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Abstract: 
 

We introduce a new analysis of transaction costs that explicitly recognizes the importance 
of the timing of execution in assessing transaction costs.  Time induces a risk/cost 
tradeoff.  The price of immediacy results in higher costs for quickly executed orders 
while more gradual trading results in higher risk since the value of the asset can vary 
more over longer periods of time.  We use a novel data set that allows a sequence of 
transactions to be associated with individual orders and measure and model the expected 
cost and risk associated with different order execution approaches.  The model yields a 
risk/cost tradeoff that depends upon the state of the market and characteristics of the 
order.  We show how to assess liquidation risk using the notion of liquidation value at 
risk (LVAR).   
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1.  Introduction 

 
Understanding execution costs has important implications for both practitioners and 

regulators and has attracted substantial attention from the academic literature.   

Traditional analysis of transaction costs focus on the average distance between observed 

transaction prices and an “efficient” or fair market price.  These types of analysis, 

however, are disconnected from transaction costs faced in practice since they neglect any 

notion of risk.  Specifically, a buy order could be filled by submitting a market order and 

paying a price near the ask.  Alternatively, the order could be submitted as a limit order 

and either execute at a better price, or not execute at all.  Similarly, a single order is often 

broken up into a sequence of smaller ones spread out over time.  This temporal dimension 

to the problem yields a natural cost/risk tradeoff.  Orders executed over a short period of 

time will have a high expected cost associated with immediate execution but the risk will 

be low since the price is (nearly) known immediately.  Orders executed over a long 

period of time may have a smaller price impact and therefore smaller expected cost but 

may be more risky since the asset price can vary more over longer periods of time than 

shorter periods of time.  Using a novel data set that allows transactions to be associated 

with individual orders we measure and model the expected cost and risk associated with 

different order execution strategies.   

 

Our empirical work builds directly on the recent research of Almgren and Chriss (1999, 

2000), Almgren (2003), Grinold and Kahn (1999), Obizhaeva and Wang (2005), and 

Engle and Ferstenberg (2006).  These papers examine execution quality involving not 

just the expected cost but also the risk dimension.  Order execution strategies that are 

guaranteed to execute quickly offer a different risk/reward tradeoff than transaction 
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strategies that can take a longer time to be filled.  The result is a frontier of risk/reward 

tradeoffs that is familiar in finance and analogous to classic mean variance analysis of 

portfolios.  In fact, the work of Engle and Ferstenberg (2006) show that this analogy is 

deeper than might appear at first glace.  Namely, they show how to integrate the portfolio 

decision and execution decision into a single problem and how to optimize these choices 

jointly.  

 

Our work differs in important ways from most traditional approaches to the analysis of 

transaction costs.  The classic measures of transaction costs such as Roll’s measure, 

(realized) effective spreads, or the half spread measure average (positive) deviations of 

transaction prices from a notional efficient price2.  The midquote is often taken as the 

efficient price.  As such, these measures focus purely on expected cost and are not well 

suited to analyze the cost of limit order strategies or the splitting up of orders into smaller 

components.  Part of the limitations of the traditional analysis of transaction costs is 

driven by data availability.  Standard available data does not generally include 

information about how long it took before a limit order executed.  Even more rare is 

information providing a link between individual trades and the larger orders.   

 

Using a unique data set consisting of 233,913 orders executed by Morgan Stanley in 

2004, we are able to construct measures of both the execution risk and cost3. Our data 

includes information about when the order was submitted and the times, prices, and 

quantities traded in filling the order.  This data allows to take a novel view of the costs 

and risks associated with order execution.  

 

The expected cost and variance tradeoffs that the trader faces will depend upon the 

liquidity conditions in the market and the characteristics regarding the order.   We model 

both the expected cost and the risk as a function of a series of conditioning variables.  In 

this way, we are able to generate a time varying menu of expected cost and risk tradeoffs 

given the state of the market and order characteristics.  The result is a conditional frontier 

                                                 
2 For a survey of the literature see the special issue on transaction costs in the Journal of Financial Markets. 
3 We do not know the identities of the traders and the data never left the confines of Morgan Stanley. 
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of different cost/risk tradeoffs.  This frontier represents a menu of expected cost and 

variance tradeoffs faced by the trader. 

 

The paper is organized as follows.  Section 2 discusses measuring the order execution 

cost and risk.  Section 3 presents the data used in our analysis and some preliminary 

analysis.  Section 4 presents a model for conditional cost and risk with estimates.  Section 

5 presents an application of the model to liquidity risk and finally, section 6 concludes.   

 

2.  Measuring order execution cost and risk. 

 

Our measure of trading costs captures both the expected cost and risk of execution.  A 

key element of the measure takes the price available at the time of order submission as 

the benchmark price.  The order may be executed using a larger number of small trades.  

Each transaction price and quantity traded might be different.  The cost of the trade is 

always measured relative to a benchmark price which is taken to be the price available at 

the time of order submission.  The transaction cost measure is then a weighted sum of the 

difference between the transaction price and the benchmark arrival price where the 

weights are simply the quantities traded.  See Chan and Lakonishok (1995), Grinold and 

Kahn (1999), Almgren and Chriss (1999, 2000), Bertismas and Lo (1998) among others.  

In this paper the term order refers to the total volume that the agent desires to transact.  

We will use the term transaction to refer to a single trade.  An order may be filled using 

multiple transactions.   

 

More formally, let the position measured in shares at the end of time period t be xt so that 

the number of shares transacted in period t is simply the change in xt.  Let  denote the 

fair market value of the asset at the time of the order arrival.  This can be taken to be the 

midquote at the time of the order arrival for this price in practice.  Let 

0p

tp~ denote the 

transaction price of the asset in period t.  The transaction cost for a given order is then 

given by: 

(1)      ( )∑
=

−∆=
T

t
tt ppxTC

1
0

~
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If the order is purchasing shares then the change in the number of shares will be non-

negative.  Transactions that occur above the reference price will therefore contribute 

positively toward transaction costs.  Alternatively, when liquidating shares, the change in 

shares will be non-positive.  Transaction prices that occur below the reference price will 

therefore contribute positively to transaction costs.  For a given order, the transaction 

costs can be either negative or positive depending upon whether the price moved with or 

against the direction of the order.  However, because each trade has a price impact that 

tends to move the price up for buys and down for sells we would expect the transaction 

cost to be positive on average.   Given transaction cost, both a mean and variance of the 

transaction cost can be constructed.   

 

Of course, a measure of the transaction cost per dollar traded is obtained by dividing the 

transaction cost by the arrival value: 

(2)     ( ) 00

%
Pxx

TCTC
T −

=  

This measure allows for more meaningful comparison of costs across different orders and 

it used in our analysis. 

 

The transaction cost can be decomposed into two components that provide some insight.  

Specifically, the transaction cost can be written as 

(3)    ( ) ( )∑∑
=

−
=

∆−+−∆=
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The first term represents the deviation of the transaction price from the local arrival price 

.  The former is closely related to traditional measures of transaction costs capturing 

local effects.  The second term captures an additional cost due to the price impact.  Each 

trade has the potential to move the value of the asset. This change in the asset price has 

an effect on all subsequent trades executed.  Since the price impact typically moves the 

price to a less desirable price for the trader, this term will generally increase the cost of 

executing an order that would be missed by traditional measures that lack this temporal 

component.   

tp
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3. The data 

 

In order to analyze our transaction cost measure we need detailed order execution data 

that includes the arrival price, trade sizes and transaction prices that associated with all 

the transactions that were used to fill a given order.  We obtained such data from Morgan 

Stanley.  We do not know the identity of the traders that placed these orders and more 

importantly we do not know their motives.  The orders could have been initiated by 

Morgan Stanley traders on behalf of their clients or by a buy side trader on behalf of a 

portfolio manager.  Regardless, we do not know the identity of the Morgan Stanley trader 

or the client.  We use the word “trader” to refer to either one.  The order data never left 

the confines of Morgan Stanley and will not be made available outside of the confines of 

Morgan Stanley.   

 

The orders were executed by Morgan Stanley’s Benchmark Execution Strategies™ 

(BXS) strategies during 2004.  BXS is a order execution strategy that minimizes the 

expected cost of the trade for a given level of risk relative to a benchmark.  The trades are 

“optimally” chosen relying on an automated trading procedure that specifies when and 

how much to trade.  The algorithm changes the trading trajectory as the current trading 

conditions in the market vary4.   

 

We consider two types of orders.  The arrival price (AP) strategy and the volume 

weighted average price (VWAP).  The AP strategy attempts to minimize the cost for a 

given level of risk around the arrival price p0.  The trader can specify a level of urgency 

given by high, medium, and low urgency.  The level of urgency is inversely related to the  

level of risk that the trader is willing to tolerate.  High urgency orders have relatively low 

risk, but execute at a higher average cost.  The medium and low urgency trades execute 

with progressively higher risk but at a lower average cost.  The trader chooses the 

urgency and the algorithm derives the time to complete the trade given the state of the 

market and the trader’s constraints.  For a given order size and market conditions, lower 

                                                 
4 The trading algorithm is a variant of Almgren and Chriss (2000) and the interested reader is referred to 
this paper for more details.  

 6



urgency orders tend to take longer to complete than higher urgency trades.  However, 

since the duration to completion depends upon the market conditions and other factors 

there is not perfect correspondence between the urgency level and the time to complete 

the order.  All orders in our sample, regardless of urgency, are filled within a single day.   

