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Assessing the Incremental Value of Option Pricing Theory 
Relative to an "Informationally Passive" Benchmark 

 
 
 

ABSTRACT 
 

 
In modern finance, the value of an active investment strategy is measured by comparing 
its performance against the benchmark of passively holding the market portfolio and the 
riskless asset.  We wish to evaluate the marginal contribution of a theoretical derivatives 
pricing model in the same way, by comparing its performance against an "informationally 
passive" alternative model.  All rationally priced options must satisfy a number of 
conditions to rule out profitable static arbitrage.  The Black-Scholes model, and others 
like it, are obtained by assuming an equilibrium in which there are no profitable dynamic 
arbitrage opportunities either.  The passive model we consider incorporates only the 
fundamental properties of option prices that must hold to avoid static arbitrage, but has 
no theoretical content beyond that.  We review different measures of model performance 
and apply them to several versions of the Black-Scholes model and our passive model.  
As with active portfolio management, it turns out to be not that easy for an "active" 
model to do a lot better than a well designed passive alternative.  For example, "classical" 
Black-Scholes model turns out to be less accurate than the passive benchmark.
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At one time, an "active" money manager might have pointed to a record of positive 
returns on his stock portfolio as evidence that he was doing a good job.  But with the 
advent of portfolio theory and the Capital Asset Pricing Model (CAPM), earning a 
positive return on average was seen to be an inadequate benchmark for evaluating the 
manager's performance, because a "passive" strategy of simply buying and holding a 
market index portfolio, also earns positive returns on average.  A manager with special 
investment skill should at least do better than simply buying the S&P. 
 
At first, professional managers scoffed at the idea that a passive investment strategy 
could be a viable alternative to active management.  But, using this benchmark we have 
learned that, in fact, most active portfolios do not outperform a passive investment 
strategy, even though they may make profits in most years and earn a good return on 
average.  There is now broad acceptance that passive investment in an index fund is quite 
a sound alternative to an active portfolio strategy, and also a recognition among active 
managers that they need to work hard on such things as holding down costs, given that 
they will be evaluated relative to a low-cost operational alternative. 
 
Contingent claims valuation, as exemplified by the Black-Scholes (BS) option pricing 
model, represents another major pillar of modern finance.  Option pricing theory has had 
enormous success both as a theoretical framework and also as a practical investment 
tool.1  The BS model now serves as the nearly universal benchmark to which alternative 
option pricing models are compared.2  But, as a benchmark, the BS model is not based on 
as strong a foundation as the CAPM's passive portfolio strategy.  While an investor may 
easily set up a passive equity portfolio with the same risk exposure (beta) as an actively 
managed portfolio simply by dividing funds between a market index portfolio and a 
riskless asset, implementing the dynamic option replication strategy called for by the BS 
model is much more difficult. 
 
Derivatives pricing models are derived by assuming profitable arbitrage opportunities 
will be eliminated in equilibrium, which seems to be a very strong principle.  It is easy to 

                                                 
1 We will use the term "Black-Scholes model" broadly in this paper, to include closely related variants for 
European options, such as the version adjusted for discrete dividends, Merton's continuous-dividend model, 
the Black model for futures and interest rate options, and the Garman-Kohlhagen model for foreign 
currency options. 
2 In an early example, Macbeth and Merville [1979, 1980] considered generalizing the basic BS model to 
allow the volatility of the underlying stock to vary systematically with its price.  The performance of their 
new Constant Elasticity of Variance model was examined by comparing its ability to match option prices 
observed in the market, against that of the BS model.  Another of many examples was Rubinstein (1985), 
which examined a number of alternative models and compared them against the standard of the Black-
Scholes model.  The BS model is taken to be the benchmark, and a new model that does not fit market 
prices as well as Black-Scholes is normally dropped from further consideration. 
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prove that option prices must obey a number of well-known constraints, such as put-call 
parity, that eliminate profitable static arbitrage.  If prices violate one of these constraints, 
a static position can be set up in the present that will lock in an excess return as of option 
expiration.  But to determine a single fair value for a given option, the Black-Scholes 
model, and others like it, must assume market conditions that rule out profitable dynamic 
arbitrage opportunities, as well.  This requires absence of transactions costs, and other 
"perfect markets" assumptions.  In theory, riskless arbitrage should occur whenever an 
option's market price deviates from the model value.  But in the real world, options 
arbitrage is inherently risky and costly.  Even for a marketmaker, replicating an option's 
payoff by dynamically rebalancing a hedge portfolio, as dictated by the theory, is not an 
operational alternative to simply buying the option in the market.3   
 
Derivatives pricing models typically involve highly sophisticated mathematical analysis 
and very specific assumptions about asset price processes and the market environment.  
The result may be intellectually satisfying, but rather remote from real world financial 
markets.  How should one judge what the marginal contribution of advanced theorizing is 
in practical terms?   
 
We propose applying the same approach in evaluating a theoretical option pricing model 
that we use in judging the performance of an active portfolio manager.  We will evaluate 
the model's marginal contribution by comparing it to a viable alternative model, that is 
"informationally passive" in that it does not involve the theoretical apparatus that Black-
Scholes and other "active" option pricing models require to rule out dynamic arbitrage.  
We would like to know what might be called the model's "informational alpha," a 
measure that would represent how much better its performance was relative to this 
benchmark.  How much do we learn from the theory embedded in the BS model, say, 
beyond what we already know without it?  
 
Exploring that question is the subject of this paper.  Our empirical results come from an 
analysis of S&P 500 index options during a five-year period 1991-1995.  This provides a 
data sample of over 180,000 observations, drawn from one of the most actively traded, 
and closely analyzed, options markets in the world.  We first consider what standard to 
use in comparing option pricing models.  One common approach in model assessment is 
to look at goodness of fit statistics, like the R2 in a regression of market prices on model 
values.  We present several models to illustrate how R2 works as a performance measure 
for option models.  This leads to some useful insights, one of which is that R2 is not a 
sufficiently sensitive measure for our purpose.  We then consider root mean squared 
pricing error (RMSE) and show how closely market prices match model values from the 
classical BS model, and from variations on it, sometimes called "practitioner Black-
Scholes," that are widely applied in real-world option trading and market making. 
 

                                                 
3 Figlewski [1989] and Green and Figlewski [1999] document the risks in option replication in the real 
world.  Leland [1985] shows that rebalancing a hedged option position continuously, as is called for in the 
theoretical development of the Black-Scholes and similar models, requires trading an infinite number of 
shares, with infinitely large transactions costs, over the option's lifetime. 
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We then introduce a new option pricing model that is consistent with the basic properties 
of rational option prices derived from static arbitrage, but does not require restrictive 
assumptions about the asset price process or the market environment.  This model's 
ability to match market prices is compared against Black-Scholes in terms of root mean 
squared error.  We examine overall performance of several related variants of each 
model, as well as performance on different subsets of options separated according to 
option type (calls versus puts), moneyness, and maturity.   
 
