V. Conclusion 

 

Trading activity is fundamental to a deeper understanding of interactions between stock 

returns and economic news. In this article we provide a formal test of the duo-factor 

model developed by Lo and Wang (2000) on return and trading volume. We make two 

methodological contributions to the literature. First, we introduce a recently developed 

consistent statistic by Bai and Ng (2001) to determine the number of factors in a duo 

approximate multifactor model. The approach allows for correlation and 

heteroskedasticity at both time and cross-section dimension. Second, our empirical study 

uses data from individual stocks rather than from beta-sorted portfolios. By exploiting the 

advantage of a large cross-section of individual stocks, we get around the nonstationarity 

issue in turnover. Our results are robust to the presence of either a trend or a unit root in 

the systematic component of turnover. Moreover, we are able to detect more cross-

sectional variation in turnover and relate them to volatility at the firm level. 

 Based on a balanced panel of return and turnover data from NYSE and Amex 

stocks, we find the following results: First, turnover factor models are quite useful in 

explaining the variation of turnover for large panel data set. We find that there are four or 

five systematic factors driving firm turnover and that a significant portion of variation in 
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firm trading volume is determined by the common factors in the market.  Second, there is 

a significant increase in the variation of idiosyncratic turnover during the 1962 - 1996 

sample period, parallel to the discovery of a noticeable increase in firm level volatility by 

Campbell, Lettau, Malkiel and Xu (2001) over the same time period. Third, there is a 

significant co-movement between volatility and turnover at the systematic level. These 

findings suggest that trading volume are not purely random but are driven by trading 

activities associated with macroeconomic and firm-specific news. However, we reject the  

restriction of Lo and Wang that excess return and turnover should have the same number 

factors in the duo-factor model.  

 There are many issues that remain to be examined. If the duo-factor model has 

provided a parsimonious description of monthly data, it is interesting to know whether 

the model works equally well on high frequency data. Hasbrouck and Seppi (2001) have 

taken a step in that direction, though they do not explicitly test the model constraints and 

their sample is limited to the thirty Dow Industrial stocks. Moreover, if the duo-factor 

model fits the US data reasonably well, it could also help us understand stock price and 

trading behavior in foreign markets. Furthermore, if firm news and asymmetric 

information drive trading volume, then by using the return and turnover decomposition 

developed in this article we may obtain a better measure of “abnormal “ trading volume 

and gain additional insights in trading behavior.21 In addition, while we find that the 

empirical results of unbalanced panel is quite different from those of balanced panel, we 

have not explored the return and trading behavior of the firms with missing observations. 

We leave these for future research.  

                                                 
21 See Llorente, Michaely, Saar, and Wang (2001). 
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Appendix 
 
 To derive the consistency result of the statistic for the number of factors in the 

APT model of (3), Bai and Ng introduced the following assumptions: 

 
Assumption A: Factors 
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Assumption D: Weak dependence between factors and idiosyncratic errors 
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 Assumption A and B are fairly standard for factor models and their ensure that 

each factor would have a bounded and non-trivial contribution to the variance of asset 

returns (or turnover). While we only consider non-random factor loadings here, the 

results still hold when B is random, provided they are independent of the factors and 

idiosyncratic errors. Assumption C allows for limited time series and cross section 

dependence in the idiosyncratic risks. Heteroskedasticity in both the time and cross 

section dimensions are also allowed. Therefore, our model is more general than a strict 

factor model of Ross (1976) that assumes no correlation across eit. BN has shown that the 

above assumption C is consistent with the approximate factor model of Chamberlain and 

Chamberlain and Rothchild (1983) in the sense that it ensures that the largest eigenvalue 

of the N x N covariance matrix for the idiosyncratic risks must be bounded. While 

Chamberlain and Rothchild did not make any explicit assumption about the time series 

behavior of the factor, BN allows for serial correlation and heteroskedasticity. They have 

shown that Assumption C3 maintains the condition that the largest eigenvalue of the 

covariance matrix for the idiosyncratic risks will be bounded, thus their results is 

consistent with the approximate factor pricing model of Chamberlain and Rothchild.  

