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Investor Information, Long-Run Risk, and the Duration of Risky Cash Flows

Abstract

We study the role of information in asset pricing models with long-run cash �ow risk.

To illustrate the importance of the information structure, we show how the implications of

the long-run risk paradigm for the cross-sectional properties of stock returns and cash �ow

duration are a¤ected by information. When investors can fully distinguish short- and long-

run consumption risk components of dividend growth innovations (full information), only

exposure to long-run consumption risk generates signi�cant risk premia, implying that high-

return value stocks are long-duration assets, contrary to the historical data. By contrast,

when investors observe the change in consumption and dividends each period but not the

individual components of that change (limited information), exposure to short-run risk can

generate large risk premia, so that high-return value stocks are short-duration assets while

low-return growth stocks are long-duration assets, as in the data. We also show that, in order

to explain empirical �nding that long-horizon equity is less risky than short-horizon equity,

the properties of the cash �ow model and the values of primitive preference parameters must

be quite di¤erent from those emphasized in the existing long-run risk literature.

JEL: G10, G12



1 Introduction

We study the role of information in asset pricing models with long-run cash �ow risk. The

idea that long-run cash �ow risk can have important a¤ects on asset prices is perhaps best

exempli�ed by the work of Bansal and Yaron (2004), who show that a small but persistent

common component in the time-series processes of consumption and dividend growth is

capable of generating large risk premia and high Sharpe ratios.1 A maintained assumption

in this literature is that investors can directly observe the small long-run component and

distinguish its innovations from transitory shocks to consumption and dividend growth.

We refer to this assumption as the full information speci�cation. While this is a natural

starting place and an important case to understand, in this paper we consider two alternative

limited information speci�cations in which market participants are faced with distinct signal

extraction problems. In each case, they can observe the change in consumption and dividends

each period, but they cannot observe the individual components of that change. The two

cases di¤er in the how the information is used, and therefore in the form of signal extraction

problem solved.

Information about long-run cash �ow risk is likely to be limited. In �nite samples it

is di¢ cult or impossible to distinguish statistically between a purely i.i.d. process and

one that incorporates a small persistent component. Hansen et al. (2005) use samples of

the size currently available and show that the long-run riskiness of cash �ows is hard to

measure econometrically; they argue that such statistical challenges are likely to plague

market participants as well as econometricians. Perhaps most important, for speci�cations

of the dividend process that have been studied in the long-run risk literature, the distinct

roles of persistent and transitory shocks cannot be separately identi�ed from the history of

consumption and dividend data. Thus, the full information assumption takes the amount

of information investors have very seriously: market participants must not only understand

that a small predictable component in cash-�ow growth exists, they must also be able to

decompose each period�s innovation into its component sources and have complete knowledge

of how the shocks to these sources vary and covary with one another, even though the data

1A growing body of theoretical and empirical work has been devoted to studying the role of long-run

risk in consumption and dividend growth for explaining asset pricing behavior. See Parker (2001); Parker

and Julliard (2004); Colacito and Croce (2004); Bansal, Dittmar and Kiku (2005); Hansen, Heaton and

Li (2005); Kiku (2005); Malloy, Moskowitz and Vissing-Jorgensen (2005); Bansal, Dittmar and Lundblad

(2006) Hansen and Sargent (2006).
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give us no guide for observing these components separately.

As an illustration of the potential importance of the information structure, we study the

implications of the long-run risk paradigm for the cross-sectional properties of stock returns

and cash �ow duration. Empirical evidence indicates that assets with low ratios of price to

measures of fundamental value (value stocks) have higher average returns than assets with

high ratios of price to fundamental value (growth stocks) (Graham and Dodd (1934); Fama

and French (1992)). The long-run risk explanation implies that assets with high average

returns command a high risk premium because they are more exposed to long-run cash �ow

risk. Accordingly, this line of thought implies that value stocks must be more exposed to

long-run cash �ow risk than are growth stocks. At the same time, however, a second strand

of empirical evidence �nds that the cash �ow duration of value stocks is considerably shorter

than that of growth stocks (Cornell (1999, 2000); Dechow, Sloan and Soliman (2004); Da

(2005)). Shorter duration means that the timing of value stocks�cash �ow �uctuations is

weighted more toward the near future than toward the far future, whereas the opposite is

true for growth stocks. The duration perspective of equity seems to suggest that value stocks

are less exposed to long-run cash �ow risk than are growth stocks. An unanswered question

is whether the long-run risk perspective of value and growth assets can be reconciled with

the seemingly contradictory cash �ow duration evidence. We argue here that what may seem

to be small changes in the information structure can have important implications for such

questions.

For example, it may seem apparent that in models where long-run consumption risk

plays a central role in the determination of risk premia, long duration equity should be

riskier than short duration equity, thereby contradicting empirical evidence on the return

and duration properties of value and growth stocks. We show that, while this is true under

full information, it is not necessarily true under limited information. When information is

limited, the long-run risk paradigm can be made consistent with evidence that long-horizon

equity commands a lower risk premium than short-horizon equity.

We study a model in which the dividend growth rates of individual assets are di¤eren-

tially exposed to two systematic risk components driven by aggregate consumption growth,

in addition to a purely idiosyncratic component uncorrelated with aggregate consumption.

One is a small but highly persistent (long-run) component as in Bansal and Yaron (2004),

while the second is a transitory (short-run) i.i.d. component with much larger variance. In

addition, we follow the existing literature on long-run risk by employing the recursive utility
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speci�cation developed by Epstein and Zin (1989, 1991) and Weil (1989). With recursive

utility, investors are not indi¤erent to the intertemporal composition of risk, implying that

the relative exposure to short- versus long-run risks has a non-trivial in�uence on risk premia.

In order to isolate the endogenous relation between cash-�ow duration and risk premia

in models with long-run consumption risk, we model �rms as di¤ering only in the timing of

their cash �ows. This may be accomplished by recognizing that an equity claim is a portfolio

of zero-coupon dividend claims with di¤erent maturities. It follows that long duration assets

can be modeled as equity with a greater share of long-horizon zero-coupon aggregate dividend

claims than short duration assets.

We �nd that, in long-run risk models with full information, assets that have low price-

dividend ratios and high risk premia (value stocks) will endogenously be long-duration assets,

while those with high price-dividend ratios and low risk premia (growth stocks) will be short-

duration assets, contrary to the historical data. Here the endogenous relation between cash

�ow duration and risk premia goes the wrong way. By contrast, under limited information,

value stocks with low price-dividend ratios and high risk premia can be (endogenously) short-

duration assets, while growth stocks with high price-dividend ratios and low risk premia are

long-duration assets, in line with the data. These results show that limited information can

be an important source of additional risk, and it can completely reverse the type of asset

that commands a high risk premium.

The intuition for this result is straightforward. When investors can observe the long-run

component in cash �ows�in which a small shock today can have a large impact on long-

run growth rates�the long-run is correctly inferred to be more risky than the short-run,

implying that long-duration assets must in equilibrium command high risk premia. But

under limited information, the opposite can occur. Assets with high exposure to short-

run (i.i.d.) consumption shocks may command high risk premia because investors�optimal

forecasts of the long-run component assign some weight to the possibility that shocks to the

i.i.d. component will be persistent. At the same time, assets with low exposure to short-run

consumption shocks but high exposure to the small long-run component may command small

risk premia because �uctuations in those assets appear dominated by the large idiosyncratic

cash �ow innovations that carry no risk premium.

A counter-intuitive aspect of these results is that limited information can, under some

parameter con�gurations, lead market participants to command a higher risk premium than

they would under full information. For all of these results, the presence of a small long-run
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risk component is central to delivering high risk premia, just as it is in the full information

speci�cations. But the limited information speci�cations generate a richer set of results, in

which the relative exposure of cash �ows to shocks with di¤erent degrees of persistence, and

investors�perceptions of these shocks as seen through an optimal �ltering lens, matters as

much for risk premia as an asset�s exposure to long-run consumption risk.

The main purpose of this paper is to make these points qualitatively. Nevertheless,

we show that some calibrations of the limited information models we explore can match the

properties of cross-sectional data quantitatively. In general, risk aversion must be su¢ ciently

high and/or the volatility of the long-run risk component cannot be too small. In these cases,

the limited information speci�cations are not only consistent with the cash �ow duration

properties of value and growth stocks and a sizable value premium, they also explain the

higher empirical Sharpe ratios of value stocks and the failure of the capital asset pricing

model (CAPM) of Sharpe (1964) and Lintner (1965) to account for the value premium.

In addition, the limited information model is consistent with the ability of high-minus-low

factor (HML) of Fama and French (1993) to explain the value premium.

The rest of this paper is organized as follows. The next section discusses related literature

not discussed above. Section 3 presents the asset pricing model, the model for cash �ows, and

the informational assumptions. We consider two cases of limited information to illustrate how

di¤erences in the amount of information as well as in the way it is processed can a¤ect asset

prices. One case is based on the estimation of separate univariate processes for consumption

and dividend growth, while the other is based on system estimation for both series. Section 4

shows how these two speci�cations of limited information in�uence equilibrium asset returns

and compares them to a full information benchmark. A theme of this section is that the

duration evidence for value and growth assets can be used to distinguish among long-run

risk models that di¤er according to their information structures, cash �ow properties, and

primitive preference parameter values. Section 5 concludes.

2 Related Literature

In terms of motivation, our paper is most closely related to recent work by Hansen and

Sargent (2006). Like us, Hansen and Sargent are concerned about the agent�s ability to

observe the long-run risk component in aggregate cash �ows. The agents in their model

form decision rules that are robust to misspeci�cation of their approximating model of cash-

�ows. They assume that a representative consumer assigns positive probability to both an
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i.i.d. model for consumption growth and a model in which consumption growth contains

a small predictable component, and learns which model is a better description of the data

over time. They show that uncertainty over which model of consumption is correct can add

a volatile and time-varying component to the stochastic discount factor, helping to explain

both the high mean and time variation in the Sharpe ratio of aggregate stock market returns.

