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Abstract 
This paper analyzes the impact of various assumptions about the association between aggregate default 
probabilities and the loss given default on bank loans and corporate bonds, and seeks to empirically 
explain this critical relationship. Moreover, it simulates the effects on mandatory capital requirements like 
those proposed in 2001 by the Basel Committee on Banking Supervision. We present the analysis and 
results in four distinct sections. The first section examines the literature of the last three decades of the 
various structural-form, closed-form and other credit risk and portfolio credit value-at-risk (VaR) models 
and the way they explicitly or implicitly treat the recovery rate variable. Section 2 presents simulation 
results under three different recovery rate scenarios and examines the impact of these scenarios on the 
resulting risk measures: our results show a significant increase in both expected and unexpected losses 
when recovery rates are stochastic and negatively correlated with default probabilities.  In Section 3, we 
empirically examine the recovery rates on corporate bond defaults, over the period 1982-2000. We 
attempt to explain recovery rates by specifying a rather straightforward statistical least squares regression 
model.  The central thesis is that aggregate recovery rates are basically a function of supply and demand 
for the securities. Our econometric univariate and multivariate time series models explain a significant  
portion of the variance in bond recovery rates aggregated across all seniority and collateral levels. Finally, 
in Section 4 we analyze how the link between default probability and recovery risk would affect the 
procyclicality effects of the New Basel Capital Accord, due to be released in 2002. We see that, if banks 
use their own estimates of LGD (as in the “advanced” IRB approach), an increase in the sensitivity of 
banks’ LGD due to the variation in PD over economic cycles is likely to follow. Our results have 
important implications for just about all portfolio credit risk models, for markets which depend on 
recovery rates as a key variable (e.g., securitizations, credit derivatives, etc.), for the current debate on the 
revised BIS guidelines for capital requirements on bank credit assets, and for investors in corporate bonds 
of all credit qualities. 
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Introduction 

Credit risk affects virtually every financial contract. Therefore the measurement, pricing 

and management of credit risk has received much attention from financial economists, bank 

supervisors and regulators, and from financial market practitioners. Following the recent 

attempts of the Basel Committee on Banking Supervision (1999, 2001a) to reform the capital 

adequacy framework by introducing risk-sensitive capital requirements, significant additional 

attention has been devoted to the subject of credit risk measurement by the international 

regulatory, academic and banking communities.  

This paper analyzes the impact of various assumptions on which most credit risk 

measurement models are presently based: namely, it analyses the association between aggregate 

default probabilities and the loss given default on bank loans and corporate bonds, and seeks to 

empirically explain this critical relationship. Moreover, it simulates the effects of this 

relationship on credit VaR models, as well as on the procyclicality effects of the new capital 

requirements proposed in 2001 by the Basel Committee. Before we proceed with empirical and 

simulated results, however, the following section is dedicated to a brief review of the theoretical 

literature on credit risk modeling of the last three decades. 

1. The Relationship Between Default Rates and Recovery Rates in Credit Risk Modeling: a 

Review of the Theoretical and Empirical Literature 

Credit risk models can be divided into two main categories: (a) credit pricing models, and 

(b) portfolio credit value-at-risk (VaR) models. Credit pricing models can in turn be divided into 

three main approaches: (i) “first generation” structural-form models, (ii) “second generation” 

structural-form models, and (iii) reduced-form models. These three different approaches, 

together with their basic assumptions, advantages, drawbacks and empirical performance, are 

briefly outlined in the following paragraphs. Credit VaR models are then examined. Finally, the 

more recent studies explicitly modeling and empirically investigating the relationship between 

the probability of default (PD) and recovery rates (RR) are briefly analyzed. 

1.1. First generation structural-form models: the Merton approach 

The first category of credit risk models are the ones based on the original framework 

developed by Merton (1974), using the principles of option pricing (Black and Scholes, 1973). In 

such a framework, the default process of a company is driven by the value of the company’s 
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assets and the risk of a firm’s default is explicitly linked to the variability in the firm’s asset 

value. The basic intuition behind this model is relatively simple: default occurs when the value 

of a firm’s assets (the market value of the firm) is lower than that of its liabilities. The payment 

to the debtholders at the maturity of the debt is therefore the smaller of two quantities: the face 

value of the debt or the market value of the firm’s assets. Assuming that the company’s debt is 

entirely represented by a zero-coupon bond, if the value of the firm at maturity is greater than the 

face value of the bond, then the bondholder gets back the face value of the bond. However, if the 

value of the firm is less than the face value of the bond,  the equityholders get nothing and the 

bondholder gets back the market value of the firm. The payoff at maturity to the bondholder is 

therefore equivalent to the face value of the bond minus a put option on the value of the firm, 

with a strike price equal to the face value of the bond and a maturity equal to that of the bond. 

Following this basic intuition, Merton derived an explicit formula for default risky bonds which 

can be used both to estimate the PD of a firm and to estimate the yield differential between a 

risky bond and a default-free bond1. 

Under these models all the relevant credit risk elements, including default and recovery at 

default, are a function of the structural characteristics of the firm: asset volatility (business risk) 

and leverage (financial risk). The RR, although not treated explicitly in these models, is therefore 

an endogenous variable, as the creditors’ payoff is a function of the residual value of the 

defaulted company’s assets. More precisely, under Merton’s theoretical framework, PD and RR 

are inversely related. If, for example, the firm’s value increases, then its PD tends to decrease 

while the expected RR at default increases (ceteris paribus). On the other side, if the firm’s debt 

increases, its PD increases while the expected RR at default decreases. Finally, if the firm’s asset 

volatility increases, its PD increases while the expected RR at default decreases2.   

                                                 

1 In addition to Merton (1974), first generation structural-form models include Black and Cox (1976), Geske (1977), 
and Vasicek (1984). Each of these models tries to refine the original Merton framework by removing one or more of 
the unrealistic assumptions. Black and Cox (1976) introduce the possibility of more complex capital structures, with 
subordinated debt; Geske (1977) introduces interest-paying debt; Vasicek (1984) introduces the distinction between 
short and long term liabilities, which now represents a distinctive feature of the KMV model. 
 
2 One might point out that in the Merton model, since asset values evolve as a continuous process and a firm defaults 
as soon as its assets fall below its liabilities, then the firm will be liquidated for almost the value of its debt and the 
loss rate will be intrinsically negligible (ie. recovery rates will always be close to 100%). However, in Merton’s 
framework, debt becomes due at a fixed future date, and by that date the asset value can be much lower than that of 
liabilities, so high loss rates are also possible. Moreover, the negative link between PD and RR is clear when one 
thinks of the expected recovery rates for performing firms: a sudden decrease in the assets, a rise in debt, an increase 
in volatility may leave a firm solvent, yet they will increase its PD and, at the same time, reduce its expected RR. 
See Altman Resti and Sironi, 2001, for a formal analysis of this relationship. 
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1.2. Second generation structural-form models 

Although the line of research that followed the Merton approach has proven very useful 

in addressing the qualitatively important aspects of pricing credit risks, it has been less 

successful in practical pricing applications3. In response to such difficulties, an alternative 

approach has been developed which still adopts the original framework as far as the default 

process is concerned but, at the same time, removes one of the unrealistic assumptions of the 

Merton model, namely, that default can occur only at maturity of the debt when the firm’s assets 

are no longer sufficient to cover debt obligations. Instead, it is assumed that default may occur at 

any time between the issuance and maturity of the debt, when the value of the firm’s assets 

reaches a lower threshold level4. These models include Kim, Ramaswamy and Sundaresan 

(1993), Hull and White (1995), Nielsen, Saà-Requejo and Santa Clara (1993), Longstaff and 

Schwartz (1995) and others.  

Under these models, the RR in the event of default is exogenous and independent from 

the firm’s asset value. It is generally defined as a fixed ratio of the outstanding debt value and is 

therefore independent from the PD. This approach simplifies the first class of models by both 

exogenously specifying the cash flows to risky debt in the event of bankruptcy and simplifying 

the bankruptcy process. This occurs when the value of the firm’s underlying assets hits some 

exogenously specified boundary.  

Despite these improvements, second generation structural-form models still suffer from 

three main drawbacks, which represent the main reasons behind their relatively poor empirical 

performance5. First, they still require estimates for the parameters of the firm’s asset value, 

which is nonobservable. Second, they cannot incorporate credit-rating changes that occur quite 

frequently for default-risky corporate debts. Finally, most structural-form models assume that the 

value of the firm is continuous in time. As a result, the time of default can be predicted just 

before it happens and hence, as argued by Duffie and Lando (2000), there are no “sudden 

surprises”. 

 

                                                 

3 The standard reference is Jones, Mason and Rosenfeld (1984), who find that, even for firms with very simple 
capital structures, a Merton-type model is unable to price investment-grade corporate bonds better than a naive 
model that assumes no risk of default. 
4 One of the earliest studies based on this framework is Black and Cox (1976). However, this is not included in the 
second-generation models in terms of the treatment of the recovery rate.  
5 See Eom, Helwege and Huang (2001) for an empirical analysis of structural-form models. 
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1.3. Reduced-form models 

The attempt to overcome the above mentioned shortcomings of structural-form models 

gave rise to reduced-form models. These include Litterman and Iben (1991), Madan and Unal 

(1995), Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull (1997), Lando (1998), Duffie 

and Singleton (1999), and Duffie (1998). Unlike structural-form models, reduced-form models 

do not condition default on the value of the firm, and parameters related to the firm’s value need 

not be estimated to implement them. In addition, reduced-form models introduce separate, 

explicit assumptions on the dynamics of both PD and RR. These variables are modeled 

independently from the structural features of the firm, its asset volatility and leverage. Generally, 

reduced-form models assume an exogenous RR that is independent from the PD. More 

specifically, they take as given the behavior of default-free interest rates, the RR of defaultable 

bonds at default, as well as a stochastic intensity process for default. At each instant there is 

some probability that a firm defaults on its obligations. Both this probability and the RR in the 

event of default may vary stochastically through time, although they are not formally linked to 

each other. The stochastic processes determine the price of credit risk. Although these processes 

are not formally linked to the firm’s asset value, there is presumably some underlying relation, 

thus Duffie and Singleton (1999) describe these alternative approaches as reduced-form models. 