Here our discussion focus on the return factor model of (3), but the same assumptions A-

D should also apply to the turnover factor model of (4) for estimating the number of 

factors.  
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Table 1: Summary Statistics 
Panel A: Number of Securities in Each Sample, Percentage of securities with missing observation in returns, Percentage of securities 
with missing observation in turnover. Common shares are from CRSP share codes 10 and 11, excluding stocks containing zeros in 
reported volume. 
 

Period Dates 
Number of firms in 
unbalanced panel 

Percent of firms 
missing returns 

Percent of firms 
missing turnover 

Number of firms in 
balanced panel 

Number of 
error 1 firms 

Number of 
error 2 firms 

Number of 
error 3 firms 

1 1962-1966 2407 17.41% 17.21% 1595 209 3 67 
2 1967-1971 2819 24.59% 24.39% 1562 395 3 115 
3 1972-1976 2815 12.61% 12.56% 1998 174 9 25 
4 1977-1981 2762 18.50% 18.26% 1788 318 2 64 
5 1982-1986 2580 21.34% 21.03% 1513 347 17 93 
6 1987-1991 2519 25.56% 25.22% 1353 382 73 94 
7 1992-1996 2788 25.66% 25.41% 1441 472 39 148 

 
Panel B: Summary statistics for monthly value-weighted excess return and turnover of NYSE and AMEX ordinary common shares for 
July 1962 to December 1996. Turnover and returns are measured in percentages (annualized). We report mean, SD, and 
autocorrelation for the whole sample.  

 Value-weighted excess return  Value-weighted turnover 
 Total Systematic Idiosyncratic  Total Systematic Idiosyncratic 

Period mean stand. dev. R1 stand. dev Stand. dev  Mean stand. dev. R1 stand. dev stand. dev 
1 9.18% 9.90% 2.33% 10.04% 2.53%  11.45% 0.66% 59.16% 0.60% 0.28% 
2 5.85% 15.36% 9.25% 15.00% 3.60%  18.18% 0.70% 30.04% 0.67% 0.25% 
3 1.19% 17.45% 4.28% 17.20% 4.35%  18.90% 1.19% 58.04% 1.17% 0.32% 
4 6.08% 15.23% -2.14% 14.39% 4.55%  30.53% 2.26% 74.45% 2.23% 0.46% 
5 14.65% 14.56% -10.90% 14.15% 3.50%  60.96% 3.41% 61.73% 3.33% 0.93% 
6 10.75% 18.74% 17.83% 18.53% 3.74%  63.52% 3.98% 47.43% 3.77% 1.18% 
7 11.41% 8.27% -14.11% 7.61% 3.17%  61.94% 2.24% 51.89% 2.12% 0.74% 



Table 2: Test of number of factors in the excess return and turnover models for balanced panels 

Incremental R2, θk , k = 1 ; :: :; 10 of the covariance matrix of weekly turnover and returns of NYSE and AMEX ordinary common 

shares in percentages for subperiods of the sample period from July 1962 to December 1996. We also report IC1 and average R2 for 

each sample periods. 

 Returns 

Period θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 # factors average R2 stdev R2 

1 24.07% 4.86% 2.76% 2.67% 2.40% 2.24% 2.13% 2.10% 2.02% 1.96% 2 28.93% 13.26% 

2 34.14% 4.26% 3.12% 2.14% 1.98% 1.91% 1.81% 1.70% 1.63% 1.54% 2 38.39% 11.47% 

3 35.66% 4.98% 3.36% 2.50% 2.25% 2.03% 1.83% 1.78% 1.66% 1.64% 3 43.99% 13.59% 

4 32.47% 4.83% 3.43% 3.07% 2.23% 1.86% 1.77% 1.63% 1.61% 1.53% 3 40.73% 13.73% 

5 23.22% 5.25% 3.45% 2.47% 2.39% 2.09% 1.93% 1.90% 1.81% 1.79% 2 28.47% 14.37% 

6 34.53% 5.10% 2.81% 2.57% 2.29% 1.97% 1.80% 1.73% 1.64% 1.56% 2 39.63% 17.00% 

7 10.87% 6.02% 3.11% 2.87% 2.58% 2.36% 2.22% 2.13% 2.09% 2.01% 2 16.89% 12.05% 

  

