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Optimal Exercise of Executive Stock Options and
Implications for Valuation

Abstract

The cost of executive stock options to shareholders has become a focus of attention
in ¯nance and accounting. The di±culty is that the value of these options depends on the
exercise policies of the executives. Because these options are nontransferable, the usual theory
does not apply. We analyze the optimal exercise policy for a utility-maximizing executive
and indicate when the policy is characterized by a critical stock price boundary. We provide
a counterexample in which the executive exercises at low and high stock prices but not in
between. We show how the policy varies with risk aversion, wealth, and volatility and explore
implications for option value. For example, option value can decline as volatility rises.



With the explosive growth of executive stock options in corporate compensation, the
cost of these options to shareholders has become a focus of attention in ¯nance and
accounting. Recent regulation requiring ¯rms to recognize option expense after 2005
has intensi¯ed the demand for suitable valuation methods. The di±culty is that the
value of these options depends crucially on the exercise policies of the option holders,
but because these options are nontransferable, the usual theory does not apply.

In the case of an ordinary call, the holder can sell the option at any time, so his goal
is presumably to maximize the option's present value. The value-maximizing exercise
policy in a Black-Scholes world has been researched extensively (see Merton (1973),
Van Moerbeke (1976), Roll (1977), Geske (1979), Whaley (1981), Kim (1990)). It
calls for exercising the option once the stock price rises above a critical level. This
critical level is increasing in the riskless rate, the stock return volatility, and the time
remaining to maturity, and it is decreasing in the dividend rate, with no early exercise
if the dividend rate is zero.

By contrast, the holder of an executive stock option must bear the risk of the op-
tion payo®, so simply maximizing the option's present value is generally not opti-
mal. Indeed, evidence indicates that executives systematically exercise options on
non-dividend paying stocks well before expiration. The executive presumably chooses
an option exercise policy as part of a greater utility maximization problem that includes
other decisions, such as portfolio and consumption choice and managerial strategy.

This paper studies the optimal exercise policy for an executive stock option under
simple but appealing assumptions about the executive's choice set. We address the
questions of when the policy can be described by a critical stock price boundary, as
in the case of an ordinary option, and how this boundary varies with executive risk
aversion, wealth and stock price volatility. We then explore the implications for option
value.

The intuition that the need for diversi¯cation can lead an executive to sacri¯ce some
option value by exercising it early is well understood in the literature, but explicit
theory of the optimal exercise of ESOs is still developing. Huddart (1994), Marcus
and Kulatilaka (1994), and Carpenter (1998) build binomial models of the utility-
maximizing exercise decision with exogenous assumptions about how non-option wealth
is invested. Detemple and Sundaresan (1999) extend these to allow for simultaneous
option exercise and portfolio choice decisions. These papers establish the economic
approach to ESO valuation, focusing on the optimality of early exercise and the fact
that this makes ESOs worth less than their Black-Scholes value rather than an in-depth
analysis of the exercise policy itself. In a continuous-time framework, Ingersoll (2006)
develops a subjective option valuation methodology assuming the option is a marginal
component of the executive's portfolio. Kadam, Lakner, and Srinivasan (2003) and
Henderson (2004) model the optimal exercise policy for an in¯nite horizon option, but
their models link the manager's consumption date to the option exercise date, which
can distort the exercise decision, even in the absence of trading restrictions.
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A number of papers model option value using exogenous speci¯cations of the exer-
cise policy. Jennergren and Naslund (1993), Carr and Linetsky (2000), and Cvitanic,
Wiener, and Zapatero (2004) derive analytic formulas for option value assuming ex-
ogenously speci¯ed exercise boundaries and forfeiture rates. Hull and White (2004)
propose a binomial model in which exercise occurs when the stock price reaches an
exogenously speci¯ed multiple of the stock price and forfeiture occurs at an exogenous
rate. Rubinstein (1994) and Cuny and Jorion (1995) also compute option value under
exogenous assumptions about the timing of exercise.

Other authors have focused on the executive's private valuation of the option using cer-
tainty equivalents rather than on the market value of the option from the viewpoint of
shareholders. These include Lambert, Larcker, and Verrechia (1991), Hall and Murphy
(2002), Cai and Vijh (2004), and Miao and Wang (2005).