Reduced-form models fundamentally differ from typical structural-form models in the 

degree of predictability of the default. A typical reduced-form model assumes that an exogenous 

random variable drives default and that the probability of default over any time interval is 

nonzero. Default occurs when the random variable undergoes a discrete shift in its level. These 

models treat defaults as unpredictable Poisson events. The time at which the discrete shift will 

occur cannot be foretold on the basis of information available today6. 

Empirical evidence concerning reduced-form models is rather limited. Using the Duffie 

and Singleton (1999) framework, Duffee (1999) finds that these models have difficulty in 

explaining the observed term structure of credit spreads across firms of different qualities. In 

particular, such models have difficulty generating both relatively flat yield spreads when firms 

have low credit risk and steeper yield spreads when firms have higher credit risk. 

                                                 

6 A recent attempt to combine the advantages of structural-form models – a clear economic mechanism behind the 
default process - and the ones of reduced-form models – unpredictability of default - can be found in Zhou (2001). 
This is done by modeling the evolution of firm value as a jump -diffusion process. This model links RRs to the firm 
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1.4. Credit Value-at-Risk Models 

During the second part of the nineties, both banks and consultants started developing 

credit risk models aimed at measuring the potential loss, with a predetermined confidence level, 

that a portfolio of credit exposures could suffer within a specified time horizon (generally one 

year). These vaue-at-risk (VaR) models include J.P. Morgan’s CreditMetrics (Gupton, Finger 

and Bhatia [1997]), Credit Risk Financial Products’ CreditRisk+ (1997), McKinsey’s 

CreditPortfolioView (Wilson [1997a, 1997b, 1998]), and KMV’s CreditPortfolioManager 

(McQuown, [1993] and Crosbie [1999]). These models can largely be seen as reduced-form 

models, where the RR is typically taken as an exogenous constant parameter or a stochastic 

variable independent from PD. Some of these models, such as CreditMetrics, 

CreditPortfolioView and CreditManager, treat the RR in the event of default as a stochastic 

variable – generally modeled through a beta distribution - independent from the PD. Others, such 

as CreditRisk+, treat it as a constant parameter that must be specified as an input for each 

single credit exposure. While a comprehensive analysis of these models goes beyond the aim of 

this literature review7, it is important to highlight that all credit VaR models treat RR and PD as 

two independent variables. 

1.5. Some recent contributions on the PD-RR relationship 

During the last two years, new approaches explicitly modeling and empirically 

investigating the relationship between PD and RR have been developed. These models include 

Frye (2000a and 2000b), Jokivuolle and Peura (2000), Jarrow (2001), and Carey and Gordy 

(2001). Section 3 of this paper provides, we believe, the clearest evidence of a strong negative 

correlation between PD and RR, at the macro level. 

The model proposed by Frye (2000a and 2000b) draws from the conditional approach 

suggested by Finger (1999) and Gordy (2000b). In these models, defaults are driven by a single 

systematic factor – the state of the economy - rather than by a multitude of correlation 

parameters. These models are based on the assumption that the same economic conditions that 

cause default to rise might cause RRs to decline, i.e. that the distribution of recovery is different 

                                                                                                                                                             

value at default so that the variation in RRs is endogenously generated and the correlation between RRs and credit 
ratings before default, reported in Altman (1989) and Gupton, Gates and Carty (2000), is justified. 
7 For a comprehensive analysis of these models, see Crouhy, Galai and Mark (2000), Gordy (2000a) Saunders 
(1999) and Saunders and Allen (2002). 
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in high-default time periods from low-default ones. In Frye’s model, both PD and RR depend on 

the state of the systematic factor. The correlation between these two variables therefore derives 

from their mutual dependence on the systematic factor.  

The intuition behind Frye’s theoretical model is relatively simple: if a borrower defaults 

on a loan, a bank’s recovery may depend on the value of the loan collateral. The value of the 

collateral, like the value of other assets, depends on economic conditions. If the economy 

experiences a recession, RRs may decrease just as default rates tend to increase. This gives rise 

to a negative correlation between default rates and RRs.  

While the model originally developed by Frye (2000a) implied recovery from an equation 

that determines collateral, Frye (2000b) modeled recovery directly. This allowed him to 

empirically test his model using data on defaults and recoveries from the U.S. corporate bond 

market. More precisely, data from Moody’s Default Risk Service database for the 1982-1997 

period have been used for the empirical analysis. Results show a strong negative correlation 

between default rates and RRs for corporate bonds. This evidence is consistent with the most 

recent U.S. bond market data, indicating a simultaneous increase in default rates and LGDs for 

both 1999 and 20008. Frye’s (2000b and 2000c) empirical analysis allows him to conclude that 

in a severe economic downturn, bond recoveries might decline 20-25 percentage points from 

their normal-year average. Loan recoveries may decline by a similar amount, but from a higher 

level. 

Jarrow (2001) presents a new methodology for estimating RRs and PDs implicit in both 

debt and equity prices. As in Frye (2000a and 2000b), RRs and PDs are correlated and depend on 

the state of the macroeconomy. However, Jarrow’s methodology explicitly incorporates equity 

prices in the estimation procedure, allowing the separate identification of RRs and PDs and the 

use of an expanded and relevant dataset. In addition, the methodology explicitly incorporates a 

liquidity premium in the estimation procedure, which is considered essential in light of the high 

variability in the yield spreads between risky debt and U.S. Treasury securities.  

Using four different datasets, Carey and Gordy (2001) analyze LGD measures and their 

correlation with default rates. Their preliminary results contrast with the findings of Frye 

(2000b): estimates of simple default rate-LGD correlation are close to zero. They also find that 

                                                 

8Hamilton, Gupton and Berthault (2001) and Altman and Brady (2002) provide clear empirical evidence of this 
phenomenon. 
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limiting the sample period to 1988-1998, estimated correlations are more in line with Frye’s 

results (0.45 for senior debt and 0.8 for subordinated debt). The authors note that, during this 

short period, the correlation rises, not so much because LGDs are low during the low-default 

years 1993-1996, but rather because LGDs are relatively high during the high-default years 1990 

and 1991. They therefore conclude that the basic intuition behind the Frye’s model may not 

adequately characterize the relationship between default rates and LGDs. Indeed, a weak or 

asymmetric relationship suggests that default rates and LGDs may be influenced by different 

components of the economic cycle9. 

A rather different approach is the one proposed by Jokivuolle and Peura (2000). The 

authors present a model for bank loans in which collateral value is correlated with the PD. They 

use the option pricing framework for modeling risky debt: the borrowing firm’s total asset value 

determines the event of default. However, the firm’s asset value does not determine the RR. 

Rather, the collateral value is in turn assumed to be the only stochastic element determining 

recovery. Because of this  assumption, the model can be implemented using an exogenous PD, 

so that the firm asset value parameters need not be estimated. In this respect, the model combines 

features of both structural-form and reduced-form models. A counterintuitive result of the 

Jokivuolle and Peura theoretical model is that the expected RR increases as PD increases. This 

result is obtained assuming a positive correlation between firm’s asset value and collateral value 

under a structural-form type of framework. A low PD therefore implies that the firm’s asset 

value has to strongly decline in the future before default can occur. Therefore, a positive 

correlation between asset value and collateral value implies that the latter is likely to be 

relatively low, too, in the case of default. For high PDs the firm asset value does not have to 

decline equally substantially before default can occur. Hence, the collateral value in default is on 

average also higher relative to its original value than in the case of low PD. 

Using Moody’s historical bond market data, Hu and Perraudin (2002) examine the 

dependence between recovery rates and default rates. They first standardize the quarterly 

recovery data in order to filter out the volatility of recovery rates given by the variation over time 

in the pool of borrowers rated by Moody’s. They find that typical correlations between quarterly 

                                                 

9 Using defaulted bonds’ data for the sample period 1982-2000, which include the relatively high default period of 
1999 and 2000, we show empirical results that appear consistent with Frye’s intuition: a negative correlation 
between default rates and RRs. However, we find that the single systematic risk factor – i.e. the performance of the 
economy - is less predictive than Frye’s model would suggest. We devote section 3 of this paper to the empirical 
analysis. 
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recovery rates and default rates for bonds issued by US-domiciled obligors are –22% for post 

1982 data (1983-2000) and –19% for the 1971-2000 period. Using extreme value theory and 

other non-parametric techniques, they also examine the impact of this negative correlation on 

credit VaR measures and find that the increase is statistically significant when confidence levels 

exceed 99%. 

1.6. Concluding remarks 

Table 1 summarizes the way RR and its relationship with PD are dealt with in the 

different credit models described in this literature review. While in the original Merton (1974) 

framework an inverse relationship between PD and RR exists, the credit risk models developed 

during the nineties treat these two variables as independent. This assumption strongly contrasts 

with the growing empirical evidence showing a  negative correlation between default and 

recovery rates (Frye [2000b and 2000c], Altman [2001], Carey and Gordy [2001], and Hamilton, 

Gupton and Berthault [2001]). This evidence indicates that recovery risk is a systematic risk 

component. As such, it should attract risk premia and should adequately be considered in credit 

risk management applications. In the next section we relax the assumption of independence 

between PD and RR and simulate the impact on VaR models when these two variables are 

negatively correlated. 