We then extend the comparison to look beyond pricing accuracy.  Although theorists 
focus on a model's ability to compute option fair values, in practice, an option pricing 
model tends to be used for hedging more than for pricing.  It is certainly possible that a 
model that does not price options very accurately might still be valuable to traders if it 
performs well in hedge design.  We therefore compare the hedging performance of the 
models in terms of the RMSE of the hedging error in a delta hedge. 
 
Overall, our results indicate that the marginal improvement in option pricing and hedging 
accuracy that the Black-Scholes model achieves beyond what is available from an 
informationally passive model is quite limited.  We suggest that such a comparison 
against a passive "null model" is an appropriate test to which any "active" model derived 
from more extensive theoretical analysis should be subjected.  As with active portfolio 
management, we should judge an active pricing model by its informational alpha.  With 
further investigation, we may well find that for some purposes, a passive model is an 
adequate representation of option pricing in the market. 
 
 
II.  Data 
 
The data used in the study consist of prices for calls and puts written on the Standard & 
Poors 500 Stock Index, contemporaneous values for the level of the index, dividend 
payout on the S&P, and riskless interest rates. 
 
 
Options 

• Options:  European S&P 500 Index calls and puts.   
• Dates:  January 2, 1991 through Dec. 29, 1995. 
• Option prices:  Midpoint between bid and offer for the last quote of the day.  

Source: Berkeley Options Data Base.  
• Index level: S&P index observed simultaneously with option quotes, from 

Berkeley Options Data Base. 
• Strike prices:  All available strikes. 
• Maturities:  All maturities less than one year. 
• Bad data:  Data points were removed from the sample if  

o Option prices violated a boundary condition (e.g., call price was below 
intrinsic value),  

o SAS could not compute the implied volatility (typically only very deep in 
the money very short maturity contracts), or 
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o there was an obvious error in the prices (e.g., option price greater than the 
current index value; very few cases). 

• Total observations: 183,366 
 
 
 
Dividends 

• A dividend-adjusted index value for each option is constructed by subtracting 
from the contemporaneously quoted index the present value of dividends actually 
paid on the  S&P 500 index portfolio from the observation date to option 
expiration. 

 
Interest rate 

• 3 month LIBOR, converted to a continuously compounded rate. 
 
 
It is not obvious what interest rate should be used for option valuation.  The model calls 
for "the" riskless rate.  Academic researchers often use rates on US Treasury bills, 
carefully matching the bill maturity to option expiration. The interest rate for option 
pricing should reflect the return that could be earned on a very safe alternative 
investment, but also the cost of funds to options market participants.  T-Bill rates tend to 
be distinctly lower than rates on other money market securities, and they are surely well 
below the rate at which a trader could borrow to finance a position.4  We prefer to use 3 
month LIBOR, which is closer to other money market rates.  In any case, we do not 
expect this choice to have an important impact on the results.  Under the market 
conditions of this time period, the mostly short term options we look at are quite 
insensitive to the interest rate. 
 
Black-Scholes model prices are computed from the standard formula for European 
options on a stock that pays known discrete dividends over the period to expiration: 
 

 
))Td(N1()X(PV))d(N1(SPut

)Td(N)X(PV)d(NSCall

adj

adj

σ−−−−=

σ−−=
      (1) 

 
 
where:   S = index value;  
  Sadj = S - PV(divs) 
  PV(divs) = present value of dividends paid through option expiration;  
  X = strike price;  
                                                 
4 T-Bills rates are lower than other rates for several reasons.  Unlike bank rates, they are tax-exempt at the 
state and local level.  Secondly, there is a special demand for T-Bills to be used as collateral, that may be 
expected to distort their pricing in the market.  Third, they reflect a credit quality above AAA.  All of these 
factors suggest that a trader would be very unlikely to consider holding a hedged option position, with its 
attendant risks, if its expected return were not appreciably higher than the T-Bill rate.  And, of course, no 
trader can borrow funds at the T-Bill rate. 
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  PV(X) = X e-rT 
  r = riskless interest rate;  
  T = maturity;  
  σ = annual volatility; and        
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σ
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III.  Using Regression Analysis to Judge Model Performance 
 
A common way to test a pricing model is simply to run a regression of observed market 
option prices on the corresponding theoretical values from the model.  If the model 
demonstrates good explanatory power and the fitted regression coefficients have sensible 
values, the model is judged to be promising.  We will begin by presenting results from 
regression tests on a series of option pricing models. 
 
The regression equation to be fitted is 
 
 jjmodel,j,market CbaC ε++=     (2) 
 
where Cmarket,j and Cmodel,j represent the observed market price of option j and the model 
value, respectively.  C may be either a call or a put price.  a and b are the regression 
constant and slope coefficients, respectively, and εεεεj is the regression residual.  If the 
model gives an unbiased estimate of the market price, the fitted coefficients should have 
the values  a = 0.0  and  b = 1.0.  The higher the regression R2 is, the better the model 
matches the market. 
 
This very familiar testing strategy entails the assumption that the model's objective is to 
match market prices.  While that sounds like a reasonable goal, especially to a trader, it 
rules out the possibility that the model could be right and the market could be wrong.  
That is, if the model gives true values for options, but the market systematically misprices 
them, equation (2) might not fit very well, even though the model is correct.   
 
Academic financial economists have a great deal of respect for market prices, and have 
no trouble with the principle that market prices are true option values, given the 
information that is currently available.  Even so, the principle used to derive a valuation 
equation is not that the model should match market prices, but rather, that the value of the 
option should equal the cost of replicating its payoff by dynamically trading between the 
underlying asset and riskless borrowing or lending.  Replication cost does not depend on 
how options are priced in the market, or even whether a market for options exists at all.  
Thus, the regression in equation (2) is actually a test of the wrong thing; it requires an 
additional assumption that the market price for every option equals its true expected cost 
of replication. 
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When the purpose is to support option trading in actual markets, however, it is more 
appropriate to treat matching market prices as a necessary property for a model.  A model 
that systematically deviates from market pricing might be a better indicator of true option 
value than the market but still be of little use to a trader.  Traders use observed prices for 
liquid options to set their bids and offers for less liquid contracts.  They then construct 
hedged positions using those liquid options in order to manage the risk exposures of their 
positions in the illiquid ones.  Since all of these pricing and hedging activities involve 
options valued at market prices, participants in real world options markets want a model 
that can match those market prices, almost regardless of whether market prices are "right" 
or "wrong." 
 
Here are the estimation results for our first model.  (t-statistics are given in parentheses.) 
 
 
Model 1:�
 
 Cmarket     =     5.637     +     0.955 Cmodel 1      R2 =    0.9276  (3) 
            (411.3)         (1532.7)  
 
 
This model explains well over 90% of the variance in observed market prices and the  t-
statistic on the slope coefficient is very large.  The coefficient estimates do indicate that 
the model has some bias, since an unbiased model would have a constant of 0 and a slope 
coefficient of 1.0, while both of these coefficients are significantly different from those 
theoretical values.  Nevertheless, many researchers might conclude that these results 
provide strong confirmation of the validity of the model. 
 
But Model 1 is just the option's intrinsic value, Cmodel 1 = Cintrinsic, where Cintrinsic is defined 
by 
 

 








−
−

=
)S)X(PV,0(Max:Put

))X(PVS,0(Max:Call
C

adj

adj
intrinsic      (4) 

 
Intrinsic value is obviously an important determinant of option value, but it scarcely 
qualifies as a pricing model.  This leads us to several observations. 
 
