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Service robots are expected to operate in specific environments, where the presence of humans
plays a key role. It is thus essential to enable for a natural and effective communication among
humans and robots. One of the main features of such robotics platforms is the ability to react to
spoken commands. This requires a comprehensive understanding of the user utterance to trigger
the robot reaction. Moreover, the correct interpretation of linguistic interactions depends on
physical, cognitive and language-dependent aspects related to the environment. In this work, we
present the latest version of LU4R - adaptive spoken Language Understanding 4 Robots, a Spo-
ken Language Understanding framework for the semantic interpretation of robotic commands,
that is sensitive to the operational environment. The overall system is designed according to a
Client/Server architecture in order to be easily deployed in a vast plethora of robotic platforms.
Moreover, an improved version of HuRIC - Human-Robot Interaction Corpus is presented. The
main novelty presented in this paper is the extension to commands expressed in Italian. In order
to prove the effectiveness of such system, we also present some empirical results in both English
and Italian computed over the new HuRIC resource.

1. Introduction

One of the most challenging issues that Service Robotics is facing in the recent years
is the need of high level interactions and collaborations between humans and robots.
In such a robotic context, human language is one of the most natural ways of commu-
nication as for its expressiveness and flexibility. However, an effective communication
in natural language between humans and robots is challenging even for the different
cognitive abilities involved during the interaction. In fact, for a robot to react to a
simple command like “take the pillow on the couch”, a number of implicit assumptions
should be met. First, at least two entities, a pillow and a couch, must exist in the
environment and the speaker must be aware of such entities. Accordingly, the robot
must have access to an inner representation of the objects, e.g. an explicit map of the
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environment. Second, mappings from lexical references to real world entities must be
developed or made available. In this respect, the Grounding process (Harnad 1990)
links symbols (e.g. words) to the corresponding perceptual information. Hence, robot
interactions need to be grounded, as meaning depends on the state of the physical world
and the interpretation crucially interplays with perception, as pointed out by psycho-
linguistic theories (Tanenhaus et al. 1995). The integration of perceptual information
derived from the robot’s sensors with an ontologically motivated description of the
world has been adopted as an augmented representation of the environment, in the
so-called semantic maps (Nüchter and Hertzberg 2008). In these maps, the existence of
real world objects can be associated to lexical information, in the form of entity names
given by a knowledge engineer or spoken by a user for a pointed object, as in Human-
Augmented Mapping (Diosi, Taylor, and Kleeman 2005; Gemignani et al. 2016). While
Spoken Language Understanding (SLU) for Interactive Robotics have been mostly
carried out over the only evidences specific to the linguistic level (see, for example,
(Chen and Mooney 2011; Matuszek et al. 2012)), we argue that such process should be
context-aware, in the sense that both the user and the robot live in and make references
to a shared environment. For example, in the above command, “taking” is the intended
action whenever a pillow is actually on the couch, so that “the pillow on the couch” refers
to a single argument. On the contrary, the command may refer to a “bringing” action,
when no pillow is on the couch and the pillow and on the couch correspond to different
semantic roles.

We are interested in an approach for the interpretation of robotic spoken commands
that is consistent with (i) the world (with all the entities composing it), (ii) the Robotic
Platform (with all its inner representations and capabilities), and (iii) the linguistic
information derived from the user’s utterance.

We foster here the approach presented in (Bastianelli et al. 2016a), where a machine
leaning method for Spoken Language Understanding forces the interpretations to be
consistent with the environment: this is obtained by extending the linguistic evidences
that can be extracted from the uttered commands with perceptual evidences directly de-
rived by the semantic map of a robot. In particular, the interpretation process is modeled
as a sequence labeling problem where the final labeler is trained by applying Structured
Learning methods over realistic commands expressed in domestic environments, as in
(Bastianelli et al. 2017). The resulting interpretations adhere to Frame Semantics (Fill-
more 1985): this well-established theory provides a strong linguistic foundations to the
overall process while enforcing its applicability, as it is made independent from the vast
plethora of existing robotic platforms.

Such methodologies have been implemented in a free and ready-to-use framework,
here presented, whose name is LU4R - an adaptive spoken Language Understanding
framework for(4) Robots. LU4R is entirely coded in Java and, thanks to its Client/Server
architectural design, it is completely decoupled from the robot, enabling for an easy and
fast deployment on every platform1.

As the aforementioned approaches relies on realistic data, in this work we also
present an extended version of HuRIC - a Human Robot Interaction Corpus, originally
introduced in (Bastianelli et al. 2014). HuRIC is a collection of realistic spoken com-
mands that users might express towards generic service robots. In this resource, each
sentence is labeled with morpho-syntactic and syntactic information (e.g. dependency
relations, POS tags, . . . ), along with its correct interpretation in terms of semantic frames

1 LU4R can be downloaded at http://sag.art.uniroma2.it/lu4r.html
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(Baker, Fillmore, and Lowe 1998). We present here a new version of HuRIC that has been
enhanced in terms of (i) the number of annotated sentences in English and (ii) a brand
new section, where Italian commands have been added (and aligned) to the already
existing English counterparts. At the best of our knowledge this is the first dataset of
spoken robotic commands in Italian2.

The extended version of HuRIC supports a larger and more significant evaluation
of LU4R, that highlights its robustness towards commands expressed through the
investigated languages. Specifically, we observed very good performances w.r.t. both
languages, whose outcomes are encouraging for the deployment of LU4R (and the
underlying methods and psycho linguistic assumptions) in realistic applications.