1 General formulation of the executive's problem

In the general version of the problem we consider, the executive has n ¯nite-lived
options with strike price K and expiration date T and additional wealth that can
be invested subject to a prohibition on short sales of the stock. The investment set
includes riskless bonds with constant riskless rate r, the underlying stock with price
St, and a market portfolio with price Mt. These prices satisfy

dSt
St

= (¸¡ ±) dt+ ¾ dBt ; (1)

dMt

Mt

= ¹ dt+ ¾m dBt ; (2)

where Bt is a standard two-dimensional Brownian motion on a probability space
equipped with the natural ¯ltration and ¾ and ¾m are two-dimensional row vectors.
The stock return volatility, ¾, the stock dividend rate ±, and the mean and volatility
of the market return, ¹ and ¾m are constant, and the mean stock return ¸ is equal to
the normal return for the stock given its correlation with the market,

¸ = r +
¾¾0m
jj¾mjj2 (¹¡ r) : (3)

In particular, in the absence of the option, an optimal portfolio would contain no stock
position beyond what is implicitly included in the market portfolio.

The executive simultaneously chooses an option exercise time ¿ , which is a stopping
time of the ¯ltration generated by the Brownian motion, and an investment strategy
in the market and the stock, ¼t ´ (¼mt ; ¼st ) satisfying E

R T
t=0 jj¼tjj2 dt < 1. His goal is

to maximize the expected utility of time T wealth:

max
f¿·T;¼m;¼s¸0g

EfV (W¿ + n(S¿ ¡K)+; ¿)g (4)
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subject to
dWt = rWt dt+ ¼

m
t (¹dt+ ¾m dBt) + ¼

s
t (¸ dt+ ¾ dBt) ; (5)

where

V (Wt; t) ´ max
¼m

EtfU(WT )g s.t. dWu = rWu du+ ¼
m
u (¹ du+ ¾m dBu) ; (6)

and the utility function U is strictly increasing, strictly concave, and twice continuously
di®erentiable.

This formulation entails a number of simpli¯cations. The executive's portfolio does not
include a position in restricted shares of stock (see Kaul, Liu, and Longsta® (2003) for a
model of portfolio choice with restricted stock). It allows only for a single block exercise
of the option, although the executive would probably prefer to exercise the options at a
stochastic rate over time. The model also considers only a single grant of options when
in practice, executives are granted new ten-year options every year and typically build
up large inventories of options with di®erent strikes and expiration dates. It would
be useful to understand which options are most attractive to exercise ¯rst and how
the anticipation of future grants of options and other forms of compensation a®ects
current exercise decisions. In addition, the model does not account for any control the
executive has over the underlying stock price process through the exertion of e®ort
and through project and leverage choices; these choices may interact with the exercise
decision. Despite these simpli¯cations, we believe this formulation captures the essence
of the executive stock option problem.

Intuition suggests that the optimal outside position in the stock in problem (4) is
¼s ´ 0, however this remains to be proved. The example in Evans, Henderson, and
Hobson (2005) shows that results from traditional portfolio theory may fail to hold in
the presence of an optimal stopping problem.

If the optimal investment policy ¼t and the indirect utility function V satisfy, respec-
tively, linear and polynomial growth conditions in W and S, then Theorem 3.1.8 of
Krylov (1980) implies that the value function for the executive's problem,

f(Wt; St; t) ´ max
ft·¿·T;¼m;¼s¸0g

EtfV (W¿ + n(S¿ ¡K)+; ¿)g (7)

subject to

dWu = rWu dt+ ¼
m
u (¹du+ ¾m dBu) + ¼

s
u(¸ du+ ¾ dBu) ; (8)

is continuous and satis¯es f(Wt; St; t) ¸ V (W¿ + n(S¿ ¡K)+; ¿) and f(WT ; ST ; T ) =
U(WT + n(ST ¡K)+).
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2 Special case with outside wealth in riskless bonds

We start by analyzing the case in which the outside wealth is invested in riskless bonds
and the stock appreciates at the riskless rate, as if the market return were riskless:

dSt
St

= (r ¡ ±) dt+ ¾ dBt : (9)