First, while highly significant coefficients and an R2 statistic over 0.90 would generally 
be interpreted as evidence that one has a good model, that conclusion is clearly not 
appropriate in this case.  This shows that one must use caution in interpreting results from 
the equation (2) regression, if they are presented as showing strong empirical support for 
a given option pricing model. 
 
Second, intrinsic value alone explains nearly 93 percent of the variance in market option 
prices.  The purpose of a formal option pricing model, therefore, is to explain at most the 
remaining 7 percent, i.e., the variance of  (Cmarket - Cintrinsic).  We might even take option 
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intrinsic value as a very simple kind of passive model, and judge an active model, not in 
terms of its overall goodness of fit, its R2, for example, but in terms of its marginal R2, 
i.e., its improvement over R2 from using intrinsic value alone. 
 
Third, extending this reasoning, it may make sense to use intrinsic value as a control 
variate in fitting option model parameters, such as implied volatilities, and in evaluating 
model accuracy.  For example, rather than calculate the implied volatility (IV) from a set 
of options prices by minimizing 
 
 

( )∑ −
j

2
j,marketjmodel, 1C/)IV(C  

 
one might minimize 
 

( )∑ −−−
j

2
intrinsicj,marketintrinsicjmodel, 1)CC(/)C)IV(C(  

 
This will produce the implied volatility that minimizes the model's average discrepancy 
relative to the market, concentrating only on the portion of the option value that actually 
depends on volatility. 
 
Let us now look at a valuation model with more economic content.  Here are the 
regression results for Model 2. 
 
 
Model 2: 
 
 Cmarket     =      1.786     +     1.012 Cmodel 2      R2 =    0.9832  (5) 
             (247.0)         (3278.8)  

 
 

This model explains over 98% of the variance of option prices in the market.  There is 
still some bias, since the coefficients still differ significantly from  a = 0.0 and  b=1.0, 
but by most standards, this model would be judged to be highly successful.  Even so, 
Model 2 is considered to be of rather limited value by most academics and almost all 
traders. 
 
Model 2 is the Black-Scholes model, with the volatility parameter set equal to historical 
volatility over the previous 250 trading days.  The BS equation requires the volatility of 
the underlying asset from the present through option expiration as an input, but future 
volatility can not be observed.  One way to forecast volatility is simply to assume that 
future volatility will be the same as realized volatility from a sample of recent price data.  
There are numerous variations on historical volatility, using different numbers of past 
observations, calculating a sample mean or constraining it to 0, weighting observations 
inversely according to their age, etc.  Figlewski [1997] and Green and Figlewski [1999] 
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examine a number of alternative procedures in terms of root mean squared forecast error.  
Performance varies for the different techniques, but one of the most consistent results is 
that none of the volatility models seems to provide very accurate forecasts. 
 
The Black-Scholes model with a simple historical estimate as the volatility input is not 
very useful for trading purposes. The typical situation is that model values for nearly all 
options will be either below, or above, current market prices.  It is not helpful if a trader's 
model shows that all options are currently underpriced in the market, for instance.  A 
trader wants a model that prices options about the same way the market is pricing them, 
so that the model can be used to compute bids and offers for off-the-run contracts that 
will be consistent with the way the market is currently pricing actively traded options. 
 
Academics also distrust Black-Scholes prices computed from historical volatility, 
because they believe the market makes better volatility forecasts than can be obtained 
from simple historical data.  Among other problems, historical volatility is inherently 
backward-looking, while traders can be expected to have knowledge about future events 
that will influence volatility but are not incorporated in a historical estimate.  Thus, the 
volatility input to Model 2 is considered to be inferior to what the market is using. 
 
Model 3 attempts to correct this problem. 
 
 
Model 3:�
 
 Cmarket     =     0.057     +     1.008 Cmodel 3      R2 =    0.9946  (6) 
             (13.3)           (5796.5)  
 
 
Relative to Model 2, Model 3 improves the R2 by only about 1%, but the fit is 
extraordinary.  There is only about one half of one percent of market variance that the 
model does not capture. 
 
Unfortunately, in terms of judging model performance, Model 3 is a bit of a cheat.  
Worse, even though it is a cheat, Model 3 is still felt to be of little use by traders. 
 
Model 3 is the Black-Scholes model using implied volatility.  Each day's implied 
volatility is computed as the value that minimizes squared pricing error,  
(Cmarket - Cmodel(IV) )2 across all options with the same maturity.  This procedure takes 
current option prices as an input, then derives the volatility parameter that gives the best 
overall fit. 
 
The reason Model 3, Black-Scholes with implied volatility, is a cheat is that it is clearly 
circular reasoning to take current market prices, solve for the specific value of an 
unknown input parameter that gives the closest fit between model and market, and then 
judge the model by how close that fit is.  To reduce this problem, it is customary for 
researchers to do "out of sample" tests of  their models, by computing implied volatilities 
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from option prices on day t and then evaluating model performance using those same IV 
values to price options on day t+1. 
 
Option traders, who are not trying to test models, but to devise consistent price quotes 
and hedging strategies, are not bothered by lack of independence between market and 
model prices.  They will normally use IVs drawn from contemporaneous market option 
prices in their models. 
 
Since we are interested in evaluating model performance, not making markets, we rerun 
the regression for Model 3.  Model 4 is Black-Scholes with implied volatility computed 
from the previous day's market prices. 
 
 
Model 4: 
 Cmarket     =      0.050     +     1.008 Cmodel 4      R2 =    0.9944  (7) 
   (11.3)           (5678.8)  

 
 

The fit for Model 4 is almost as good as for the in-sample Model 3.  All results we report 
in the paper from this point on use the same one day out of sample procedure for implied 
parameters. 
 
We must recognize, however, that a good fit for this model does not allow us to 
distinguish clearly between the following two hypotheses: 
 

H0:  Model 4 gives good estimates of true option value. 
 
H1:  Model 4 does not give good estimates of true option value, but mispricing in 
the market is similar from one day to the next.  Using yesterday's implied 
volatility incorporates yesterday's mispricing into today's model values, which 
produces a good fit to today's market prices. 

 
In other words, Model 4's very close fit to the data does not allow us to conclude that it is 
a correct model. 
 
Why do traders not find Model 4 useful, even though from the regression results it is hard 
to believe one could do a lot better?  The problem is the volatility "smile" (or, in this 
market, the "skew").  The original BS derivation treated volatility as a fixed and known 
parameter for the underlying asset.  But empirical observation quickly revealed this to be 
untrue.  The basic model can be easily altered to accommodate volatility that changes 
over time, so long as it is non-stochastic.  With time-varying volatility, the volatility input 
to the model can differ for different expiration dates, but all options maturing on the same 
date should be priced with the same volatility.  But imposing this constraint in computing 
IVs from actual S&P option prices leads to systematic mispricing relative to the market 
as a function of the option's strike price.   
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Many option markets exhibit a volatility smile, with both in and out of the money options 
having implied volatility higher than that for the at the money contract.  The shape of the 
smile varies over time, but the basic pattern is a very regular property.  S&P 500 index 
options also exhibited a volatility smile in the first few years they were traded, but after 
the stock market crash of 1987, the standard pattern in the market changed to a more 
asymmetric "skew," in which low strike options (out of the money puts and in the money 
calls) are priced on relatively high volatilities, and IVs fall more or less monotonically as 
the strike price increases. 
 