The rest of the paper is structured as follows. Section 2 provides a short survey
of existing approaches to SLU in Human-Robot Interaction. Section 3 describes the
semantic analysis process that represents the core of the LU4R system. In Section 4,
an architectural description of the entire system is provided, as well as an overall intro-
duction about its integration with a generic robot. Section 5 describes the new release of
HuRIC, while in Section 6 we demonstrate the applicability of the proposed system in
the interpretation of commands in English and Italian, by reporting our experimental
results. Finally, Section 7 derives the conclusions.

2. Related Work

In Robotics, Spoken Language Understanding (SLU) has been usually treated by fol-
lowing two orthogonal approaches: grammar-based and data-driven.

Grammar-based systems for speech recognition model language phenomena
through the definition of grammars. Moreover, they provide mechanisms to enrich the
syntactic structure with semantic information, to build a semantic representation during
the transcription process (Bos 2002; Bos and Oka 2007). In (Bastianelli et al. 2016b),
SLU supporting manifold robotics tasks is performed jointly with speech recognition,
through the definition of ad-hoc grammars. This is possible thanks to the Speech Recogni-
tion Grammar Specification3, that allows to inject semantic attachment directly within the
grammar specification. Other approaches are based on formal languages, as in (Kruijff
et al. 2007), where Combinatory Categorial Grammar (CCG) are applied for spoken
dialogues in the context of Human-Augmented Mapping, or exploit template-based
algorithms (see (Perera and Veloso 2015)) to extract a semantic interpretation of robotic
commands from the corresponding syntactic trees.

Data-driven methods have been also applied to SLU for robotic application. Exam-
ples are (MacMahon, Stankiewicz, and Kuipers 2006) and (Chen and Mooney 2011),
where the parsing of route instructions is addressed as a Statistical Machine Transla-
tion task between the human language and a synthesized robot language. The same
approach is applied in (Matuszek, Fox, and Koscher 2010) to learn translation model
between natural language and formal descriptions of paths. A probabilistic CCG is used
in (Matuszek et al. 2012) to map natural navigational instructions into robot executable
commands. The same problem is faced in (Kollar et al. 2010; Duvallet, Kollar, and Stentz
2013), where Spatial Description Clauses are parsed from sentences through sequence
labeling approaches. In (Tellex et al. 2011), the authors address natural language in-
structions about motion and grasping, that are mapped into Generalized Grounding

2 The extended version of HuRIC will be released at http://sag.art.uniroma2.it/huric.html
3 http://www.w3.org/TR/speech-grammar/

61



Italian Journal of Computational Linguistics Volume 3, Number 1

Graphs (G3). In (Fasola and Matarić 2013a, 2013b), SLU for pick-and-place instructions
is performed through a Bayesian classifier trained over a specific corpus. In (Misra
et al. 2016), the authors define a probabilistic approach to ground natural language
instructions within a changing environment.

2.1 Contribution

On the one hand, LU4R embodies most of the capabilities in terms of linguistic gen-
eralization characterizing the presented data-driven approaches. On the other hand,
it introduces several novelties that are missing in the existing literature. First, the
interpretation is performed and provided in terms of semantic frames, according to the
Frame Semantics theory (Fillmore 1985). Hence, the resulting logic form representing
the meaning of a command will be supported by a robust linguistic theory. Moreover,
as both the proposed semantic parsing approach and the nature of such a theory
are domain-independent, the development of a SLU in other domains will depend
mostly on the existence of training data. Second, the interpretation process is context-
dependent, whenever additional knowledge derived from perception is discriminating
against multiple possible interpretations.

3. The Language Understanding Cascade

A command interpretation system for a robotic platform must produce interpretations
of user utterances. In this paper, the understanding process is based on the theory of the
Frame Semantics (Fillmore 1985); in this way, we aim at giving a linguistic and cognitive
basis to the interpretations. In particular, we consider the formalization promoted in
the FrameNet (Baker, Fillmore, and Lowe 1998) project, where actions expressed in
user utterances can be modeled as semantic frames. Each frame represents a micro-
theory about a real world situation, e.g. the actions of bringing or motion. Such micro-
theories encode all the relevant information needed for their correct interpretation. This
information is represented in FrameNet via the so-called frame elements, whose role is
to specify the participating entities in a frame, e.g. the THEME frame element represents
the object that is taken in a bringing action.

As an example, let us consider the following sentence: “bring the pillow on the couch”
(“porta il cuscino sul divano”, in Italian). This sentence can be intended as a command
whose effect is to instruct a robot that, in order to achieve the task, has to: (i) move
towards a pillow, (ii) pick it up, (iii) move to the couch and, finally, (iv) release the
object on the couch. The language understanding cascade should produce its FrameNet-
annotated version, that is:

[bring]Bringing [the pillow]THEME [on the couch]GOAL (1)

or

[porta]Bringing [il cuscino]THEME [sul divano]GOAL (2)

whenever the command is expressed through the Italian language.
Semantic frames can thus provide a cognitively sound bridge between the actions

expressed in the language and the implementation of such actions in the robot world,
namely plans and behaviors.
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Figure 1
The SLU cascade
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Figure 2
Example of a dependency graph and POS tags associated to “bring the pillow on the couch”