We assume for now that the optimal investment policy entails no long position in the
stock. The executive's problem at each time t < T becomes

f(St; t) ´ max
ft·¿·Tg

EtfU(n(S¿ ¡K)+er(T¡¿) +W )g ; (10)

where the constant W is outside wealth at time T with W > nKerT and f : (0;1)£
[0; T ] ! R is a continuous function satisfying f(St; t) ¸ U(n(St ¡ K)+ + W ) and
f(ST ; T ) = U(n(ST ¡K)+ +W ).
Note that

E[ sup
0·t·T

U(n(St ¡K)+er(T¡t) +W )] = E[U( max
0·t·T

(n(St ¡K)+er(T¡t) +W ))](11)

· U(E[ max
0·t·T

(n(St ¡K)+er(T¡t) +W )])(12)
< 1 ; (13)

so Theorem D.12 of Karatzas and Shreve (1998) implies that an optimal exercise time
is

¿ ¤ ´ infft 2 [0; T ] : f(St; t) = U(n(St ¡K)+er(T¡t) +W )g : (14)

The continuation region for the problem is

D ´ f(s; t) 2 (0;1)£ [0; T ] : f(s; t) > U(n(s¡K)+er(T¡t) +W )g : (15)

2.1 Existence of a critical stock price boundary

The ¯rst step in characterizing the exercise policy is to determine whether a single
critical stock price boundary ¹s(t) separates the continuation region below from the
exercise region above, as is the case for ordinary American calls. This is often assumed
to be true in executive stock option models with exogenously speci¯ed exercise policies,
however, it remains to be proved that the utility-maximizing policy has this structure.

To formalize intuition about the various e®ects of waiting to exercise, let g(s; t) ´
U(n(s¡K)+er(T¡t)+W ) denote the payo® function for the optimal stopping problem
and note that on (K;1) £ [0; T ], g is C2;1 and Itô's lemma implies that g has drift
equal to H(St; t) where

H(s; t) ´ U 0(h(s; t))(rK ¡ ±s)ner(T¡t) + 1
2
U 00(h(s; t))n2e2r(T¡t)¾2s2 (16)

4



and h(s; t) ´ n(s¡K)er(T¡t) +W is total time T wealth given exercise at time t and
stock price s. This expression shows that when the option is in the money, the e®ects
of waiting to exercise include the bene¯ts of delaying payment of the strike price, the
cost of losing dividends, and the cost of bearing stock price risk.

Proposition 2.1 Suppose that H is nonincreasing in the stock price s. Then for each
time t 2 [0; T ), if there is any stock price at which exercise is optimal, then there exists
a critical stock price ¹s(t) such that it is optimal to exercise the option if and only if
St ¸ ¹s(t).

Proof Fix t 2 [0; T ). Suppose (s1; t) is a continuation point. We show that if s2 < s1
then (s2; t) is also a continuation point. First note that it must be optimal to continue
holding the option if St · K. Stopping then would guarantee a reward of U(W ), which
is less than the expected utility of continuing, for example, until the ¯rst time the stock
price rises to K + c, for some c > 0, or until expiration T .

So assume s1 > s2 > K. For u ¸ t, let S(i)u denote the stock price process starting
from si at time t and note that S

(1)
u > S(2)u . Finally, let ¿ be the optimal stopping time

given St = s1. Since ¿ is a feasible strategy if St = s2,

f(s2; t)¡ f(s1; t) ¸ EtfU(n(S(2)¿ ¡K)+er(T¡¿) +W )¡ U(n(S(1)¿ ¡K)+er(T¡¿) +W )g
¸ EtfU(n(S(2)¿ ¡K)er(T¡¿) +W )¡ U(n(S(1)¿ ¡K)er(T¡¿) +W )g
= g(s2; t)¡ g(s1; t) + Et

Z ¿

t
(H(S(2)u ; u)¡H(S(1)u ; u))du

¸ g(s2; t)¡ g(s1; t) : (17)

Therefore, f(s2; t)¡ g(s2; t) ¸ f(s1; t)¡ g(s1; t) > 0. 2
Remark The hypothesis is satis¯ed for constant relative risk averse utility functions
with relative risk aversion less than or equal to one. Similarly, in the value maximization
problem for an ordinary option, the second order term in H does not appear, the drift
is nonincreasing in the stock price, and it follows that it is optimal to exercise if and
only if the stock price has risen above a critical level. For executive stock options
however, the risk aversion of the option holder gives rise to the second order term, and
the drift need no longer be monotonic in the stock price.