Table 1 – The Treatment of LGD and Default Rates within Different Credit Risk Models 
 MAIN MODELS & RELATED EMPIRICAL STUDIES TREATMENT OF LGD RELATIONSHIP BETWEEN RR AND PD 
Credit Pricing Models 
First generation 
structural-form 
models 

Merton (1974), Black and Cox (1976), Geske 
(1977), Vasicek (1984), Crouhy and Galai 
(1994), Mason and Rosenfeld (1984). 

PD and RR are a function of the 
structural characteristics of the 
firm. RR is therefore an 
endogenous variable.  

PD and RR are inversely related (see 
Appendix I.A). 

Second generation 
structural-form 
models 

Kim, Ramaswamy e Sundaresan (1993), 
Nielsen, Saà-Requejo, Santa Clara (1993), Hull 
and White (1995), Longstaff and Schwartz 
(1995). 

RR is exogenous and 
independent from the firm’s 
asset value. 

RR is generally defined as a fixed 
ratio of the outstanding debt value 
and is therefore independent from PD. 

Reduced-form models Litterman and Iben (1991), Madan and Unal 
(1995), Jarrow and Turnbull (1995), Jarrow, 
Lando and Turnbull (1997), Lando (1998), 
Duffie and Singleton (1999), Duffie (1998) and 
Duffee (1999). 

Reduced-form models assume 
an exogenous RR that is either a 
constant or a stochastic variable 
independent from PD. 

Reduced-form models introduce 
separate assumptions on the dynamic 
of PD and RR, which are modeled 
independently from the structural 
features of the firm. 

Latest contributions 
on the PD-RR 
relationship 

Frye (2000a and 2000b), Jarrow (2001), Carey 
and Gordy (2001), Hu and Perraudin (2002), 
Altman and Brady (2002). 

Both PD and RR are stochastic 
variables which depend on a 
common systematic risk factor 
(the state of the economy). 

PD and RR are negatively correlated. 
In the “macroeconomic approach” 
this derives from the common 
dependence on one single systematic 
factor. In the “microeconomic 
approach” it derives from the supply 
and demand of defaulted securities. 

Credit Value at Risk Models 
CreditMetrics Gupton, Finger and Bhatia (1997).  Stochastic variable (beta distr.) RR independent from PD 
CreditPortfolioView Wilson (1997a and 1997b). Stochastic variable RR independent from PD 

CreditRisk+ Credit Suisse Financial Products (1997). Constant RR independent from PD 

KMV CreditManager McQuown (1997), Crosbie (1999). Stochastic variable RR independent from PD 



2. The Effects of the Probability of Default-Loss Given Default Correlation on Credit Risk 

Measures: Simulation Results 

This section of the paper is dedicated to an analysis of the effects that the correlation 

between default and recovery risk would imply for the risk measures derived from the most 

common credit VaR models.  For example, as discussed earlier, the basic version of the 

Creditrisk+® model treats recovery as a deterministic component; in other words, a credit 

exposure of 100 dollars with an estimated recovery rate after default of 30% is dealt with the 

same as an exposure of 70 dollars with a fixed loss given default (LGD) of 100%. The 

Creditmetrics® model allows for individual LGDs to be stochastic (the actual recovery rate on a 

defaulted loan is drawn from a beta distribution, through a Montecarlo simulation); however, the 

recovery rate is drawn independently of default probabilities, and an increase in default risk 

leaves the distribution of recovery rates unchanged. 

To test the effects of such assumptions, we run Montecarlo experiments on a sample 

portfolio and compare the risk measures obtained under three different approaches. Recovery 

rates will be alternatively treated as: 

a. deterministic (like in the Creditrisk+ approach); 

b. stochastic, yet uncorrelated with the probabilities of default (PDs - like in the 

Creditmetrics framework); 

c. stochastic, and partially correlated with default risk (as might happen in real life). 

By doing so, we are able to assess whether the computations of risk are different among the 

three approaches. In other words, if we eventually find that default and recovery rates are 

significantly and negatively correlated, as we suspect, then our simulations would show by how 

much the first and second approaches underestimate risk, compared to the third one. The results 

obtained depend on the actual portfolio considered in the simulation.  However, since we use a 

large portfolio (with a high number of assets of different credit quality), we believe that the final 

outcome is general enough to apply to a wide array of real-life situations. 

2.1. Experimental setup 

Figure 1 presents the benchmark portfolio used in our experiment. It includes 250 loans, 

generating a total exposure of 7.5 million Euros belonging to seven different rating grades.  
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Individual exposures are shown on the x-axis, while the y-axis reports the PD levels associated 

with the rating classes10 (ranging from 0.5% to 5%). As can be seen, the array of borrowers 

included in the benchmark portfolio looks widely diversified, as regards both credit quality and 

size; it should therefore be general enough to represent real-life loan portfolios. 

Figure 2 summarizes our simulation procedure. Our simulation engine draws heavily on 

the Creditrisk+ approach, as described in Credit Suisse Financial Products (1997). Note, 

however, that we are not going to follow the Creditrisk+ model as far as the computation of 

expected losses and risk measures is concerned, but will keep the simulation framework as 

flexible as possible to accommodate the three different treatments of recovery risk outlined in the 

section’s overview.  

As in all Montecarlo experiments, a large number of scenarios (100,000) is drawn from a 

simulation engine, and the empirical distribution of such scenarios is then used as a proxy for the 

theoretical distribution of losses (computing its expected value, standard deviation and some 

percentile-based risk measures). 

Every scenario is based on the following logic: in the short run, the default probability of 

each obligor can be seen as the product of two components: the long-term PD of the borrower 

(i.e., the value reported on the y-axis in Figure 1) and a short-term shock, due both to 

macroeconomic and individual factors. Individual characteristics may be based, for example, on 

the obligor’s industry, its size and the age of the loan/bond facility. In symbols: 

ShockPDPD longshort ⋅=  

This approach accounts for the fact that firms with different ratings tend to have, on 

average, different default rates, and that, nevertheless, their actual PDs might fluctuate over time 

according to the state of the economy and the firms’ cash flow and profit cycles. In a sense, we 

are combining “through the cycle” default estimates expounded by the rating agencies with 

“point in time” adjustments implied in short term estimates of the type found in Basel 2’s and 

credit value-at-risk models. 

 

                                                 

10 Note that these are long-term PDs that are going to be revised upwards or downwards in the short term because of 
both macroeconomic and idiosyncratic factors (see below). 



 * 13 * 

0%

1%

2%

3%

4%

5%

6%

0 5 10 15

EXPOSURE (thousand euros) 

P
R

O
B

A
B

IL
IT

Y
 O

F
 D

E
F

A
U

LT

 
Figure 1: PD and exposure of the 250 loans included in the benchmark portfolio 
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Figure 2: the simulation engine used in our experiment 

 

More specifically, the short-term shock can be thought of as the weighted sum of two 

random components, both drawn from independent gamma distributions with mean equal to 

one11: x1 represents a background factor that is common to all the borrowers in the portfolio (the 

risk of an economic downturn affecting all bank customers), while x2 is different for every 

obligor, and represents idiosyncratic risk: 

2211 xwxwShock +=  

Note that, according to this framework, a recession would bring about a very high value 

for x1 which, after being combined with the individual components (the x2s), would significantly 

increase the short term PDs of most borrowers, bringing them above their average long-term 

values. This would make the bank’s portfolio more vulnerable to default risk, since the actual 

number of defaults experienced over the following year would be higher. Indeed, if we were 

                                                 

11 In this way, the expected short-term PD will be the long-term value associated with each rating class. 
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simulating all rating changes, the number of downgrades vs. no change or upgrades would 

increase as well. This is related to the “procyclicality” effect that may be an important issue 

inherent in any rating-based capital requirement standards. 

The weights w1 and w2, through which the macroeconomic and individual shocks are 

combined, must be set carefully, since they play an important role in the final results.  If too 

much emphasis is attributed to systemic risk x1, then the short-term PDs of all borrowers would 

mechanically respond to the macroeconomic cycle, and defaults would take place in thick 

clusters (increasing the variance of bank losses, i.e., the risk that must be faced by bank 

shareholders and regulators).  Conversely, if a significant weight is given to the idiosyncratic risk 

x2, then the defaults by different borrowers would be entirely uncorrelated and the stream of 

bank losses over time could appear quite smooth (since individual risks could be diversified 

away).  

In order to  keep things as simple and transparent as possible, we use a simple fifty-fifty 

weighting scheme in our simulation. Note that – although it represents an arbitrary choice - this 

is not dramatically different from the 33%-66% scheme underlying the new regulatory 

framework proposed by the Basel committee in its January 2001 document12.  

We now return to Figure 2, to see how this logic was implemented in our simulation. For 

each scenario: 

1. A value for the background factor x1 is drawn from a gamma distribution13; this value, 

which is common to all borrowers in the portfolio, is combined with an idiosyncratic 

noise term (x2, also taken from a gamma), which is different for every obligor.  

2. The combination of x1 and x2 is used to shock the long-term values of the obligors’ PDs 

in order to obtain the short-term probabilities that will be used in the following steps. 