The whole SLU process has been designed as a cascade of reusable components,
as shown in Figure 1. As we deal with vocal commands, their (possibly multiple)
hypothesized transcriptions derived from an Automatic Speech Recognition (ASR)
engine constitute the input of this process. It is composed by four modules, whose final
output is the interpretation of a utterance, to be used to implement the corresponding
robotic actions. First, Morpho-syntactic and syntactic analysis is performed over the
available utterance transcriptions by applying morphological analysis, Part-of-Speech
tagging and syntactic analysis. In particular, dependency trees are extracted from the
sentence as well as POS tags, as shown in Figure 2. Then, if more than one transcription
hypothesis is available, the Re-ranking module can be activated to compute a new
ranking of the hypotheses, in order to get the best transcription out of the initial ranking.
This module is realized through a learn-to-rank approach, where a Support Vector
Machine exploiting a combination of linguistic kernels is applied, according to (Basili
et al. 2013). Third, the best transcription is the input of the Action Detection (AD)
component. The evoked frames in a sentence are detected, along with the corresponding
evoking words, the so-called lexical units. Let us consider the recurring sentence: the
AD should produce the following interpretation [bring]Bringing the pillow on the couch. The
final step is the Argument Labeling, where a set of frame elements is retrieved for
each frame. This process is realized in two sub-steps. First, the Argument Identification
(AI) finds the spans of all the possible frame elements, producing the following form
[bring]Bringing [the pillow] [on the couch]. Then, the Argument Classification (AC) assigns the
suitable label (i.e. the frame element) to each span thus returning the final tagging
shown in the Example 1.

The AD, AI and AC steps are modeled as a sequential labeling task, as in (Bastianelli
et al. 2016a). The Markovian formulation of a structured SVM proposed in (Altun,
Tsochantaridis, and Hofmann 2003) is applied to implement the sequential labeler,
known as SVMhmm. In general, this learning algorithm combines a local discriminative
model, which estimates the individual observation probabilities of a sequence, with
a global generative approach to retrieve the most likely sequence, i.e. tags that better
explain the whole sequence. In other words, given an input sequence x = (x1 . . . xl) ∈ X
of feature vectors x1 . . . xl, SVMhmm learns a model isomorphic to a k-order Hidden
Markov Model, to associate x with a set of labels y = (y1 . . . yl) ∈ Y .
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A sentence s is here intended as a sequence of words wi, each modeled through
a feature vector xi and associated to a dedicated label yi, specifically designed for
each interpretation process: in any case, features combine linguistic evidences from a
targeted sentences, but also features derived from the semantic map (when available)
in order to synthesize information about existence and position of entities around the
robot, as discussed in more details in (Bastianelli et al. 2016a) During training, the SVM
algorithm associates words to step-specific labels: linear kernel functions are applied
to different types of features, ranging from linguistic to perception-based features,
and linear combinations of kernels are used to integrate independent properties. At
classification time, given a sentence s = (w1 . . . w|s|), the SVMhmm efficiently predicts
the tag sequence y = (y1 . . . y|s|) using a Viterbi-like decoding algorithm.

Notice that both the re-ranking and the semantic parsing phases can be realized in
two different settings, depending on the type of features adopted in the labeling process.
It is this possible to rely upon linguistic information to solve the given task, or also
on perceptual knowledge coming from a semantic map. In the first case, that we call
basic setting, the information used to solve the task comes from linguistic inputs, as the
sentence itself or external linguistic resources. These models correspond to the methods
discussed in (Bastianelli et al. 2017; Basili et al. 2013). In the second case, the simple
setting, when perceptual information is made available to the chain, a context-aware
interpretation is triggered, as in (Bastianelli et al. 2016a). Such perceptual knowledge
is mainly exploited through a linguistic grounding mechanism. This lexically-driven
grounding is estimated through distances between filler (i.e. argument heads) and entity
names. Such a semantic distance integrates metrics over word vectors descriptions and
phonetic similarity. Word semantic vectors are here acquired through corpus analysis,
as in Distributional Lexical Semantic paradigms (Turney and Pantel 2010). They allow
to map referential elements, such as lexical fillers, e.g. couch, to entities, e.g. a sofa,
by thus modeling synonymy or co-hyponymy. Conversely, phonetic similarities are
smoothing factors against possible ASR transcription errors, e.g. pitcher and picture,
allowing to actually cope with spoken language. Once links between fillers and entities
have been activated, the sequential labeler is made sensitive to additional features, that
inject perceptual information both in the learning and the tagging process, e.g. the
presence/absence of referred objects in the environment. As a side effect, the above
mechanism provides the robot with the set of linguistically-motivated groundings, that
can be potentially used for any further grounding process.

This information can be crucial in the correct interpretation of ambiguous com-
mands, which depends on the specific environmental setting in which the robot op-
erates. A straightforward example is the command “bring the pillow on the couch in the
living room”. Such a sentence may have two different interpretations, according to the
configuration of the environment. In fact, whenever the couch is located into the living
room, the goal of the Bringing action is the couch and interpretation will be:

[bring]Bringing [the pillow]THEME [on the couch in the living room]GOAL

Conversely, if the couch is outside the living room, it means that probably the pillow is
already on the couch. Hence, the interpretation of the sentence will be different, due to
different argument spans, and the couch becomes the goal of the Bringing action:

[bring]Bringing [the pillow on the couch]THEME [in the living room]GOAL
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Such ambiguities are mostly cross-lingual. In fact, this phenomenon can be observed
even in the corresponding Italian command “porta il cuscino sul divano in sala da pranzo”.
However, the proposed approach is robust towards different languages, as the disam-
biguation of the interpretation depends just on the configuration of the environment
and not on the targeted language.

Additional details about the pure linguistic approach can be found in (Bastianelli et
al. 2017), whereas (Bastianelli et al. 2016a) provides a detailed description of the context
aware SLU process.

4. LU4R - adaptive spoken Language Understanding 4 Robots

The architecture of the LU4R system considers two main actors, as shown in Figure 3:
the Robotic Platform and the LU4R chain (or LU4R), where the processing cascade of the
latter component has been introduced in the previous Section.