Example with a split continuation region Figure 1 shows the optimal exercise
policy for utility function

U(W ) =
W 1¡A

1¡A + cW (18)

with A = 10; c = 0:0001;K = 1; T = 10; r = 0:05; ¾ = 30%; and ± = 0. The utility
function is strictly increasing and strictly concave. As the ¯gure shows, the execu-
tive continues for low and high stock prices, but exercises the option for intermediate
stock prices. It is not clear, however, how much valuation error would be created by
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erroneously assuming the existence of a single critical exercise boundary. That would
depend on how that single boundary was determined. In this example, if we ignore the
presence of the upper boundary, the option value is 0.408 instead of the correct value
of 0.432.

2.2 Dependence of the continuation region on the parameters

Understanding how executive stock option value varies with stock return volatility, ex-
ecutive wealth, and other parameters requires an understanding of how these param-
eters a®ect the exercise policy. With an ordinary American call option, the exercise
boundary, or on other words, the set of stock prices at which the option holder would
continue at a given point in time, is increasing with the stock volatility and the time
to expiration and decreasing with the dividend rate. With executive stock options,
the dependence of the continuation region on the parameters is less clear cut. This
section describes how the continuation region changes with volatility, executive wealth
and risk aversion, the stock dividend rate, and the time to expiration. Most of the re-
sults are drawn from numerical examples. All of the numerical examples use constant
relative risk averse utility and a zero dividend rate. In all cases, even those in which
the coe±cient of relative risk aversion, A, is greater than one, the continuation region
is characterized by a single critical stock price boundary.

2.2.1 Non-monotonicity with respect to the stock return volatility

A basic result in standard option pricing theory is that option value is increasing
in volatility. This is also typically the case in executive stock option models with
an exogenously speci¯ed exercise boundary that does not change with volatility (see
for example Cvitanic, Wiener, and Zapatero, 2004). However, the utility-maximizing
continuation region can shrink considerably with volatility and this can lead to option
value declining in volatility.

Figure 2 plots exercise boundaries and option for various levels of stock return volatility.
As volatility rises from 10% to 200%, the exercise boundary tends to fall ¯rst and then
rise slightly. This is shown most clearly in Figure 2a, with risk aversion coe±cient
A = 0:5. The risk averse utility of the option payo® as a function of the stock price
has both a convex region and a concave region, so in principle, an increase in volatility
could either lead the executive to continue longer or exercise sooner. Apparently the
concave portion dominates at low levels of volatility, making the executive exercise
sooner as volatility rises. At higher levels of volatility, the convex portion seems to
dominate and the boundary rises slightly. Empirically, Bettis, Bizjak and Lemmon
(2005) ¯nd that options are exercised earlier at higher volatility ¯rms.

At the lower levels of risk aversion shown in Figures 2a and 2b, executive stock option
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value, labeled \ESO" in the ¯gures, is generally increasing in volatility, though not
as fast as the Black-Scholes value, labeled \Max." However, at the higher levels of
risk aversion shown in Figures 2c and 2d, executive stock option value is decreasing
in volatility at low levels of volatility. Here the negative e®ect on value of the drop
in the boundary of o®sets the positive e®ect of extreme stock prices becoming more
likely. In a model of real option values with the underlying following an arithmetic
Brownian motion, Miao and Wang (2005) also ¯nd that the exercise boundary can fall
with volatility, as can the certainty equivalent value of the option.

2.2.2 Risk aversion

Figure 3 shows how the exercise boundary and option value vary with executive risk
aversion. In all of the examples, the dividend rate is set to zero so that the only motive
for early exercise is the ability to transfer the option value to a more e±cient portfolio,
in this case, the riskless asset. Since this diversi¯cation motive would seem to be
stronger with greater risk aversion, intuition would suggest that the exercise boundary,
and thus option value, should decline with risk aversion. This is intuition is borne out
in Figure 3, which examines the e®ect for four di®erent parameterizations of wealth
and volatility.