Our paper, while similar in motivation to Hansen and Sargent (2006), di¤ers along a

number of dimensions. The most important is that Hansen and Sargent focus on the role of

learning with robust preferences, while we focus on the agent�s information structure. Thus,

in order to isolate the e¤ects on asset returns arising purely from the information structure,

we assume that agents must solve a signal extraction problem, but we do not impose a

preference for robustness in their utility maximization. We consider our investigation to be

complementary to that of Hansen and Sargent and discuss in the conclusion how concerns

for robustness could be included in the analysis. In addition, Hansen and Sargent study

their model�s implications for the unobservable return on a claim to aggregate consumption,

whereas we investigate a levered equity claim similar to that studied in Bansal and Yaron

(2004). This distinction is important because the parameters of the levered equity claim

process we study are in general unidenti�ed, implying that even an agent armed with an

in�nite sample of consumption and dividend data can never learn the correct cash �ow

model and must always perform a signal extraction problem. It is this signal extraction

problem in the presence of long-run risk that our analysis is designed to focus on. Finally,

Hansen and Sargent study the time-series properties of the aggregate consumption claim,

whereas we model multiple risky assets that di¤er according to the timing of their cash �ows.

This allows us to study the cross-sectional properties of the model and its relation to cash

�ow duration.

Our paper is also related to a recent literature that tries to reconcile the cross-sectional

properties of equity returns simultaneously with the cash �ow duration properties of value

and growth assets. Lettau and Wachter (2006) use techniques from the a¢ ne term struc-

ture literature to develop a dynamic risk-based model that captures the value premium, the

cash �ow duration properties of value and growth portfolios, and the poor performance of

the CAPM. However, Lettau and Wachter forgo modeling preferences and instead directly

specify the stochastic discount factor. An essential element of their results is that the pricing

kernel must contain state variables that can be at most weakly correlated with aggregate

fundamentals. (Lettau and Wachter set this correlation to zero in their benchmark model.)
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By contrast, models that specify preferences as a function of aggregate fundamentals often

have di¢ culty matching the cross-sectional properties of stock returns. For example, the

habit model of Campbell and Cochrane (1999) has received signi�cant attention for its abil-

ity to explain the time-series properties of aggregate stock market returns. But Lettau and

Wachter (2006) and Wachter (2006) show that the Campbell and Cochrane model implies

that assets with greater risk premia are long duration assets, rather than short duration

assets as in the data for value and growth portfolios. Santos and Veronesi (2005) modify

the Campbell and Cochrane model by adding cash �ow risk for multiple risky securities

and successfully generate a value premium for short-horizon assets. However, they also �nd

that the cross-sectional dispersion in cash �ow risk required to explain the magnitude of

the premium is implausibly high. Lustig and Van Nieuwerburgh (2006) study a model with

heterogenous agents and housing collateral constraints and �nd that conditional expected

excess returns are hump-shaped in their measure of duration. Other researchers have stud-

ied the cross-sectional properties of stock returns in production-based asset pricing models.

Zhang (2005) shows that, when adjustment costs are asymmetric and the price of risk varies

over time, growth assets can be less risky than assets in place (value stocks), consistent with

the cash �ow and return properties of value and growth assets. But the Zhang model does

not account for the �nding of Fama and French (1992) that value stocks do not have higher

CAPM betas than growth stocks.

3 The Asset Pricing Model

Consider a representative agent who maximizes utility de�ned over aggregate consumption.

To model utility, we use the more �exible version of the power utility model developed by

Epstein and Zin (1989, 1991) and Weil (1989), also employed by other researchers who study

the importance of long-run risks in cash �ows (Bansal and Yaron (2004), Hansen et al. (2005)

and Malloy et al. (2005)).

Let Ct denote consumption and RC;t denote the simple gross return on the portfolio of

all invested wealth, which pays Ct as its dividend. The Epstein-Zin-Weil objective function

is de�ned recursively as:

Ut =
h
(1� �)C

1�

�

t + �
�
Et
�
U1�
t+1

�� 1
�

i �
1�


where 
 is the coe¢ cient of risk aversion and the composite parameter � = 1�

1�1=	 implicitly

de�nes the intertemporal elasticity of substitution 	.
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Let PDj;t denote the ex-dividend price of a claim to an asset that pays a dividend stream

fDj;tg1t=1 measured at the end of time t, and let PCt denote the ex-dividend price of a claim to
the aggregate consumption stream. From the �rst-order condition for optimal consumption

choice and the de�nition of returns

Et [Mt+1RC;t+1] = 1; RC;t+1 =
PCt+1 + Ct+1

PDt
(1)

Et [Mt+1Rj;t+1] = 1; Rj;t+1 =
PDj;t+1 +Dj;t+1

PDj;t
(2)

where Mt+1 is the stochastic discount factor (SDF), given under Epstein-Zin-Weil utility as

Mt+1 =

 
�

�
Ct+1
Ct

�� 1
 

!�
R��1C;t+1: (3)

The return on a one-period risk-free asset whose value is known with certainty at time t is

given by Rft+1 � (Et [Mt+1])
�1 :

3.1 The Cash Flow Model and Informational Assumptions

Equities are modeled as claims to a dividend process, speci�ed below. We �rst describe the

form of the stochastic process for aggregate dividend growth, and explain later how this form

can be adapted to model individual asset�s cash �ows. Let Dt denote the aggregate dividend

at time t, and let PDt denote the ex-dividend price of a claim to the asset that pays the

stream fDtg1t=1. We use lower case letters denote log variables, e.g., log (Ct) � ct.
We seek a model for equity cash �ows that allows dividend growth rates to be potentially

exposed to both transitory and persistent sources of consumption risk that drive Mt+1, as

well as to purely idiosyncratic shocks that command no risk premium. Denote the condi-

tional means of consumption and dividend growth as xc;t and xd;t; respectively. To model the

persistent �uctuations in consumption risk, we follow Bansal and Yaron (2004) and assume

that consumption and dividend growth rates contain a single, common predictable compo-

nent with an autoregressive structure. In addition, we assume here that dividend growth

rates may also be exposed to transitory (i.i.d.) consumption risk. These assumptions give

rise to the following dynamic system:

�ct+1 = �c + xc;t|{z}
LR risk

+ �"c;t+1| {z }
SR risk

(4)

�dt+1 = �d + �xxc;t + �c�"c;t+1 + �d�"d;t+1 (5)

xc;t = �xc;t�1 + �xc�"xc;t (6)
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"c;t+1; "d;t+1; "xc;t � N:i:i:d (0; 1) : (7)

Note that the conditional mean of dividend growth is proportional to the conditional mean

of consumption growth xd;t = �xxc;t, a speci�cation that follows much of the long-run risk

literature. We refer to the system (4)-(6), with the correlation structure (7), as the true data

generating process.

3.1.1 Full Information

In the existing literature on long-run consumption risk (e.g., Bansal and Yaron (2004)), it is

commonplace to assume that agents can directly observe the cash �ow processes, including

the latent conditional means xc;t and xd;t. We refer to this as the full information assumption.

The term in equation (4) labeled �LR risk� captures the small long-run risk component

emphasized in the literature because even small innovations in xc;t; if su¢ ciently persistent,

will have large a¤ects on cash �ows in the long-run, resulting in high risk premia when

investors can observe xc;t. In this paper we also allow dividend growth to be exposed to

transitory consumption shocks, by introducing the component �"c;t+1 in (5):We refer to this

component as the short-run risk component, labeled �SR risk,�since its correlation with the

stochastic discount factor contributes to the systematic riskiness of the dividend claim, but its

purely i.i.d. nature makes that risk short-lived. Because the innovation "d;t+1 is uncorrelated

with consumption growth, it does not contribute to systematic risk. The loadings �x and

�c govern the exposure of dividend growth to long-run and short-run consumption risk,

respectively.

Full information is a strong assumption, since the conditional means xc;t and xd;t are latent

and (as discussed below), the system (4)-(7) cannot in general be observed from historical

data on consumption and dividends. The full information assumption therefore implies that

market participants have more information than do econometricians with historical data on

consumption and dividends.2

2Notice that, in the model, asset prices should not contain additional information about xc;t. In the

model, prices are determined endogenously from exogenously given consumption and dividend processes.

Thus, if agents have access only to historical dividend and consumption data, endogenous prices will re�ect

only that information and not additional information about xc;t.
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3.1.2 Limited Information

Under limited information, investors observe historical consumption and dividend data, but

they do not directly observe the latent variables xc;t and xd;t or the innovations of the true

data generating process (4)-(7). Armed with historical data on dividends and consumption,

investors could in principal use Maximum Likelihood and the Kalman �lter to estimate a

general dynamic system in which innovations in the long-run components of consumption

and dividend growth xc;t and xd;t have arbitrary correlations with each other and with the

i.i.d. innovations of these series. As shown in the Appendix, however, in the absence of

apriori restrictions on the parameters, the general dynamic system is unidenti�ed. That

is, more than one set of parameter values can give rise to the same value of the likelihood

function and the data give no guide for choosing among these. Nevertheless, agents with

access to historical data on consumption and dividend growth can directly estimate Wold

representations for these series, as long as they follow covariance-stationary processes. In this

paper, we study two variants of what we refer to as limited information in which investors

estimate either univariate or multivariateWold representations for consumption and dividend

growth.

The �rst variant is based on a multivariate Wold representation for the dynamic system

(4)-(6), which can be written as a V ARMA (1; 1) process:"
�ct+1

�dt+1

#
=

"
�c (1� �)
�d (1� �)

#
+

"
� 0

0 �

#"
�ct

�dt

#
+

"
1 0

0 1

#"
vVc;t+1

vVd;t+1

#
�
"
bcc bcd

bdc bdd

#"
vVc;t

vVd;t

#
:

(8)

The i.i.d. innovations vVc;t+1 and v
V
d;t+1 will in general be correlated, and are composites of

the underlying innovations in (4)-(6). In addition, the parameters bcc,:::,bdd and the variance-

covariance matrix of vVc;t+1 and v
V
d;t+1 are complicated nonlinear functions of the parameters

of the true data generating process �c; �d; �; �x,�c, and the elements of 
.