Note that when x1 is low, most PDs will be revised downwards (as it happens when a 

                                                 

12 In the January 2001 Basel document, default occurs because of changes in a firm’s asset value; these, in turn, 
follow a standard normal distribution which combines a macro factor (with a weight of about .45) and an 
idiosyncratic term (with a weight of .89); hence the 33%-66% proportion quoted in the text. However, as noted by 
many observers who discussed the Basel proposals, the idiosyncratic component should probably be given more 
importance for small borrowers, while the systematic component should be more relevant for large firms, the credit 
quality of which tends to depend more heavily on the overall economic cycle. This remark sounds quite correct, yet 
using different weights for each borrower, depending on her size, would have made our simulation longer and less 
transparent. Therefore, we decided to stick to the simplest rule, the “fifty-fifty” weighting. 
13 We use gamma distributions because they are highly skewed to the right, accounting for the fact that default 
probabilities tend to stay low most of the time, but can increase dramatically in some (rare) extreme scenarios.  
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healthy economy makes default risk smaller for most borrowers); on the other hand, 

when x1 is high, default probabilities will be adjusted according to a more risky economic 

environment (see again Figure 2). 

3. Based on the adjusted PDs, the computer draws which borrowers will actually default in 

this scenario. A loan with a 10% PD is more likely to default than one with  a 2% PD. 

However,  due to the random error, the latter might go bust while the former survives. 

This step of the simulation provides us with a list of defaulted borrowers. 

4. For each defaulted loan in the list, the amount of losses is computed. This step can be 

performed in three different ways, depending on the assumptions concerning LGD. More 

details will be given in the following paragraph. 

5. The loss amount generated by this scenario is filed, and a new scenario is started. 

2.2. The computation of LGDs 

The Montecarlo simulation described above was repeated three times, changing the way in 

which LGDs were handled. We tested the three different approaches highlighted at the beginning 

of this section: 

a) First, LGD is deterministic. In this case we simply multiply the exposure of each 

defaulted asset by an “average” loss given default. To keep things simple, we use a 30% 

LGD for all borrowers, which is also the mean of the beta distribution utilized in 

approach (b). 

b) Secondly, LGD is stochastic but uncorrelated with default probabilities. In this case, 

LGD is separately drawn for each borrower from a beta distribution limited between 10% 

and 50%, with mean 30% and with a variance such that 5/9 of all values are bound 

between 20% and 40%. 

c) Finally, LGD is stochastic and correlated with default probabilities. In this case, we are 

still using the same beta distribution as above, but we impose a perfect rank correlation 

between the LGD and the background factor x1
14. For example, when the background 

factor x1 takes a very high value (thereby signalling that the economy is facing a 

                                                 

14 In other words,  for every possible value x1* of the background factor x1, such that p(x1<x1*)=P, we choose the 
LGD as the Pth percentile of its (beta) distribution. 
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recession), the LGDs increase up to 50%; on the other hand, when the economy 

improves, LGDs can become as low as 10%. 

2.3 Main Results 

Table 2 shows the main outcomes of our simulation exercise. The first three columns of 

data show loss and risk indicators obtained under the three approaches discussed in the previous 

paragraph. The last column quantifies the increase in those indicators when we move from the 

“quiet” world, where no recovery risk is present, to the more “dangerous” one where default and 

recovery risk tend to move together. All VaR measures (regardless of the confidence interval 

chosen), as well as the standard deviation, look considerably underestimated when recovery risk 

is overlooked. 

We find that not only unexpected losses (i.e. the standard error and percentiles), but also 

expected losses tend to increase materially when shifting from column “a” to “c”. This looks 

especially important since expected losses are generally thought to be computed correctly by 

multiplying the (long term) PD by the expected LGD. The numbers in Table 2 suggest that such 

a straightforward practice might not be correct and seriously understate the actual loss15. 

Table 2 

Main results of the LGD  simulation 

 LGD modelled according to approach  

(a) (b) (c ) % error*

Expected Loss         463          458          598  29.4%

Standard error         982          978       1,272  29.5%

95% VaR      1,899       1,880       2,449  28.9%

99% VaR      3,835       3,851       4,972  29.6%

99.5% VaR      3,591       3,579       4,653  29.6%

99.9% VaR      3,738       3,774       4,887  30.7%

* computed as [(c) – (a)] / (a) 

                                                 

15 This intuition has been scrutinized more carefully and further analysed by means of a simple numeric example in 
the ISDA report by Altman et al. (2001). 
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Another noteworthy result is that no significant differences arise when we move from 

column (a) to (b): in other words, when recovery rates are considered stochastic, but independent 

on each other, the law of large numbers ensures that all uncorrelated risks can be effectively 

disposed of. A portfolio of 250 loans already looks large enough to exploit this diversification 

effect, since its risk measures are not significantly different from the deterministic case. In other 

words, it is not uncertainty in recovery rates, but positive correlation, that brings about an 

increase in credit risk. Among all possible kinds of correlation, the link between recovery and 

default looks to be the most significant and, possibly, dangerous one, since it increases both 

unexpected and expected losses.  Moreover, the percent error found when moving from (a), or 

(b), to (c) is approximately the same (about 30%) for all risk and loss measures (expected and 

unexpected losses, percentile-based indices). 

Summing up, if PD and LGD were driven by some common causes, then not only the risk 

measures based on standard errors and percentiles (i.e., the unexpected losses usually covered 

with bank capital), but even the amount of “normal” losses to be expected on a given loan (and 

to be shielded through charge-offs and reserves) could be seriously underestimated by most 

credit risk models. This reinforces the theoretical relevance of the empirical tests presented in the 

following Section. 

3. Explaining Aggregate Recovery Rates on Corporate Bond Defaults: Empirical Results 

The average loss experience on credit assets is well documented in studies by the various 

rating agencies (Moody’s, S&P, and Fitch) as well as by academics16.  Recovery rates have been 

released for bonds, stratified by seniority, as well as for bank loans.  The latter asset class can be 

further stratified by capital structure and collateral type. While quite informative, these studies 

say nothing about the recovery vs. default correlation.  The purpose of this section is to 

empirically test this relationship with actual default data from the U.S. corporate bond market 

over the last two decades. As Frye (2000a), Altman (2001), Carey and Gordy (2001) and others 

point out (see Section 1), there is strong intuition suggesting that default and recovery rates 

                                                 

16 See e.g. Altman and Kishore (1996), Altman and Arman (2002), FITCH (1997, 2001), Moody’s (2000), Standard 
& Poor’s (2000). 
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might be correlated. Accordingly, this third Section of our study attempts to explain the link 

between the two variables, by specifying rather straightforward statistical models17.   

We measure aggregate annual bond recovery rates (henceforth: BRR) by the weighted 

average recovery of all corporate bond defaults, primarily in the United States, over the periods 

1982-2000 and  also for the shorter period, 1987-2000.  The weights are based on the market 

value of defaulting debt issues of publicly traded corporate bonds18.  The logarithm of BRR 

(BLRR) is also analysed.  Data from prior to 1982 was too sparse in many years, e.g., less than 

five defaults in most years, to be meaningful. 

The sample includes annual averages from about 1000 defaulted bonds for which we 

were able to get reliable quotes on the price of these securities just after default.  We utilize the 

database constructed and maintained by the NYU Salomon Center, under the direction of one of 

the authors. Our models are both univariate and multivariate, least squares regressions. The 

former can explain up to 60% of the variation of average annual recovery rates, while the latter 

explain as much as 90%. 

The rest of this Section will proceed as follows. We begin our analysis by describing the 

independent variables used to explain the annual variation in recovery rates. These include 

supply-side aggregate variables that are specific to the market for corporate bonds, as well as 

macroeconomic factors (some demand side factors are also discussed). Next, we describe the 

results of the univariate analysis. We then describe our multivariate models. 

3.1. Explanatory Variables 

                                                 

17 We will concentrate on average annual recovery rates but not on the factors that contribute to understanding and 
explaining recovery rates on individual firm and issue defaults. Van de Castle and Keisman (1999) indicate that 
factors like capital structure, as well as collateral and seniority, are important determinants of recovery rates and 
Madan and Unal (2001) propose a model for estimating risk-neutral expected recovery rate distributions - - not 
empirically observable rates. The latter can be particularly useful in determining prices on credit derivative 
instruments, such as credit default swaps. 
18 Prices of defaulted bonds are based on the closing levels on or as close to the default date as possible. Precise-date 
pricing was only possible in the last ten years, or so, since market maker quotes were not available from the NYU 
Salomon Center database prior to 1990 and all prior date prices were acquired from secondary sources, primarily the 
S&P Bond Guides.  Those latter prices were based on end-of-month closing bid prices only.  We feel that more 
exact pricing is a virtue since we are trying to capture supply and demand dynamics which may impact prices 
negatively if some bondholders decide to sell their defaulted securities as fast as possible.  In reality, we do not 
believe this is an important factor since many investors will have sold their holdings prior to default or are more 
deliberate in their “dumping” of defaulting issues. 
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We proceed by listing several variables we reasoned could be correlated with aggregate 

recovery rates.  The expected effects of these variables on recovery rates will be indicated by a 

+/- sign in parentheses.  The exact definitions of the variables we use are: 

BDR (-) The weighted average default rate on bonds in the high yield bond market and its 

logarithm (BLDR, -).  Weights are based on the face value of all high yield bonds 

outstanding each year19. 

BDRC (-) One Year Change in BDR. 

BOA (-) This is the total amount of high yield bonds outstanding for a particular year (measured 

at mid-year in trillions of dollars) and represents the potential supply of defaulted 

securities. Since the size of the high yield market has grown in most years over the 

sample period, the BOA variable is picking up a time-series trend as well as representing 

a potential supply factor. 

BDA (-) We also examined the more directly related bond defaulted amount as an alternative for 

BOA (also measured in trillions of dollars). 

BIR (+) This is the one-year return on the Altman-NYU Salomon Center Index of Defaulted 

Bonds, a monthly indicator of the market weighted average performance of a sample of 

defaulted publicly traded bonds20. This is a measure of the price changes of existing 

defaulted issues as well as the “entry value” of new defaults and, as such, is impacted by 

supply and demand conditions in this “niche” market.21 

GDP (+) The annual GDP growth rate. 