When there is a volatility skew, using the same volatility input for all options with the 
same maturity tends to make low strike options appear consistently too expensive in the 
market and high strike options look too cheap.    Academic researchers take the existence 
of a smile or skew in the data as evidence that a different pricing model is needed, 
perhaps one allowing stochastic volatility or discrete jumps in the stock price.  Traders 
tend not to care what the reason for the skew is, but they want a model that fits market 
option prices for all strikes, so it is standard practice simply to allow different implied 
volatilities for different options. 
 
Models 5, 6, and 7 reflect different ways of weakening the constraint that IV must be 
equal for all options with the same maturity (always computing model prices using the 
previous day's IV estimates, as mentioned above). 
 
�

Model 5: 
 Cmarket     =      0.054     +     1.008 Cmodel 5      R2 =    0.9945  (8) 
   (12.3)           (5723.7)  
 
Model 6: 
 Cmarket     =      -0.017     +     1.002  Cmodel 6     R2 =    0.9992  (9) 
   (-10.7)          (15349.2)  
 
Model 7: 
 Cmarket     =      0.012       +    1.000   Cmodel 7     R2 =    0.9993  (10) 
    (8.1)            (16088.8)  
 
 
Model 5 allows calls and puts to have different implied volatilities, but they must be 
equal for all strikes.  This still suppresses the skew pattern, but does permit different 
pricing overall for calls and puts.  This small weakening of the constraint makes little 
difference: the estimation results are virtually identical to those shown for Model 4. 
 
Model 6 allows a smile or skew pattern, with different implied volatilities for different 
strikes, but requires calls and puts with the same strike to have equal IV.  An important 
reason to expect the latter constraint to hold is that otherwise put-call parity would be 
violated, leading to the possibility of static arbitrage.  The fit of this equation is 
extraordinary.  All but 0.08 percent of the variance of market prices is explained by the 



 13

model, the constant is very close to zero and the slope is extremely close to 1.0, even 
though with such a large sample size, both are still significantly different from the target 
values. 
 
Finally, Model 7 allows each individual option to have its own implied volatility, 
producing the best regression fit of all.  Practitioners (and academics who really want 
option model values to match market prices) typically use Model 6 or 7.   
 
The results from this regression analysis lead to two observations. 
 

• The regression test we have been looking at is not really useful for distinguishing 
a good option model from an unsatisfactory one, because R2 statistics are all so 
high. 

 
• Traders force the Black-Scholes equation to match market prices by fitting 

different implied volatilities for different options on the same underlying.  While 
this allows them to price and hedge illiquid options consistently with current 
market valuations, the "model" is now inconsistent with the financial theory from 
which it was derived.   

 
We will discuss these observations in turn. 
 
Our results have shown that even an unsatisfactory model can obtain a high regression 
R2.   A more meaningful measure of goodness of fit is the average size of the pricing 
error produced by the model.  The standard measure of this is root mean squared error 
(RMSE): 
 

 ∑ −= N/)CC(RMSE 2
elmodmarket    (11) 

 
 
where N is the number of options in the sample.   
 
Exhibit 1 shows the RMSEs and R2 statistics for the models we have been considering.  
These results reveal how different these models are in terms of how closely they match 
market prices, even though they all have extremely high R2 statistics.  Restricting IV to 
be equal for all options of a given maturity leads to RMSE pricing errors of about $1.40; 
allowing a volatility skew with different IVs for different strikes gives RMSE of under 
$0.50. 
 
However, since it is not possible for a single underlying asset to have more than one 
volatility over a specified time period, fitting different IVs for different strike prices 
means that the valuation equation is in conflict with the underlying theory.  Traders tend 
not to be bothered by theoretical niceties, if they have a tool that works.  But what makes 
the Black-Scholes equation a useful tool for traders, when the way they use it can not be 
justified by the theory from which the model is created? 



 14

 
We have earlier pointed to two different classes of arbitrage-based relationships for 
option prices.  Those that come from static arbitrage, or more generally from portfolio 
dominance, are very general and robust, because violation would permit profitable 
arbitrage on positions that are both (almost) riskless and easily set up in the real world.5  
Put-call parity is a good example of such a relationship.  It must hold for European 
options, regardless of the behavior of the underlying asset, interest rates, etc. 
 
Theoretical derivatives pricing models, like Black-Scholes, are based on dynamic 
arbitrage, which is only riskless and costless in theoretical markets, not the real world.  
While different assumptions about the asset returns process or the market environment 
lead to different dynamic replication strategies, and therefore different theoretical 
valuation models, every properly specified pricing model must satisfy the static arbitrage 
portfolio dominance constraints to be internally consistent.  Merton [1973] presents a 
large number of these option properties and proves that they must hold under general 
conditions 
 
Thus, a very important feature of the BS equation is that it satisfies all of these 
constraints.  There are quite a few of these relationships.  Let us focus on several that are 
particularly important in this case. 
 
 
1.  European option values go to zero as they get further out of the money. 
 

  
∞→→

→→
Sas0)T,X,S(Put

0Sas0)T,X,S(Call
    (12) 

 
 
2.  As European options get further in the money, the call (put) value approaches the 
value of a long (short) forward contract with the same strike price.6   
 
Let F(Sadj,X,T) be the forward price to buy, for a price of X on date T, one unit of an 
underlying asset whose current market price less the value of future dividend payout 
through expiration is Sadj. PV(X,T) is the  discounted present value of X dollars to be paid 
at date T with certainty.  Then  
 

   
0SasS)T,X(PV)T,X,S(F)T,X,S(Put
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5 Portfolio dominance refers to a situation in which one portfolio can never pay off less than a second one, 
pays off more under some states of the world, and costs less to set up.  The first portfolio dominates the 
second and would be preferred by all traders, so they can not be in equilibrium at current prices. 
6 The deeper an option goes in the money, the greater is the probability it will be exercised at expiration.  In 
the limit, eventual exercise is certain and the "option" is effectively a forward contract. 



 15

3.  At the money options have positive time value.  We will define "at the money" in this 
context in terms of the forward, as the value of S such that   Sadj  =  PV(X). 
 

0)T,X),X(PVS(Put

0)T,X),X(PVS(Call

adj

adj

>=

>=
     (14) 

   
 
4.  Between deep out of the money and deep in the money, the option value is continuous 
and convex in the asset price and the strike price.7 
 
 
5.  Put-call parity holds. 
 

)X(PVS)T,X,S(Put)T,X,S(Call adj −=−    (15) 
 
 

Exhibit 2 plots the familiar call value function to illustrate some of these conditions.  
Thus, a very important feature of the BS equation is that it satisfies all of these 
constraints from static arbitrage, that any acceptable option valuation model should obey.   
Secondly, it has a free parameter, the volatility, that allows the model value to be adjusted 
to match the market price of an option.  This may be enough to make it a valuable tool for 
a trader, even if the way it is used entails logical inconsistency vis-a-vis the model's 
underlying theory. 
 