The second variant of limited information presumes that agents estimate separate uni-

variate Wold representations for �ct; and �dt: Given the true data generating process, these
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can be written as a pair of ARMA(1; 1) processes:3

�ct+1 = �c (1� �) + ��ct + vAc;t+1 � bcvAc;t (9)

�dt+1 = �d (1� �) + ��dt + vAd;t+1 � bdvAd;t: (10)

As for the V ARMA representation, the ARMA parameters are functions of the primitive

parameters of the dynamic system (4)-(7) and the innovations vAc;t+1 and v
A
d;t+1, which are in

general correlated, are composites of the underlying innovations in (4)-(6).

Speci�cations in which agents estimate the V ARMA representation are an intermediate

case between two extremes: the full information speci�cation in which agents directly ob-

serve xc;t and xd;t, and limited information speci�cations in which agents estimate univariate

ARMA processes for consumption and dividend growth. We refer to the estimation of (8)

as system signal extraction, or simply system limited information, and estimation of (9)-(10)

separately as univariate signal extraction, or simply univariate limited information. Both

cases of limited information are of interest, for several reasons.

First, the same information is employed in the system signal extraction case as in univari-

ate signal extraction, but the information is used di¤erently. As such, comparing these cases

allows us to study how the way information is processed a¤ects equilibrium asset returns.

Second, both forms of limited information are potentially plausible descriptions of investor

behavior. Single equation methods are generally more robust to model misspeci�cation than

are system estimation methods and consumption is often thought to be less well measured

than are asset market data. Therefore in practice investors may trade o¤ potential e¢ ciency

gains for robustness and measurement concerns and estimate the single equation representa-

tions. Third, the univariate signal extraction case is especially useful for building intuition

about how limited information can a¤ect asset returns. For this reason, we often discuss this

case in detail before presenting results from the system signal extraction problem.

In either case, the nature of the signal extraction problem can be made explicit by not-

ing that the Wold representations above can be written as �innovations representations,�

familiar from Kalman �lter derivations. Let the (2� 1) vector bxVt = �bxVc;t; bxVd;t�0 denote the
optimal linear forecasts of xc;t and xd;t based on the history of both �ct+1 and �dt+1. The

3Anderson, Hansen and Sargent (1998) study risk premia for a claim to aggregate consumption in a

continuous time, robust-control asset pricing model in which consumption growth follows an ARMA(1; 1);

in e¤ect giving the agent the same information structure for consumption growth as in (9). We note that if

the true data generating process were an ARMA(1; 1), the limited and full information speci�cations in our

paper would coincide.
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V ARMA(1; 1) process above may be recast in terms of a vector innovations representation

in which �ct and �dt are functions of bxVt (see the Appendix). Analogously, let the scalar
variable bxAc;t denote the optimal linear forecast of xc;t based on the history of �ct+1, and
let the scalar variable bxAd;t denote the optimal linear forecast of xd;t based on the history
of �dt+1. The pair of ARMA (1; 1) processes above may be recast in terms of univariate

innovations representations for �ct and �dt that will be functions of bxAc;t and bxAd;t, respec-
tively. As the Appendix shows, the optimal forecasts bxVt ; bxAc;t and bxAd;t are functions of the
observable VARMA and ARMA parameters and innovations. Thus, in either form of limited

information, observations on �ct+1 and �dt+1 provide noisy signals of the latent variables

xc;t and xd;t.

3.1.3 Policy Function Solution and State Variables

For the full information speci�cation, xc;t is observable and summarizes the information

upon which conditional expectations are based. Since xd;t = �xxc;t it does not constitute

an additional state variable. Solutions to the model�s equilibrium price-consumption and

price-dividend ratios are found by iterating on the Euler equations (1) and (2), assuming

that individuals observe the consumption and dividend processes in (4)-(6). This delivers a

policy function for the price-consumption and price-dividend ratios as a function of a single

state variable xc;t. In the limited information speci�cations, equilibrium price-consumption

and price-dividend ratios are calculated assuming market participants observe only the com-

posite shock processes given in either (8) or (9) and (10), even though the data are actually

generated by the dynamic system (4)-(6) with distinct short- and long-run components. For

the system signal extraction case, the policy functions for both the price-consumption and

price-dividend ratios are a function of the two-dimensional state vector bxVt , while in the
univariate signal extraction case the policy function for the price-consumption ratio is a

function of the single state variable bxAc;t, and the price-dividend ratio is a function of two
state variables bxAc;t and bxAd;t. For each speci�cation, we simulate histories for consumption
and dividend growth from the true data generating process in (4)-(7), and use solutions to

the policy functions to generate equilibrium paths for asset prices.4 The process is iterated

4A minor complication is that the policy functions for the limited information speci�cations are a func-

tion of the current innovation in the composite processes that appear in (9) and (10), whereas the actual

innovations are generated from (4)-(6). However, the moving average representations are invertible, and

their innovations can be recovered from the sums
P

i b
i (�yt�i � F�yt�i�1 � �) in the system signal ex-
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forward to obtain simulated histories for asset returns. The Appendix explains how we solve

for these functional equations numerically on a grid of values for the state variables.

3.2 How Does The Information Structure A¤ect Equilibrium Outcomes?

The information structure a¤ects equilibrium asset prices because it determines the set of

state variables upon which expectations are based. This mechanism can be illustrated by

comparing how the respective state variables under full and limited information speci�cations

react to primitive shocks. Figure 1 compares the full information and univariate signal

extraction cases by plotting impulse responses to primitive shocks (in percent deviations from

steady state) of xc;t, as compared to bxAc;t; xd;t, as compared to bxAd;t, and the dividend surprise
(�dt � Et�1�dt) under full and limited information. The �rst row displays the responses
to a one-standard deviation increase in the i.i.d. consumption shock, "c;t, the second row

displays the responses to a one-standard deviation increase in the idiosyncratic dividend

shock, "d;t and the third row displays responses to a one-standard deviation increase in the

innovation to the persistent component of consumption growth, "xc;t. Figure 2 compares the

full information and system signal extraction cases by plotting impulse response functions of

xc;t, as compared to bxVc;t; xd;t, as compared to bxVd;t, and the dividend surprise (�dt�Et�1�dt)
under full and system limited information. In the �gures, we denote all variables under full

information without hats, and variables under limited information with hats.

The results in Figures 1 and 2 are based on the following calibration of parameters set at

monthly frequency: �d = �d = 0:0015, � = 0:979, � = 0:0078, �xc = 0:044. These parameter

values are the same as those in the benchmark speci�cation of Bansal and Yaron (2004),

making our results comparable to those in the existing literature on long-run risk. Notice

that the innovation variance in xc;t is small relative to the overall volatility of consumption

(the standard deviation of "xc is 0.044 times the standard deviation of "c), but the persistence

of xc;t is high. We deviate slightly from the calibration in Bansal and Yaron (2004) by setting

�d equal to 6 rather than 4:5; in order to better match the correlation between consumption

and dividends observed in the data.5 The loadings �x and �c are set to 1 and 6, respectively,

a calibration that we show below generates signi�cant di¤erences in risk premia between full

traction case, and from
P

i b
i
c (�ct�i � ��ct�i�1 � �c) and

P
i b
i
d (�dt�i � ��dt�i�1 � �d), respectively, in

the univariate signal extraction case.
5Dividend growth is more volatile and less persistent than aggregate consumption growth (Cochrane

(1994)). Nevertheless, the results reported in this section are not sensitive to the precise value of �d.
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and limited information. The qualitative results discussed in this section are not in�uenced

by the precise values of �x and �c:

Figure 1 shows that a one-standard deviation increase in the i.i.d. consumption shock

"c;t leads to a sharp, unexpected increase in dividend growth under both full and univariate

limited information (row 1, column 3). Under full information, the agent observes the

source of the shock and understands that it has no persistence. Accordingly, expectations

of future consumption growth and future dividend growth are unchanged in response to an

innovation in "c;t, so the impulse responses of xc;t and xd;t are zero. By contrast, under limited

information, agents cannot directly observe the source of the shock and do not know if it is

persistent or transitory. The solution to the optimal �ltering problem therefore implies that

agents revise upward their expectation of future consumption growth and, to a lesser extent,

future dividend growth, even though in reality the shock has no persistence. Thus, both bxAc;t
and bxAd;t rise, but the former rises by much more (note the scales). In response to a transitory
shock, agents with limited information revise their expectations of future consumption and

dividend growth more than they would under full information.

Now consider the responses to an innovation in the persistent component of consumption,

"cx;t, in the third row of Figure 1. Under full information, investors recognize that this is a

shock to the persistent component of consumption and dividend growth and they accordingly

revise upward their expectations of future consumption and dividend growth immediately

upon observing the shock. Row 3 of Figure 1 shows that a one-standard deviation increase in

"cx;t leads to a jump upward in xc;t and xd;t: By contrast, investors with limited information

revise upward their expectation of future consumption and dividend growth only gradually

and by much less than they do under full information. The state variable, bxAc;t responds
sluggishly to the shock and bxAd;t barely responds at all. The error between both xc;t and bxAc;t
and xd;t and bxAd;t dies out slowly over time. In response to a persistent shock, agents with
limited information revise their expectations of future consumption and dividend growth less

than they would under full information.

Finally, the middle row of Figure 1 shows that a purely idiosyncratic shock to dividend

growth, "d;t, has no a¤ect on expected consumption or dividend growth in full information,

and has only a tiny a¤ect on expected dividend growth under univariate limited information.

How do these results change under system signal extraction? As in the univariate signal

extraction model, under system limited information agents cannot disentangle the i.i.d. shock

from the persistent shock. As a consequence, agents revise upward their expectation of
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future consumption growth in response to an "c;t shock even though in reality the shock has

no persistence (row 1, Figure 2). But there is an important di¤erence from the univariate

signal extraction case: here agents also signi�cantly revise upward their expectation of future

dividend growth. Thus, in response to a one standard deviation shock to "c;t, bxVd;t responds
by much greater magnitude than does bxAd;t. This occurs because, unlike bxAd;t and bxAc;t, bxVd;t andbxVc;t are perfectly correlated.
Now consider the responses to a one standard deviation increase in the idiosyncratic

dividend shock, "d;t. Under full information this shock is correctly perceived to be both

transitory and idiosyncratic; it therefore has no e¤ect on either xc;t or xd;t. By contrast,

under system limited information, an increase in "d;t causes a decline in both bxVc;t and bxVd;t.
This occurs because, under limited information, a shock to "d;t cannot be distinguished from

a shock to "c;t. Since investors observe an increase in dividend growth accompanied by no

change in consumption, the solution to the optimal system �ltering problem assigns some

weight to the possibility that there have been exactly o¤setting movements in xc;t�1 and "c;t.