 Turnover 

Period θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 # factors average R2 stdev R2 

1 17.02% 6.47% 6.13% 4.08% 3.66% 3.21% 2.98% 2.92% 2.68% 2.52% 4 33.71% 16.63% 

2 17.95% 10.06% 7.58% 3.91% 3.23% 2.84% 2.64% 2.38% 2.14% 2.05% 5 42.73% 16.84% 

3 24.35% 11.70% 3.92% 3.77% 3.04% 2.80% 2.52% 2.34% 2.17% 1.99% 5 46.78% 18.32% 

4 18.09% 7.73% 5.83% 4.00% 3.33% 2.85% 2.71% 2.56% 2.31% 2.21% 4 35.66% 16.99% 

5 16.23% 10.59% 4.66% 4.11% 3.09% 2.77% 2.41% 2.27% 2.23% 2.04% 4 35.58% 15.50% 

6 17.78% 7.44% 4.84% 3.66% 3.25% 2.87% 2.55% 2.37% 2.24% 2.15% 4 33.72% 16.72% 

7 11.15% 6.31% 5.04% 4.62% 3.71% 3.13% 2.87% 2.52% 2.40% 2.22% 4 27.12% 15.40% 



Table 3: Simulation Test for the number of factors extracted for return and turnover Using PC Criterion 

The table presents the frequency on the number of factors extracted from return and turnover data over 100 simulations. The kmax is 

set to be 10. Each simulation involves the draw of a set of JxT individual return and turnover data. 

Return  Frequency found in 100 simulation studies   

Time period True k 1 2 3 4 5 6 Mean k Std k 

1 2 6% 94% 0% 0% 0% 0% 1.94 0.24 

2 2 0% 100% 0% 0% 0% 0% 2.00 0.00 

3 3 0% 36% 64% 0% 0% 0% 2.64 0.48 

4 3 0% 14% 86% 0% 0% 0% 2.86 0.35 

5 2 0% 100% 0% 0% 0% 0% 2.00 0.00 

6 2 0% 100% 0% 0% 0% 0% 2.00 0.00 

7 2 1% 99% 0% 0% 0% 0% 1.99 0.10 

          

Turnover  Frequency found in 100 simulation studies   

Time period True k 1 2 3 4 5 6 mean k Std k 

1 4 0% 0% 11% 89% 0% 0% 3.89 0.31 

2 5 0% 0% 0% 33% 67% 0% 4.67 0.47 

3 5 0% 0% 0% 23% 77% 0% 4.77 0.42 

4 4 0% 0% 5% 95% 0% 0% 3.95 0.22 

5 4 0% 0% 3% 97% 0% 0% 3.97 0.17 

6 4 0% 0% 8% 92% 0% 0% 3.92 0.27 

7 4 0% 0% 13% 87% 0% 0% 3.87 0.34 
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Table 4: Simulation Results on the Factor Number Difference Using PC Criterion 

The table presents the Type I and Type II Error Estimates for test on the difference 

between the number of return factors and the number of turnover factors based on 100 

simulations for each time period. Each simulation involves the draw of a set of JxT 

individual return and turnover data. Here, kmax is set to be 10. For type I error estimates, 

we assume that the true numbers of return and turnover factors are three. 