 
IV.  The Informationally Passive Implied G Model 
 
The Black-Scholes equation clearly provides substantial incremental explanatory power 
relative to the option's intrinsic value, which we looked at above as Model 1, even when 
historical volatility is used.  However the best fit to market prices requires multiple 
implied volatilities.  To judge how much a formal pricing model like Black-Scholes 
really adds to our understanding of option valuation in the real world, beyond what we 
already know from the constraints on option prices to eliminate static arbitrage, we would 
like to evaluate its performance against a viable "passive" option pricing model.  This 
"null model" would serve as a benchmark for evaluating the marginal contribution of a 
theoretical model in the same way that passive investment in the market portfolio does in 
assessing the value added by active investment managers and strategies. What we want to 
know might be called the model's "informational alpha." 
 

                                                 
7   These properties are plausible for options, in general, but in fact, only continuity and convexity with 
respect to the strike price, given the asset price, is required by portfolio dominance.  Continuity and 
convexity with respect to the stock price require regularity assumptions on the asset price process. 
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If, in practice, the theoretical underpinnings of the Black-Scholes model are abandoned 
and the equation is just used as a convenient functional form for extrapolation and 
interpolation, it is not unreasonable to compare its performance to that of a simple curve 
fitting procedure that satisfies the portfolio dominance constraints, but has no economic 
content beyond that. 
 
 The following equation has the right shape for a call option's value.8 
 

2/x4/x1y 2 ++=     (16) 
 
Equation (16) is illustrated in Exhibit 3.  Note that as x goes to infinity, y goes to x; as x 
goes to minus infinity, y goes to  |x| + x = 0.  At x = 0, y = 1, so the function is positive 
"at the money." And it is continuous and convex throughout its range. 
 
To convert this function into an equation for pricing options, we move it to the right 
location and introduce a parameter G that allows the overall level to be adjusted upward 
or downward.  We can think of G as representing current "general conditions" in the 
options market, that determine how high option prices are relative to intrinsic values.  
Instead of implied volatility, this "model" will be based on implied values for G. 
 
Our informationally passive option pricing model is then given by 
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adj
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The variables are as defined above.  The put value, equation (18), is derived from put-call 
parity. 
 
Like the BS model, the Implied G model is flexible enough to be fitted with G 
constrained to be constant for all options with a given maturity, or to differ across subsets 
of options.  Exhibit 4 compares the Black-Scholes variants shown above as Models 4, 5, 
6, and 7 against the comparable versions of the passive Implied G model, on the basis of 
out of sample RMSE, as defined in equation (11).  
 
Exhibit 4 shows that the basic Black-Scholes model with a single implied volatility for all 
options with the same maturity--the only version consistent with the underlying theory--is 

                                                 
8 The origin of this equation is somewhat obscure.  Jonathan Goodman at the NYU Courant Institute 
suggested it to me in a telephone conversation, when I described what I needed the function to do.  Peter 
Carr later pointed out that Duffie (1988) had used a closely related function for a different purpose.  Duffie 
(1988), in turn, credits Stephen Smale for the suggestion. 
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actually less accurate in terms of out of sample root mean squared pricing error than the 
passive model.  Black-Scholes RMSE is 1.398, versus 1.280 for the Implied G model.  
Allowing calls and puts to be priced with different values of the implied parameter, but 
suppressing the smile/skew dependence on option strike price, improves the fit of each 
model slightly, but the passive model still performs better.  Only when the models are 
relaxed to accommodate the smile does the Black-Scholes equation achieve a lower 
RMSE than the IG model.  For Models 6 and 7, RMSE for the BS equation is below that 
of the passive model by 2.9 and 3.5 cents (5.4% and 7.0%), respectively. 
 
As we consider these results, it is important to note that the Implied G model has been 
chosen simply to illustrate the concept of comparing the performance of a pricing model 
against an informationally passive benchmark.  No effort has been made to "tweak" the 
model in any way to improve its performance.  Our object is not to find the best model of 
this type, only to suggest that model performance should be evaluated against a viable 
alternative such as this one and to show how such a comparison might be done. 
 
The strong performance of the passive model and the small marginal improvement 
achieved by the standard Black-Scholes equation, even allowing it to depart from 
theoretical consistency in order to better match market prices are a surprise, perhaps even 
a shock.  In Exhibit 5, we present RMSE statistics for the different model variants on 
subsets of the data.  Because suppressing the skew but allowing different implied 
parameters for calls versus puts gave only a minor improvement over the basic single 
implied parameter formulations, we will drop Model 5 from further consideration. 
 
We report the numbers of observations for each of the three model variants and the 
RMSE pricing errors for the BS and IG equations in each subsample.  As before, all 
model values are computed using the implied parameter value from the previous day.  
This accounts for the differing numbers of observations across models.  For example, if a 
given option did not trade on the previous day, it must be eliminated from the sample for 
Model 7 ("One Implied Value per Option") while it can be included in the Model 4 ("Flat 
Smile") sample because the common implied parameter value computed from other 
previous day option prices is available. 
 
The first line in Exhibit 5 duplicates the results shown in Exhibit 4.  The next two lines 
show that both models behave similarly for calls versus puts, with puts being priced a 
tiny amount more precisely than calls on average.  As with the full sample results, the BS 
model shows worse RMSE than the passive model when a single implied parameter per 
maturity is allowed, but is somewhat more accurate when it is allowed to incorporate a 
smile. 
 
The next section of Exhibit 5 examines differences in performance by option maturity.  
The overall sample contains all options with maturities under a year.  Of these, about 
57% have maturities of less than three months, for which trading activity is greatest.  The 
table breaks maturities into four categories: under 1 month, 1 to 2 months, 2 to 3 months, 
and above 3 months.  Comparisons between the BS and IG models are similar to what we 
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have already seen, with the Flat Smile ("classical") version of the BS model doing worse 
than the passive model, but the less constrained versions doing somewhat better.   
 
Comparing across model versions, we see that the Flat Smile models have substantially 
larger RMSEs than the less constrained variants, but allowing differences by strike is 
important for near maturities, while full flexibility--a different implied parameter for each 
option--does not improve out of sample fit.  For example, in the 1-2 month subsample, 
RMSE was 0.421 for the BS model with a different IV for each strike, but IVs for calls 
and puts with the same strike required to be the same, while it rose to 0.430 when calls 
and puts were permitted to differ.  This indicates that some of the differences in implied 
parameters across options do not persist from one day to the next.  Fitting a separate 
implied parameter for each option incorporates that random noise into model values.   
 
Comparing relative model performance across maturities, both looking down each 
column and across columns, suggests that implied parameter differences across options 
are due to more than just a smooth smile/skew pattern.  With a flat smile, pricing errors 
for long maturities are about 3 1/2 times larger than for the shortest maturities, while this 
ratio is more like 1.4 for the least constrained model.  Empirically, the smile shape itself 
is less extreme for longer maturity than for short maturity options, so these results 
indicate that what is gained by fitting different implied parameters for different options at 
longer maturities is a greater range of pricing diversity across contracts, not just the 
ability to match a regular smile or skew. 
 