 

We also consider VWAP orders.  For these orders, the trader selects a time horizon and 

the algorithm attempts to execute the entire order by trading proportional to the market 

volume over this time interval.  We only consider VWAP orders where the trader 

directed that the order be filled over the course of the entire trading day or that the overall 

volume traded was a very small fraction of the market volume over that period.  This can 

be interpreted as a strategy to minimize cost regardless of risk.  As such, we consider this 

a risk neutral trading VWAP strategy.  Generally, these orders take longer to fill than the 

low urgency orders and should provide the highest risk and the lowest cost.   

 

We consider orders for both NYSE and NASDAQ stocks.  In order to ensure that orders 

of a given urgency reflect the cost/risk tradeoff optimized by the algorithm we apply 

several filters to the orders. Only completed orders are considered.  Hence orders that 

begin to execute and are then cancelled midstream are not included in order to ensure 

homogeneity of orders of a given type.  We excluded short sales because the uptick rule 

prevents the economic model from being used "freely".  We do not consider orders 

executed prior to 9:36 since the market conditions surrounding the open are quite 

different than non-opening conditions.  Only stocks that have an arrival price greater than 

$5 are included.  Orders that execute in less than 5 minutes tend to be very small orders 

that may be traded in a single trade.  As such, they are not representative of the cost/risk 

tradeoff optimized by the algorithm.  For similar reasons, orders smaller than 1000 shares 

are also not included.  Finally, orders that are constrained to execute more quickly than 

the algorithm would dictate due to the approaching end of the trading day are also 

excluded.  In the end, we are left with 233,913 orders.    

 

For each order we construct the following statistics.  The percent transaction cost are 

constructed using equation (2).  The 5 day lagged bid ask spread weighted by time as a 
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percent of the midquote.  The annualized 21 day lagged close to close volatility.  The 

order shares divided by the lagged 21 day median daily volume.  Table 1 presents 

summary statistics of our data.  The statistics weight each order by its fraction of dollar 

volume.   The transaction cost standard deviation is large relative to the average cost.  

Hence the risk component appears to be substantial.   

 

The rows labeled B and S break down the orders into buyer and seller orders respectively.  

62% of the dollars traded were buys and 38% sells.  Buy orders tend to be slightly more 

expensive on average in this sample.  The risk is similar.  We see that 75% of the dollar 

volume was for NYSE stocks and 25% for Nasdaq.  We see that NYSE orders tend to 

cost less than NASDAQ by an average of about 5 basis points.  It is important to note that  

these statistics are unconditional and do not control for differences in characteristics of 

the stocks traded on the two exchanges which might be driving some of the variation in 

the observed costs.  For example, we see that the average volatility of NASDAQ stocks is 

substantially higher than that of NYSE.   

 

The last four rows separate the orders by urgency.  H, M, and L, correspond to high, 

medium and low urgencies and V is the VWAP strategy.  Hence as we move down the 

rows we move from high cost, low risk strategies to low cost, high risk strategies.  

Almost half of the orders are the risk neutral VWAP strategy (46%).  Only 10% of the 

order volume is high urgency, 24% is medium urgency and 20% is high urgency.  This is 

reflected in the sample statistics.  The average cost decreases from 11.69 basis points to 

8.99 basis points as we move from high to low urgency orders.  At the same time, the risk 

moves from 12.19 basis points up to 40.89 basis points for the same change in urgency.  

Contrary to the intent, the VWAP strategy does not exhibit the lowest cost at 9.69 basis 

points. It is the most risky however.  Of course, the order submission may depend on the 

state of the market and characteristics of the order.  These unconditional statistics will not 

reflect the market state and may blur the tradeoffs faced by the traders.    

 

Table 2 presents the same summary statistics conditional on the size of the order relative 

to the 21 day median daily volume.  The first bin is for orders less than a quarter of a 
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percent of the 21 day median daily volume and the largest bin considered is for orders 

that exceed 1%.  For each bin the statistics are presented for each type of order.  The top 

of the table is for NYSE and the bottom half of the table is for NASDAQ stocks.  Not 

surprisingly, for each order type, larger order sizes tend to be associated with higher 

average cost and higher risk indicating that larger orders are more difficult to execute 

along both the cost and risk dimensions.   

 

This tradeoff can be seen clearly by plotting the cost/risk tradeoffs for each of the percent 

order size bins.  Figure 1 presents the average cost/risk tradeoff for the NYSE stocks.  

Each contour indicates the expected cost/risk tradeoff faced for a given order size.  Each 

contour is constructed using 4 points, the three urgencies and the VWAP. For a given 

contour, as we move from left to right we move from the high urgency orders to the 

VWAP.  Generally speaking, the expected cost falls as the risk increases.  This is not true 

for every contour, however.  Increasing the percent order size shifts the entire frontier 

toward the north east indicating a less favorable average cost / risk tradeoff.   Figure 2 

presents the same plot but for NASDAQ stocks.   

 

Contrary to what might be expected, some order size bins exhibit a cost increase as we 

move to less urgent strategies.  These plots, however, do not consider the state of the 

market at the time the order is executed.  It is entirely possible that the traders consider 

the state of the market when considering what type of urgency to associate with their 

order.  If this is the case, a more accurate picture of the tradeoff faced by the trader can be 

obtained by considering the conditional frontier.  This requires building a model for the 

expected cost and the standard deviation of the cost conditional on the state of the market.  

This is precisely the task considered in the next section of the paper.   

 

 

4.  Modeling the expected cost and risk of order execution. 

 

Both the transaction cost and risk associated with trading a given order will vary 

depending on the state of the market.  In this section we propose a modeling strategy for 
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both the expected cost and risk of trading an order.  The model is estimated using the 

Morgan Stanley execution data described in the previous section.  In estimating this 

model for the expected cost and risk we are also estimating a conditional expected 

cost/risk frontier.  This frontier depicts the expected cost/risk tradeoff faced by the agent 

given the current state of the market.  This frontier will be a function of both the state of 

the market as well as the size of the order.   

 

Both the mean and the variance of transaction costs are assumed to be an exponential 

function of the market variables and the order size.  Specifically the transaction costs for 

the ith order are given by:  

(4)   ( ) iiii XXTC εγβ ⎟
⎠
⎞

⎜
⎝
⎛+=

2
1expexp%  

where )1,0( ~ Niidiε .  The conditional mean is an exponential function of a linear 

combination of the Xi with parameter vector β.  The conditional standard deviation is also 

an exponential function of a linear combination of the Xi with parameter vector γ.  Xi is a 

vector of conditioning information.  In our empirical work we find that the same vector Xi 

explains both the mean and the variance but this restriction is obviously not required.   

 

The exponential specification for both the mean and the variance restricts both to be 

positive numbers.  This is a natural restriction for both the mean and the variance.  While 

the realized transaction cost for any given trade can be either positive or negative (and 

empirically we do find both signs), the expected transaction cost is positive.   

 

We consider several factors that market microstructure theory predicts should contribute 

to the ease of executing a given order.  The lagged 5 day time weighted average spread as 

a percent of the midquote.  The log volatility constructed from the average close to close 

returns over the last 21 days. The log of the average historical 21 day median daily dollar 

volumes.  In addition to these market variables we also condition on the log of the dollar 

value of the order and the urgency associated with the order.  The urgency is captured by 

3 dummy variables for high, medium, and low urgencies.  The constant term in the mean 

and variance models therefore corresponds to the VWAP strategy.    

 10



 

The exponential specification for the mean is not commonly used in econometrics 

analysis.  It is particularly useful here since it is natural to restrict the mean to be positive.  

The often used method of modeling the logarithm of the left hand side variable won’t 

work here because the transaction cost often take negative values.  Also, notice that 

( )[ ] βii XTCE =%ln .  Hence the coefficients can be interpreted as the percent change in 

TC% for a one unit change in X.  Right hand side variables that are expressed as the 

logarithm of a variable (such as ln(value)) can be interpreted as an elasticity with respect 

to the non-logged variable (such as value).     

 

The exponential model also allows for interesting nonlinear interactions that we might 

suspect should be present.  Consider the expected transaction cost and the logged value 

and volatility variables. We have ( ) ( ) 21ablesother variexp% ββ volatilityvalueTCE = .  If 1β is 

larger than 1 then the cost increases more than proportionally to the value.  If 1β  is 

smaller than 1 then the expected cost increases less than proportionally to the value.  If 

1β and 2β  are both positive, then increases in the volatility result in larger increases in 

the expected cost for larger value trades.  Alternatively, as the value of the trade goes to 

zero, so does the expected cost.  It is entirely possible that the marginal impact of 

volatility might be different for different order sizes.  The exponential model allows for 

this possibility in a very parsimonious fashion.  Hence, what appears as a very simple 

nonlinear transformation allows for fairly rich nonlinear interactions.  Obviously, using 

the exponential function for the variance has the same interpretation.  

 

We estimate the model by maximum likelihood under the normality assumption forε .  It 

is well known that the normality assumption is a quasi maximum likelihood estimator.  

As long as the conditional mean and variance are correctly specified, we still obtain 

consistent estimates of the parameters even if the normality assumption is not correct.  

The standard errors, however, will not be correct in the event that the errors are not 

normal.  Robust standard errors that are consistent in the event of non-normal errors can 

be constructed following White (1982) and are constructed for our parameter estimates.  
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The estimation is performed separately for NYSE and NASDAQ stocks.  The two 

markets operate in a very different fashion and it is unlikely a single model would be 

appropriate for both trading venues.  We have 166,508 NYSE orders and 67,405 Nasdaq 

orders.  The parameter estimates for the variance equation for the NYSE stocks is given 

in table 3.   