 

Panel A: Type I Error Estimates based on 100 Simulation for Each Time Period 

Time period 

Difference 

Found -3 -2 

Frequency 

-1 

Found 

0 1 2 

1 -2 0% 1% 67% 32% 0% 0% 

2 -3 0% 0% 25% 75% 0% 0% 

3 -2 0% 0% 16% 82% 2% 0% 

4 -1 0% 0% 11% 88% 1% 0% 

5 -2 0% 0% 20% 80% 0% 0% 

6 -2 0% 0% 41% 58% 1% 0% 

7 -2 0% 0% 50% 50% 0% 0% 

 

Panel B: Type II Error Estimates based on 100 Simulation for Each Time Period 

  Frequency   Found 

Time period True K-K’ -4 -3 -2 -1 0 1 

1 -2 0% 5% 85% 10% 0% 0% 

2 -3 0% 67% 33% 0% 0% 0% 

3 -2 0% 28% 57% 15% 0% 0% 

4 -1 0% 0% 14% 81% 5% 0% 

5 -2 0% 0% 97% 3% 0% 0% 

6 -2 0% 0% 92% 8% 0% 0% 

7 -2 0% 1% 86% 13% 0% 0% 



Table 5: Test of number of factors in the excess return and turnover models for unbalanced panels 
Incremental R2 θκ , k = 1 ; :: :; 10 of the covariance matrix of weekly turnover and returns of NYSE and AMEX ordinary common 

stocks for subperiods of the sample period from July 1962 to December 1996. We also report IC1 and average R2 for each sample 

periods. 

 Returns 

Period θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 # factors average R2 stdev R2 

1 28.31% 6.94% 5.26% 3.22% 3.31% 2.63% 2.47% 2.10% 1.96% 1.81% 3 40.51% 23.92% 

2 42.37% 5.50% 3.89% 3.34% 2.14% 2.10% 2.39% 1.73% 1.95% 1.34% 7 61.72% 21.57% 

3 37.67% 6.66% 3.71% 3.09% 2.05% 2.45% 2.09% 1.95% 1.68% 1.64% 6 55.63% 19.71% 

4 36.83% 7.38% 4.47% 2.78% 2.66% 2.10% 2.29% 1.78% 2.03% 1.38% 6 56.21% 22.33% 

5 28.44% 6.26% 5.41% 3.40% 3.07% 3.21% 2.56% 2.68% 1.87% 1.72% 4 43.51% 25.32% 

6 39.92% 8.26% 4.05% 3.70% 3.19% 1.83% 2.57% 2.04% 1.70% 1.34% 8 65.55% 23.48% 

7 18.94% 8.32% 5.86% 5.51% 3.96% 2.68% 2.52% 2.64% 1.98% 1.88% 5 42.58% 30.66% 

              

 Turnover 

Period  θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 # factors average R2 stdev R2 

1 20.47% 8.62% 6.20% 5.71% 6.24% 3.14% 4.26% 3.05% 2.49% 2.28% 9 60.17% 24.92% 

2 24.59% 13.86% 8.65% 5.93% 3.33% 3.66% 2.73% 2.17% 2.48% 1.38% 9 67.40% 24.09% 

3 26.83% 12.34% 5.97% 5.04% 3.50% 2.95% 2.95% 2.22% 2.27% 1.77% 7 59.58% 23.41% 

4 18.69% 10.67% 10.24% 4.53% 5.76% 2.97% 2.34% 2.67% 2.26% 2.07% 8 57.87% 26.12% 

5 16.72% 14.50% 8.07% 5.69% 6.36% 3.87% 3.30% 2.10% 1.92% 1.53% 7 58.52% 26.66% 

6 19.40% 8.55% 14.01% 4.05% 6.45% 3.31% 3.02% 2.02% 2.02% 1.56% 9 62.82% 26.51% 

7 18.35% 12.62% 6.55% 8.02% 3.98% 4.52% 2.56% 2.57% 2.04% 1.53% 8 59.18% 29.59% 



Table 6: The determinants of turnover factors  

Report OLS coefficients (and their t-statistics below these between parenthesis) as well as R2 of regressing return and turnover factors 

on Fama French factors for each sample period. The number below R2 gives the P-value of the F-test of joint significance for the 

coefficients.  
 