GDPC (+) The change in the annual GDP growth rate from the previous year. 

                                                 

19 We did not include a variable that measures the distressed, but not defaulted, proportion of the high yield market 
since we do not know of a time series measure that goes back to 1987. We define distressed issues as yielding more 
than 1000 basis points over the risk-free 10-year Treasury Bond Rate. We did utilize the average yield spread in the 
market and found it was highly correlated (0.67) to the subsequent one year’s default rate and hence did not add 
value (see discussion below).  The high yield bond yield spread, however, can be quite helpful in forecasting the 
following year’s BDR, a critical variable in our model. 
20 More details can be found in Altman (1991) and Altman and Pompeii (2002). Note that we use two different time 
frames in our analyses, 1982-2000 and 1987-2000, because the defaulted bond index return (BIR) has only been 
calculated since 1987. We go no earlier than 1982 because there are so few default observations before that year.   
21 We are aware of the fact that the average recovery rate on newly defaulted bond issues could influence the level of 
the defaulted bond index and vice-versa.  The vast majority of issues in the index, however, are usually comprised of 
bonds that have defaulted in prior periods. And, as we will see, while this variable is significant on an univariate 
basis and does improve the overall explanatory power of the model, it is not an important contributor.  We could 
only introduce this variable in the 1987-2000 regression. 
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GDPI (-) Takes the value of 1 when GDP growth was less than 1.5% and 0 when GDP growth 

was greater than 1.5%. 

SR (+) The annual return on the S&P 500 stock index. 

SRC (+) The change in the annual return on the S&P 500 stock index from the previous year. 

3.2. The Basic Explanatory Variable: Default Rates 

It is clear that the supply of defaulted bonds is most vividly depicted by the aggregate 

amount of defaults and the rate of default.  Since virtually all public defaults most immediately 

migrate to default from the non-investment grade or “junk” bond segment of the market, we use 

that market as our population base.  The default rate is the par value of defaulting bonds divided 

by the total amount outstanding, measured at face values.  Table 3 shows default rate data from 

1978-2001 as well as the weighted average annual recovery rates (our dependent variable) and 

the default loss rate (last column).  Note that the average annual recovery is 41% and the 

weighted average annual loss rate to investors is 3.16%22.   

 

 

 

 

 

 

 

 

 

 

 

                                                 

22 The loss rate is impacted by the lost coupon at default as well as the more important lost principal.  Default and 
Recovery rate data does not include Texaco’s very large default in 1987 since it was caused by a legal suit and a 
strategy to avoid paying a huge fine for merger tampering.  Hence, it was an outlier default with a very high 
recovery.  If we had included Texaco, our empirical results would be somewhat less significant, with our 
multivariate R2 still at a robust 0.77 (see results in section 3.5. 
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Table 3 

 

 

 DEFAULT RATES AND LOSSES 
 (1978 - 2001) 

PAR VALUE  PAR VALUE 
OUTSTANDING (a) OF DEFAULT  DEFAULT  WEIGHTED PRICE   WEIGHTED 

YEAR  ($ MMs) ($ MMs)  RATE (%) AFTER DEFAULT  COUPON (%) 
2001 $649,000 $63,609 9.80% $25.5 9.18% 
2000 $597,200 $30,295 5.07% $26.4 8.54% 
1999 $567,400 $23,532 4.15% $27.9 10.55% 
1998 $465,500 $7,464 1.60% $35.9 9.46% 
1997 $335,400 $4,200 1.25% $54.2 11.87% 
1996 $271,000 $3,336 1.23% $51.9 8.92% 
1995 $240,000 $4,551 1.90% $40.6 11.83% 
1994 $235,000 $3,418 1.45% $39.4 10.25% 
1993 $206,907 $2,287 1.11% $56.6 12.98% 
1992 $163,000 $5,545 3.40% $50.1 12.32% 
1991 $183,600 $18,862 10.27% $36.0 11.59% 
1990 $181,000 $18,354 10.14% $23.4 12.94% 
1989 $189,258 $8,110 4.29% $38.3 13.40% 
1988 $148,187 $3,944 2.66% $43.6 11.91% 
1987 b $129,557 $1,736 1.34% $62.0 12.07% 
1986 $90,243 $3,156 3.50% $34.5 10.61% 
1985 $58,088 $992 1.71% $45.9 13.69% 
1984 $40,939 $344 0.84% $48.6 12.23% 
1983 $27,492 $301 1.09% $55.7 10.11% 
1982 $18,109 $577 3.19% $38.6 9.61% 
      
      
      
      

ARITHMETIC AVERAGE 1982-2001: 3.50% $44.1 11.13% 
  
Notes 
(a)  Excludes defaulted issues. 
Source:  Authors' Compilations and various dealer price quotes. 
(b) Does not include Texaco’s bankruptcy. 
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3.3. The Demand and Supply of Distressed Securities 

The principal purchasers of defaulted securities, primarily bonds and bank loans, are 

niche investors called distressed asset or alternative investment managers - also called 

“vultures.”  Prior to 1990, there was little or no analytic interest in these investors, indeed in the 

distressed debt market, except for the occasional anecdotal evidence of performance in such 

securities.  Altman (1991) was the first to attempt an analysis of the size and performance of the 

distressed debt market and estimated, based on a fairly inclusive survey, that the amount of funds 

under management by these so-called vultures was at least $7.0 billion in 1990 and if you 

include those investors who did not respond to the survey and non-dedicated investors, the total 

was probably in the $10-12 billion range. Cambridge Associates (2001) estimated that the 

amount of distressed assets under management in 1991 was $6.3 billion. Estimates since 1990 

indicate that the demand did not rise materially until 2000-2001, when our latest estimate is a 

total demand for distressed securities of $40-45 billion as of December 31, 2001 (see Altman and 

Pompeii, 2002). 

On the supply side, the last decade has seen the amounts of distressed and defaulted 

public and private bonds and bank loans grow dramatically in 1990-1991 to as much as $300 

billion (face value) and $200 billion (market value), then recede to much lower levels in the 

1993-1998 period and grow enormously again in 2000-2001 to the unprecedented levels of $650 

billion (face value) and almost $400 billion market value. These estimates are based on 

calculations in Altman and Pompeii (2002) from periodic, not continuous, market calculations 

and estimates.23 

On a relative scale, the ratio of supply to demand of distressed and defaulted securities 

was something like ten to one in both 1990-1991 and also in 2000-2001.  Dollarwise, of course, 

the amount of supply side money dwarfed the demand in both periods. And, as we will show, the 

price levels of new defaulting securities was relatively very low in both periods - at the start of 

the 1990’s and again at the start of the 2000 decade. 

 

                                                 

23 Defaulted bonds and bank loans are relatively easy to define and are carefully documented by the rating agencies 
and others. Distressed securities are defined here as bonds selling at least 1000 basis points over comparable 
maturity Treasury Bonds (we use the 10-year T-Bond rate as our benchmark).  Privately owned securities, primarily 
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3.4. Univariate Models 

We begin the discussion of our results with the univariate relationships between recovery 

rates and the explanatory variables described in the previous section. Table 4 displays the results 

of the univariate regressions carried out using these variables. 

 

Table 4: Univariate Regressions, 1982-2000 

Variables Explaining Annual Recovery Rates on Defaulted Corporate Bonds
Coefficients and T-Ratios (in parentheses)
Regression # (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
R-Squared 0.45 0.49 0.58 0.60 0.51 0.52 0.20 0.23 0.46 0.54
Adj. R-Squared 0.42 0.46 0.56 0.58 0.48 0.49 0.15 0.18 0.43 0.51
Dependent Variable:
BRR X   X   X   X   X   
BLRR X   X   X   X   X   
Explanatory Variables:
Constant 0.51 -0.67 0.01 -1.94 0.43 -0.87 0.49 -0.72 0.49 -0.71

(17.40) (-9.55) (0.10) (-9.12) (24.01) (-19.39) (12.83) (-7.70) (19.16) (-12.01)

BDR -2.62 -6.82
(-3.73) (-4.04)

BLDR -0.11 -0.28
(-4.86) (-5.05)

BDRC -2.99 -7.51
(-4.19) (-4.25)

BOA -0.29 -0.76
(-2.06) (-2.23)

BDA -8.53 -23.16
-3.78 -4.48

GDP

GDPC

GDPI

SR

SRC

Spread
 

                                                                                                                                                             

bank loans, are estimated as 1.5-1.8 x the level of publicly owned distressed and defaulted securities based on 
studies of a large sample of bankrupt companies (Altman and Pompeii, 2002). 
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Table 4: Univariate Regressions, 1982-2000 - continued 

Variables Explaining Annual Recovery Rates on Defaulted Corporate Bonds
Coefficients and T-Ratios (in parentheses)
Regression # (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)
R-Squared 0.03 0.03 0.16 0.14 0.16 0.17 0.02 0.04 0.02 0.05 0.10 0.12
Adj. R-Squared -0.02 -0.03 0.11 0.09 0.11 0.12 -0.04 -0.01 -0.04 0.00 0.04 0.06
Dependent Variable:
BRR X   X   X   X   X   X   
BLRR X   X   X   X   X   X   
Explanatory Variables:
Constant 0.39 -0.96 0.42 -0.89 0.46 -0.80 0.41 -0.95 0.43 -0.89 0.52 -0.63

(7.81) (-7.66) (18.00) (-15.02) (15.48) (-10.96) (10.88) (-10.19) (16.82) (-14.27) (7.12) (-3.52)

BDR

BLDR

BDRC

BOA

BDA

GDP 1.00 2.30
(0.77) (0.70)

GDPC 1.76 4.11
(1.78) (1.65)

GDPI -0.09 -0.22
(-1.78) (-1.84)

SR 0.11 0.43
(0.56) (0.88)

SRC 0.08 0.31
(0.62) (0.99)

Spread -1.94 -5.27
(-1.35) (-1.49)  

 

These univariate regressions, and the multivariate regressions discussed in the following 

section, were calculated using both the recovery rate (BRR) and the natural log (BLRR) of the 

recovery rate as the dependent variables. Both results are displayed in Table 4, as signified by an 

“x” in the corresponding row. 