LU4R
(Server)

Robotic Platform
(Client)

Response

LU4R ROS interface
(SLU Orchestrator)

Response

Hypotheses

Perceived entities

List of
hypotheses

G
ro

un
di

ng

Support Knowledge Base

Domain
Model

Semantic
Map

User 
Model

Platform 
Model

Spoken
command

Interpretation

LU4R
Android app

(ASR)

Figure 3
The LU4R architecture

The Client-Server communication schema between LU4R and the Robot allows for
the independence from the Robotic Platform, in order to maximize the re-usability
and integration in heterogeneous robotic settings. The SLU process exhibits semantic
capabilities (e.g. disambiguation, predicate detection or grounding into robotic actions
and environments) that are designed to be general enough to be representative of a large
set of application scenarios.

It is obvious that an interpretation process must be achieved even when no infor-
mation about the domain/environment is available, i.e. a scenario involving a blind but
speaking robot, or when the actions a robot can perform are not made explicit. This
is the case when the command “take the pillow on the couch” is not paired with any
additional information and the ambiguity with respect to the evoked frame, i.e. Taking
vs. Bringing, cannot be resolved. At the same time, LU4R makes available methods
to specialize its semantic interpretation process to individual situations where more
information is available about goals, the environment and the robot capabilities. These
methods are expected to support the optimization of the core SLU process against a
specific interactive robotics setting, in a cost-effective manner. In fact, whenever more
information about the environment perceived by the robot (e.g. a semantic map) or
about its capabilities is provided, the interpretation of a command can be improved by
exploiting a more focused scope. That is: whenever the sentence “take the pillow on the
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couch” is provided along with information about the presence and possible positions of
a pillow on a couch.

In order to better describe the different operating modalities of LU4R, some assump-
tions toward the Robotic Platform must be made explicit: this will allow to precisely
establish functionalities and resources that the robot needs to provide to unlock the
more complex processes. These information will be used to express the experience
that the robot is able to share with the user (i.e. the perceptual knowledge about the
environment where the linguistic communication occurs and some lexical information
and properties about objects in the environment) and some level of awareness about
its own capabilities (e.g. the primitive actions that the robot is able to perform, given its
hardware components). In the following, each component of the architecture in Figure 3
will be discussed and analyzed.

4.1 The Robotic Platform

The LU4R system contemplates a generic Robotic Platform, whose task, domain and
physical setting are not necessarily specified. In order to make the SLU process inde-
pendent from the above specific aspects, we assume that the platform requires, at least,
the following modules:

� an Automatic Speech Recognition (ASR) system;
� a SLU Orchestrator;
� a Grounding and Command Execution Engine;
� a Physical Robot.

In developing LU4R, we implemented both the ASR system and a simple SLU
Orchestrator. The ASR is realized by the LU4R Android app, exploiting the Android
environment, whereas the SLU orchestrator is implemented as a ROS node, through
the LU4R ROS interface.

Additionally, the optional component Support Knowledge Base is expected to main-
tain and provide the contextual information discussed above. While the discussion
about the Robotic Platform is out of the scope of this work, all the other components
are hereafter shortly summarized.

LU4R Android app. An ASR engine allows to transcribe a spoken utterance into one
or more transcriptions. In the latest release, the ASR is performed through an ad-hoc
Android application, the LU4R Android app (Fig. 4).

It relies on the official Google ASR API4 and offers valuable performances for an
off-the-shelf solution. The main requirement of this solution is that the device hosting
the software must feature an Internet connection, in order to provide transcriptions
for the spoken utterance. The App can be deployed on both Android smartphones
and tablets. In the latter case, even though the communication protocol remains the
same, the tablet will be part of the robotic platform. The tablet can be provided with a
directional condenser microphone and speakers.

4 http://goo.gl/4ZkdU
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Figure 4
The LU4R Android app

The communication with the entire system is realized through TCP Sockets. In
this setting, the LU4R Android app implements a TCP Client, feeding LU4R with lists
of hypotheses through a middle-layer. To this end, the LU4R ROS interface has been
integrated in the loop, acting as the TCP Server.

Once a new sentence is uttered by the user, this component outputs a list of hypoth-
esized transcriptions, that are forwarded to the LU4R ROS interface.

LU4R ROS interface. The LU4R ROS interface implements a TCP Server for the LU4R
Android app, here coded as a ROS node waiting for Client requests. Once a new
request is received (a list of transcriptions for a given spoken sentence), this module
is in charge of extracting the perceived entities from a structured representation of the
environment (here, a sub-component of the Support Knowledge Base) and sending the
list of hypothesized transcriptions to LU4R along with the list of the perceived entities.

The communication protocol requires the serialization of such information in two
different JSON objects. However, in order to obtain the desired interpretation, only
the list of transcription is mandatory. In fact, even though environmental information
is essential for the perception-driven chain, whenever it is not provided, the chain
operates in a blind setting.

Moreover, this module has been decoupled from the LU4R chain as it can be
employed for other purposes, such as tele-operating the robot by means of a virtual
joypad coded into the Android App (Fig. 4).

This component, mediating between the LU4R Android App, the LU4R Chain and
the Robotic Platform, is provided along with the LU4R system, so that robustness in
the communication is guaranteed. Hence, the robotic developers are in charge of: (i) the
deployment of the ROS node into the target Robotic System; (ii) the definition of the
policies for the acquisition of perceptual knowledge; and (iii) the manipulation of the
structure representing the interpretation returned by the LU4R Chain. Even though this
module is actually a TCP Server for the LU4R Android App, it represents also the Client
interface toward the LU4R Chain.