 

The coefficient on the spread is positive indicating that wider spreads are associated with 

more risk for any given order type and order size.  The coefficient on the log volatility is 

1.2.  A simple model where a given order type is always executed over the same time 

interval with roughly constant quantities traded implies that the variance of the 

transaction cost should be proportional to the variance of the traded asset.  To see this, 

consider the variance of the transaction cost when the local effects are fixed so that the 

( ) 0~var =− tt pp .  If equal quantities are traded in each time interval so that 

( ) Txx
x

T

t 1

0

=
−

∆ , and the variance of the asset is constant and given by σ2 then the variance 

of the transaction cost: 

 (7)    ( )
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For large T this is approximately 
2

2σ  but the variance of the transaction costs should be 

proportional to the variance of the asset even for small T.  Recall that 

 so that it is therefore interesting to compare 

the estimated coefficient to the value 1.  Squaring the volatility to convert the standard 

deviations to the variance 

( ) ( ) 21ablesother variexp% ββ volatiltiyvalueTCVar =

( ) 22
2β

volatility yields a coefficient on the variance that is half 

the coefficient on the standard deviation which is .6 for the NYSE data.  The variance of 

the transaction cost therefore increases less than proportionally to the variance of the 

asset.  Thus, the Morgan Stanley BXS algorithm reduces the risk of the order relative to 

the simple constant volume, constant time interval strategy.  This could happen for a 
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number of reasons including front loading the trades, or more rapid execution in higher 

volatility markets.  

 

The coefficient on the log of the average 21 day median volume is -.51.  Every 1% 

increase in the volume translates into a half a percent decrease in the trading cost.  The 

order size has a coefficient of .53 indicating larger orders have a higher risk. A 1% 

increase in the order size translates into about a half of a percent increase in the variance.  

It is interesting to notice that the coefficient on the order size is roughly the negative of 

the coefficient on the volume.  This indicates that logarithm of the order size as a fraction 

of the daily volume that predicts the variance.  Not surprisingly, the variance of the 

transaction cost is decreasing as the urgency increases.  This is consistent with the high 

urgency orders executing more quickly than the low urgency orders.   

 

Next we turn to the mean cost parameter estimates.   The spread is positively related to 

the transaction cost.  A 1% increase in the spread translates into about a 1% increase in 

the transaction cost.  Recall that the transaction costs are already expressed as a percent 

so this is a percent increase in the percent transaction cost.  Wider spreads are consistent 

with markets that are less liquid.  The volatility has a coefficient of .50.  Every 1% 

increase in the 21 day volatility translates into a half of a percent increase in the expected 

trading cost.  High volatility is often thought to be associated more uncertainty and less 

liquid markets as we find here.  The coefficient on the average 21 day median volume is -

.47.  Every 1% increase in the daily volume translates into about a half of a percent 

decease in the expected trading costs.  The greater the volume the more liquid is the 

market.   

 

The value has a coefficient of .43 indicating that a 1% increase in the value of the order 

translates into a little less than a half of a percent increase in the trading cost.  It is again 

interesting to note that the coefficient on the value is roughly the same magnitude, but 

opposite sign as the coefficient on the volume.  It appears that the size of the trade 

relative to the daily volume that predicts the cost.  Finally, the cost is strictly increasing 

as the urgency increases.   
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The variance and mean model estimates for NASDAQ are presented in tables 5 and 6 

respectively.  While the magnitude of some of the estimates differs across the two 

exchanges the results are qualitatively very similar.  We test the null hypothesis that the 

mean and variance models for the NYSE and NASDAQ are not different.  This null 

hypothesis can be tested by an likelihood ratio test based on the difference between the 

sum of the likelihoods for the two unrestricted NYSE and NASDAQ models and the  

restricted model using the pooled data.  Twice the difference in these two likelihoods will 

have a chi-squared distribution with degrees of freedom given by the number of restricted 

parameters, or 16.  Twice the difference in the two likelihoods is 1954.76.  The critical 

value is 26.29 so we overwhelmingly reject the null with a p-value near 0.  Hence, while 

the models are qualitatively similar, there are statistically meaningful quantitative 

differences.  

 

The parameter estimates provide intuitive interpretations regarding the transaction costs.  

It is nevertheless interesting to evaluate the statistical fit of the assumed exponential 

form.  Toward this end we consider a variety of lagrange multiplier tests.  The test can be 

performed for both omitted terms in the mean and the variance equations.  Our null is that 

the exponential specification is sufficient while under the alternative we consider omitted 

linear and squared terms ( ) ( ) θβ iii ZXTCE += exp%  where Z will be taken to be X and 

X2 or a combination of linear and squared terms.  The test for the mean is performed by 

regressing the standardized error term on potential omitted terms.  The standardized error 

term is given by ( )
( )i

ii
i TCsd

TCETC
%

%%ˆ −
=ε .  We regress  ( ) 10

ˆexpˆ θθβε iiii ZXX +=  where 

is taken to mean the element by element square of each variable (ie no cross products 

are included).   The 

2
iX

1θ  and 2θ  are conforming parameter vectors.  Similarly, the test for 

the variance is performed by regressing ( ) 10
2 ˆexpˆ φφβε iiii ZXX +=  where the 0φ  and 1φ  

are again conforming parameter vectors.  The results of these test and the special cases of 

omitted linear terms only and omitted squared terms only are presented in table 7.  

(TABLE 7 IS NOT READY YET). 
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Generally speaking, larger orders are cost more to execute than smaller orders.  We next 

look more closely at how the expected cost and risk vary as the order size increases.  

Figures 3 and 4 plot the expected cost and the standard deviation as a function of the 

order size relative to the 21 day average median volume.  The plots consider orders 

ranging from near 0 percent up to 2% of the daily volume.  The plots are done for an 

average stock on an average day.  Figures 5 and 6 present the same plots, but for the 

NASDAQ stocks.  In the expected cost plots, the higher curves correspond to the more 

urgent orders.  The opposite is true for the standard deviation plots.   

 

We can also look at the conditional risk/cost trade off by plotting the mean and volatility 

conditional upon the state of the market for each order type.  We again consider the 

risk/cost tradeoff for an average stock under average conditions.  These contours are 

plotted in figures 7 and 8.  The ellipses represent 95% confidence intervals for the true 

mean and true variance for each order submission strategy.  As we move from left to 

right we move from high urgency to medium, to low and finally VWAP or the risk 

neutral strategy.  Perhaps the most interesting conclusion is that this analysis suggests 

that there is not much benefit to moving from low urgency to VWAP for either NYSE or 

NASDAQ stocks.  The change in the expected cost is nearly zero while the increase in 

risk is substantial.  If the agent cares at all about risk, the VWAP strategy does not appear 

viable.   

 

Given the model, we can evaluate the cost/risk tradeoff under any stock.  To get an idea 

of how this tradeoff varies as we examine how the frontier changes as we vary the order 

size for a typical stock on a typical day. Again, it is natural to express the order size 

relative to the average median 21 day volume.  These plots are presented in figures 9 and 

10 for typical NYSE and NASDAQ stocks respectively.  The larger orders shift the 

cost/risk tradeoff to less desirable north east region.  We again see that the order size 

effects on the cost/risk tradeoff are substantial.   
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5.  Liquidation Value at Risk (LVAR) 

 

Liquidation risk is the uncertainty about how much it costs to liquidate a position in a 

timely manner if the need should arise.  Liquidation risk is important from both an asset 

management/risk perspective, as well as a more recent literature on asset pricing and 

liquidity (see for example Easley and O’Hara (2003), Pastor and Stambaugh (2003), 

Pedersen and Acharya (2005)).  The conditional distribution of transaction costs is 

fundamentally related to liquidation risk.  We show how the losses associated with 

liquidating an asset can be bounded with some probability.  We call this measure 

liquidation value at risk or LVAR.  Like the traditional value at risk (VaR), LVAR tells 

us the minimum number of dollars that will be lost with some probability α, when 

liquidating an asset.   

 

For a given liquidation order the conditional mean and variance can be constructed.  

Under a normality assumption one can construct an α% LVAR given by: 

(8)    ( ) ( ) αγβα −⎟
⎠
⎞

⎜
⎝
⎛+= 1ˆ

2
1expˆexp zXXLVAR  

where  is the 1-α % quantile.   α−1z

 

More generally, we might not wish to impose the normality assumption and instead use a 

more non-parametric approach.  In the first stage, consistent estimates or the parameters 

can be estimated by QMLE.  In the second stage, the standardized residuals can be used 

to construct a non-parametric estimate of the density function of the errors ε.  The 

standardized residuals are given by: 

( )
⎟
⎠
⎞

⎜
⎝
⎛
−

=
γ

βε
ˆ

2
1exp

ˆexp%ˆ

i

ii
i

X

XTC 

(9) 

 

 

A non-parametric estimate of the density or perhaps just the quantiles themselves can 

then be used to construct a semi-parametric LVAR.    Specifically, let        denote a non-

parametric estimate of the α% quantile of the density function of the error term ε.  Then 

αε −1̂
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the semi-parametric α% LVAR is obtained by replacing z1-α with the non-parametric 

quantile αε −1̂ :   

 

(10)   ( ) ( ) αεγβα ˆˆ
2
1expˆexp ⎟

⎠
⎞

⎜
⎝
⎛+= XXLVAR  

 

Figures 11 and 12 present the standardized residuals for the NYSE and NASDAQ 

models.  The residuals are clearly non-normal.  We use the empirical quantiles of the data 

to construct the LVAR.  Figures 13 and 14 present the 1% LVAR associated with the 

high, medium and low urgency orders as well as the VWAP.  The LVAR estimates are 

constructed for typical stocks on a typical day.  The vertical axis is the transaction cost in 

basis points.  As we move from left to right we move from LVAR to low urgency to the 

high urgency orders.  The LVAR is given by the upper bar for each order type.  The 

expected cost for each order type is given by the smaller bar in near the origin.  The 

differences in the mean are small relative to the changes in the risk across the different 

order types.  Since the risk dominates, the minimum LVAR order type here is given by 

the most aggressive strategy, the high urgency order.  The 1% LVAR for this order type 

is just under around half a percent for NYSE and 1% for NASDAQ.  For each order type 

the lower dashed line completes a 98% prediction interval.   