 Return factor 1      Turnover factor 1     

Period Constant Mkt-RF SMB HML R2  Constant Mkt-RF SMB HML R2 

1 -0.268 0.259 0.162 0.099 98.49%  0.026 -0.104 0.226 0.022 27.64% 

 -14.915 44.056 21.187 9.474 0.00%  0.209 -2.551 4.284 0.311 0.10% 

2 -0.135 0.167 0.113 0.040 99.26%  -0.102 -0.035 0.175 0.069 25.31% 

 -11.730 54.299 27.362 8.089 0.00%  -0.889 -1.122 4.208 1.377 0.09% 

3 0.016 -0.145 -0.117 -0.054 99.10%  -0.025 0.052 0.002 0.028 7.22% 

 1.174 -53.216 -29.859 -12.337 0.00%  -0.189 1.889 0.040 0.631 23.73% 

4 0.184 -0.183 -0.128 -0.057 98.16%  -0.055 -0.030 0.050 0.036 3.77% 

 9.454 -32.799 -15.551 -7.039 0.00%  -0.390 -0.730 0.846 0.615 53.80% 

5 0.199 -0.229 -0.107 -0.014 98.25%  0.008 0.066 0.055 -0.074 22.16% 

 9.736 -43.931 -11.431 -1.549 0.00%  0.061 1.909 0.878 -1.211 0.27% 

6 -0.094 0.179 0.086 0.026 98.76%  -0.005 0.013 0.048 -0.029 3.41% 

 -6.294 52.565 13.894 2.991 0.00%  -0.035 0.435 0.871 -0.383 58.12% 

7 -0.422 0.405 0.135 0.110 97.08%  -0.047 -0.021 0.040 0.090 5.41% 

 -16.517 41.466 14.360 10.770 0.00%  -0.324 -0.376 0.744 1.553 36.98% 



 
Table 7: The time series relationship between components of volatility and turnover 

Time series regression of systematic volatility and idiosyncratic volatility on systematic turnover and idiosyncratic turnover (value 
weight) and vice versa.  The number below the R2 is the P value for the joint F-test that the regression coefficients are all zero. Include 
lags for predictive analysis. The variables are de-trended.  
 

 Constant Sys. Vol Sys. Vol -1 Sys. Vol -2 Idio. Vol Idio. Vol -1 Idio. Vol -2 R2 

Total Turnover 2.43 435.47 10.58 51.98 -1090 -1394 -1223 28.8% 

 10.93 12.70 0.30 1.49 -1.44 -1.86 -1.63 0.0% 

         

Sys. Turnover 2.48 360.6 23.16 76.17 -1046 -1266 -1127 22.8% 

 11.32 10.66 0.68 2.22 -1.40 -1.71 -1.53 0.0% 

         

Idio. Turnover -0.01 3.37 0.15 2.12 -18.21 -29.57 -5.23 5.9% 

 -1.91 4.18 0.19 2.59 -1.02 -1.68 -0.30 0.0% 



Table 8: The impact of asset risk on turnover (contemporaneous) 

Cross-sectional regressions of median monthly turnover of NYSE and AMEX ordinary common shares for sub-periods from July 

1962 to December 1996. Report OLS coefficients as well as R2 of regressing median turnover on turnover betas, return betas, and 

idiosyncratic risks.  Report OLS coefficients as well as R2 of regressing median turnover on turnover betas, lagged return betas, and 

lagged idiosyncratic risks.  Same sets of regressions again plus a set of firm specific variables.  (Four regressions for each time 

period.). The number below the R2 is the P value for the joint F-test that the regression coefficients are all zero.  