Grounding and Command Execution. Even though the grounding process is placed at
the end of the loop, it is discussed here as it is a component of the Robotic Platform.
In fact, this process has been completely decoupled from the SLU process, as it may
involve perception capabilities and information unavailable to LU4R or, in general, out
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of the linguistic dimension. Nevertheless, this situation can be partially compensated
by defining mechanisms to exchange some of the grounding information with the
linguistic reasoning component. The grounding carried out by the robot is triggered
by a logical form expressing one or more actions through logic predicates, that poten-
tially correspond to specific frames. The output of LU4R embodies the produced logic
form: this latter exposes the recognized actions that are then linked to specific robotic
operations (primitive actions or plans). Correspondingly, the predicate arguments (e.g.
objects and location involved in the targeted action) are detected and linked to the
objects/entities of the current environment. A fully grounded command is obtained
through the complete instantiation of the robot action (or plan) and its final execution.

4.2 The LU4R Chain

The LU4R component implements the language understanding cascade described in
Section 3. It realizes the SLU service as a black-box component, so that the complexity
of each inner sub-task is hidden to the user. It is entirely coded in Java and released as a
single Jar file.

Morpho-syntactic and syntactic analysis is realized through the Stanford CoreNLP
suite (Manning et al. 2014) when English is the targeted language, and the Chaos parser
(Basili and Zanzotto 2002) for Italian commands. Conversely, the SVMhmm algorithm
for the three steps of the semantic analysis (namely, Action Detection, Argument Iden-
tification and Argument Classification) is implemented through the KeLP framework
(Filice et al. 2015).

The LU4R Chain is a service that can be invoked through HTTP communication. Its
implementation is realized through a server that keeps listening to natural language
sentences and outputs an interpretation for them. The communication between the
client of the service (the Robotic Platform) and the LU4R Chain is described in this
Section. The LU4R Chain requires an initialization phase, where the process is run and
initialized, followed by a service phase, where LU4R is ready to receive requests.

The initialization phase corresponds to create an instance of the chain, among the
ones defined in the previous Section, e.g. either basic or simple. The basic setting does
not contemplate perceptual knowledge during the interpretation process. Conversely,
the simple configuration relies on perceptual information, enabling a context-sensitive
interpretation of the command at the predicate level. During the initialization, a specific
output format can be chosen, among the available ones. For example, xdg is the default
output format, where the interpretation is given in the XDG format eXtended Dependency
Graph and XML compliant container (see (Basili and Zanzotto 2002)). In the amr format,
the interpretation is given in the Abstract Meaning Representation (see (Banarescu et
al. 2013)). Finally, cfr (Command Frame Representation) is a format for the predicates
(frames) produced by the chain defined in (Schneider et al. 2014), in the context of
RoCKIn competition. The language parameter allows to choose the operating language
of LU4R. At the moment, only en (English) and it (Italian) versions are supported.

Once the service has been initialized, it is possible to start asking for interpreting
user utterances. The server thus waits for messages carrying the utterance transcriptions
to be parsed. Each sentence here corresponds to a speech recognition hypothesis. Hence,
it can be paired with the corresponding transcription confidence score, useful in the
re-ranking phase. The body of the message must then contain the list of hypotheses
encoded as a JSON array, called hypotheses, where each entry is a transcription

paired with a confidence.
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Additionally, when the simple configuration is selected, the input can include the
list of entities populating the environment the robot is operating into (e.g. name of
rooms or furnitures and objects of the rooms), again encoded as a JSON array. Despite
of the representation of the environment adopted by the robot, this environment-
dependent interpretation process requires the following information for each entity

“perceived” by the robot:

� the type of each entity; it reflects the class to which each specific entity
belongs (e.g. it is an object, such as a table, book, pillow, or a location,
such as living_room or kitchen);

� the preferredLexicalReference used to refer to a class of objects; it is
crucial in order to enable a linguistic grounding between the commands
uttered by the user and the entities within the environment. These labels
are expected to be provided by the engineer initializing the robot. For
example, an entity of the class couch can be referred by the string sofa. If no
label is given, it is derived by the name of the corresponding class, so that
couch can be used to refer to the objects of the class couch;

� in the case the engineer provides more than one label, these can be
specified through alternativeLexicalReference, as a list of alternative
namings for a given entity;

� the position of the each entity is essential to determine shallow spatial
relations between entities (e.g. two object are near or far from each other).
To this end, each entity is associated with its corresponding coordinate in
the world, in terms of planar coordinates (x,y), elevation (z) and angle as
the orientation.

5. HuRIC 2.0: a multilingual corpus of robotic command

The computational paradigms adopted in LU4R are based on machine learning tech-
niques and depend strictly on the availability of training data. In order to properly train
and test our framework, we are developing a collection of datasets that together form
the Human-Robot Interaction Corpus5 (HuRIC), formerly presented in (Bastianelli et al.
2014).

HuRIC is based on Frame Semantics and captures cognitive information about
situations and events expressed in sentences. Differently from other corpora for Spo-
ken Language Understanding in Human-Robot Interaction, it is not system or robot
dependent both with respect to the kind of sentences and with respect to the adopted
formalism. HuRIC contains information strictly related to Natural Language Semantics
and it is decoupled from specific systems. The corpus exploits different situations
representing possible commands given to a robot in a house environment. HuRIC is
composed by different subsets, characterized by different order of complexity and they
are designed to stress in different ways a possible architecture. Each dataset includes a
set of audio files representing robot commands, paired with the correct transcription.