2.2.3 Wealth

With constant relative risk aversion, the executive's perception of riskiness of the option
should be greater the greater portion of his total wealth the option represents. Thus,
with more non-option wealth, the executive should have less incentive to reduce risk by
exercising the option early. Figure 4 illustrates the e®ects of increasing wealth on the
exercise boundary and option value. In all combinations of risk aversion and volatility,
the exercise boundary and option value are increasing in non-option wealth.

2.2.4 Monotonicity with respect to the dividend rate

This section shows analytically that the executive's continuation region is larger the
smaller the dividend rate on the stock, as is the case for an ordinary American option.
This result holds regardless of the actual shape of the continuation region.

Proposition 2.2 If a given state (s; t) is in the continuation when the dividend rate
is ±1, then it is also in the continuation region when the dividend rate is ±2 for any
±2 < ±1.

Proof Let f(s; t; ±) denote the value function and S
(±)
t denote the stock price process

when the dividend rate is ±. Let ¿ be the optimal stopping time for the problem with ±1.
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Then, since ¿ is a feasible choice for the problem with ±2 and S
(±2)
¿ =S

(±2)
t > S(±1)¿ =S

(±1)
2 ,

f(s; t; ±2)¡ f(s; t; ±1) ¸ EfU(n(S(±2)¿ ¡K)+er(T¡¿) +W )¡
U(n(S(±1)¿ ¡K)+er(T1¡¿) +W )jS(±1)t = S

(±2)
t = sg

¸ 0 (19)

Therefore, f(s; t; ±2) ¸ f(s; t; ±1) > g(s; t) so (s; t) is in the continuation region for ±2.

2.3 Boundedness of the continuation region

This section gives a conjecture about the boundedness of the continuation region. As
a step toward this, the lemma below describes the evolution of g over the whole state
space.

Lemma 2.1 For t 2 [0; T ) and ¿ a stopping time with t · ¿ · T ,

g(S¿ ; ¿)¡ g(St; t) =
Z ¿

t
1fSu>KgH(Su; u)du+Z ¿

t
1fSu>KgU

0(h(St; t))ner(T¡u)¾Su dBu +Z ¿

t
U 0(W )ner(T¡u) d¤u(K) (20)

where ¤t(K) is the local time of the process S at the level K up to time t.

Proof Let
g1(St; t) ´ U(W ) + U 0(W )ner(T¡t)(St ¡K)+ (21)

and let
g2(St; t) ´ g1(St; t)¡ g(St; t) : (22)

The second derivative of g2 with respect to S exists almost everywhere so Itô's lemma
can be extended to give

g2(S¿ ; ¿)¡g2(St; t) =
Z ¿

t

@g2(Su; u)

@S
dSu+

Z ¿

t
(
1

2

@2g2(Su; u)

@u2
¾2S2u+

@g2(Su; u)

@u
) du (23)

as shown by Carr, Jarrow, and Myneni (1992, footnote 15). The nonconstant term
in g1 is the product of a di®erentiable function of time and a convex function of the
stock price. Applying Karatzas and Shreve (1991, Theorem 7.1) for convex functions
of semimartingales and then the product rule gives

g1(S¿ ; ¿)¡ g1(St; t) =
Z ¿

t
U 0(W )ner(T¡u)1fSu>Kg((rK ¡ ±Su) du+ ¾Su dBu) +Z ¿

t
U 0(W )ner(T¡u)d¤u(K) : (24)
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Subtracting (23) from (24) completes the proof of the lemma. 2

Now consider a case in which the continuation region is characterized by a single critical
stock price boundary ¹s(t) as in Proposition 2.1 and set ¹s(t) =1 for t 2 [0; T ) at which
no exercise occurs.

Conjecture 2.1 Suppose that the continuation region is characterized by a single crit-
ical stock price boundary ¹s(t). Suppose further that there exists ŝ > K and L1 < 0 such
that H(St; t) < L1 for all St > ŝ and all t 2 [0; T ). Then the set of t 2 [0; T ] for which
¹s(t) =1 contains no intervals.