 

 

 

6.  Conclusion 

 

This paper demonstrates that expected cost and risk components of transaction costs can 

be estimated from detailed transaction data.  We show that we can construct a cost/risk 

tradeoff in the spirit of classical portfolio analysis.  We find that the expected cost and 

risk components can be successfully modeled using an exponential specification for the 

mean and variance.  Characteristics of the order and state of the market play a major role 

in determining the cost/risk tradeoff faced by the trader.   
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We provide an example of how this approach can be used to asses liquidation risk using 

the notion of liquidation value at risk (LVAR).  This is, of course, only one approach that 

could be taken in assessing liquidation risk.  More generally, we have the entire 

conditional distribution of transaction costs so there are potentially many approaches that 

one could take in assessing liquidation risk.   

 

Finally, our data here consists of the transaction costs.  Another direction to go would be 

to directly consider the raw transaction data set.  In this way, we could better asses the 

dynamics of the price impact functions.  For example, how large are the local vs. price 

impact effects?   
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Exchange Side Benchmark Urgency Weight Count Price Spread Volatility Volume
Capitalization 

(000)
Order 
Value

Order 
Shares

Cost 
(BP)

StDev 
(BP)

100% 233,913   45.07$   0.09% 26% 1.59% 59,609,060$    310,472$  9,154     10.09   47.24
B 62% 147,649   45.06$   0.09% 26% 1.57% 58,137,900$    302,812$  8,946     10.77   47.17
S 38% 86,264     45.09$   0.08% 26% 1.62% 61,965,453$    323,583$  9,512     8.99    47.31

NYSE 75% 166,508   48.01$   0.09% 23% 1.68% 66,717,110$    326,031$  8,701     8.82    43.28
NASDAQ 25% 67,405     36.38$   0.08% 36% 1.33% 38,565,201$    272,037$  10,273   13.84   57.19

A H 10% 15,616     47.81$   0.08% 26% 1.18% 60,838,460$    475,462$  12,845   11.69   23.19
A M 24% 54,095     44.73$   0.09% 27% 1.47% 48,482,781$    320,909$  9,688     11.09   32.20
A L 20% 51,588     46.44$   0.08% 26% 1.13% 68,894,693$    285,018$  8,106     8.99    40.89
V 46% 112,614   44.04$   0.09% 26% 1.95% 61,042,206$    294,240$  8,867     9.69    59.01

 
 
 
 
Table 1. Summary statistics for Morgan Stanley trades.  B and S are buy and sell orders respectively.  A denotes arrival price strategy 
and V denotes VWAP strategy.  H, M, and L denote high medium and low urgency trades. 

 19



Exchange Benchmark Urgency
Volume 
Range Weight Count Price Spread Volatility Volume

Capitalization 
(000) Order Value

Cost 
(BP)

StDev 
(BP)

NYSE A H ≤ 0.25% 0.69% 2,630     47.77$   0.08% 22% 0.19% 94,061,545$     190,107$       4.22 10.97
NYSE A M 3.10% 13,664   48.06$   0.08% 22% 0.16% 95,714,257$     164,767$       3.69 11.64
NYSE A L 4.17% 19,379   50.15$   0.08% 22% 0.14% 98,487,506$     156,371$       2.71 12.74
NYSE V 6.54% 38,116   47.46$   0.08% 22% 0.13% 90,733,082$     124,606$       1.97 34.56
NYSE A H ≤ 0.5% 1.69% 3,559     51.00$   0.08% 22% 0.37% 81,476,811$     345,605$       6.16 11.95
NYSE A M 3.30% 9,557     49.09$   0.08% 23% 0.36% 68,991,562$     250,562$       5.68 15.53
NYSE A L 2.99% 8,027     50.18$   0.08% 21% 0.36% 92,105,328$     270,537$       4.15 19.65
NYSE V 5.00% 14,890   48.23$   0.08% 23% 0.37% 65,205,449$     244,088$       3.06 42.27
NYSE A H ≤ 1.0% 2.39% 2,979     52.69$   0.08% 22% 0.73% 72,154,182$     582,738$       8.93 15.98
NYSE A M 3.64% 6,907     48.85$   0.08% 24% 0.72% 54,822,342$     383,195$       7.54 20.67
NYSE A L 3.17% 6,035     50.22$   0.08% 22% 0.72% 82,177,737$     381,487$       6.76 28.64
NYSE V 6.40% 11,822   46.88$   0.09% 23% 0.73% 71,181,217$     393,015$       5.17 47.42
NYSE A H > 1.0% 2.67% 2,549     51.53$   0.09% 23% 2.31% 48,375,509$     760,186$       14.36 25.12
NYSE A M 7.34% 7,052     47.41$   0.10% 24% 3.02% 36,941,147$     755,825$       15.55 38.97
NYSE A L 4.77% 5,632     47.78$   0.10% 23% 2.55% 52,146,046$     615,387$       12.64 52.73
NYSE V 16.88% 13,710   45.67$   0.09% 23% 3.95% 54,313,103$     894,247$       14.66 65.61
NASDAQ A H ≤ 0.25% 0.28% 715        36.70$   0.06% 33% 0.18% 76,072,230$     288,664$       6.58 12.91
NASDAQ A M 1.59% 5,771     37.81$   0.06% 34% 0.15% 52,884,846$     200,367$       6.05 17.13
NASDAQ A L 1.36% 5,065     37.49$   0.06% 33% 0.14% 77,185,322$     195,338$       5.29 17.93
NASDAQ V 3.73% 16,227   39.02$   0.06% 34% 0.11% 71,786,694$     167,134$       3.96 42.05
NASDAQ A H ≤ 0.5% 0.82% 1,131     39.07$   0.06% 32% 0.37% 63,042,552$     527,242$       10.76 18.02
NASDAQ A M 1.35% 4,455     36.72$   0.08% 36% 0.36% 30,091,409$     220,816$       9.15 21.53
NASDAQ A L 0.89% 2,578     38.02$   0.07% 36% 0.37% 37,310,972$     251,330$       8.33 31.04
NASDAQ V 1.64% 5,597     35.82$   0.07% 36% 0.36% 45,881,902$     213,288$       6.07 59.83
NASDAQ A H ≤ 1.0% 0.85% 992        38.30$   0.07% 35% 0.70% 42,108,883$     623,028$       15.81 21.17
NASDAQ A M 1.31% 3,453     36.58$   0.09% 38% 0.71% 15,709,279$     275,812$       14.78 30.01
NASDAQ A L 0.97% 2,003     39.11$   0.07% 37% 0.72% 32,386,856$     352,916$       12.36 45.50
NASDAQ V 1.80% 5,310     34.08$   0.08% 36% 0.73% 36,671,191$     246,208$       10.62 66.66
NASDAQ A H > 1.0% 0.83% 1,061     37.41$   0.10% 36% 2.91% 10,249,188$     565,871$       26.99 47.16
NASDAQ A M 2.26% 3,236     32.85$   0.11% 39% 3.10% 8,045,030$       508,137$       22.96 58.51
NASDAQ A L 1.91% 2,869     36.91$   0.10% 38% 2.85% 15,236,379$     484,223$       26.02 79.01
NASDAQ V 3.62% 6,942     33.30$   0.11% 37% 3.46% 23,073,584$     379,150$       24.65 94.67

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Summary statistics for Morgan Stanley trades.  Volume is the order size as a percent of the average daily volume.  A denotes 
arrival price strategy and V denotes VWAP strategy.  H, M, and L denote high medium and low urgency trades. 
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 VARIABLE COEFFICIENT ROBUST T-STAT 
 Const 11.80559 90.86393 
 Spread 1.815802 14.39896 
 Log volatility 1.207152 64.98954 
 Log volume -0.51614 -55.6044 
 Log value 0.536306 46.08766 
 Low urg -1.45436 -83.2275 
 Med urg -1.92541 -61.058 
 High urg -2.33731 -88.2665 
 
Table 3.  Variance parameter estimates for NYSE stocks.  
 
 
    
 VARIABLE COEFFICIENT ROBUST T-STAT 
 Const 5.173827 30.0342 
 Spread 0.969804 8.395586 
 Log volatility 0.503987 21.14475 
 Log volume -0.47084 -43.4163 
 Log value 0.43783 40.27979 
 Low urg 0.094929 2.41284 
 Med urg 0.305623 8.796438 
 High urg 0.41034 11.28093 
 
Table 4.  Mean parameter estimates for NYSE stocks.  
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 VARIABLE COEFFICIENT ROBUST T-STAT 
 Const 11.40519 71.44173 
 Spread 2.016026 17.00666 
 Log volatility 1.078963 40.27656 
 Log volume -0.44182 -46.7497 
 Log value 0.453704 42.64865 
 Low urg -1.04398 -42.1013 
 Med urg -1.70511 -65.0131 
 High urg -2.10623 -48.7398 
 
Table 5.  Variance parameter estimates for NASDAQ stocks.  
 