5 Available at http://sag.art.uniroma2.it/huric. The download page also contains a detailed
description of the release format.
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Table 1
HuRIC: some statistics

English Italian
Number of examples 656 214
Number of frames 18 14
Number of predicates 767 241
Number of roles 34 27
Predicates per sentence 1.17 1.13
Sentences per frame 36.44 15.29
Roles per sentence 2.04 1.83

Table 2
Distribution of frames and frame elements in the English dataset

Frame Ex Frame Ex Frame Ex
Motion 143 Bringing 153 Cotheme 39
THEME 23 THEME 153 COTHEME 39
GOAL 129 GOAL 95 SPEED 1
DIRECTION 9 AGENT 39 MANNER 9
PATH 9 BENEFICIARY 56 THEME 4
MANNER 4 SOURCE 18 PATH 1
DISTANCE 1 MANNER 1 GOAL 8
AREA 2 AREA 1 AREA 1
SOURCE 1
Locating 90 Inspecting 29 Taking 80
PHENOMENON 89 GROUND 28 AGENT 8
GROUND 34 DESIRED_STATE 9 THEME 80
COGNIZER 10 INSPECTOR 5 SOURCE 16
PURPOSE 5 UNWANTED_ENTITY 2 PURPOSE 2
MANNER 2
Change_direction 11 Arriving 12 Giving 10
THEME 1 GOAL 11 RECIPIENT 10
DIRECTION 11 PATH 5 THEME 10
ANGLE 3 MANNER 1 DONOR 4
SPEED 1 THEME 1 REASON 1

Placing 52 Closure 19 Change_operational_state 49
THEME 52 CONTAINER_PORTAL 8 AGENT 17
GOAL 51 AGENT 7 DEVICE 49
AGENT 7 CONTAINING_OBJECT 11 OPERATIONAL_STATE 43
AREA 1 DEGREE 2
Being_located 38 Attaching 11 Releasing 9
THEME 38 ITEM 6 THEME 9
LOCATION 34 GOAL 11 GOAL 5
PLACE 1 ITEMS 1
Perception_active 6 Being_in_category 11 Manipulation 5
PHENOMENON 6 ITEM 11 ENTITY 5
MANNER 1 CATEGORY 11

Each sentence is then annotated with: lemmas, POS tags, dependency trees6 and Frame
Semantics. Semantic frames and frame elements are used to represent the meaning of
commands, as, in our view, they reflect the actions a robot can accomplish in a home
environment. In this way, HuRIC can potentially be used to train all the modules of the
processing chain presented in Section 4.

With respect to the previous releases, in order to consider further robotic actions,
the release of LU4R required an extension of HuRIC in terms of new frames, such as

6 At the moment of writing the dependency trees associated to the Italian Sentences are still under
validation
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Table 3
Distribution of frames and frame elements in the Italian dataset

Frame Ex Frame Ex Frame Ex
Motion 32 Locating 27 Inspecting 4
GOAL 28 MANNER 2 GROUND 2
MANNER 1 PHENOMENON 27 UNWANTED_ENTITY 2
THEME 3 GROUND 6 INSTRUMENT 1
PATH 2 PURPOSE 1 DESIRED_STATE_OF_AFFAIRS 2
SOURCE 1 DIRECTION 1
Bringing 59 Cotheme 13 Placing 18
THEME 60 COTHEME 13 THEME 18
GOAL 26 GOAL 5 GOAL 17
BENEFICIARY 31 MANNER 6 AREA 1
SOURCE 8
Closure 10 Giving 7 Change_direction 9
CONTAINING_OBJECT 5 RECIPIENT 6 DIRECTION 9
CONTAINER_PORTAL 6 THEME 7 ANGLE 3
DEGREE 1 DONOR 1 SPEED 1
Taking 22 Being_located 14 Being_in_category 4
THEME 22 LOCATION 14 ITEM 4
SOURCE 8 THEME 12 CATEGORY 4
Releasing 8 Change_operational_state 14
THEME 8 DEVICE 14
PLACE 3

CHANGE_DIRECTION and, in general, frame elements: at the moment the English subset
of HuRiC contains 656 sentences. Most importantly, we extended HuRIC with a first set
of 214 commands in Italian. Almost all Italian sentences are translations of the original
commands in English and the corpus keeps also the alignment between those sentences.
We believe these alignments will support further researches in further areas, such as in
the context of Machine Translation.

The number of annotated sentences, number of frames and further statistics are
reported in Table 1. Detailed statistics about the number of sentences for each frame
and frame elements are reported in the Tables 2 and 3 for the English and Italian subsets,
correspondingly.

The current release of HuRIC is provided with a novel XML-based format, whose
extension is hrc. For each command we can store: (i) the whole sentence, (ii) the list
of the tokens composing it, along with the corresponding lemma and POS tag, (iii)
the dependency relations among tokens, and (iv) the semantics, expressed in terms of
Frames and Frame elements.

6. Experimental Evaluation

In order to provide evidences about the effectiveness of the proposed solution, we report
here an evaluation of the interpretation process of robotic commands in two languages,
i.e. English and Italian, w.r.t the basic setting.

Table 4 and 5 show the results obtained over the new version of the Human-
Robot Interaction Corpus (HuRIC), presented in Section 5. In fact, the experiments have
been performed on both languages, as HuRIC provides commands in both English
and Italian. The results, expressed in terms of Precision, Recall and F1 measure, focus
on the semantic interpretation process, in particular Action Detection (AD), Argument
Identification (AI) and Argument Classification (AC) steps. In fact, F1 scores measure
the quality of a specific module. While in the AD step the F1 refers to the ability to
extract the correct frame(s) (i.e. robot action(s) expressed by the user) evoked by a
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Table 4
English dataset

Precision Recall F1-Measure
AD 95.14%± 1.73 95.02%± 0.37 95.07%± 0.93
AI 89.95%± 2.28 89.63%± 2.00 89.78%± 2.05
AC 92.15%± 1.51 92.15%± 1.51 92.15%± 1.51

sentence, in the AI step it evaluates to the correctness of the predicted argument spans.
Finally, in the AC step the F1 measures the accuracy of the classification of individual
arguments.