This has a persistent negative a¤ect on bxVc;t (and therefore on bxVd;t), displayed in row 2 of
Figure 2.

Finally, the third row of Figure 2 shows the responses to an innovation in the persistent

component of consumption, "cx;t. As above, a one standard deviation increase in this shock

leads to a jump upward in xc;t and xd;t; while bxVc;t and bxVd;t respond only gradually. In the
next section, we return to these responses as a way to build intuition for why risk premia

di¤er depending on the information structure.

4 Theoretical Results

4.1 Long-Run Versus Short-Run Consumption Risk Exposure

To understand how the information structure a¤ects equilibrium asset prices, it is instructive

to begin by comparing economies with di¤erent aggregate dividend processes. Speci�cally,

we study how risk premia di¤er when the relative exposure of dividend growth to long-run

versus short-run consumption risk di¤ers. Comparisons made by varying the loadings �x and

�c should be thought of as comparisons among separate economies with di¤erent aggregate

dividend processes, rather than comparisons among multiple risky assets in a single economy.

We begin by investigating the model�s implications for summary statistics on the price-

dividend ratio, excess returns, and risk-free rate under limited and full information. The
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model output is generated by simulating 1000 samples of size 840 months, computing annual

returns from monthly data, and reporting the average statistics across the 1000 simulations.6

With the exception of the parameters �c and �x (where results for a range of values are

presented), Table 1 presents results using the parameter con�guration for cash �ows discussed

above. In addition, the preference parameters are set as follows: � = 0:998985;	 = 1:5, 
 =

10, as in the benchmark calibration of Bansal and Yaron (2004). We denote the log return on

the dividend claim rt+1 = ln (Rt+1) and the log return on the risk-free rate rf;t+1 � ln
�
Rft+1

�
.

Table 1 presents statistics for full information (FI), system limited information (LI-V), and

univariate limited information (LI-A). We discuss comparisons between full information and

each form of limited information in separate subsections next.

4.1.1 Univariate Limited Information v.s. Full Information

The results in Table 1 show that large di¤erences in risk premia are possible between full

and limited information. Consider �rst the results for full information, given under the

column labeled �FI.� In this case, high exposure to long-run consumption risk is required

to generate high risk premia. Economies comprised of assets with relatively low exposure

�x to long-run consumption risk and high exposure �c to short-run consumption risk (e.g.,

row 2 of Table 1), have low risk premia and high price-dividend ratios, whereas economies

comprised of assets with high �x and low �c (e.g., row 5 of Table 1), have high risk premia

and low price-dividend ratios. In addition, substantial variation in risk premia can only be

generated by heterogeneity in the exposure to long-run consumption risk; heterogeneity in

short-run risk is inadequate. For example, when �x = 3 and �c is increased from 2.2 to 6,

the log risk premium E (ri � rf ) increases by just one and a quarter percent, from 5.20% to

6.63% per annum.

The results under univariate limited information are much the opposite. The columns

labeled �LI-A� show results for the univariate signal extraction case, or ARMA �ltering.

Economies comprised of assets with relatively low exposure to long-run consumption risk

and high exposure to short-run consumption risk, (e.g., row 2 of Table 1), have high risk

6The average levels of the price-dividend ratios reported below are not directly comparable to their

empirical counterparts for actual �rms, since unlike real �rms, the �rms in the model have no debt and do

not retain earnings. Dividends in the model are more analogous to free cash �ow than to actual dividends,

implying that model price-dividend ratios should be lower than measured price-dividend ratios in historical

data.
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premia and low price-dividend ratios. Under this parameterization, the log risk premium

E (ri � rf ) is almost 8 percent per annum under limited information, while it is only 2.45

percent per annum under full information. At the same time, assets with high �x and low

�c (e.g., row 5 of Table 1), the log risk premium under limited information is only 1.26% per

annum whereas it is 5.2% per annum under full information.7 Last, notice that, unlike full

information, substantial variation in risk premia can be generated by heterogeneity in the

exposure to short-run consumption risk. For example, when �x = 3 and �c is increased from

2.2 to 6, the log risk premium increases by over 7 percentage points from 1.26% to 8.42%

per annum. On the other hand, �xing �c and varying �x generates little variation in risk

premia under limited information.

These �ndings are illustrated graphically in Figure 3, which plots annualized price-

dividend ratios as a function of the ratio of long-run to short-run consumption risk exposure,

�x=�c: For this �gure, the ratio �x=�c is varied along the horizontal axis in such as way as to

hold �xed the 15-month variance of dividend growth that is attributable to the consumption

innovations. The left-most panel plots this ratio under limited information at the steady

state value of bxAc;t, along with plus and minus two standard deviations around steady state inbxAc;t (holding �xed bxAd;t at its steady-state level). The middle panel plots the price-dividend
ratio under limited information at the steady state value of bxAd;t, along with plus and minus
two standard deviations around steady state in bxAd;t (holding �xed bxAc;t at its steady-state
level). The right-most panel plots the price-dividend ratio under full information as a func-

tion of �x=�c; plus and minus two standard deviations around steady state in the single state

variable xc;t:

The plots in Figure 3 are upward sloping under limited information but downward sloping

under full information. Since price-dividend ratios are high when risk premia are low, and

vice versa, this shows that assets with cash �ows that load heavily on the long-run component,

xc;t; are more risky under full information but less risky under limited information.

These results can be understood by noting that the risk premium on any asset in this

economy is primarily determined by the covariance between the pricing kernel Mt and re-

visions in expectations (news) about future cash �ow growth.8 As such, cash �ow shocks

7The table reports values for �c as low as 2.2. Smaller values for �c are ruled out in the limited information

calibration studied here by the requirement that the price-dividend ratio be �nite. This is analogous to the

requirement in the Gordon growth model that the expected stock return be greater than the expected

dividend growth rate to keep the price-dividend ratio �nite.
8Revisions in expected future returns are relatively unimportant because we have not introduced mecha-
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have two o¤setting e¤ects on the equity premium in full information as compared to limited

information. First, when a positive innovation "xc to the persistent component of consump-

tion growth occurs, investors with limited information assign some weight to the possibility

that the shock is transitory (coming from "c or "d). As a consequence, investors with limited

information revise upward their expectation of future consumption and dividend growth by

less than they would under full information. This generates a larger (in absolute value) neg-

ative correlation between Mt and cash �ow news under full information than under limited

information. Second, when a positive innovation "c to the short-run risk component occurs,

investors with limited information assign some weight to the possibility that the shock is

persistent (coming from the long-run risk component). As a consequence, investors with

limited information revise upward their expectation of future consumption and dividend

growth more than they would under full information. This generates a larger (in absolute

value) negative correlation between Mt and cash �ow news under limited information than

under full information.

When �x is large and �c relatively small, the �rst e¤ect dominates the second. In this

case, the risk premium in the full information case can be substantial while the premium in

the limited information case is quite small. On the other hand, when when �x is small and

�c relatively large, the second e¤ect dominates the �rst. In this case, the risk premium in

the limited information case can be substantial while the premium in the full information

case is quite small. Notice that, when �c is small and the long-run risk component has small

variance, the ARMA dividend shock vAd;t+1 is largely dominated by the volatile idiosyncratic

cash �ow shocks "d;t+1 that carry no risk premium. Thus, under univariate limited infor-

mation, su¢ ciently high exposure to short-run risk is required to generate large a large risk

premium.

This intuition can be illustrated by examining impulse response functions. Figure 4 plots

impulse responses of the stochastic discount factor and return to the dividend claim. The

SDF under full information is denoted Mt, and under limited information, cMt. Similarly,

we denote the log return to the dividend claim under full information, rm;t, and the same

return under limited information, brm;t. (Recall that both the stochastic discount factor and
the market return depend on the perceived data generating process for �ct and �dt, so

these will di¤er across full and limited information.) The responses are based on the same

nisms such as changing consumption and dividend volatility for generating time-varying risk premia on the

asset.
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calibration used to produce the impulse responses of the state variables in Figures 2 and 3

(�x = 1, �c = 6), which delivers a high equity premium under limited information (7.73%)

but a low equity premium under full information (2.45%).

The �rst row of Figure 4 shows why an innovation in the i.i.d. consumption shock "c;t
leads to higher risk premia under limited information than under full information. Recall

that, under limited information, investors respond to such a shock by revising upward their

expectation of future consumption growth substantially, while an investor with full informa-

tion makes no such revision in expected future consumption growth (Figure 1). As shown

in Figure 4 (row 1), this generates a larger decline in the SDF in response to an i.i.d. con-

sumption shock under limited information than under full information, and hence a larger

(negative) correlation with the return. By contrast, an innovation in the persistent com-

ponent of consumption, "cx;t, leads to higher risk premia under full information than under

limited information. This occurs because investors with limited information revise their

expectations of future consumption growth by less than they would under full information

(row 3, Figure 1). As a consequence, there is both a much larger decline in the SDF and

a much larger increase in the return under full information than under limited information

in response to a persistent consumption shock. Finally, the middle row of Figure 4 shows

that a purely idiosyncratic shock to dividend growth, "d;t, has a negligible impact on the

stochastic discount factor in either full or limited information, and so generates a negligible

risk premium.

Of course, the total risk premium is in�uenced by all three shocks. The reason that the

total risk premium is higher under limited information than under full information in this

calibration is that the e¤ect of persistent shocks is dominated by those of the i.i.d. shocks,

due to the much smaller loading on the persistent component than on the i.i.d. component

in the dividend process (�x = 1, �c = 6).