We examine the simple relationship between bond recovery rates and bond default rates 

for the period 1982-2000 (there simply are too few default observations in the 1978-1981 

period).  Table 4 and Figure 3 show several regressions between the two fundamental variables 

and we find that one can explain about 45% of the variation in the annual recovery rate with the 

level of default rates (this is the linear model, regression 1) and as much as 60%, or more, with 
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the quadratic and power24 relationships (regressions 3 and 4). Hence, our basic thesis that the rate 

of default is a massive indicator of the likely average recovery rate amongst corporate bonds 

appears to be substantiated25. 

The other univariate results show the correct sign for each coefficient, but not all of the 

relationships are significant.  BDRC is highly negatively correlated with recovery rates, as 

shown by the very significant t-ratios, although the t-ratios and R-squared values are not as 

significant as those for BLDR.  BOA and BDA are, as expected, both negatively correlated with 

recovery rates with BDA being more highly negatively correlated than BOA on a univariate 

basis. Macroeconomic variables did not explain as much of the variation in recovery rates as the 

corporate bond market variables explained; we will come back to these relationships in the next 

paragraphs. 

 

                                                 

24 The power relationship (BRR = exp[b0]×BDRb1) can be estimated using the following equivalent equation: BLRR 
= b0 + b1×BLDR (“power model”). 
25 Such an impression is strongly supported by a -80% rank correlation coefficient between BDR and BRR 
(computed over the 1982-2001 period; however, the same value holds for the reduced 1987-2000 window used in 
the following paragraphs). Note that rank correlations represent quite a robust indicator, since they do not depend 
upon any specific functional form (e.g., log, quadratic, power, etc.). 



Figure 3 

Recovery Rate/Default Rate Association
Altman Defaulted Bonds Data Set (1982-2000)

Dollar Weighted Average Recovery Rates to Dollar Weighted Average Default Rates
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3.5. Multivariate Models 

We now specify models to explain recovery rates that are somewhat more complex by 

including several additional variables to the important default rate measure.  The basic structure 

of our most successful models is: 

BRR = f(BDR, BDRC, BOA or BDA, BIR) 

Some macroeconomic variables will be added to this basic structure, to test their effect on 

recovery rates.  

We have constructed two simple regression structures in order to explain recovery rate 

results and to predict 2001 rates. One set is for the longer 1982-2000 period and the other is for 

the 1987-2000 period26.  Both sets involve linear and log-linear structures for the two key 

variables – recovery rates (dependent) and default rates (explanatory) with the log-linear 

relationships somewhat more significant.  These results appear in Table 5 and 6; regressions 1 

through 4 build the “basic models”, while macro variables are added in the following rows. 

3.6. The Results for 1987-2000 

Table 5 regressions 1-4 present our results for the “basic” models.  Note that most, but 

not all, of the variables are quite significant based on their t-ratios. The overall accuracy of the fit 

goes from 84% (76% adjusted R-square) for the strictly absolute value of all variables 

(regression 1) to 88% (83% adjusted) when the dependent variable (regression 2) is specified in 

natural logs, to the same 88% (regression 3) when only the primary independent variable (default 

rates – BLDR) is specified in natural logs to as much as 91% (unadjusted) and 87% (adjusted) R-

squares where both the primary dependent (BLRR) and explanatory variable (BLDR) are 

expressed in natural logs (regression 4). 

                                                 

26 As concerns the BIR variable, univariate regressions were carried out over the 1987-2000 period, as this index is 
not available in previous years: we found positive coefficients both for BRR and its log, with t-test values of about 
2.3. 
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Table 5: Multivariate Regressions 1987 –2000 

Variables Explaining Annual Recovery Rates on Defaulted Corporate Bonds
Coefficients and T-Ratios (in parentheses)
Regression # (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
R-Squared 0.84 0.88 0.88 0.91 0.81 0.89 0.84 0.91 0.76 0.78
Adj. R-Squared 0.76 0.83 0.83 0.87 0.73 0.84 0.74 0.86 0.65 0.68
Dependent Variable:
BRR X   X   X   X   X   
BLRR X   X   X   X   X   
Explanatory Variables:
Constant 0.56 -0.55 0.16 -1.55 0.49 -1.29 0.58 -1.54 0.37 -1.02

(11.65) (-5.33) (2.12) (-9.27) (16.43) (-4.51) (4.89) (-8.41) (5.52) (-6.36)

BDR -2.02 -5.28 -1.04 -2.20
(-3.40) (-4.15) (-1.29) (-2.01)

BLDR -0.09 -0.22 -0.13 -0.21
(-4.41) (-5.18) (-1.96) (-3.51)

BDRC -1.17 -3.06 -1.31 -3.51 -1.26 -3.45 -1.13 -3.51 -1.82 -4.85
(-1.64) (-2.01) (-2.26) (-2.82) (-1.65) (-2.45) (-1.48) (-2.66) (-2.29) (-2.55)

BOA -0.26 -0.67 -0.23 -0.59 -0.25 -0.60 -0.33 -0.85
(-2.08) (-2.52) (-2.16) (-2.60) (-1.66) (-2.23) (-2.04) (-2.18)

BDA -4.37 -10.60
-1.56 -1.84

BIR 0.11 0.26 0.08 0.20 0.15 0.33 0.10 0.21 0.18 0.43
(1.29) (1.44) (1.18) (1.28) (1.81) (2.14) (0.94) (1.10) (1.61) (1.63)

GDP -0.56 0.41 3.95 9.81
(-0.20) (0.11) (2.17) (2.26)

GDPC

GDPI

SR

SRC

Spread
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Table 5: Multivariate Regressions 1987 –2000 – Continued 
Figure 7 – Multivariate Regressions 1987-2000 (Continued)
Variables Explaining Annual Recovery Rates on Defaulted Corporate Bonds
Coefficients and T-Ratios (in parentheses)
Regression # (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
R-Squared 0.85 0.92 0.84 0.91 0.84 0.93 0.84 0.92 0.85 0.92
Adj. R-Squared 0.75 0.86 0.74 0.86 0.74 0.88 0.74 0.87 0.75 0.87
Dependent Variable:
BRR X   X   X   X   X   
BLRR X   X   X   X   X   
Explanatory Variables:
Constant 0.56 -1.56 0.56 -1.56 0.55 -1.54 0.56 -1.53 0.49 -2.15

(11.29) (-8.91) (10.60) (-7.17) (10.23) (-9.54) (11.03) (-8.93) (4.50) (-3.28)

BDR -2.16 -2.06 -1.98 -2.05 -3.71
(-3.39) (-2.88) (-3.07) (-3.22) (-1.39)

BLDR -0.22 -0.22 -0.21 -0.21 -0.32
(-5.00) (-4.44) (-4.98) (-4.95) (-2.73)

BDRC -1.64 -4.23 -1.17 -3.52 -1.20 -3.73 -1.12 -3.74 -0.79 -3.27
(-1.70) (-2.36) (-1.55) (-2.65) (-1.58) (-3.08) (-1.44) (-2.87) (-0.85) (-2.56)

BOA -0.25 -0.58 -0.26 -0.58 -0.26 -0.61 -0.26 -0.58 -0.29 -0.58
(-1.98) (-2.44) (-1.90) (-2.37) (-1.98) (-2.78) (-1.98) (-2.48) (-2.11) (-2.57)

BDA

BIR 0.08 0.16 0.11 0.20 0.10 0.17 0.12 0.15 0.02 0.02
(0.87) (0.91) (1.21) (1.20) (1.16) (1.14) (1.23) (0.89) (0.16) (0.10)

GDP

GDPC -1.33 -1.87
(-0.75) (-0.58)

GDPI 0.01 0.01
(0.13) (0.09)

SR 0.03 0.26
(0.29) (1.31)

SRC -0.02 0.13
(-0.27) (0.80)

Spread 2.70 4.55
(0.65) (0.95)  
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Table 6: Multivariate Regressions 1982 -2000 

 

Variables Explaining Annual Recovery Rates on Defaulted Corporate Bonds
Coefficients and T-Ratios (in parentheses)
Regression # (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
R-Squared 0.77 0.82 0.83 0.87 0.74 0.84 0.78 0.88 0.66 0.68
Adj. R-Squared 0.73 0.79 0.80 0.84 0.69 0.81 0.71 0.85 0.59 0.62
Dependent Variable:
BRR X   X   X   X   X   
BLRR X   X   X   X   X   
Explanatory Variables:
Constant 0.53 -0.61 0.20 -1.46 0.49 -1.20 0.54 -1.55 0.46 -0.79

(20.03) (-10.46) (2.75) (-9.17) (21.99) (-5.01) (12.89) (-9.45) (13.06) (-9.29)

BDR -1.62 -4.36 -0.69 -1.75
(-3.02) (-3.69) (-0.94) (-2.71)

BLDR -0.07 -0.19 -0.11 -0.23
(-4.16) (-4.74) (-1.96) (-4.92)

BDRC -2.02 -4.92 -1.88 -4.67 -2.12 -4.81 -2.03 -4.64 -2.63 -6.60
(-3.49) (-3.87) (-3.75) (-4.20) (-3.46) (-3.96) (-3.40) (-4.34) (-3.98) (-4.17)