The experiments have been performed in a random split setting, over 5 iterations.
During each iteration, the dataset is shuffled and split into three subsets, containing
70%, 10% and 20% of the data, used as training, tuning and testing set, respectively.
In this respect, Table 4 and 5 show also the standard deviations among the different
iterations.

We tested each sub-module in isolation, feeding each step with gold information
provided by the previous step in the chain. Moreover, the evaluation has been carried
out considering the correct transcriptions, i.e. not contemplating the error introduced
by the Automatic Speech Recognition system. The results over both datasets refer to the
basic setting of LU4R, that is the configuration in which just linguistic information are
exploited.

Results against the commands in English (Table 4) are encouraging for the applica-
tion of LU4R in realistic scenarios. In fact, the F1 is higher than 95% in the recognition
of semantic predicates used to express intended actions (AD). The system is able to
recognize the involved entities (AC) with high accuracy as well, with a F1 higher than
92%. This result is surprising when analyzing the complexity of the task. In fact, the
classifier is able to cope with a high level of uncertainty, as the amount of possible
semantic roles is sizable, i.e. 34 total. The most challenging task seems to be the ability
to recognize the spans composing a single frame element (AI), where the F1 settles just
under the 90% (89.78%).

One of the most frequent errors concerns the ambiguity of the “take” verb. In fact, as
explained in the previous sections, the interpretation of such verb may be different (i.e.
either Bringing or Taking), depending on the configuration of the environment. As the
basic setting does not rely on any kind of perceptual knowledge, the system is not able
to correctly discriminate among them. Hence, the resulting interpretation is more likely
to be wrong, as it does not reflect the semantics that is motivated by the environment. In
terms of F1 measure, this issue affects mainly the process of recognizing the argument
spans (AI), rather than the ability to identify the action(s) (AD), as for each (possibly)
wrong frame, there could be more than two (possibly) wrong arguments. For example,
the sentence “take the pillow on the couch” will be probably recognized to be a Taking
action, even though it is labeled as Bringing, i.e. the pillow and the couch are supposed to
be far in the environment. While the AD step will receive just one penalty for the wrong
recognized action, the AI step is penalized twice, as two arguments were expected by
the gold standard annotation, i.e. the pillow as THEME and the couch as GOAL, instead
of one, i.e. the pillow on the couch as a single THEME argument. Preliminary experiments
in the perception-driven setting seem to show that, whenever such knowledge is in-
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jected into the learning process, the system is able to mitigate the error rate over those
phenomena.

In addition, small values of standard deviation suggest that the system seems to be
rather stable across the different iterations of the experiment and that the results do not
depend on specific splits of the entire dataset.

Table 5
Italian dataset

Precision Recall F1-Measure
AD 93.59%± 2.81 88.63%± 4.25 91.01%± 3.21
AI 82.80%± 1.38 82.50%± 3.47 82.64%± 2.34
AC 89.93%± 3.83 89.93%± 3.83 89.93%± 3.83

The experiments over the Italian dataset reflect the observation that have been
pointed out for the English setting. In fact, the system is able to recognize actions
(AD) with an F1 measure of 91.01%. Again, valuable performances here suggest that
the process of recognizing the intended action(s) is reliable enough to be applicable
in real scenarios. As in the English setting, the most challenging step is the Argument
Identification, where the F1 measure does not overstep the 83% (82.64%). The results
are promising, when compared to the actual size of the dataset. In fact, the classifiers are
trained on just the 80% of the entire Italian dataset, i.e. 170 sentences on average. Though
lower, the accuracy in recognizing involved entities (AC) is in line with the English
experiments, with a F1 score of 89.93%. It seems plausible that the gap in performances
and standard deviations with respect to results against the English dataset is mainly
due to the reduced size of the dataset.

When looking at the errors, we observe again that the introduction of the perceptual
information can be beneficial for the overall task, specially for the AI step. In fact, the
command “porta il bicchiere sul tavolo in cucina” (i.e. bring the glass on the table in the kitchen
in English) can not be correctly predicted without information about the involved
entities, as two different interpretations are plausible. The intended action correspond to
a Bringing one in both cases; nevertheless, the involved roles are substantially different.
In fact, whenever the referred table (tavolo) is inside the kitchen (cucina), the table itself
represents the goal of the action, whereas if the glass (bicchiere) is on the table, this latter
is probably outside the kitchen that is, instead, the goal of the action. Hence, the lack of
perceptual evidences can play a key role in producing these mis-classifications. Though
the F1 measures are not directly comparable as capturing different phenomenon, this
behavior could explain the bigger gap that is observed between AD and AI results in the
Italian experiment (8.37%) than in the English one (5.29%). Notice that this phenomenon
does not affect the AC task. In fact, as we said, during the experimental evaluation each
step is fed with gold standard annotations.

At the moment of writing we are pairing each sentence from both sub sets of
HuRIC with semantic maps, in order to design proper systematic evaluations also for
the simple, i.e. context-aware, setting.