 
    
 VARIABLE COEFFICIENT ROBUST T-STAT 
 Const 5.354067 26.04098 
 Spread 1.014023 8.734035 
 Log volatility 0.513628 16.96502 
 Log volume -0.41447 -29.9304 
 Log value 0.376208 24.99588 
 Low urg 0.025356 0.243943 
 Med urg 0.230764 5.716912 
 High urg 0.282479 6.156517 
 
Table 6.  Mean parameter estimates for NASDAQ stocks. 
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Figure 1:  NYSE average cost/risk tradeoff given the order size.  The order size is 
expressed as a fraction of the median 21 day daily volume.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  NASDAQ average cost/risk tradeoff given the order size.  The order size is 
expressed as a fraction of the median 21 day daily volume.   
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Figure 3:  Expected Cost as a function of the order size expressed as a fraction of average 
daily volume for NYSE stocks. 
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Figure 4:  Standard deviation of transaction cost as a function of the order size expressed 
as a fraction of average daily volume for NYSE stocks. 
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Figure 5. Expected Cost as a function of the order size expressed as a fraction of average 
daily volume for NASDAQ stocks. 
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Figure 6. Standard deviation of transaction cost as a function of the order size expressed 
as a fraction of average daily volume for NASDAQ stocks. 
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Figure 7.  Expected cost and risk frontier for a typical NYSE stock on a typical day. 
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Figure 8.  Expected cost and risk frontier for a typical NASDAQ stock on a typical day. 
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Figure 9.  Expected cost/risk frontier for a typical NYSE stock on a typical day.  Each 
contour represents the frontier for a different quantile of order size expressed as a fraction 
of average daily volume. 
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Figure 10. Expected cost/risk frontier for a typical NASDAQ stock on a typical day.  
Each contour represents the frontier for a different quantile of order size expressed as a 
fraction of average daily volume. 
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Figure 11.  Standardized residuals for NYSE stocks. 
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Figure 12.  Standardized residuals for NASDAQ stocks. 
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Figure 13.  This plot shows the 98% predictive interval for the transaction cost for a 
typical NYSE stock on a typical day.  0 corresponds to VWAP, 1 to low urgency, 2 to 
medium urgency and 3 to high urgency.  For each trade type, the upper bar denotes the 
1% LVAR. 
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Figure 14. This plot shows the 98% predictive interval for the transaction cost for a 
typical NASDAQ stock on a typical day.  0 corresponds to VWAP, 1 to low urgency, 2 to 
medium urgency and 3 to high urgency.  For each trade type, the upper bar denotes the 
1% LVAR. 
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ABSTRACT

Transaction costs in trading involve both risk and return.   The return is associated 

with the cost of immediate execution and the risk is a result of price movements 

and price impacts during a more gradual trading trajectory.  The paper shows that 

the trade-off between risk and return in optimal execution should reflect the same 

risk preferences as in ordinary investment.  The paper develops models of the 

joint optimization of positions and trades, and shows conditions under which 

optimal execution does not depend upon the other holdings in the portfolio.  

Optimal execution however may involve trades in assets other than those listed in 

the order; these can hedge the trading risks.  The implications of the model for 

trading with reversals and continuations are developed. The model implies a 

natural measure of liquidity risk.    

                                                 
1 The authors are indebted to Lasse Pedersen and participants in the Morgan Stanley Market Microstructure 

conference, Goldman Sachs Asset Management, Rotman School at University of Toronto and NYU QFE 

Seminar for helpful comments.   This paper is the private opinion of the authors and does not necessarily 

reflect policy or research of Morgan Stanley. 
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 The trade-off between risk and return is the central feature of both academic and 

practitioner finance.   Financial managers must decide which risks to take and how much 

to take.  This involves measuring the risks and modeling the relation between risk and 

return.  This setting is the classic framework for optimal portfolio construction pioneered 

by Markowitz(1952) and now incorporated in all textbooks.     

 Although much attention has been paid to the cost of trading, little has been 

devoted to the risks of trading.   Analysis has typically focused on the costs of executing 

a single trade or, in some cases, a sequence of trades.  In a series of papers, Almgren and 

Chriss(1999)(2000) and Almgren(2003) and Grinold and Kahn (1999), and most recently 

Obizhaeva and Wang(2005) developed models to focus on the risk of as well the mean 

cost of execution.   

 What is this risk?  There are many ways to execute a trade and these have 

different outcomes.  For example, a small buy order submitted as a market order will 

most likely execute at the asking price.  If it is submitted as a limit order at a lower price 

the execution will be uncertain.  If it does not execute and is converted to a market order 

at a later time or to another limit order the ultimate price at which the order is executed 

will be a random variable.  This random variable can be thought of as having both a mean 

and a confidence interval.  In a mean variance framework, often we consider the mean to 

be the expected cost while the variance is the measure of the risk of this transaction. 

 More generally for large trades, the customer can either execute these 

immediately by sending them to a block desk or other intermediary who will take on the 

risk, or executing a sequence of smaller trades.  These might be planned and executed by 

a floor broker, by an in-house trader, an institutional trader, or by an algorithmic trading 

system.  The ultimate execution will be a random variable primarily because some 

portions of the trade will be executed after prices have moved.  The delay in trading 

introduces price risk due to price movements beyond that which can be anticipated as a 

natural response to the trade itself.  Different trading strategies will have different 

probability distributions of the costs and thus customers will need to choose the trading 

strategy that is optimal for them.   
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 This paper addresses the relation between the risk return trade-off that is well 

understood for investment and the risk return trade-off that arises in execution.  For 

example, would it be sensible to trade in a risk neutral fashion when a portfolio is 

managed very conservatively?  Will execution risk on different names and at different 

times, average out to zero?  Should the transaction strategy depend on what else is in the 

portfolio?  Should execution risks be hedged? 

In this paper we will integrate the portfolio decision and the execution decision 

into a single problem to show how to optimize these choices jointly.  In this way we will 

answer the four questions posed above and many others.   

 The paper initially introduces the theoretical optimization problems in section II 

and synthesizes them into one problem in section III.  Section IV discusses the 

implications of trading strategy on the Sharpe Ratio.  A specific assumption is made on 

price dynamics in Section V leading to specific solutions for the optimal trades.  This 

section also shows the role of non-traded assets.  Section VI introduces more 

sophisticated dynamics allowing reversals.  Section VII uses this apparatus to discuss 

measures of liquidity risk  and section VIII concludes. 

 

II.  TWO PROBLEMS 

  A.  Portfolio Optimization 

 The classic portfolio problem in its simplest form seeks portfolios with minimum 

variances that attain at least a specific expected return.  If y is the portfolio value, the 

problem is simply stated as: 

 

 
( )

( )
0. .

min
s t E y

V y
µ≥

 (1) 

 

In this expression, the mechanism for creating the portfolio is not explicitly indicated, nor 

is the time period specified.  Let us suppose that the portfolio is evaluated over the period 

(0,T) and that we define the dollar returns on each period t=0,1,…,T.  The dollar return 

on the full period is the sum of the dollar returns on the individual periods.  Furthermore, 

the variance of the sum is the sum of the variances of the individual periods, at least if 

there is no autocorrelation in returns.  The problem can then be formulated as 
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By varying the required return, the entire efficient frontier can be mapped out.  The 

optimal point on this frontier depends upon the tolerance for risk of the investor.  If we 

define the coefficient of risk aversion to be λ, then the solution obtained in one step is: 

 

 ( ) ( )(
1

max
T

t
t

)tE y V yλ
=

−∑  (3) 

 Generally this problem is defined in returns but this dollar-based formulation is 

equivalent.  If there is a collection of assets available with known mean and covariance 

matrix, then the solution to this problem yields an optimal portfolio. Often this problem is 

reformulated relative to a benchmark.   Thus the value of the portfolio at each point in 

time as well as the price of each asset at each point in time is measured relative to the 

benchmark portfolio.  This will not affect anything in the subsequent analysis. 

Treating each of the sub periods separately could then solve this problem; 

however, this would not in general be optimal.   Better solutions involve forecasts and 

dynamic programming or hedge portfolios.  See inter alia Merton(1973), 

Constantinides(1986), Colacito and Engle(2004).  

 

B.  Trade Optimization 

The classic trading problem is conveniently formulated with the "implementation 

shortfall" of Perold(1988).  This is now often described as measuring trading costs 

relative to an arrival price benchmark.   See for example Chan and Lakonishok(1995), 

Grinold and Kahn(1999), Almgren and Chriss(1999)(2000) Bertismas and Lo(1998) 

among others.   

If a large position is sold in a sequence of small trades, each part will trade at 

potentially a different price. The average price can be compared with the arrival price to 

determine the shortfall.  Let the position measured in shares at the end of time period t be 

xt so that the trade is the change in x.  Let the transaction price at the end of time period t 
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be and the fair market value measured perhaps by the midquote be tp% tp .  The price at 

the time the order was submitted is p0, so the transaction cost in dollars is given by 

 . (4) (
=

= ∆ −∑ % 0
1

'
T

t t
t

TC x p p )

Since in the liquidation example, the change in position is negative, a transaction price  

below the arrival price corresponds to positive transaction costs.  If on the other hand the 

trade is a purchase, then the trades will be positive and if the executed price rises the 

transaction cost will again be positive.    When multiple assets are traded, the position and 

price can be interpreted as vectors giving the same expression. It may also be convenient 

to express this as a return relative to the arrival price valuation of the full order.  This 

express gives 

 ( )0% / 'TTC TC x x p= − 0  (5) 

Transaction costs can also be written as the deviation of transaction prices from each 

local arrival price plus a price impact term. 

  (6) ( ) ( )1
1 1

'
T T

t t t T t t
t t

TC x p p x x p−
= =

= ∆ − + − ∆∑ ∑%

In some cases this is a more convenient representation.  