BOA -0.22 -0.58 -0.19 -0.51 -0.20 -0.40 -0.26 -0.69
(-2.72) (-3.33) (-2.67) (-3.27) (-2.31) (-2.42) (-2.56) (-2.83)

BDA -4.94 -11.73
(-2.20) (-2.55)

GDP -0.32 -2.42 0.87 2.06
(-0.37) (-1.50) (0.98) (0.97)

GDPC

GDPI

SR

SRC

Spread
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Table 6: Multivariate Regressions 1982 –2000 - continued 
Figure 8 – Multivariate Regressions 1982-2000 (Continued)
Variables Explaining Annual Recovery Rates on Defaulted Corporate Bonds
Coefficients and T-Ratios (in parentheses)
Regression # (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
R-Squared 0.78 0.88 0.77 0.87 0.78 0.89 0.78 0.89 0.71 0.79
Adj. R-Squared 0.71 0.85 0.71 0.83 0.72 0.86 0.71 0.86 0.66 0.75
Dependent Variable:
BRR X   X   X   X   X   
BLRR X   X   X   X   X   
Explanatory Variables:
Constant 0.53 -1.51 0.53 -1.51 0.52 -1.47 0.53 -1.47 0.39 -2.11

(19.38) (-9.54) (19.25) (-7.79) (15.95) (-9.88) (18.81) (-9.93) (6.29) (-5.32)

BDR -1.66 -1.68 -0.20 -1.56 -1.60 -3.80
(-2.95) (-2.66) (-4.30) (-2.79) (-2.88) (-2.69)

BLDR -0.20 -0.18 -0.18 -0.28
(-5.10) (-4.76) (-5.03) (-3.78)

BDRC -2.15 -5.53 -2.04 -4.74 -2.06 -4.83 -2.07 -4.89 -1.32 -4.03
(-3.10) (-4.48) (-3.38) (-4.11) (-3.47) (-4.63) (-3.44) (-4.70) (-1.60) (-2.69)

BOA -0.21 -0.48 -0.22 -0.50 -0.22 -0.51 -0.20 -0.43
(-2.58) (-3.14) (-2.63) (-3.15) (-2.66) (-3.52) (-2.39) (-2.85)

BDA

GDP

GDPC -0.24 -1.84
(-0.35) (-1.43)

GDPI 0.01 0.03
(0.19) (0.46)

SR 0.06 0.33
(0.61) (1.79)

SRC 0.04 0.23
(0.50) (1.85)

Spread 3.30 3.77
(1.63) (1.33)  
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 Figure 4 - Actual vs. Estimated Recovery Rates 
on Defaulted Corporate Bonds
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The actual model with the highest explanatory power and lowest “error” rates is the 

power model27 in regression 4 of Table 5. We see that all of the four explanatory variables have 

the expected sign (negative for BLDR, BDRC, and BOA and positive for BIR) and are 

significant at the 5% or 1% level, except for the Defaulted Bond Index (BIR) which has the 

appropriate sign (+) but a less meaningful t-ratio28.  BLDR and BDRC are extremely significant, 

showing that the level and change in the default rate are highly important explanatory variables 

for recovery rates.  Indeed the variables BDR (and BLDR) explain up to 57% (unadjusted) and 

53% (adjusted) of the variation in BRR simply based on a linear or log-linear association.  The 

size of the high yield market also performs very well and adds about 8% to the explanatory 

power of the model.  When we substitute BDA for BOA, the explanatory power of multivariate 

model drops somewhat to 0.89 (unadjusted) and 0.84 (adjusted) R-squared.  Still, the sign of 

BDA is correct (+) and the t-ratio is quite high (1.84 – see regression 6 of Table 5).  Indeed, on a 

univariate basis, BDA is actually far more significant than BOA (see Table 4). 

Figure 4 shows, graphically, the results for the Table 5 regression 4 structure, by 

comparing the actual Recovery Rate vs. the estimated rates (designated by a “+” sign) for 1987-

2000.  Note the extremely close accuracy in almost every year between the actual and estimated 

rates. Figure 4 also shows how our multivariate regressions can be used to estimate the 2001 

expected recovery rate, given certain assumptions about the independent variables and the time 

frame for the regressions.  Specifically, assuming default rates for 2001 of 8.5% (or 10%)29, a 

change in default rates compared to 2000’s 5.1% of 3.44% (or 4.94%), a BIR of 18.0% (the rate 

of return as of August, 2001), a BOA of $630 billion (midyear 2001) or a BDA of 8.5%-10% of 

the high yield bond market, this results in an estimated recovery rate of 22-23% When we 

substitute BDA for BOA, the estimates for 2001 recovery rates are 20% assuming an 8.5% 

default rate and 18% assuming a 10% default rate.  The actual recovery rate in 2001 was 25% 

(including one large unique bankruptcy – FINOVA – or 21% - without FINOVA – see Altman 

and Arman, 2002); so our estimates were very close to the actual. 

                                                 

27 Like its univariate cousin, the multivariate power model can be written using logs. E.g., BLRR = b0 + b1×BLDR + 
b2×BDRC + b3×BIR + b4×BOA becomes BRR = exp[b0] × BDRb1 × exp[b2×BDRC + b3×BIR + b4×BOA] 
and takes its name from BDR being raised to the power of its coefficient. 
28 BIRs  t-ratio is only significant at the 0.25 level.  Without the BIR variable, the R-squared measures are slightly 
lower at 90% (unadjusted ) and 87% (adjusted).  On a univariate basis, the BIR is significant with a t-ratio of 2.34 
and explains 25% of the variation in BRR. 
29 These were Altman’s (8.5%) and Moody’s (10.0%) default rates estimates for 2001 made at the beginning of the 
year.  More recent estimates are higher given the impact from the September 11, 2001 tragedy, and the final default 
rate in 2001 was 9.8%. 
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3.7. The Results for 1982-2000 and Autocorrelation Tests 

Table 6 regressions 1-4 show the same regression structures as Table 5 regressions 1-4, 

only the sample period is for 1982-2000 and the models do not include the BIR variable. 

Regression 1 of Table 6 shows that all three explanatory variables are significant at the 1% or 

5% level with high t-ratios. All have the correct sign, indicating that recovery rates are 

negatively correlated with default rates, the change in default rates and the size of the high yield 

bond market.  The R-squared of this straightforward, linear regression is 0.77 (0.73 adjusted).  

Finally, as with the shorter time period, the highest R-squared explanatory model for the longer 

time period uses the log specification for both BLRR and BLDR, which raises the unadjusted R-

squared to 0.87 (Table 6, regression 4). These results are slightly lower than for the longer time 

frame (1982-2000), but still very meaningful.  Hence, we are quite optimistic that the variable 

set, while probably not optimal, can be used to explain and predict recovery rates in the 

corporate defaulted bond market. 

We do observe a few clusters of recovery rates in such years as 1994-1995,1996-1997 

and 1999-2000 (see Figures 3 and 4) so we test for autocorrelation of the residuals. The resulting 

Durbin-Watson statistics did not show any autocorrelation problems and either reject the 

assumption or find the tests inconclusive. 

3.8. Macroeconomic Variables 

While we are pleased with the accuracy and explanatory power of the regressions 

described above, we were not very successful in our attempts to include several fundamental 

macroeconomic factors.  We assessed these factors both on a univariate as well as a value-added 

basis for our multivariate structures.  We are somewhat surprised by the low contributions of 

these variables since there are several models that have been constructed that utilize macro-

variables, apparently significantly, in explaining annual default rates30.  

Despite the fact that the growth rate in annual GDP is significantly negatively correlated 

with the bond default rate, i.e., -0.67 for the period 1987-2000 and -0.50 for 1982-2000, the 

univariate correlation between recovery rates (BRR) and GDP growth is relatively low (see 

Table 4); the sign (+) is appropriate, however.  Note that the GDP growth variable has a -0.02 

                                                 

30 See e.g. Fons (1991), Jonsson and Fridson (1996), Moody’s (1999), Fridson, Garman, and Wu (1997),  Helwege 
and Kleiman (1997). 
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and -0.03 adjusted R-squared with BRR and BLRR (regressions 11 and 12), and a positive but 

not very significant relationship with recovery rates (R-squared 0.14 - 0.16 unadjusted) when we 

utilize the change in GDP growth (GDPC, regressions 13 and 14).   

Furthermore, when we introduce GDP and GDPC to our existing multivariate structures 

(Tables 5 and 6), not only are they not significant, but they have a counterintuitive sign 

(negative). The news is not all bad with respect to the multivariate contribution of the GDP 

variable.  When we substitute GDP for BDR in our most successful regressions (see Tables 5 

and 6, regressions 9 and 10), we do observe that GDP is significant at .05 level and the sign (+) 

is correct. 

BRR = f (GDP, BDRC, BIR, BOA) 

explains 0.76 of BRR and 0.78 of BLRR.  This compares to 0.84 and 0.88 when we use BDR 

instead of GDP.  No doubt, the high negative correlation (-0.67) between GDP and BDR 

eliminates the possibility of using both in the same multivariate structure. 

To try and circumvent this problem, we used a technique similar to Helwege and Kleiman 

(1997): they postulate that, while a change in GDP of say 1% or 2% was not very meaningful in 

explaining default rates when the base year was in a strong economic growth period, the same 

change was meaningful when the new level was in a weak economy.  Following their approach, 

we built a dummy variable (GDPI) which takes the value of 1 when GDP grows at less than 

1.5% and 0 otherwise.   