The last section of Exhibit 5 examines the impact of option moneyness on relative model 
performance.  We look at calls and puts separately, recalling that out of the money calls 
correspond to low strike prices and out of the money puts to high strike prices.  Setting 
breakpoints appropriately to classify options as out of the money (OTM), at the money 
(ATM) and in the money (ITM) is more complicated than many researchers recognize.  If 
the underlying asset price is 50 and one is considering one-month options with strikes of 
45, 50, and 55, it is easy to split the sample into the three categories.  But if one is 
considering S&P 500 options, when the index is at 500 and there are strikes set 5 points 
apart, it is inappropriate to classify the 495 strike calls as in the money and the 505 strike 
calls as out of the money.  At normal volatility levels for the index, both of these prices 
are less than one day's standard deviation away from the current price.  All three options 
are really at the money.   
 
By the same token, a proper definition of moneyness should take option maturity into 
account.  For example, if the underlying asset is at S0 = 500 and its volatility is σ = 15%, 
a range of  (-0.5σ  to  +0.5σ) corresponds to a range of about  489 < ST < 511 for the 
price at maturity of a one-month option, but approximately  464 < ST < 539  at the 
maturity of a one-year contract.  Option moneyness should not be defined simply in terms 
of the difference between the strike price and the current asset price, without adjustment 
for the asset's volatility and option maturity. 
 
In Exhibit 5, we have classified options by moneyness as a function of how many 
standard deviations, in terms of Tσ , that the strike price is away from the current asset 



 19

price, where σ is the implied Black-Scholes volatility for the model variant under 
consideration and T is the time to maturity for the option.  This formulation has the 
advantage that the probability an option in a given category will end up in the money at 
expiration is largely independent of volatility or option maturity.   
 
The moneyness categories are as follows:   
 
 Deep OTM -- more than 1.5 standard deviations out of the money;  
 OTM          -- 1.5 to 0.5 standard deviations out of the money;  
 ATM          -- 0.5 standard deviations OTM to 0.5 standard deviations ITM; 
 ITM            -- 0.5 to 1.5 standard deviations in the money;  
 Deep ITM  -- more than 1.5 standard deviations in the money. 
 
Results for the Flat Smile models show that restricting them to a single implied parameter 
per expiration has a substantial impact on how well they fit market prices.  The worst fit 
in dollar terms for the BS model is for out of the money options.  Deep out of the money 
contracts also have sizable errors, which are the largest in percentage terms, given the 
low market prices of these options.  The  Implied G model, by contrast, fits worst for low 
strike options (OTM puts and ITM calls), doing much better than Black-Scholes for OTM 
calls and ITM puts, and much worse for ITM calls and OTM puts.   
 
When multiple implied parameters are fitted, the BS model has lower RMSE than the 
passive model in nearly every case, with the difference being greatest for the in the 
money contracts.  It is interesting to note that both models do substantially worse for out 
of the money contracts than in the money contracts. 
 
There are a number of interesting features to be seen in the detail presented in Exhibits 4 
and 5, but the general message is that while the performance statistics for the BS model 
presented in Section 2 appeared very strong, in fact its marginal improvement in 
matching market prices for options over a well-designed informationally passive model 
turns out to be modest, at best.  Indeed, in order to achieve lower RMSE than the passive 
model at all, it was necessary to use the Black-Scholes equation in a manner that is 
inconsistent with the underlying model. 
 
Root mean squared pricing error is an important measure of model performance, but it is 
clearly not the only thing a user cares about.  An obvious alternative would be to measure 
pricing error in percentage terms rather than in dollars.  More relevant, however, is to 
compare models on the basis of hedging accuracy.  It can be argued that in practice, 
hedging and risk management for options positions is a more important use for a 
valuation model than pricing is.  After all, the market prices for options are treated as 
fundamental values, to which model prices are adjusted through the use of implied 
parameters.  What traders need the model for is to value options for which there are no 
good market prices, and especially to understand and manage option risk exposures.  We 
examine the relative performance of the Black-Scholes and the passive models for 
hedging in the next section. 
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V.  Model Comparisons Based on Hedge Performance 
 
Using a delta neutral hedge to insulate an option position from the effects of stochastic 
changes in the price of the underlying asset is central to development of modern option 
pricing theory and its practical application in real world markets.  In a perfect markets 
Black-Scholes world, going long an option and taking an offsetting position in delta 
shares of the underlying produces a position that is perfectly riskless over the next instant 
in time.  In practice, of course, there are market frictions and positions can not be 
rebalanced continuously, so a perfect hedge is not feasible.  Even so, delta hedging to 
manage option risk is standard practice, and an important function of an option pricing 
model is to provide deltas for this purpose.  A good hedge is one that minimizes variance, 
even though it can not be fully eliminated.  We now look at performance in hedging 
options for our Black-Scholes model variants relative to the passive model. 
 
Delta is the partial derivative of the option price with respect to a change in the price of 
the underlying asset.  The exact definition of delta depends on the model and what is 
assumed about dividends.  In our case, the dividend-adjusted stock price is defined as  
Sadj = S - PV(future dividends), so that the dollar amount of dividend payout is assumed 
not to be affected as the stock price moves.  The partial derivative of Sadj with respect to S 
is therefore 1.0.  For the Black-Scholes model, this gives 
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where, as above, N[ . ] is the cumulative normal distribution function and  
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Taking partial derivatives with respect to S in equations (17) and (18) gives the deltas for 
the Implied G model. 
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We examined hedge performance by setting up delta neutral hedged positions that were 
assumed to be either long one call option and short delta "shares" of the S&P 500 index, 
or long one put and long delta shares.  The position was assumed to be held for one day, 
or until the date of the next available price record in the data set for that option.  (Options 
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were eliminated from the sample if the resulting holding period for the delta hedge would 
be more than 5 days.)  The hedged positions were then unwound at market prices, or if 
the ending date was option expiration, at the terminal date intrinsic value.  Hedging 
performance is measured by root mean squared deviation from zero change in the 
position's value.  We ignore the one-day expected return on the position, which is very 
small for a short holding period (e.g., if the riskless rate is 5%, the theoretical expected 
one-day return on a delta hedge is less than 1.4 basis points).  In any case, leaving out the 
expected value of the hedge return should not affect the comparison between models. 
 
Exhibit 6 presents the comparison between the Black-Scholes and passive models in 
terms of root mean squared hedging error.  Overall, delta hedges based on these models 
show RMSEs of about half a dollar.  Unlike our earlier results, all of the BS models 
exhibit lower RMSE than their passive counterparts.9  Also, despite its distinctly worse 
performance in pricing, the "classic" Black-Scholes model with a single implied volatility 
per maturity did just as well as the less constrained variants in hedging.  Overall, and for 
calls and puts separately, the BS models improved on the passive models by around 5% 
in terms of hedging RMSE. 
 