7. Conclusions

In this paper, we presented a comprehensive framework for the robust implementation
of natural language interfaces for Human-Robot Interaction (HRI). It is specifically
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designed for the automatic interpretation of spoken commands towards robots in
domestic environments. The solution proposed here relies on Frame Semantics and
supports a structured learning approach to language processing able to map individual
sentence transcriptions to meaningful commands. An hybrid discriminative and gener-
ative learning method is proposed to map the interpretation process into a cascade of
sentence annotation tasks.

The overall framework and individual algorithms have been implemented in LU4R,
a free and ready-to-use Java processing chain, designed for the cost-effective and rapid
deployment of language interfaces in a wide range of robotic platforms. By implement-
ing the approach presented in (Bastianelli et al. 2016a),LU4R’s command interpretation
is made dependent on the robot’s environment; in fact the adopted training annota-
tions not only express linguistic evidences from source utterances, but also account for
specific perceptual knowledge derived from a reference map. In this way the seman-
tic map aspects useful to interpretation are expressed via feature modeling with the
structured learning mechanism applied. Such perceptual knowledge is thus derived
from a semantically-enriched implementation of a robot map (i.e. its semantic map):
it expresses information about the existence and position of entities surrounding the
robot: as this is also available to the user, this information is crucial to disambiguate
predicates and role assignments.

The machine learning processes inside LU4R have been trained by using an ex-
tended version of HuRIC, the Human Robot Interaction Corpus. This corpus, originally
composed by example in English, now contains a subset of example in Italian: from the
one hand, this novel corpus supports the development of LU4R in the Italian language
but, most of all, it will support the research in natural language interfaces for Robots
in such language. The empirical results obtained by LU4R over both languages are
quite impressive (about 90% of F1 in almost all the evaluations). This (i) confirms the
effectiveness of the proposed processing chain, (ii) the application of the same approach
in different languages.

Further effort is required to extend HuRIC with additional sentences, in order to
consider a wider range of robotic actions. We are currently working to make it including
semantic maps associated to each individual sentence: it will support a systematic
evaluation of the interpretation process enhanced with perceptual information. Future
research will also focus on the extension of the methodology proposed in (Bastianelli
et al. 2016a), e.g. by considering spatial relations between entities in the environment
or their physical characteristics, such as their color. In the medium/long term research,
we believe that LU4R will support further and more challenging research topics in the
context of HRI, such as in interactive question answering or dialogue with robots.

References
Altun, Yasemin, Ioannis Tsochantaridis, and Thomas Hofmann. 2003. Hidden Markov support

vector machines. In Proceedings of the 20th International Conference on Machine Learning (ICML),
Washington D.C., USA, August 21-24.

Baker, Collin F., Charles J. Fillmore, and John B. Lowe. 1998. The berkeley framenet project. In
Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics (COLING-ACL ’98), pages 86–90, Montreal,
Quebec, Canada, August 10-14.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,
Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract meaning
representation for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse, pages 178–186, Sofia, Bulgaria, August.

74



Vanzo et al. LU4R: Adaptive Spoken Language Understanding for Robots

Basili, Roberto, Emanuele Bastianelli, Giuseppe Castellucci, Daniele Nardi, and Vittorio Perera.
2013. Kernel-based discriminative re-ranking for spoken command understanding in hri. In
AI* IA 2013: Advances in Artificial Intelligence. Springer International, pages 169–180.

Basili, Roberto and Fabio Massimo Zanzotto. 2002. Parsing engineering and empirical
robustness. Natural Language Engineering, 8(3):97–120, June.

Bastianelli, Emanuele, Giuseppe Castellucci, Danilo Croce, Roberto Basili, and Daniele Nardi.
2014. Huric: a human robot interaction corpus. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland, May 26-31.

Bastianelli, Emanuele, Giuseppe Castellucci, Danilo Croce, Roberto Basili, and Daniele Nardi.
2017. Structured learning for spoken language understanding in human-robot interaction. The
International Journal of Robotics Research, 36(5-7):660–683.

Bastianelli, Emanuele, Danilo Croce, Andrea Vanzo, Roberto Basili, and Daniele Nardi. 2016a. A
discriminative approach to grounded spoken language understanding in interactive robotics.
In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), New York,
New York, USA, 9-15 July.

Bastianelli, Emanuele, Daniele Nardi, Luigia Carlucci Aiello, Fabrizio Giacomelli, and
Nicolamaria Manes. 2016b. Speaky for robots: The development of vocal interfaces for robotic
applications. Applied Intelligence, 44(1):43–66, January.

Bos, Johan. 2002. Compilation of unification grammars with compositional semantics to speech
recognition packages. In Proceedings of the 19th International Conference on Computational
Linguistics (COLING ’02), volume 1, pages 1–7, Taipei, Taiwan, 26-30 August. Association for
Computational Linguistics.

Bos, Johan and Tetsushi Oka. 2007. A spoken language interface with a mobile robot. Artificial
Life and Robotics, 11(1):42–47.

Chen, David L. and Raymond J. Mooney. 2011. Learning to interpret natural language
navigation instructions from observations. In Proceedings of the 25th Conference on Artificial
Intelligence (AAAI-11), pages 859–865, San Francisco, California, USA, August 7-11.

Diosi, Albert, Geoffrey R. Taylor, and Lindsay Kleeman. 2005. Interactive SLAM using laser and
advanced sonar. In Proceedings of the 2005 International Conference on Robotics and Automation,
pages 1103–1108, Barcelona, Spain, April 18-22.

Duvallet, Felix, Thomas Kollar, and Anthony Stentz. 2013. Imitation learning for natural
language direction following through unknown environments. In 2013 IEEE International
Conference on Robotics and Automation, pages 1047–1053, Karlsruhe, Germany, May 6-10.
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