Sketch of proof Fix t 2 [0; T ) and St > ŝ and let
¿̂ ´ T ^ inffu > t : Su = ŝg : (25)

Then

f(St; t)¡ g(St; t) = Etg(S¿¤; ¿
¤)¡ g(St; t)

= Et

Z ¿¤

t
1fSu>KgH(Su; u)du+

Et

Z ¿¤

t
U 0(W )ner(T¡u) d¤u(K) (26)

= PStf¿̂ = TgEtf
Z ¿¤

t
H(Su; u)duj¿̂ = Tg+

PStf¿̂ < TgEtf
Z ¿¤

t
1fSu>KgH(Su; u)duj¿̂ < Tg+

Et

Z ¿¤

t
U 0(W )ner(T¡u) d¤u(K) (27)

where the probabilities above are conditional on the stock price starting at level St
at time t. By assumption, H(St; t) is bounded above on f(St; t) : St > Kg by some
constant L2. So

f(St; t)¡ g(St; t) < PStf¿̂ = TgL1Etf¿ ¤ ¡ tj¿̂ = Tg+ PStf¿̂ < TgL2Etf¿ ¤ ¡ tj¿̂ < Tg+
U 0(W )ner(T¡t)Et(¤T (K)¡ ¤t(K)) : (28)

From Carr and Jarrow (1990, Lemma A3),

Et(¤T (K)¡ ¤t(K)) = ¾K

2

Z T¡t

0

1p
u
N 0(

log(K=St)¡ (r ¡ ± ¡ ¾2=2)u
¾
p
u

) du ; (29)

which converges to zero as St ! 1. In addition, as St ! 1, PStf¿̂ < Tg ! 0, so it
seems the right-hand side of (28) converges to L1 limSt!1 Et(¿

¤¡ t) · 0. On the other
hand, the left-hand side must be nonnegative for all values of St. Therefore, Et(¿

¤¡ t)
should converge to zero as St !1.
Remark Constant relative risk averse utility functions with relative risk aversion less
than or equal to one satisfy the hypothesis of Proposition 2.1, as does risk-neutral
utility with ± > 0.
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3 Summary and Conclusions

This paper seeks to advance the theory of executive stock option valuation with an in-
depth study of the optimal exercise policy of a risk averse executive. Recent valuation
models for executive stock options set the exercise policy exogenously, assuming a single
critical stock price boundary. This paper shows that the optimal exercise policy need
not be in that form. However, we prove the existence of a single critical boundary for
constant relative risk averse utility functions with risk aversion coe±cient less than or
equal to one and ¯nd no counterexamples among our numerical results for constant
relative risk averse utility functions with risk aversion coe±cient greater than one.

Numerical examples show how the exercise boundary and option value vary with volatil-
ity, risk aversion, and wealth. The examples bear out the intuition that the exercise
boundary and option value should be decreasing in executive risk aversion and in-
creasing in the level of the executive's non-option wealth. However, in contrast to
results from standard option theory, or from executive stock option valuation models
with a ¯xed exercise boundary, executive stock option value can decline in stock re-
turn volatility when increases in volatility cause the optimal exercise boundary to drop
su±ciently. These results underscore the importance of accurately characterizing the
exercise policy for option valuation.
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Figure 1: Exercise Policy with Split Continuation Region
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Figure 2: Exercise Boundaries and Option Values for Various Levels of Stock Volatility

a. Risk aversion coefficient = 0.5

b. Risk aversion coefficient = 2
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Figure 2 cont'd: Exercise Boundaries and Option Values for Various Levels of Stock Volatility

c. Risk aversion coefficient = 4

d. Risk averion coefficient = 10
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Figure 3: Exercise Boundaries and Option Values for Various Levels of Risk Aversion

a. Wealth = 2, Volatility = 50%

b. Wealth = 0.5, Volatility = 50%
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Figure 3 cont'd: Exercise Boundaries and Option Values for Various Levels of Risk Aversion

c. Wealth = 2, Volatility = 100%

d. Wealth = 0.5, Volatility = 100%
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Figure 4: Exercise Boundaries and Option Values for Various Levels of Wealth

a. Risk aversion coefficient = 0.5, Volatility = 50%

b. Risk aversion coefficient = 2, Volatility = 50%
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Figure 4 cont'd: Exercise Boundaries and Option Values for Various Levels of Wealth

c. Risk aversion coefficient = 0.5, Volatility = 100%

d. Risk aversion coefficient = 2, Volatility = 100%
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