Breaking the sample down by maturity gave similar results.  An interesting feature here is 
that the performance difference between short and longer maturity contracts was much 
less in hedging than in pricing. 
 
Turning to comparisons across moneyness, there are both similarities and differences 
from our previous results.  Here again we see little difference in performance for the 
alternative versions of each model, and the BS models have lower RMSE than the 
passive models in nearly all cases.  However, there are substantial differences in 
performance between hedges of in the money and out of the money contracts, with the 
latter showing much higher RMSE.  Given that deltas for out of the money options are 
much closer to zero than for in the money contracts, dollar sizes of hedged positions are 
smaller for OTM than ITM options, making the differences in dollar RMSEs we see here 
much larger in percentage terms.10 
  
The BS model hedges show marginal improvement in performance over the passive 
model hedge that is small but positive in nearly all cases.  Only for deep out of the money 
puts (and deep in the money calls under one of the model variants) does the passive 
model beat Black-Scholes in hedging.  For in the money contracts the BS performs 
substantially better than the IG model. 
 
 

                                                 
9 Notice that taking partial derivatives of (17) and (18) is only one way to obtain an informationally passive 
model for delta.  Better performance in passive hedge design might be obtained from a different formula 
that was specifically designed to model the behavior of delta. 
 
10  The difficulty of hedging out of the money options precisely is displayed in detail in Green and 
Figlewski (1999) for a broad range of markets, maturities, and options.   
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V.  Summary and Conclusion 
 
 
The CAPM provides a benchmark for evaluating the performance of an active portfolio 
strategy, by comparing it to a passive portfolio with the same market risk exposure.  We 
have suggested that the same idea of comparing an active strategy against a passive 
alternative may be usefully applied in evaluating the marginal contribution of a 
theoretical option pricing model.   
 
We first looked at two common ways of evaluating pricing models.  A regression of 
market option prices on model values provides an R2 statistic, measuring goodness of fit, 
and regression coefficients, that indicate model bias.  We saw, however, that apparently 
excellent performance can be achieved by a "model" that is no more than the option's 
intrinsic value: intrinsic value alone explained more than 92% of the variance in the 
sample of option market prices.  This means that any option model that properly embeds 
intrinsic value in its valuation should achieve a very high R2 in the regression, and that 
the marginal contribution of incorporating more theory is limited to the additional 7+% of 
variance.  The BS model using historical volatility, while largely rejected as a useful 
valuation tool by both traders and academic researchers, achieved an R2 of 0.983.   
 
The regression does not discriminate adequately among alternative models whose 
performance is actually quite different in terms of dollar RMSE.  Traders want a pricing 
model that can match market prices for liquid contracts, while academic researchers want 
the best estimate of future volatility to put into their pricing equations.  The solution in 
both cases is to use implied volatility.  However, stock index option prices in the market 
do not exhibit the same implied volatility for all options with the same expiration date, 
contrary to what is required by the underlying theory.  The standard practice among 
traders is simply to fit different IVs for options with different strike prices.  But this turns 
the BS equation from a pricing model that has been rigorously derived from theoretical 
principles into just a functional form that is useful for interpolation and extrapolation in a 
trading context.  
 
Rational option prices must exclude profitable static arbitrage.  Theoretical values from 
the Black-Scholes model and all similar option pricing models do so, but to arrive at a 
unique option fair price, they assume all dynamic arbitrage opportunities are also 
eliminated.  Static arbitrage is easy to implement in the real world, but dynamic 
replication of option payoffs is not.  Even so, the BS model is widely used by traders.  
But the way it is implemented, as "practitioner Black-Scholes," uses implied volatility 
extracted from market option prices, with different IVs for different options on the same 
underlying.  In other words, practitioners use the Black-Scholes equation, but not the 
Black-Scholes model.   
 
This raises the question of how much of the BS model's practical success is simply due to 
the fact that BS values satisfy the static arbitrage constraints, and how much comes from 
the real theoretical content of the model, which is essentially the expression for the cost 
of replicating the option's payoff under the model's assumptions (or equivalently, the cost 
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of hedging the option dynamically through expiration).  We addressed this question by 
comparing the BS model against an "informationally passive" model, that was just a 
simple mathematical function which also obeys the static arbitrage constraints.  The 
Implied G model is one such function.  We found that the regression and RMSE results 
looked extraordinarily good for the BS model, but the marginal improvement over the 
passive model was rather limited.  In fact, the classic BS model with a single implied 
volatility for all options of a given maturity was less accurate than the passive model.  
When the constraint on IVs was relaxed to accommodate the volatility skew, the BS 
equation performed better than the passive model in terms of root mean squared pricing 
error, but only by a few cents. 
 
The relative performance of the BS models, including the classic model, was better when 
hedging accuracy was the criterion.  Interestingly, fitting multiple implied volatilities to 
allow the skew did not seem to make much difference to model performance in delta 
hedging. 
 
As researchers, we tend to think that our intellectual creations are of great value, and we 
are perhaps insufficiently skeptical when empirical tests seem to confirm that belief.  
What we have seen in this paper is that some kinds of tests are more stringent than others 
(e.g., it was easier to achieve a high R2 than a low RMSE), and that if we want a measure 
of a model's true contribution, we should focus on incremental explanatory power relative 
to a benchmark that properly incorporates all of the properties of the data that must hold 
independent of our model.  The passive Implied G model is an example of such a 
benchmark for option valuation.   
 
I believe that subjecting models to this kind of test will help us to evaluate them more 
honestly and to focus more clearly on how much improvement can be obtained, at what 
cost, by more ambitious theorizing.  
 
One also may consider whether for some purposes, use of a robust passive model may be 
preferred to a more ambitious option model that can be harder to work with and require 
more detailed input information.  The IG model also offers flexibility as a pricing 
function, in that it can be readily extended to incorporate constraints on G across options 
or additional factors.11  For example, one might want to parameterize the skew pattern by 
constraining G to be a specific function of moneyness, such as a quadratic, or to add 
structure across option maturities to capture an empirical "term structure of Gs."   
 
As always, further research in this area would be worthwhile. 

                                                 
11 In giving presentations of this paper, I have occasionally succumbed to the somewhat whimsical and self-
referential urge to refer to this as the "Flexible Implied G" model, or the FIG model, for short. 
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Exhibit 1:  Regression R2 and Root Mean Squared Pricing Error  
for Models 1 through 7 

 
 
R2 statistics come from estimates of regression equation (2), as reported in the text.  Root 
mean squared error is defined as  
 

  ∑ −= N/)CC(RMSE 2
elmodmarket   (11) 

 
 
 
 

Model R2 RMSE 

1.  Intrinsic value 0.9276 7.151 

2.  Black-Scholes, historical volatility 0.9832 3.097 

3.  Black-Scholes, implied volatility, same day 0.9946 1.375 

4.  Black-Scholes, previous day, single IV per maturity 0.9944 1.398 

5.  Black-Scholes, previous day, put and call IVs differ 0.9945 1.386 

6.  Black-Scholes, previous day, IVs differ by strike  0.9992 0.510 

7.  Black-Scholes, previous day, IVs differ for each option 0.9993 0.486 
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Exhibit 4:  Mean Squared Pricing Error for 
 Black-Scholes versus the Implied G Model 

 
 
The Table presents Root Mean Squared Error in dollars, as defined in equation (11), for 
the Black-Scholes equation and the Implied G Model, defined in equations (17) and (18).  
Implied volatility and implied G are computed from previous day option prices.   
 