We close this subsection by brie�y making one observation about the cash �ow betas

studied in Bansal et al. (2006). Bansal et. al. point out that regressions of dividend

growth on 4 and 8 quarter trailing moving averages of consumption growth, where the slope

coe¢ cient in this regression is called the �cash �ow beta,�show that value stocks have higher

cash �ow betas than growth stocks.9 It is clear that heterogeneity in �x, governing exposure

to long-run consumption risk, can generate heterogeneity in cash �ow betas with respect

9One caveat with this observation is that the cash �ow betas are measured with considerable error, and

therefore are not statistically distinguishable from one another.
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to moving averages of consumption growth over longer horizons. A brief section in the

Appendix shows that� when consumption and dividend data are time-aggregated, as in the

historical data� heterogeneity in �c, governing exposure to i.i.d. consumption risk, can also

generate heterogeneity in cash �ow betas with respect to moving averages of consumption

growth over 4 or 8 quarter horizons.

4.1.2 System Limited Information v.s. Full Information

The results in columns labeled �LI-V�of Table 1 show that limited information based on

system signal extraction is a hybrid of full information and limited information based on

univariate signal extraction. Like the univariate limited information case, the limited infor-

mation speci�cations of this section deliver higher risk premia than under full information

whenever the asset�s exposure to long-run consumption risk is low but its exposure to short-

run consumption risk is high. But the system limited information speci�cations also display

a likeness to the full information benchmark: they deliver higher risk premia when exposure

to long-run consumption risk is high and exposure to short-run risk is low. The combined

result is that risk premia under system limited information are now higher than under full

information for every combination of �x and �c. Under the calibration of Table 1, the mag-

nitude of this di¤erence is about 0.7 percent per annum. It should be noted, however, that

these di¤erences in risk premia can be made larger if risk aversion is raised. An example

below using zero-coupon equity illustrates.

As before, the intuition for these results can be developed graphically by examining

impulse response functions. We saw in Figure 2 that, under system limited information,

investors signi�cantly revise upward their expectation of both future consumption growth

and future dividend growth in response to an i.i.d. consumption shock "c;t. (Such a shock

generates no revision in expectations under full information, since it is correctly perceived

to have no persistence.) As shown in Figure 5, this causes the SDF to decrease by more

and the return to the dividend claim to increase by more under system limited information

than under full information in response to an "c;t shock (row 1). This generates a greater

negative correlation between the pricing kernel and returns and hence greater risk premia

under limited information than under full information.

The middle row of Figure 5 shows the responses of the SDF and returns to a one standard

deviation increase in the idiosyncratic dividend shock, "d;t. This shock leads to a positive

surprise in dividend growth and therefore returns, but under full information the shock
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generates no risk premium because it is correctly perceived to be purely idiosyncratic and

uncorrelated with the stochastic discount factor (the response of the SDF is zero). By

contrast, under system limited information, an increase in "d;t causes a decline in both bxVc;t
and bxVd;t (Figure 2). The decline in bxVc;t leads to a rise in the SDF, generating a positive
correlation between cMt and returns, which by itself contributes to a negative risk premium

on the asset. The total risk premium on the asset is positive, however, because the insurance-

like a¤ects of an "d;t shock are more than o¤set by the risk-like a¤ects of an "c;t shock. These

o¤setting in�uences help explain why the magnitude of the spread in risk premia between

limited and full information is often lower than in the previous subsection.

The �nal row of Figure 5 shows the responses to an innovation in the persistent component

of consumption, "cx;t. Recall that a one standard deviation increase in this shock leads to

an immediate rise in xc;t and xd;t; while bxVc;t and bxVd;t respond only gradually (Figure 3). In
Figure 5 we see that this generates a larger (negative) contemporaneous correlation between

the stochastic discount factor and the return under full information than under system

limited information (row 3), contributing to a larger risk premium under full information.

The total risk premium shown in Table 1 is still higher under limited information because,

under all the calibrations shown in the table, this e¤ect is dominated by that of the i.i.d.

consumption shock.

Finally, we note that the volatility of the risk-free rate is low in all three cases: the

annualized standard deviation of the risk-free rate is 1.18% in full information, 0.74% under

univariate limited information, and 0.75% under system limited information.

4.2 Implications For Equity Duration

4.2.1 Zero-Coupon Equity

To study the implications of the information structure for the endogenous relation between

risk premia and cash �ow duration, we investigate the properties of zero-coupon equity. The

idea here is that an equity claim can be represented as a portfolio of zero-coupon dividend

claims with di¤erent maturities (e.g., Lettau and Wachter (2006)). Let Pn;t denote the price

of an asset at time t that pays the aggregate dividend n periods from now, and Rn;t the

one-period return on zero-coupon equity that pays the aggregate dividend in n periods:

Rn;t+1 =
Pn�1;t+1
Pn;t

:
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Zero-coupon equity claims are priced under no-arbitrage according to the following Euler

equation:

Et [Mt+1Rn;t+1] = 1 =)

Pn;t = Et [Mt+1Pn�1;t+1]

P0;t = Dt;

where the process for cash �ows that generates the data Dt is given by (4)-(6). Denote

rn;t+1 = ln (Rn;t+1) : The appendix provides detailed information on how the recursion above

is solved numerically. Since the aggregate market is the claim to all future dividends, the

market price-dividend ratio PDt =Dt =
P1

n=1 Pn;t=Dt. Plotting E
�
rn;t+1 � rft+1

�
against n

produces a yield curve, or term structure, of zero-coupon dividend claims.

4.2.2 Univariate Limited Information v.s. Full Information

In this section, we compare the term structure of zero-coupon equity under univariate limited

information with that of the full information benchmark. To do so, we consider a slightly

altered set of parameter values. To generate a large spread in risk premia between short-

and long-duration assets requires some combination of higher risk aversion and/or greater

volatility in the long-run risk component than what has been considered so far. We modify

the previous parameter values as follows: 
 = 16:5, 	 = 1:3, �xc = 0:10, � = 0:997, � = 0:983;

� = 0:0057, �d = 5:9.10 Figure 6 plots summary statistics for log excess returns rn;t+1�rf;t+1
as a function of maturity, n, under this parameter con�guration. The analogous plots for

the parameter con�guration studied in Table 1 are qualitatively the same, but the spread in

risk-premia between long- and short-duration equity is lower. The aggregate dividend claim

is assumed to follow the process (4)-(6) with �x = 1 and �c = 3. The plots reveal how the

information structure impacts the endogenous relation between cash �ow duration and risk

premia.

Figure 6 shows that, under limited information, the annualized log risk premium declines

with maturity (top panel). The log risk premium is 14% per annum for equity that pays a

10Without any further adjustments, the increase in �xc and � makes annualized consumption growth too

volatile, so we reduce � from 0.0078 to 0.0057. This calibration delivers a standard deviation for annualized

consumption growth of 3.6%, a value within one standard deviation of the point estimate reported in Bansal

and Yaron (2004). The parameters � and �d are also slightly modi�ed in order to maintain plausible

implications for the risk-free rate and the relative volatility of dividend growth.
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dividend one month from now and 5% per annum for equity that pays a dividend 15 years

from now (top panel). Thus, under limited information, short-duration assets, those with

more weight in low-maturity equity, will endogenously have higher expected returns and

lower price-dividend ratios than long-duration assets with more weight in distant-maturity

equity. A downward sloping equity yield curve is needed for the model to match empirical

evidence that long-horizon equity is less risky than short-horizon equity.

By contrast, under full information, the annualized log risk premium increases with ma-

turity. The log risk premium is 1:8% per annum for equity that pays a dividend one month

from now and 5:5% per annum for equity that pays a dividend 15 years from now.

The key to the downward sloping zero-coupon equity curve under limited information,

displayed in the top panel of Figure 6, is that the process for dividend growth under univariate

signal extraction appears close to i.i.d. (the estimated moving average and autoregressive

roots in (9) and (10) are close to canceling). Thus, shocks are perceived only to a¤ect

dividend growth and returns in the near term, implying that only assets that pay a dividend

in the near future command high risk premia. By contrast, under full information, when

agents can directly observe xc;t, it is understood that shocks can have a large, long-term

a¤ect on consumption and dividend growth. Accordingly, the long-run appears risky, and

assets that pay a dividend in the far future command higher risk premia than those that pay

a dividend in the near future. The endogenous relation between cash �ow duration and risk

premia goes the wrong way.

The middle panel of Figure 6 shows that in both limited and full information, volatility

increases with the horizon. But the bottom panels show that the Sharpe ratios decrease

with the horizon under limited information whereas they rise with the horizon under full

information. This suggests that the limited information speci�cation is better able to explain

the empirically higher Sharpe ratios of short-duration value stocks as compared to long-

horizon growth stocks.

Figure 7 shows that, under limited information, the shortest-duration equity have high

CAPM alphas (as high as 8% for equity that pays a dividend in one month), whereas the

longest-maturity equity have smaller (in absolute value) negative alphas (�2% for equity

that pays a dividend 15 years from now). This feature of limited information is consistent

with the data (see Table 2, discussed below) and with the prior �ndings of Fama and French

(1992). The bottom panel also shows that, under limited information, long-duration equity�

despite its having lower expected excess returns than short-duration equity� has slightly
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higher CAPM betas, as in the data. By contrast, under full information, there is much

less variation in the alphas with maturity and the variation goes the wrong way: alphas of

short-duration assets are lower than those of long-duration assets.

The plots just discussed are based on particular values of the loadings �c and �x for

the market portfolio. Results (not reported) indicate that these �ndings hold for a wide

range of parameters in both the cash �ow process and the utility function. Regardless of

the values of �c and �x, the term structure of equity is always downward sloping under

univariate limited information, and always upward sloping under full information. Changing

the relative loadings �c and �x merely changes the slope of the term structure, it does not

change the sign of the slope. This is true as long as parameter values are set so that greater

exposure to xc;t makes the market portfolio riskier rather than providing insurance. In a

long-run �insurance�model, the full information term structure slopes down, but overall

risk premia are very low or even negative. These latter results will be important when we

discuss the system signal extraction case below.