 On average we expect this measure to be positive.   For a single small order 

executed instantly, there would still be a difference between the arrival price and the 

transaction price given by half the bid ask spread.  For larger orders and orders that are 

broken into smaller trades, there will be additional costs due to the price impact of the 

first trades and additional uncertainty due to unanticipated price moves.  The longer the 

time period over which the trade is executed, the more uncertainty there is in the eventual 

transaction cost.  We can consider both the mean and variance of the transaction cost as 

being important to the investment decision. 

 The problem then can be formulated as finding a sequence of trades to solve  

 
( )

( )
. .
min

s t V TC K
E TC

≤
 (7) 

where K is a measure of the risk that is considered tolerable.  By varying K, the efficient 

frontier can be traced out and optimal points selected.  Equivalently, by postulating a 
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mean variance utility function for trading with risk aversion parameter *λ , we could 

solve for the trading strategy by  

 ( ) ( )min *E TC V TCλ+ . (8) 

 

This leaves unclear the question of how these two problems can be integrated.   Is 

this the same lambda and can these various costs be combined for joint optimization? 

 

III.  ONE PROBLEM 

 

 We now formulate these two problems as a single optimization in order to see the 

relation between them.  The vector of holdings in shares at the end of the period will 

denoted by xt and the market value per share at the end of the period will be pt, which 

may be interpreted as the midquote.  The portfolio value at time t is therefore given by 

 t't t ty x p c= +

)t

c x p

 (9) 

where ct is the cash position.  The change in value from t=0 to t=T is therefore given by 

  (10) (0 1
1 1

' '
T T

T t t t t t
t t

y y y x p x p c−
= =

− = ∆ = ∆ + ∆ + ∆∑ ∑

Assuming that the return on cash is zero and there are no dividends,  the change in cash 

position is just a result of purchases and sales, each at transaction prices, the equation is 

completed with 

 t't t  (11) ∆ = −∆ %

Here all trades take place at the end of the period so the change in portfolio value 

from t-1 to t is immediately obtained from (10) and (11) to be 

 ( )1 ' 't t t t t ty x p x p p−∆ = ∆ − ∆ −% . (12) 

The gain is simply the capital gains on the previous period holdings less the transactions 

costs of trades using end of period prices.  It is a self-financing portfolio position. 

 Substituting  (11) into (10) and then identifying transaction costs from (4) gives 

the key result: 

 ( )0 0'T T Ty y x p p TC− = − −  (13) 
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The portfolio gain is simply the total capital gain if the transaction had occurred at time 0, 

less the transaction costs.  The simplicity of the formula masks the complexity of the 

relation.  The transactions will of course affect the evolution of prices and therefore the 

decision of how to trade will influence the capital gain as well. 

Proposition 1.  The optimal mean variance trade trajectory is the solution to 

 
{ }

( )( ) ( )( )0max
t

T T T Tx
E x p p TC V x p p TCλ− − − − −0

)

 (14) 

or equivalently 

  (15) 
{ }

( )( ) (( )1 1
1 1

max ' ' ' '
t

T T

t t t t t t t t t tx t t

E x p x p p V x p x p pλ− −
= =

⎛ ⎞ ⎛ ⎞∆ −∆ − − ∆ −∆ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑% %

 

 The two problems have become a single problem. The risk aversion parameter is 

the same in the two problems.  The mean return is the difference of the two means and 

the variance of the difference is the risk.  It is important to notice that this is not the sum 

of the variances as there will likely be covariances.  When  xT is zero as in a liquidation, 

the problems are identical for either a long or a short position.  For purchases or sales 

with terminal positions that are not purely cash, more analysis is needed.   

In this single problem, the decision variables are now the portfolio positions at all 

time periods including period T.   In the static problem described in equation (1), only a 

single optimized portfolio position is found and we might think of this as xT.  In (7), 

portfolio positions at times {t=1,...,T-1} are found but the position at the end is fixed and 

in this case is zero.  In equation (14), the intermediate holdings as well as the terminal 

holding are determined jointly.  To solve this problem jointly we must know expected 

returns, the covariance of returns and the dynamics of price impact and trading cost. 

A conceptual simplification is therefore to suppose that the optimization is 

formulated from period 0 to T2 where T2>>T.  During the period from T to T2 the 

holdings will be constant at xT.  The problem becomes  

 ( ) ( ) ( ) ( )λ
−

⎡ ⎤ ⎡ ⎤− + − − − + −⎣ ⎦ ⎣ ⎦2 2
1 1

0 0{ ,..., }{ }
max

T T
T T T T T Tx x x

E y y y y V y y y y  (16) 

 

or more explicitly assuming no covariance between returns during (0,T) and (T,T2), 
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( ) ( )

( ) ( )
2 2

1 1{ ,..., }{ }

0 0

max ' '

' '
T T

T T T T T Tx x x

T T T T

E x p p V x p p

E x p p TC V x p p TC

λ

λ
−

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − − − −⎣ ⎦ ⎣ ⎦

 (17) 

 

Although this can be optimized as a single problem, it is clear that if the holdings before 

T do not enter into the optimization after T, and if the latter period is relatively long, 

there is little lost in doing this in two steps.  It is natural to optimize xT over the 

investment period and then take this vector of holdings as given when solving for the 

optimal trades.  Formally the approximate problem can be expressed as 

 ( )( ) ( )( )λ− − −
2

max ' '
T

T T T T T Tx
E x p p V x p p

2
 (18) 

 
{ }

( )( ) ( )( )λ
−

− − − − −
1 1

0,...,
max ' '

T
T T T Tx x

E x p p TC V x p p TC0  (19) 

 

This corresponds to the institutional structure as well.  Orders are decided based on 

models of expected returns and risks and these orders are transmitted to brokers for 

trading.   The traders thus take the orders as given and seek to exercise them optimally.  

Any failure to fully execute the order is viewed as a failure of the trading system. 

Clearly, an institution that trades frequently enough will not have this easy 

separation and it will be important for it to choose the trades jointly with the target 

portfolio.  In this case, the optimal holdings will depend upon transaction costs and price 

impacts.  If sufficient investors trade in this way, then asset prices will be determined in 

part by liquidity costs.  There is a large literature exploring this hypothesis starting with 

Amihud and Mendelsohn(1986)   and including among others O’Hara(2003), Easley 

Hvidkjaer and O’Hara(2002) and Acharya and Pederson(2005).  Some of these authors 

consider liquidity to be time varying and add risks of liquidating the position as well.   

 

IV  SHARPE RATIO 

 The Sharpe ratio from trading can be established from equations (18) and (19).  

The earnings from initial cash and portfolio holdings accumulated at the risk free rate, rf,  

for the period (0,T) would yield: 

 0
fRF r y T=  (20) 
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hence the annualized Sharpe ratio is given by 

 

 
( )( ) ( )

( )( )
0

0

'

'
T T

T T

E x p p E TC RF
Sharpe Ratio

T V x p p TC

− − −
=

− −
. (21) 

 

Clearly transaction costs reduce the expected return and potentially increase the risk.   

These will both reduce the Sharpe ratio over levels that would be expected in the absence 

of transaction costs.  This can be expressed in terms of the variance and covariance as 

 

 
( )( ) ( )

( )( ) ( ) ( )( )
0

0 0

'

' 2 '
T T

T T T T

E x p p E TC RF
Sharpe Ratio

T V x p p V TC Cov x p p TC

− − −
=

− + − − ,
 (22) 

so that the covariance between transaction costs and portfolio gains enters the risk 

calculation.   

 The covariance term will have the opposite sign for buys and sells.  If the final 

position is greater than the initial position so that the order is a buy, then transaction costs 

will be especially high if prices happen to be rising but in this circumstance, so will the 

portfolio value.  Sells are the opposite.  Hence for buys, the covariance will reduce the 

impact of the execution risk while for sells it will exaggerate it.  

In practice, portfolio managers sometimes ignore these aspects of transaction 

costs.  On average this means that the realized Sharpe ratio will be inferior to the 

anticipated ratio.  This could occur either from ignoring the expected transaction costs, 

the risk of transaction costs or both.  This leads not only to disappointment, but also to 

inferior planning.  Optimal allocations selected with an incorrect objective function are of 

course not really optimal. 

 Consider the outcome using the optimal objective function in (17) as compared 

with the following two inappropriate objective functions.  We might call the first, pure 

Markowitz suggesting that this is the classical portfolio problem with no adjustment for 

transaction costs.  

 ( ) ( )
1 1

0{ ,..., }{ }
max ' '

T T
T T T Tx x x

E x p p V x p pλ
−

− − − 0⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (23) 
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We call the second, Cost Adjusted Markowitz, which takes expected transaction costs 

into account but does not take transaction risks into account. 

 

 ( ) ( )
1 1

0 0{ ,..., }{ }
max ' '

T T
T T T Tx x x

E x p p TC V x p pλ
−

− − − −⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦  (24) 

 

For a theory of transaction costs, the risk/return frontier can be calculated for each of 

these objective functions.  In general, the Pure Markowitz frontier will be highest, 

followed by the Cost Adjusted Markowitz followed by the True frontier.  A portfolio that 

is optimal with respect to the Pure Markowitz or Cost Adjusted Markowitz will not 

generally be optimal with respect to the true frontier and will typically lie inside the 

frontier.   

 In the next section, specific assumptions on trading costs will be added to the 

problem to solve for the optimal trajectory of trades.   The risk will not be zero but will 

be reduced until the corresponding increase in expected transaction costs leads to an 

optimum to (19).   

 

 

 

 
Pure Markowitz 

Cost Adjusted Markowitz µ 
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V.  ASSUMPTIONS ON DISTRIBUTION OF RETURNS AND TRANSACTIONS 

COSTS 

 We consider the following two additional assumptions. 