 
 
 

Model Variant Black-
Scholes 

Implied G 
Model 

4.  Single implied parameter per maturity for all options 1.398 1.280 

5.  One implied parameter for puts, one for calls 1.386 1.271 

6.  Implied parameters differ by strike; calls = puts 0.510 0.539 

7.  One implied parameter for each option 0.466 0.501 
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Exhibit 5:  Root Mean Squared Pricing Error for Black-Scholes vs. Implied G Model 
 
The Table presents Root Mean Squared Error in dollars, as defined in equation (11), for the Black-Scholes equation (BS)and the 
Implied G Model (IG) on various subsets of the data sample.  Implied volatility and implied G are computed from previous day option 
prices.  Option moneyness is defined in terms of the standard deviation of the log return for the maturity of the option  v = Tσ , as 
described in the text.  Breakpoints for calls are as follows. Deep OTM:  ln (Sadj/PV(X)) < -1.5 v; OTM: -1.5 v < ln (Sadj/PV(X))  
< -0.5 v; ATM: -0.5 v < ln (Sadj/PV(X)) < 0.5 v; ITM: 0.5 v < ln (Sadj/PV(X)) < 1.5 v; Deep ITM:  1.5 v < ln (Sadj/PV(X)).  
Breakpoints for puts are the same, with signs reversed. 
 
 
 

Flat Smile One Implied Value per Strike One Implied Value per Option Subsample # obs BS IG # obs BS IG # obs BS IG 
          
Full Sample 182,491 1.398 1.280 180,713 0.510 0.539 176,703 0.466 0.501 
   Calls 92,530 1.390 1.323 91,602 0.515 0.542 89,813 0.492 0.524 
    Puts 89,961 1.407 1.234 89,111 0.504 0.536 86,890 0.438 0.476 
          
Maturity          
   0-1 months 36,258 0.522 0.492 36,110 0.374 0.400 33,742 0.373 0.407 
   1-2 months 39,021 0.858 0.812 38,677 0.421 0.456 37,776 0.430 0.467 
   2-3 months 29,543 1.127 1.054 29,032 0.451 0.480 28,714 0.451 0.482 
   3-12 months 77,669 1.901 1.727 76,894 0.616 0.645 76,741 0.523 0.559 
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Exhibit 5 continued:  Root Mean Squared Pricing Error for Black-Scholes vs. Implied G Model 
 
 
 

Flat Smile One Implied Value per Strike One Implied Value per Option Subsample # obs BS IG # obs BS IG # obs BS IG 
Moneyness - Calls          
     deep OTM 13,196 1.105 0.696 6,098 0.442 0.440 4,663 0.531 0.590 
     OTM 22,293 1.852 0.936 27,738 0.578 0.601 27,390 0.633 0.669 
     ATM 29,734 1.242 1.195 29,348 0.576 0.596 29,364 0.528 0.551 
     ITM 17,862 1.494 2.132 16,824 0.453 0.507 15,868 0.274 0.339 
     deep ITM 9,534 0.250 1.159 11,594 0.243 0.284 12,528 0.071 0.072 
          
Moneyness - Puts          
     deep OTM 5,222 0.766 0.865 6,149 0.548 0.529 3,855 0.602 0.649 
     OTM 15,997 1.818 2.267 16,287 0.670 0.688 16,352 0.664 0.693 
     ATM 29,769 1.240 1.089 29,338 0.554 0.580 29,331 0.471 0.501 
     ITM 22,398 1.693 0.712 28,281 0.384 0.453 27,948 0.234 0.314 
     deep ITM 16,575 0.857 0.505 9,056 0.183 0.231 9,404 0.079 0.099 
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 Exhibit 6:  Root Mean Squared Hedging Error for Black-Scholes vs. Implied G Model 
 
The Table presents Root Mean Squared Error in dollars as the change in the value of a delta hedged position that is long one option 
and short delta "shares" of the index, for the Black-Scholes equation (BS)and the Implied G Model (IG) on subsets of the data sample.  
Implied volatility and implied G are computed from previous day option prices.  Option moneyness is defined in terms of the standard 
deviation of the log return for the maturity of the option  v = Tσ , as described in the text.  Breakpoints for calls are as follows. Deep 
OTM:  ln (Sadj/PV(X)) < -1.5 v; OTM: -1.5 v < ln (Sadj/PV(X)) < -0.5 v; ATM: -0.5 v < ln (Sadj/PV(X)) < 0.5 v;  
ITM: 0.5 v < ln (Sadj/PV(X)) < 1.5 v; Deep ITM:  1.5 v < ln (Sadj/PV(X)).  Breakpoints for puts are the same, with signs reversed. 
 
 

Flat Smile One Value per Strike One Value per Option Subsample # obs IV IG IV IG IV IG 
        
Full Sample 181,718 0.495 0.512 0.486 0.514 0.487 0.514 
   Calls 92,305 0.519 0.536 0.510 0.537 0.508 0.537 
    Puts 89,413 0.469 0.486 0.461 0.488 0.465 0.489 
        
Maturity        
   0-1 months 35,541 0.440 0.450 0.440 0.450 0.443 0.451 
   1-2 months 38,783 0.468 0.484 0.456 0.482 0.457 0.483 
   2-3 months 29,834 0.478 0.491 0.465 0.490 0.466 0.491 
   3-12 months 77,560 0.537 0.559 0.528 0.562 0.528 0.563 
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Exhibit 6 continued:  Root Mean Squared Hedging Error for Black-Scholes vs. Implied G Model 
 
 
 

Flat Smile One Value per Strike One Value per Option Subsample # obs IV IG IV IG IV IG 
Moneyness - Calls        
     deep OTM 14,913 0.637 0.637 0.626 0.638 0.625 0.637 
     OTM 21,814 0.637 0.682 0.627 0.671 0.628 0.672 
     ATM 26,781 0.540 0.559 0.538 0.556 0.538 0.556 
     ITM 18,112 0.332 0.323 0.299 0.361 0.295 0.361 
     deep ITM 10,685 0.133 0.103 0.124 0.102 0.090 0.100 
        
Moneyness - Puts        
     deep OTM 5,626 0.687 0.672 0.690 0.666 0.712 0.670 
     OTM 16,453 0.663 0.663 0.651 0.687 0.660 0.691 
     ATM 26,817 0.500 0.517 0.498 0.514 0.499 0.515 
     ITM 21,906 0.328 0.398 0.313 0.380 0.311 0.378 
     deep ITM 18,611 0.195 0.197 0.173 0.202 0.167 0.201 
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EXHIBIT 2:  VALUE OF A CALL OPTION
Initial asset = 100,  Strike = 100,  Maturity = 1 Month,  Interest = 8.00%,  Volatility = 0.25
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Exhibit 3: Graph of Equation (16)
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y = Max(0,x) y = (1 + x^2 / 4)^.5 + x / 2