Table 4 shows the univariate GDPI results, while Table 5 and Table 6 (regression 14) add 

the “dummy” variable GDPI to the “power” models discussed earlier.  Note that the univariate 

results show a somewhat significant relationship with the appropriate sign (negative).  When the 

economy grows less than 1.5%, we find that this macroeconomic indicator explains about 0.16 to 

0.17 (unadjusted) and 0.11 and 0.12 (adjusted) of the change in recovery rates.  The multivariate 

model with GDPI, however, does not add any value to our already very high explanatory power 

and the sign (+) now is not appropriate.  No doubt, the fact that GDP growth is highly correlated 

with default rates, our primary explanatory variable, impacts the significance and sign of the 

GDP indicator (GDPI) in our multivariate model. 

We also postulated that the return of the stock market could impact prices of defaulting 

bonds in that the stock market represented investor expectations about the future.  Table 5 and 6 

regressions 15-18 show the association between the annual S&P 500 Index stock return (SR) 
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(and its change, SRC) and recovery rates.  Note the extremely low univariate R-squared 

measures and the insignificant t-ratios in the multivariate model, despite the appropriate signs. 

4. The LGD/PD link and the procyclicality effects 

Our findings also have implications for the issue of procyclicality. Procyclicality involves 

the regulatory capital impact for expected and unexpected losses based on the rating distribution 

of bank portfolios.  Since average ratings and default rates are sensitive to business cycle effects, 

this makes the new internal ratings-based approach to regulatory capital more dependent on the 

cycle, increasing capital charges, and limiting credit supply, right when the economy is slowing. 

Since we found a significant correlation between macroeconomic measures and bond 

rates/defaults, we might expect that low recovery rates when defaults are high would exacerbate 

bank loan losses (LGD) in those periods31.   

When banks adopting the so-called “advanced” IRB approach are free to estimate their 

own severity rates, with some constraints, they might tend to adjust these estimates according to 

the economic cycle. As default rates increase, and ratings worsen, LGDs would be revised 

upwards, making Basel capital even more procyclical than expected. 

To assess the impact of such a mechanism, we carry out a simulation based on the 

evolution over a 20-year period of a standard portfolio of bank loans32. The initial composition 

was chosen arbitrarily, based upon some estimates carried out by the Bank of Italy on a sample 

of Italian banks33 (Marullo-Reedtz, 2000). All loans are assumed to have a 3-year maturity.  

From 1981 until 2000, the bank’s portfolio mix changes accordingly to S&P transition 

matrices34 (based on static pools); rates on new loans are revised to compensate for their changes 

in riskiness, yet margins earned on “old loans” remain unchanged (since the loans have a three-

year maturity, this means that only 1/3 of the loans can be re-priced). Losses emerge according 

                                                 

31 Note that we do not find much of a relationship between GDP growth and recovery rates. However, when we 
substitute GDP growth for our primary bond default rate variable, the multivariate results are quite meaningful, 
albeit with a lower explanatory power than the one obtained with the BDR variable. 
32 These results are based upon the simulation engine presented in detail in Resti (2002). 
33 Based on Standard & Poor’s rating classes, the composition can be summarized as follows: AAA: 8.0%; AA: 
8.0%; A: 9.0%; BBB: 23.0%, BB: 40.0%; B 9.0%;  CCC 3.0%. The use of data on rated bonds would probably have 
introduced a severe bias, as the average credit quality of bonds, in the aggregate, tends to be better than that of bank 
loans. 
34 Standard & Poor’s (2001). We are aware that bond data and through-the-cycle ratings are not fully apt to represent 
the behaviour of bank loans; yet, we believe that such limitations are outweighed by the benefits of using public, 
certified, long-term data as those supplied by S&P. 
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to the empirical default rates recorded by S&P and the loans’ LGD (given a 50% LGD, a 100€ 

default means a 50€ loss). 

Capital requirements are measured according to the “corporate exposures” curve 

presented in Basel Committee on Bank Supervision (2001a, the so-called “consultative package 

two”); the new curve for corporate exposures, circulated in November 2001 (Basel Committee 

on Bank Supervision, 2001b), is used as well. 

Figure 5: a simulation exercise on the pro-cyclical effects of the PD/LGD correlation 

 

Our simulation contrasts two different scenarios. In the former, a standard 50% LGD is 

used for all loans (as in the “foundation” approach, where severities on unsecured, senior loans 

are fixed by regulators). In the latter, LGDs fluctuate between 60% (in high default years) and 

(b) Simulation results for corporate loans: change in portfolio size
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40% (in low default years)35. Note that, as mentioned above, a similar setting may become 

realistic when banks move to the advanced IRB approach and start using their own LGD 

estimates. 

We now turn to Figure 5, where simulation results are summarized: 

1. The first panel (a) reports three indicators of the credit quality cycle: the default rate 

measured by Standard and Poor’s on US bonds, the default rate experienced by the bank 

(given its portfolio mix) and the “net downgrade rate” (downgrades minus upgrades, over 

total outstanding issues). Note that scales are inverted, since an increase in these variables 

means that the cycle is getting worse. As can be seen, default and downgrade risks fluctuate 

up and down in the Eighties, hit a low in the early Nineties, then keep improving in the 

following years, although they worsen again towards the end of the decade. 

2. The second panel (b) reports a measure of credit availability: the percent change in the loan 

portfolio made possible (or necessary) by the evolution of the capital ratios. When the margin 

income exceeds credit losses, and/or capital requirements decrease because of a favourable 

evolution in the quality mix of the loans, the bank’s capital grows beyond the minimum 

requirements: we then compute by how much the loan portfolio could be enlarged; similarly, 

when capital charges increase more than net profits would allow, we estimate the reduction 

in loans needed to comply with Basel ratios. 

Two results are worth mentioning. First, the procyclicality effect is driven more by up- 

and downgrades, rather than by default rates; in other words, adjustments in credit supply needed 

to comply with capital requirements seem to respond mainly to changes in the structure of 

weighted assets, and only to a minor extent to actual credit losses. However this is not true  in 

1991 when the default rate is exceptionally high. Second, when we let LGDs free to fluctuate 

with default rates, the procyclicality effect increases significantly, both for the CP2 curve and 

November 2001 curve36. Moreover, one could also show that bank spreads, too, would become 

more volatile (since revisions in short-term LGD estimates would be factored into loan prices)37.  

                                                 

35 We used a second-degree polynomial to model the link between LGDs and empirical default rates, so that LGD is 
50% when default rates are at their 20-year average (2%), LGD is 60% when default rates hit their 20-year 
maximum (5%) and LGD is 40% when default rates hit their 20-year low (0%). 
36 Surprisingly enough, the new weight curve for corporate loans proposed in Basel Committee on Banking 
Supervision (2001b), although it considerably reduces capital requirements in a static sense, would not ease the 
procyclicality effect, at least for loan portfolios like our simulated one. The reason for this rather counter-intuitive 
behaviour is that under the November 2001 curve, although the increase in weights when moving to an AAA to a 
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Thus, if a positive correlation between default and recovery risk (like that in Section 3 for 

US bonds), were to be confirmed by bank data, the procyclicality effects might be even more 

severe than expected. Of course, one might object that the bank in our simulation behaves in a 

somewhat myopic way, and that regulation should encourage “advanced” IRB systems to use 

long-term average recovery rates (instead of revising them yearly, according to short-term 

signals like the current default rate). However, while the use of long-term LGDs would make 

procyclicality effects less marked, it would also force banks to maintain a less updated picture of 

their risks, thereby trading stability for precision. 

5. Concluding remarks 

This paper analyzed the link between aggregate default probabilities and the loss given 

default on bank loans and corporate bonds, both from a theoretical and an empirical standpoint, 

and tried to spot its implications for various credit VaR models as well as for bank regulation and 

procyclicality effects. As far as the theoretical aspects are concerned, most of the literature on 

credit risk management models and tools treats the recovery rate variable as a function of historic 

average default recovery rates (conditioned perhaps on seniority and collateral factors), but in 

almost all cases as independent of expected or actual default rates.  To us, this appears to be a 

rather simplistic and perhaps unrealistic approach: empirical evidence as well as simulations 

results suggest more care in dealing with this fundamental aspect of credit risk modeling. 

We saw in Section II how simulation results for expected and unexpected losses may 

change under three different recovery rate scenarios. We first assumed that recovery is 

deterministic (fixed), then that recovery rates are stochastic yet uncorrelated with the probability 

of default, and finally that they are stochastic and negatively correlated with default probabilities.  

Introducing this third hypothesis prompts a significant increase (30%) both in risk measures 

(unexpected losses) and in the expected cost of defaults. The assessment and measurement of  

the PD/LGD correlation (if any) therefore turns out to be a pivotal empirical issue. 

To this aim, in Section III we examined the recovery rates on corporate bond defaults, 

over the period 1982-2000, by means of rather straightforward statistical models.  These models 

                                                                                                                                                             

CCC rated loan is lower, smaller quality changes can bring about a sharper rise in capital requirements than they 
did under the CP2 function. This would slightly enhance procyclicality in “normal times” (when most rating 
changes affect the middle part of the rating scale); however, the new curve would probably smooth cyclical effects 
under extreme scenarios, when a large part of bank borrowers moves to the bottom grades of the rating scale. 
37 See Resti (2002) for details. 
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assign a key role to the supply of defaulted paper (default rates) and explain a substantial 

proportion of the variance in bond recovery rates aggregated across all seniority and collateral 

levels.   

Our results have important implications for just about all portfolio credit risk models, for 

markets which depend on recovery rates as a key variable (e.g., securitizations, credit 

derivatives, etc.), and for the current debate on the revised BIS guidelines for capital 

requirements on bank credit assets. Namely, in Section IV, we have shown that the link between 

LGD and PD will possibly bring about a sharp increase in the “procyclicality” effects of the new 

Basel Accord, when individual banks are free to use their own severity estimates; actually, if 

banks tend to revise such estimates upwards in “bad” times, bank capital and credit supply might 

behave even more pro-cyclically than expected. 
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