Period Constant TO beta 1 TO beta 2 TO beta 3 TO beta 4 TO beta 5 Ret beta 1 Ret beta 2 Ret beta 3 R2 

           

1 0.007 0.001 0.001 -0.003 -0.003     4.18% 

 19.632 1.892 2.600 -5.273 -5.713     0.00% 

 0.005 0.001 0.001 -0.002 -0.003  0.049 0.127  6.89% 

 7.476 4.047 2.532 -3.863 -5.816  2.534 6.785  0.00% 

           

2 0.008 -0.001 -0.001 0.001 -0.003 -0.001    9.54% 

 19.327 -6.580 -3.833 2.187 -7.554 -1.342    0.00% 

 0.004 -0.001 -0.001 0.001 -0.003 -0.001 0.070 0.094  11.90% 

 4.496 -4.660 -3.222 3.335 -8.099 -2.738 4.620 5.602  0.00% 

           

3 0.001 -0.003 -0.005 -0.002 0.001 0.000    16.56% 

 2.278 -9.298 -10.758 -3.867 1.260 -0.002    0.00% 

 0.011 0.001 -0.005 -0.001 0.001 0.000 0.174 0.079 -0.020 37.78% 

 16.739 2.379 -12.870 -1.693 2.206 0.241 18.265 8.515 -1.736 0.00% 



           

4 0.009 -0.002 0.002 0.000 -0.001     3.61% 

 24.123 -5.000 5.998 0.691 -2.309     0.00% 

 0.007 0.000 0.001 -0.002 0.000  -0.055 -0.120 -0.112 11.67% 

 8.934 -1.190 3.273 -3.949 -1.020  -3.724 -7.174 -6.922 0.00% 

           

5 0.010 0.001 -0.004 -0.002 0.000     7.32% 

 15.157 2.983 -9.256 -2.819 -0.079     0.00% 

 0.012 0.002 0.000 -0.003 0.001  0.030 -0.447  35.98% 

 13.767 4.532 -1.012 -5.699 1.887  1.476 -24.780  0.00% 

           

6 0.003 0.002 0.001 -0.001 0.002     3.31% 

 3.761 4.333 2.037 -1.242 3.477     0.00% 

 0.008 0.001 0.002 0.001 0.002  -0.097 -0.301  18.69% 

 6.317 1.004 4.336 1.544 3.768  -4.583 -13.196  0.00% 

           

7 0.008 -0.001 0.001 0.000 0.001     1.37% 

 18.640 -3.146 1.778 -0.942 1.219     0.05% 

 0.007 -0.001 0.001 -0.001 0.000  0.069 -0.075  2.68% 

 9.749 -2.894 1.751 -1.111 0.851  2.777 -4.114  0.00% 
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Table 9: Relationship between idiosyncratic volatilities and turnover  

Regression of the idiosyncratic volatility on idiosyncratic turnover volatility. Reported 

are the OLS coefficients (and their t-statistics below), the R2. The number below the R2 is 

the P value for the joint F-test that the regression coefficients are all zero.  

 

Period Constant idio vol R2 

1 -0.467 5.729 40.28% 

 -9.925 32.787 0.00% 

2 -1.163 8.379 59.54% 

 -22.795 47.929 0.00% 

3 -0.119 3.720 27.91% 

 -2.930 27.806 0.00% 

4 -0.158 4.879 35.60% 

 -3.583 31.428 0.00% 

5 0.488 3.228 15.98% 

 8.781 16.958 0.00% 

6 0.975 1.556 6.12% 

 19.266 9.389 0.00% 

7 0.380 3.802 26.94% 

 7.994 23.041 0.00% 
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Figure 1a: VW total turnover 
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Figure 1b: VW systematic turnover (annualized) 
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Figure 1c: VW idiosyncratic turnover(annualized) 
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Figure 1d: VW idiosyncratic turnover (Absolute Value, 12-month Moving Average) 
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Figure 2: Total Turnover for Four Decile Portfolios (1/4/7/10, VW) 
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Figure 3: Cross Sectional Variation of Mean Turnover (M TO) and Turnover Betas 
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