A.1 { }( ) { }( )0 00,t t t t t tV p p x E p p x tτ− = −% % ≡  (25) 

A.2 { }( ) { }( )0 0 0,t t t tV p x E p x tµ π∆ = Ω ∆ ≡ +  (26) 

These assumptions should be explained.  The first supposes that the difference between 

the price at which a trade can instantaneously be executed and the current fair market 

price is a function of things that are known.  The variance is conditional on the 

information set at the beginning of the trade such as market conditions and it is 

conditional on the selected trajectory of trades.  The mean is a function of market 

conditions and trades and is denoted by tτ  .  Clearly, in practice there could also be 

uncertainty in the instantaneous execution price and this effect would add additional 

terms in the expressions below. 

 Similarly, A.2 implies that the evolution of prices will have variances and 

covariances that are not related to the trades and can be based on the covariance matrix at 

the initial time period.  This does not mean that the trades have no effect on prices, it 

simply means that once the mean of these effects is subtracted, the covariance matrix is 

unchanged.   

 With these two assumptions, the variances and covariances from equation (14) or 

(22) can be evaluated.   

 

 

( )( )

( ) ( ) (

( )

0

1
1

1
1

'

'

'

T T T T

T

T t T t
t

T

T T t
t

V x p p Tx x

V TC x x x x

Cov x x x

−
=

−
=

− = Ω

= − Ω −

= Ω −

∑

∑

)1−  (27) 

For ease of presentation the conditioning information is suppressed.  For one asset 

portfolios, the covariance term will be positive for buying orders and negative for selling 

orders leading the risk to be reduced for buys and increased for sells.  When only a subset 
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of the portfolio is traded, there will again be differences in the covariance between buy 

and sell trades depending on the correlations with the remaining assets.   

Putting these three equations together gives the unsurprising result that the risk 

depends on the full trajectory of trades. 

 ( )( )0
1

'
T

T T t t
t

V x p p TC x x1 1'− −
=

− − = Ω∑  (28) 

The net risk when some positions are being increased and others are being decreased 

depends on the timing of the trades.  Carefully designed trading programs can reduce this 

risk.   

  

 To solve for the optimal timing of trades, the assumptions A.1 and A.2 are 

substituted into equation (14) 

 
{ }

( ) ( ) 1
1 1

max ' '
t

T T

T t tx t t
1tx E TC x xµ π λ − −

= =

+ − − Ω∑ ∑  (29) 

Furthermore, an expression for expected transaction costs can be obtained as 

 ( ) ( )(1
1

T

t t T t t
t

E TC x x x )τ µ π−
=

= ∆ + − +∑ . (30) 

Proposition 2.  Under assumptions A.1, A.2 the optimal trajectory is given by the solution 

to  

 
{ }

( )1
1 1

max '
t

T T

t t t t tx t t
1 1tx x xµ π τ λ x− −

= =

+ − ∆ − Ω⎡ ⎤⎣ ⎦∑ −∑ . (31) 

This solution depends upon desired or target holdings, permanent and transitory 

transaction costs as well as expected returns and the covariance matrix of returns.  Under 

specific assumptions on these parameters and functions, the optimal trajectory of trades 

can be computed and the Sharpe Ratio evaluated.  Because the costs ,t tπ τ  are potentially 

non-linear functions of the trade trajectory, this is a non-linear optimization. 

 Under a special assumption this problem can be further simplified.  If the target 

holdings are solved by optimization, as for example in the case when a post trade position 

is to be held for a substantial period of time, then there is a relation between these 

parameters that can be employed. 
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A.3 11
2Tx µ
λ

−= Ω  (32) 

Proposition 3.  Under assumptions A.1, A.2 and A.3, the optimal trajectory is the solution 

to   

  

  (33) 
{ }

( ) (1 1
1

max ' '
t

T

t t t t T T T t T tx t

x x x x x x x xπ τ λ λ− −
=

− ∆ + Ω − − Ω −⎡ ⎤⎣ ⎦∑ )1−

t

This solution no longer depends upon the expected return but does depend upon the target 

holding.  The appropriate measure of risk is simply the variance of TC which is the price 

risk of unfinished trades.   Thus buys and sells have the same risk as liquidations 

regardless of the other holdings in the portfolio.  Essentially, risk is due to the distance 

away from the optimum at each point of time.   

 

   

V  ALMGREN CHRISS DYNAMICS 

 

 To solve this problem we must specify the functional form  of the permanent and 

transitory price impacts.   A useful version is formulated in Almgren and Chriss(2000).  

Suppose 

A.1.a t tp p x− = Τ∆%  (34) 

A.2.a ( ), ~ 0,t t t tp x Dµ ε ε∆ = Π∆ + + Ω  (35) 

describe the evolution of transaction prices and market values respectively.  Now is a 

matrix of transitory price impacts and 

Τ

Π  is a matrix of permanent price impacts.  The 

parameters  represent the conditional mean vector and the covariance matrix of 

returns.   From Huberman and Stanzel(2004) we learn that the permanent effect must be 

time invariant and linear to avoid arbitrage opportunities, although the temporary impact 

has no such restrictions.  Substituting into (6) and rearranging gives 

( ,µ Ω)

 
( ) ( )( ){ }

( ) ( ) ( )

1
1

1 1
1

'

T

t t T t t
t
T

T t T t
t

E TC x x x x x

V TC x x x x

µ−
=

− −
=

= ∆ Τ∆ + − +Π∆

= − Ω −

∑

∑
 (36) 
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 Substituting (34) and (35) into (31), gives 

 
{ }

( )1
1 1

max ' ' '
t

T T

t t t t tx t t
1 1tx x x x x xµ λ−

= =

+Π∆ −∆ Τ∆ − Ω⎡ ⎤⎣ ⎦∑ − −∑

)1−

. (37) 

The solution to this problem depends on the initial and final holdings as well as the mean 

and covariance matrix of dollar returns.  As the problem is quadratic, it has a closed form 

solution for the trade trajectory in terms of these parameters.  In this setting, it is clear 

that the full vector of portfolio holdings and expected returns will be needed to optimize 

the trades.  

 If in addition it is assumed that the target holdings are chosen optimally so that 

A.3 holds, the optimization problem is: 

  (38) ( ) (( )
1 1

1 1{ ,..., } 1

max ' ' ' '
T

T

t t t t T T T t T tx x t

x x x x x x x x x xλ λ
−

− −
=

Π∆ −∆ Τ∆ + Ω − − Ω −∑

The target holdings contain all the relevant information on the portfolio alpha and lead to 

this simpler expression.   

 An important implication of this framework is that it gives a specific instruction 

for portions of the portfolio that are not being traded.   Suppose that the portfolio includes 

N assets but that only a subset of these is to be adjusted through the trading process.  Call 

these assets x1 and the remaining assets x2 so that ( ) ( )1, 2, 1, 2,', ' ' ', ' 't t t t Tx x x x x= = .   Since 

the shares of non-traded assets are held constant, the levels of these holdings disappear in 

equation (38) in all but one of the terms that include interaction with the trades of asset 1.  

This remaining term is 1 't tx x− Π∆ .  If trades in asset 1 are assumed to have no permanent 

impact on the prices of asset 2 then the holdings of asset 2 will not affect the optimal 

trades of asset 1.  Typically the permanent impact matrix is assumed to be diagonal or 

block diagonal so even this effect is not present. Of course it is easy to find cases where 

cross asset permanent price impacts could be important. 

   

Proposition 4.  Assuming A.1.a, A.2.a, A.3 and that the permanent impact of traded assets 

on non-traded assets is zero, portfolio holdings that are fixed during the trade, have no 

effect on the optimal execution strategy. 
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In the light of equation (14) this might seem surprising as the risk of trading will have a 

covariance with portfolio risk.  In particular, for positively correlated assets, the 

covariance when buying will reduce risk and when selling will increase it.  However this 

effect is exactly offset by the expected return when assuming optimal target portfolios.    

 Several important implications of this framework are easily computed in a simple 

three period problem.  We suppose that these are (0,t,T) and that the holdings at 0 and T 

are given but that the holdings at t are to be found to solve (38).  Rewriting this 

expression gives the equivalent problem as long as all the matrices are symmetric: 

 ( ) ( ) ( )0{ }
max ' 2 ' 2 2 ' 2

t
t T t tx tx x x x x xλ λΠ + Τ + Π + Τ+ Ω − Ω+Π + Τ  (39) 

which has a solution: 

 ( ) ( ) ({ }1
0

1 2 2 2 2
2t T)x xλ −= Π + Τ+ Ω Π+ Τ + Π + Τ+ Ω xλ  (40) 

 In the simple case where there is no risk aversion, this model gives the widely 

known solution that half the trades should be completed by half the time.  As risk 

aversion increases, the weights change.  In particular, in the scalar case, the trades will be 

advanced so that the holding at the midpoint is closer to the final position than the initial.  

We see now that this is true not only for liquidation but also for trades with non-zero 

terminal positions.   

 If some of the positions are unchanged from the initial to final period, expression 

(40) still gives the solution for the intermediate holding.  Notice that this implies that 

there could be trading in these assets.  There could even be trading in assets that are not 

held at either the initial or final period.  Partition ( )1, 2,', ' 't t tx x x=  and similarly partition 

the initial and final positions.  Then assuming 2,0 2,Tx x=  we can ask whether the second 

group of assets would be traded at all in an optimal trade.  In the case where the 

permanent and transitory impact matrices and the covariance matrix are block diagonal, 

then the second assets would not be traded and the optimal trade would not depend upon 

the position in the second assets.  However, in general equation (40) would imply some 

trading in other assets. 