The results above may be related to similar zero-coupon equity plots in the literature.

Hansen et al. (2005) present zero-coupon equity plots for price-dividend ratios Pn;t=Dt rather

than mean excess returns, as in Figure 6. Since high price-dividend ratios correspond to low

mean excess returns, the plots presented in Hansen et al. (2005) are mirror-images of those

above. Their plots are based on the same Epstein-Zin-Weil model of preferences used here,

but the results are formed from historical data and somewhat di¤erent parameter values.

Hansen et. al. report price-dividend term zero-coupon equity structures for value and growth

�rms separately, whereas we plot the zero-coupon-equity curve for aggregate dividends. (The

dividend payments of value and growth �rms are modeled below as time-varying shares in

a sequence of aggregate dividend claims, fDtg1t=0 ; with di¤erent maturities.) In this sense,
the results in this section are not directly comparable to those in Hansen et al. (2005). But

it is notable that Hansen et. al. �nd that the price-dividend decomposition for the growth

portfolio eventually exceeds those of the value portfolio, as required by the data, only at

su¢ ciently high levels of risk aversion. This �nding is echoed in the results reported here:

it is only with su¢ ciently high risk aversion and/or su¢ ciently volatile innovations to the

long-run expected growth rate of consumption that we �nd a signi�cant spread in average

returns between short-duration value stocks and long-duration growth stocks.

23



Portfolios of Firms It is possible to study the quantitative aspects of the link between

duration and risk premia presented above by modeling �rms explicitly. Here we do so

by forming portfolios of individual �rms that di¤er only in the timing of their cash �ows.

Long-duration growth �rms are modeled as equity with relatively more weight placed on

long-horizon dividend claims, while short-duration value �rms are modeled as equity with

relatively more weight placed on short-horizon dividend claims. This methodology for de-

scribing the cash �ows of individual securities was �rst employed in a continuous time setting

by Menzly, Santos and Veronesi (2004), Santos and Veronesi (2004), and Santos and Veronesi

(2005), and in a discrete setting by Lynch (2003) and Lettau and Wachter (2006). Here we

follow the discrete time methodology described in Lettau and Wachter (2006). We outline

only the main aspects of this approach and refer the reader to that article for further detail.

This admittedly stylized model of dividend payments is not meant to be fully realistic.

For example, a simplifying assumption is that a �rm�s dividends depend only on the aggre-

gate dividend shock, whereas in reality they contain a �rm-speci�c component. What the

methodology does do, however, is to highlight an important source of observed heterogeneity

in individual cash �ows, driven by di¤erences in duration.11 By proceeding in this way, we

are able to avoid additional complexity and maintain focus on the endogenous link between

risk premia and cash �ow duration in models with long-run consumption risk.

Consider a sequence of i = 1; :::; N �rms. (Hereafter we refer to these simply as ��rms�

for brevity, even though they are better thought of as portfolios of �rms at the same stage in

their life cycle.) The ith �rm pays a share, si;t+1; of the aggregate dividendDt+1 at time t+1.

The share process is deterministic, with s the lowest share of a �rm in the economy. Firms

experience a life-cycle in which this share grows deterministically at a rate gs until reaching

a peak si;N=2+1 = (1 + gs)
N=2 s when it shrinks deterministically at rate gs until reaching

si;N+1 = s. The cycle then repeats. Thus, �rms are identical except that their life-cycles

are out-of-phase, i.e.., �rm 1 starts at s, �rm 2 at (1 + gs) s, and so on. The parameter gs is

set to 1:67% per month, or 20% per year, as in Lettau and Wachter (2006). Shares are such

that si;t � 0 and
PN

i=1 si;t = 1 for all t.

Since each �rm pays a dividend si;t+1Dt+1; si;t+2Dt+2; :::; no arbitrage implies that the

11Da (2005) empirically measures equity duration in the manner modeled here, namely as the deviation of

an asset�s current share in aggregate dividends from its steady-state value. Consistent with previous �ndings,

(which were based on somewhat di¤erent methodologies for measuring equity duration), he �nds that value

stocks have much shorter cash �ow duration than growth stocks.
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ex-dividend price of �rm i at time t is given by

Pi;t =

1X
n=1

si;t+nPn;t:

When si;t+1 is low, dividend payments are low today but will be high in the future when

n is large; these are long-duration assets with greater weight placed on distant-maturity

dividend claims. When si;t+1 is high, dividend payments are high today but will be low

in the future; these are short-duration assets with greater weight placed on short-maturity

dividend claims. From the downward sloping term structure plots presented above, we

already know that, under limited information, �rms with high price-dividend ratios and low

risk premia will be those that pay a small share of the aggregate dividend today, but a

greater share farther into the future. Such �growth� assets will endogenously have both

high price-dividend ratios (accompanied by relatively low risk premia) and long duration in

their cash �ows. Conversely, �rms with low price-dividend ratios and high risk premia will

be those that pay a larger share of the aggregate dividend today, but a small share farther

into the future. Such �value�assets will endogenously have both low price-dividend ratios

(accompanied by relatively high risk premia) and short duration in their cash �ows.

To consider the quantitative properties of models with limited information, we sort �rms

into portfolios on the basis of price-dividend ratio. Portfolio returns are created by simulat-

ing a time-series for aggregate dividends and prices and, using the share process described

above, forming 10 equally-weighted portfolios of the N �rms by sorting �rms into deciles

based on their price-dividend ratios.12 The portfolios are rebalanced every simulation year.

This procedure creates portfolios of �rms that display heterogeneity not only in their price-

dividend ratios, but also (endogenously) in the duration of their cash �ows. Table 2 reports

the statistical properties of these portfolios. For comparison, Table 2 also provides updated

evidence on the value premium in U.S. data. The table shows summary statistics from U.S.

data for portfolios of �rms sorted into deciles on the basis of book-to-market ratio, with decile

1 containing �rms in the lowest 10 percent according book-to-market ratio, and decile 10

containing �rms in the highest 10 percent according to book-to-market ratio. The monthly

data are from the Center for Research in Securities Prices, and span the period 1947-2004.13

Statistics are presented for expected excess returns, Sharpe ratios, and CAPM regressions,

12We set the number of �rms to be 1020, implying a 1020 month, or 85 year life-cycle for a �rm.
13We thank Kenneth French for compiling the portfolios from these data and making them available on

his web page.
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based on a single long simulation of the true data generating process in (4)-(6). For the

model-based results, we refer to the portfolio in the highest price-dividend decile as the

growth portfolio, denoted G in the table, and the portfolio in the lowest price-dividend

decile as the value portfolio, denoted V in the table. We present these statistics only for the

limited information speci�cations. As the upward-sloping zero-coupon equity term structure

demonstrates, speci�cations with full information generate a value premium by making long-

duration assets more risky than short-duration assets. Since the aim is to generate a value

premium that implies long-duration assets are less risky than short-duration assets, we do

not pursue that avenue here.

Although this simpli�ed model of �rm cash �ows omits some important aspects of reality,

it is notable that this simple framework comes close to matching the magnitudes of �nancial

statistics observed in the data. For example, Table 2 shows that the limited information

speci�cation is capable of generating a sizeable value premium. The mean excess return on

the extreme growth portfolio is 6:39%, while that of the extreme value portfolio is 11:47%,

leaving a spread between the two of 5:08% . These numbers are close to those reported in U.S.

data, for the mean excess return in the lowest book equity-to-market capitalization quintile

(B/M quintile) compared to the highest B/M quintile. The speci�cation also predicts that

Sharpe ratios rise when moving from growth to value portfolios, as in the data. In fact,

the calibration here comes remarkably close to matching the data: the Sharpe ratio of the

growth portfolio is 0.38, while that of the value portfolio is 0.70. In the data, the lowest

B/M quintile has a Sharpe ratio of 0.38 and the highest has a Sharpe ratio of 0.64.

The limited information model produces little spread in the CAPM betas across portfo-

lios. The value portfolio has a beta that is slightly less than that of the growth portfolio, a

pattern found the classic results of Fama and French (1992) and in the updated data reported

in Table 2. The pattern of alphas is also consistent with the data. In Table 2, model-based

alphas rise from �1:2% for the extreme growth portfolio to 4:22% for the extreme value

portfolio. By comparison, in the post-war data the lowest B/M quintile has an alpha of

�1:68% and the highest has an alpha of 4:19%.

Finally, Table 3 shows the results of adding the HML (high-minus-low) factor of Fama

and French (1993) as an additional regressor in CAPM time-series regressions of the excess

portfolio returns onto the excess market return. HML is constructed as the return on a

portfolio short in the extreme growth decile and long in the extreme value decile. Consistent

with the empirical �ndings of Fama and French (1993), the model implies that adding HML
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as an additional factor signi�cantly reduces the magnitude of the CAPM alphas in all decile

portfolios.

4.2.3 System Limited Information v.s. Full Information

We now study the implications of the system signal extraction problem for the cash �ow

duration properties of value and growth assets. The essential di¤erence from univariate signal

extraction is that the o¤-diagonal elements on the b matrix in (8) are non zero, implying

that information on consumption is used directly in estimating the stochastic process for

dividend growth.

Figure 8 plots the annualized log risk premium, E (rn;t+1 � rf;t+1), as a function of ma-
turity, n, under the same parameter con�guration used to produce the results in Figure 6

for univariate limited information. Figure 8 shows that, while univariate limited information

generates a downward sloping term structure, both system limited information and full in-

formation generate upward sloping term structures under this parameterization. This occurs

because the dividend growth process is perceived to be much more persistent under system

limited information than under univariate limited information. Accordingly, assets that pay

a dividend in the far future command higher risk premia than those that pay a dividend in

the near future.

Although the slope of the term structure under system limited information is virtually

identical to that under full information, the level of the term structure is not. The limited

information curve in Figure 8 is higher than the full information curve at all maturities,

by a little over 2 percentage points under this calibration. This re�ects the �nding, dis-

cussed above, that risk premia are higher under system limited information than under full

information, for a range of parameter values.