 Assuming that the price impact matrices are block diagonal, a simple expression 

for trade in the second asset can be found in the three period problem.   
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 ( ) ( )1
2, 2, 22 22 22 12 1, 1,2t T t Tx x xλ λ−= − Π + Τ + Ω Ω − x

 

 (41) 

   

For positively correlated assets, all the parameters would be positive.  Hence asset 2 will 

be above its target whenever asset 1 is below its target.  This means that a buying trade 

for asset 1 would require buying asset 2 as well and then selling it back.  The unfinished 

part of the trade would then be long asset 2 and short asset 1 leading to a risk reduction.  

Similarly a selling trade for asset 1 would involve also selling asset 2 and then buying it 

back.   Notice that if lambda is large, or there are negligible transaction costs for asset 2, 

the relation is simply the beta of asset 2 on asset 1.  Regressing returns of asset 2 on asset 

1 would give a regression coefficient that would indicate the optimal position in asset 2 

when its transaction costs are minimal.  This would suggest considering a futures contract 

as the second asset as it will incur minimal transaction costs and can be used to hedge a 

wide range of trades. 

 To see better the appearance of these trades, a small excel spreadsheet version of 

this model was constructed with 20 periods of trading.   Rather typical parameters were 

used.  In the following figure a buying trade is illustrated under various conditions.   
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Figure 1 

 
Figure 2 

The horizontal line indicates the risk neu on which is to evenly space the trades.  
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VI.  REVE

 

 

In particular, the assumption that the impact is felt completely after one period 
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tral soluti

The squares give the risk averse solution when only one asset is traded.   When a second 

d the curve shifts to the triangles and then to the crosses for high 

correlations.  Notice that the trading in this asset is less aggressive when the second asset 

is also traded.   The better the hedge of the second asset, the less aggressive the tradin

The holdings of the second asset are shown in Figure 2.  Clearly, the asset is 

itially and then gradually resold to arrive back at the initial holdings.  The 

ovariance, the bigger are the positions.  

 

RSALS 

A richer set of dynamic relations will lead to more interesting trading strategies.  

 of trades 

may be too simple.  A natural generalization of A.1.a and A.1.b allows both the 

temporary and permanent impact of a trade to have delayed impacts.  This generalization 

is however still a special case of A.1 and A.2. 
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A.2.b ( )1 1 ...t t t t q t q t tp p x x x p L x− −= + Τ∆ +Τ ∆ + +Τ ∆ = +Τ ∆%  (4

A.3.b 

2) 

( )1 1t t t q t q t t t...p x x x L xµ ε µ ε= Π∆ +Π ∆ + +Π ∆ + + = Π ∆ + +  (43) 

rsals.   For example, if there were a 

strong set of buying orders the last period, then it may be that the transaction price will be 

as well as last period.  This would be a transitory continuation.  It has 

e implication that a continued buy program will increase transaction prices and spreads 

uld be a 

In many ways this is a very 

eresting effect since it is highly undesirable to buy a stock at a rising price only to find 

it drop back after the purchase is completed.   

These two equations can be substituted into the optimization problem

ition 2 in  (31) or Proposition 3 in (33).  Now however, the trade patte

ill influence the prices for a short time after T due to the lags introduced.  The solution 

− −

 

The lagged effects allow both continuations and reve

∆

elevated this period 

th

substantially while it continues, but afterward, they will revert back to normal levels.  In 

the permanent equation, it might be that a buy order in the previous period raises the 

price in this period an additional amount above the increase last period.  This wo

permanent continuation.  However it could also be that the permanent effect would be a 

reversal so that the lagged coefficient would be negative.  

int

 s of 

Propos rns before T 

w

is to pick a time T1>T and then choose the trading strategy to maximize portfolio value 

from (0,T1).  If there are q lags then T1 must be at least T+q in order to fully incorporate 

reversals and continuations into the trading optimization.   

 The resulting optimization problem can be expressed in Proposition 5. 

Proposition 5.  Under assumptions A.1.b, A.2.b the optimal trajectory is the solution to  

 
{ }

( )( ) ( )
1 1

1 1 1
1 1

max ' ' '
t

T T

t t t t t tx t t
x L x x L x x xµ λ− − −

= =

⎡ ⎤+Π ∆ −∆ Τ ∆ − Ω⎣ ⎦∑ ∑  (44) 

and adding assumption A.3, it is 

 ( ) ( ) ( ) ( )( )
1

1 1
1 1 1{ ,..., } 1

max ' ' ' '
T

T

t t t t T T T t T tx x t
x L x x L x x x x x x xλ λ

−
− − −

=

Π ∆ −∆ Τ ∆ + Ω − − Ω −∑  (45) 
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The problem remains linear quadratic and has a closed form solution.  It is of course still 

the case that the risk tolerance for trading and for investment should be the same.   

 Using the 20 period simulation model, it is simple to calculate trajectories for 

trades with various types of continuations and reversals.  Figure 3 shows the trade 

utral and 

anent reversal, the trade is less aggressive and when there is a one p

transitory continuation, the trade is also less aggressive.  On the other hand, a one period 

re early trades even when there is also a permanent 

f course these offsetting effects would be sensitive to the size of the 

  

 
Figure 3 

 These models can also be blended with the portfolio of untraded or unhedged 

assets so the problems can be solved jointly.  Qualitatively the results in the simple 

simulation are the same. 

 

trajectories for a buy order just as used above where the constant path is risk ne

the pink squares are the risk averse trades when there are no reversals.  When there is a 

one period perm eriod 

transitory reversal encourages mo

reversal.   O

coefficients.
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 VII    LIQUIDITY RISK 

 The value of a portfolio of assets is typically marked to market even though the 

assets could not be liquidated at these prices.   An alternative approach is to value the 

portfolio at its liquidation value.  This measure then incorporates both market risk and 

liquidity risk.  As has become abundantly clear above, both components of the valuation 

will be random variables and it is natural to ask what the distribution of future liquidation 

values may be.   

 The apparatus developed above allows such a calculation.  If the portfolio at time 

t=0 has positions x0 , then the mark-to-market value is 

 00 0 0'y p x c= +  (46) 

 

The cash equivalent of this requires time and execution costs.  Thus setting positions 

xT=0 at time t=T, there is a distribution of values T Ty c= .  From (13) , reproduced below,  

( )0 0'T T Ty y x p p TC− = − − , 

this simply depends on the transaction co  the liquidation. Since these are 

ndom are 

estor 

stribution.   If the liquidation is aggressive, then the costs will 

e large but rather certain.  However if it is liquidated slowly the average cost will be low 

tcomes will be wide.   

n 

 gives a close parallel with market risk.  If market risk is the 1% quantile 

om h

ing the portfolio over perhaps the 

me 10 days.  The liquidity risk could be more or le

The price risk faced by the portfolio owner will diminish as each piece is sold making the 

sts during

ra , the liquidation value is not a number but a random variable.  In fact, as there 

many ways to trade out of a position, this is a family of random variables and the inv

can select his preferred di

b

but the range of possible ou

Following the large literature on Liquidity Risk as in Malz(2003), Bangia et 

al.(1999),  Harris(2003), or the much larger literature on Market Risk, it is natural to 

choose strategies based on expected utility maximization, but to measure risk as based o

the likelihood of a particularly bad outcome.  Taking the quantile approach from VaR, a 

bad outcome might be the 99% quantile of the transactions cost associated with the 

liquidation.  This

fr olding the portfolio fixed for 10 trading days, then the liquidation risk could be the 

1% quantile of the cash position after optimally liquidat

sa ss than the market risk in this case. 
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risk less than market risk, however there is a directional loss associated with the 

liquidation that could completely dominate the ma sk.  From this point of view the rket ri

liquidity risk might be relatively insensitive to the time allow or liquidation since the 

optimal liquidation would always be front loaded so that longer times would be of little 

t on 

liquidity risk.  The liquidity risk would then

given that it exceeds the 99% quantile.   

ed f

value.  Only for large positions will the time to liquidation be an important constrain

minimizing the liquidation cost.   

Just as VaR has theoretical disadvantages as a measure of market risk, the 

quantile has the same drawbacks for liquidity risk.  Instead, expected shortfall is often 

now used as for example in McNeil, et al(2005),  and the same suggestion can be used for 

 be defined as the expected liquidation cost 

 From equations (36) which incorporate the Almgren Chriss dynamics, it is clear 

that the magnitudes of the price impact terms are important and that the volatilities and 

correlations of the assets are also important. Thus there is a connection between market 

risk and liquidity risk but the liquidity measure incorporates both effects.   Liquidity risk 

would be time varying because of the risk of holding positions; but in addition, price 

impacts are often found to be greater when markets are more volatile so that the 

parameters τ  and π  will themselves depend upon volatility as well as other factors. Thus 

liquidity risk may fluctuate more than proportionally to volatility.  Finally, in crisis 

scenarios, counterparties may also face the same liquidity risks.   Hence the price im

coefficients could be even larger.  Thus a liquidity failure can be approximately modeled 

by increasing these parameters and re-computing portfolio liquidity risk.  The concept of 

“liquidity black holes” as in Persaud(2003) could perhaps be modeled in this way.   

  

  

pact 

VIII.   CONCLUSION 

ptimization of investment and trading 

strategies can be separated if the time allowed for trading is small relative to the time for 

 

 In conclusion, execution risk and investment risk are the same thing.  They can be 

traded off against each other and the same risk tolerance should be used to evaluate 

trading strategies as investment strategies.  The o
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holding the investment portfolio.  When there is overshooting or reversals from trading, 

investment and trading returns affect each other, but these can be taken into account in 

the trade optimization by careful separation. Optimal approaches to hedging transaction 

risk follow directly from the analysis as well as measures of liquidity risk. 
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