To understand both the slope and the level of the term structure, it is instructive to

consider the role played by key model parameter values. Two parameters are especially

important for governing the slope of the term structure: the exposure �x of dividend growth

to the persistent component of consumption growth, and the intertemporal elasticity of

substitution, 	. The lower is �x, the less persistent is dividend growth and the less upward

sloping the curve. Indeed, a su¢ ciently small value for �x can �ip the slope of the zero-

coupon equity curve to downward sloping. This occurs for reasons already discussed: when

the dividend growth process has little persistence, only shocks to dividend growth in the near

term generate signi�cant revisions in expected future consumption and cash �ow growth,
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and hence command a signi�cant risk premium; short-duration assets are riskier than long-

duration assets.

The intertemporal elasticity of substitution a¤ects the slope of the term structure by

a¤ecting expected future returns, rather than expected future dividend growth. The lower

is 	, the more expected returns increase in response to any given increase in expected

consumption growth. Thus, a positive innovation in expected consumption growth does two

things. First, it leads to an increase in expected future returns, which is associated with

a capital loss for the asset today. Second, it leads to a decline in the stochastic discount

factor. The two combined imply a positive contemporaneous correlation between the pricing

kernel and returns, making the overall risk premium on the asset low or even negative. This

e¤ect is stronger for assets that pay a dividend in the far future because shocks to expected

consumption growth are persistent and cumulate over time. Consequently, the lower is the

IES, the lower are risk premia on long-duration assets relative to short-duration assets, and

the less upward sloping the zero-coupon-equity curve.

These properties of the model suggest one way that parameter values could be changed

in order to make the term structure of equity downward sloping: reduce �x and 	. The role

of these parameters on the slope of the zero-coupon-equity term structure can be illustrated

by the approximate log-linear solution of the model, similar to Campbell (2003). Let Vt (�)
denote the conditional variance of the generic argument ���. De�ne the slope of the log
equity term structure (adjusted for Jensen�s inequality terms) as

S � lim
n!1

Et[r
ex
n;t+1 + :5Vt(r

ex
1;t+1)�

�
rex1;t+1 + :5Vt(r

ex
1;t+1)

�
];

where the superscript �ex�denotes the excess return over the log risk-free rate. In the full

information case it can be shown that, to a �rst-order approximation,

S =
�x � 1=	
1� � �xc�

2

�

�cxc + �c

�

 � 1=	
1� ��c

�
�xc

�
(11)

where �c � PC=C

1+PC=C
is a positive linearization constant less than unity, and �cxc denotes

the unconditional correlation between the i.i.d. consumption shock, "c;t, and the shock to

long-run expected consumption growth, "xc;t. For the rest of this discussion, we maintain

the assumption that 
 > 1=	. If we also assume for the moment that �cxc � 0, then the

term in the square brackets is positive, and it is possible to generate a downward sloping

term structure of equity (a negative spread, S < 0) by setting �x < 1=	. When 	 = 1,

the valuation calculations in Hansen et al. (2005) can be used to obtain an exact solution
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for S; under the assumptions just made, such calculations show analogously that �x < 1 is

required to generate a downward sloping equity term structure.

Under full information, however, this strategy presents an important di¢ culty. When

�x < 1=	, the model becomes one of long-run insurance rather than long-run risk. That

is, innovations in xc;t (holding other shocks �xed) generate a positive correlation between

the pricing kernel and returns, so that the marginal contribution of the long-run component

to the market risk premium is negative. This occurs because such a parameterization has

the undesirable property that an increase in the long-run expected consumption growth rate

leads to a decline in the market price-dividend ratio. This property is immediately evident

from the approximate formula for the log price-dividend ratio of the market return under

full information:

pDt � dt = pd+
�x � 1=	
1� ��d

xc;t;

where pd is a constant and �d � PD=D

1+PD=D
is a positive linearization constant less than one.

Note that the coe¢ cient on xc;t is negative whenever �x < 1=	. The system limited infor-

mation model shares this problem.

In addition, in a long-run �insurance�model, the full information term structure slopes

down, but the overall equity premium for the market is low or negative. This can be under-

stood by examining the loglinear approximation of the market equity premium under full

information, given by

Et(r
ex
d;t+1) + :5Vt(r

ex
d;t+1) = 
�c�

2 + �d
(1� �)
1� ��d

S (12)

+ �c

 � 1=	
1� ��c

�2
�
�c�cxc + �dxc�xc�xd

�
;

where �dxc denotes the unconditional correlation between the idiosyncratic dividend shock,

"d;t, and the shock to long-run expected consumption growth, "xc;t. Since �d
(1��)
1���d > 0; if the

slope S of the equity term structure is negative, it is di¢ cult to generate a sizable equity

premium.

Figure 9 illustrates this point by plotting the term structure of equity for a calibration

in which �x = 0:76 (instead of �x = 1 as in Figure 8), and in which the IES is 	 = 1

(instead of 	 = 1:3); hence �x < 1=	 and S < 0. If no other parameter values are changed,

such a calibration produces a downward sloping term structure of equity, but the spread in

risk premia between short- and long-horizon equity is small. One remedy is to adjust risk

aversion upward and then insure that exposure �c to short-run risk is su¢ ciently high to help
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increase the market equity premium (the level of the term structure). The results in Figure

9 are displayed for 
 = 50 and �c = 3:6, with all other parameters set as in the calibration of

Figure 8. As Figure 9 shows, under this calibration both the system signal extraction model of

limited information and the full information model produce a downward sloping zero-coupon

equity curve. However, the market risk premium is now negative under full information. By

contrast, the system limited information speci�cation produces a downward sloping zero-

coupon equity curve with both a reasonable spread in risk premia and a reasonable market

risk premium. Under the system version of limited information, the term structure is higher

than under full information, so it is possible to make the term structure downward sloping

without requiring the overall market risk premium to be implausibly low or negative.

The di¢ culty posed by the full information speci�cation in generating a downward slop-

ing term structure for equity simultaneously with a high equity premium cannot be easily

remedied by freely setting the correlation �cxc between current consumption shocks and

shocks to the long-run expected consumption growth. For example, if we restrict �x > 1=	

to avoid the implications just discussed, then (11) implies that we can obtain a downward

sloping term structure by setting �cxc < 0. Unfortunately, (12) shows that this again makes

the overall equity premium low or negative, since it makes both S and the third term of (12)

negative.

In summary, in a long-run �insurance�model, the full information term structure slopes

down, but the overall risk premium for the market is low or negative. Under the system

version of limited information, the same downward slope can be achieved with a positive

market risk premium of reasonable magnitude, but like the full information speci�cation, this

requires parameter values for which the price-dividend ratio responds negatively to increases

in the long-run expected growth rate of the economy. Still, the results in this section reveal

some important commonalities between the univariate and system signal extraction models.

To match empirical evidence that long-horizon equity is less risky than short-horizon equity,

simultaneously with a sizable market risk premium, an asset�s exposure to long-run risk

must not be too large, while its exposure to short-run risk must be su¢ ciently high. These

results contrast with those for the full information models and the speci�cations emphasized

in Bansal and Yaron (2004), designed to match only the empirical properties of the market

portfolio. Those models have emphasized modest risk aversion accompanied by su¢ ciently

high exposure of aggregate dividend growth to long-run consumption risk, with no exposure

to short-run consumption risk.
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5 Conclusion

A recent strand of asset pricing literature emphasizes the potential role of long-run consump-

tion risk for explaining salient asset pricing phenomena. Because such long-run components

are small and di¢ cult to identify from the data, econometricians face concrete statistical

hurdles in observing these components directly. Yet a maintained assumption in the existing

theoretical literature is that investors can directly observe such small long-run components

and can distinguish their innovations from transitory shocks to consumption and dividend

growth. In this paper we have studied how equilibrium asset prices may be a¤ected if mar-

ket participants�like econometricians�must use consumption and dividend data to infer small

long-run components in cash �ows and consumption.

We �nd that the asset pricing implications of long-run risk models can be quite sensitive

to the information investors have about the long-run. To illustrate the importance of the

information structure, we study the cash �ow duration perspective of value and growth assets.

A key result of this study is that, under many parameter con�gurations, limited information

causes market participants to demand a higher premium for engaging in risky assets than

would be the case under full information. Speci�cally, assets that have small exposure to

long-run consumption risk but are highly exposed to short-run, even i.i.d., consumption risk

can command high risk premia under limited information but not under full information.

These �ndings may partly explain why there is considerable statistical uncertainty over

the extent to which value and growth stocks are di¤erentially exposed to long-run consump-

tion risk (Hansen et al. (2005); Bansal et al. (2006)). Even in a model where long-run risk

plays a central role in determining risk premia, once limited information is introduced, stocks

that have high average returns need not be those that are more highly exposed to long-run

consumption risk. In general, these patterns mean that the limited information speci�cations

we explore are better able than their full information counterparts to reconcile the return

properties of value and growth assets with their quite di¤erent cash �ow duration properties.

In a full information world where market participants can fully discern the distinct roles

of persistent and transitory cash �ow shocks, long-duration assets can be made less risky

than short-duration assets under parameter con�gurations for which the model is one of

long-run insurance rather than long-run risk. As such, a downward sloping term structure

for zero-coupon equity comes at the expense of a negative market risk premium. By contrast,

under limited information, a downward slope in the term structure of equity can be achieved

with a positive market risk premium of reasonable magnitude, as long as risk aversion and
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exposure to short-run consumption risk is su¢ ciently high.

Much of the existing long-run risk literature focuses on explaining the behavior of the

aggregate market return and/or the return properties of value and growth stocks, but little

attention has been given to how equilibrium returns are related to equity duration. Here we

�nd that, in order to explain the empirical �nding that long-horizon equity is less risky than

short-horizon equity�in addition to explaining the aggregate market return�the properties of

the cash �ow model, the information structure, and the values of primitive preference para-

meters must be quite di¤erent from those emphasized in the existing long-run risk literature.

In particular, information must be limited, risk aversion must be higher and the IES lower

than previously considered, and exposure of assets�cash �ows to long-run consumption risk

must be su¢ ciently low relative to short-run consumption risk.

There are at least two ways in which this research could be extended. First, in order to

focus on the role of information and its relation to the cross-section of average returns, we

have not incorporated additional sources of time-varying risk that may also be unobservable,

such as changing volatilities of cash �ows. As such, our model of the excess return on the

market does not display signi�cant predictability, implying that the volatility of the market

price-dividend ratio is lower than in the data. If the volatility of cash �ows changes in a way

that is not observed, the agent must solve a complex nonlinear �ltering problem. We are

currently studying this problem. Second, the speci�cation of cash �ows and informational

assumptions pursued here is but one of many that could be fruitfully studied in future

work. In addition, investors may have preferences that di¤er from those presumed here, and

the form of these preferences may interact with informational barriers in interesting ways.

For example, informational barriers may be compounded by uncertainty over the cash �ow

model itself, possibly leading investors to have a preference for robustness, as in the work

of Anderson et al. (1998), Anderson, Hansen and Sargent (2003) and Hansen and Sargent

(2006). Exploring these extensions presents a challenge for future work.
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6 Appendix

6.1 Limited Information Identi�cation, Innovations Representation

6.1.1 Identi�cation

We assume that the general data generating process that agents with limited information

would like to estimate takes the form

�ct+1 = �c + xc;t|{z}
LR risk

+ �"c;t+1| {z }
SR risk

(13)

�dt+1 = �d + xd;t + �c�"c;t+1 + �d�"d;t+1 (14)

xc;t = �xc;t�1 + �xc�"xc;t (15)

xd;t = �dxd;t�1 + �xd�"xd;t (16)

("c;t+1; "d;t+1; "xc;t; "xd;t) � N:i:i:d (0;
) (17)

Note that the equation (14) can be re-written as

�dt+1 = �d + �xxt + e"d;t+1:
Market participants could in principal obtain a consistent estimate of these parameters si-

multaneously with estimates of xc;t and xd;t, by writing the dynamic system above in state

space form and applying maximum likelihood to the history of consumption and dividend

data. Agents could use the Kalman �lter to form an estimate of the unobservable conditional

means xc;t and xd;t, by sequentially updating a linear projection on the basis of consumption

and dividend data observed through date t.

This system is not identi�ed, however. The system (13)-(17) has 14 unknown parameters

(including ten unknown parameters in 
). Estimation of (8) identi�es 11 parameters, three

short of what�s needed for exact identi�cation. That is, given a su¢ ciently long sample of

data on consumption and dividend growth, the parameters of the dynamic system (13)-(17)

can be observed in certain combinations as the estimates �, bcc,:::, bdd and the variance-

covariance matrix of vc;t+1 and vd;t+1, but this information is not enough to separately identify

the parameters of (13)-(17). The true data generating process (4)-(6) is a special case of this

system that imposes the restrictions xd;t = �xxc;t; requiring �d = �; �xd = �x�xc; "xd;t = "xc;t;

x0 = xd0 = 0, and the shocks to (13)-(15) to be uncorrelated.
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6.1.2 Innovations Representation

The V ARMA(1; 1) process may be recast in terms of the following system innovations rep-

resentation:

�yt+1 = �+ bxVt + vVt+1 (18)bxVt+1 = Fbxt +KvVt+1; (19)

where bxVt denotes the optimal linear forecasts of xt � (xc;t; xd;t)
0 ; the conditional mean of

consumption and dividend growth, respectively, based on the history of both series, i.e.,bxVt � bE (xtjzt), bxVt � �bxMc;t; bxMd;t�0, zt � (�ct;�ct�1; :::;�c1;�dt;�dt�1; :::;�d1)0 ; so bE (xtjzt)
denotes the linear projection of xt on zt and a constant. In addition,�yt+1 � (�ct+1;�dt+1)0,
� � (�c; �d)

0, vAt+1 �
�
vVc;t+1; v

V
d;t+1

�0
, and K = F� b with

F �
"
� 0

0 �

#
; b �

"
bcc bcd

bdc bdd

#
:

The innovations representation is often obtained using the Kalman �lter. Application of

the Kalman �lter to the dynamic system (13)-(15) typically requires the assumption that

the innovations in the state equation (here "xc;t and "xd;t) are uncorrelated at all lags with

the innovations in the observation equations (here "d;t and "c;t). In this case the system is

identi�ed, but a signal extraction problem must still be solved to obtain estimates of the

latent variables xc;t+1 and xd;t+1. If the steady state Kalman �lter is applied to the system

(13)-(15), it yields the innovations representation in above. The parameter K in (19) is

the steady state Kalman gain matrix associated with the state space representation of the

dynamic system (13)-(16).

Similarly, the ARMA(1; 1) processes may be recast in terms of the following pair of

innovations representations:

�ct+1 = �c + bxAc;t + vAc;t+1 (20)bxc;t+1 = �bxAc;t +KvAc;t+1 (21)

�dt+1 = �d + bxAd;t + vAd;t+1 (22)bxd;t+1 = �bxAd;t +KdvAd;t+1; (23)

where K � � � bc and Kd � � � bd: Here, bxAc;t and bxAd;t denote optimal linear forecasts
based on the history of consumption and dividend data separately, i.e., bxAc;t � bE (xc;tjztc),
and bxAd;t � bE (xd;tjztd), where ztc � (�ct;�ct�1; :::;�c1)0 and ztd � (�dt;�dt�1; :::;�d1)0 :
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The optimal forecasts are functions of the observable VARMA and ARMA parameters

and innovations:

bxMt = �F�+ F�yt � bvMtbxAc;t = ���c + ��ct � bcvAc;tbxAd;t = ���d + ��dt � bdvAd;t:

6.2 Numerical Solution

We describe our numerical solution procedure for the full information speci�cations and

the univariate signal extraction case. A description of the system signal extraction case is

directly analogous and is omitted for brevity.

6.2.1 Full Information

Under Full Information, there is a single state variable, xt. We discretize and bound its

support by forming a grid of K points fx1; x2; ... xKg on the interval [-5V(x) +5V(x)]. We
choose K to be odd so that the unconditional mean of the state x is the middle point of our

grid.

We discretize also the distribution of a standardized normal random variable by forming a

grid of equidistant points f�1; �2; ... �Ig over the interval [-5 +5], imposing:

pi =
e��

2
i =2PI

1 e
��2i =2

; i = 1; 2; :::I

Again, we choose I to be odd so that �(I�1)=2+1 = 0.

Rewrite the Euler equations for the price-consumption ratio as:

Wc(xk) =

 
IX
i=1

IX
j=1

��e(1�
)(�+xk+��i)[1 +Wc(x
0
jjk)]

�pipj

! 1
�

(24)

x0jjk = �xk + �'x�j

k = 1; 2; :::; K;

where Wc(xk) is the price-consumption ratio as a function of x in state k. The functional in

(24) can be solved by noting that its right hand side is a contraction and treating Wc(x) as

the �xed point of Wc;n+1(x) = T (Wc;n(x)).
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Approximate Wc;n by a third order polynomial in x, and impose:

Wc;n(x
0
jjk) = [1 x

0
jjk (x

0
jjk)

2 (x0jjk)
3][�1;n �2;n �3;n �4;n]

0

where the operator is initialized with an initial guess on the parameters �0. ComputeWc;1(xk)

for every xk 2 fx1; x2; ... xKg, and stack the resulting values in the vector
�!
W c;1 2 RK . Using

least squares the guesses are updated: �1 = (�
0�)�1�0

�!
W c;1, where:

� =

266666664

1 x1 (x1)
2 (x1)

3

1 x2 (x2)
2 (x2)

3

...
...

...
...

1 xk (xk)
2 (xk)

3

377777775
We repeat these steps until convergence (tolerance level = .1e-5).

Once Wc(x) = [1 x x
2 x3]� has been found, the stochastic discount factor has the following

expression:

Mk;i;j = �
�e�
(�+xk+��i)

�
1 +Wc(�xk + �'x�j)

Wc(xk)

���1
price-dividend ratios are found in a similar way by iterating until convergence the following

recursion:

Wd;n+1(xk) =
IX
i=1

IX
j=1

IX
l=1

��e�
(�+xk+��c;i)

 
1 +Wc(x

0
jjk)

Wc(xk)

!��1
�

�[1 +Wd;n(x
0
jjk)]e

(�+�xxk+�c��c;i+�'d�d;l)pipjpl (25)

Wd;n(x
0
jjk) = [1 x0jjk (x

0
jjk)

2 (x0jjk)
3]�d;n

The coe¢ cients of the polynomial expansion for the price-dividends are updated by the fol-

lowing OLS formula: �d;n+1 = (�
0�)�1�0

�!
W d;n+1.

For n!1, �d;n+1 ! �d = (�
0�)�1�0

�!
W d.

To solve for zero coupon equity price-dividend Ratios note the following equivalence
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holds:

Wd;t =
1X
n=1

W n
d;t (26)

where

W 0
d;t � 1

W n
d;t = Et

�
emt+1+�dt+1W n�1

d;t+1

�
; n = 1; 2; :::

Implement the following recursion across maturities:

W n
d (xk) =

IX
i=1

IX
j=1

IX
l=1

��e�
(�+xk+��i)

 
1 +Wc(x

0
jjk)

Wc(xk)

!��1
�

�[W n�1
d (x0jjk)]e

(�+�xxk+�c��i+�'d�l)pipjpl (27)

where

k = 1; 2; :::; K

W n�1
d (x0jjk) = [1 x0jjk (x

0
jjk)

2 (x0jjk)
3][�n�11 �n�12 �n�13 �n�14 ]0

�n�1 = (�0�)�1�0
�!
W n�1

d n = 2; 3; ::::

�0 � [1 0 0 0]0

lim
n!1

nX
j=1

�n�1 = �d

This amounts to a sequence of quadrature problems that have to be solved recursively since

the price of the asset with maturity n depends on the price of the asset with maturity n� 1.

6.2.2 Limited Information

In Limited Information, the Price-Consumption Ratio and the stochastic discount factor

depend just on one relevant state: bx, here denoted c�c. We discretize and bound its support
by forming a grid of K points fc�c1; c�c2; ... c�cKg on the interval [-5V (c�c) +5V (c�c)]. We
choose K to be odd so that the unconditional mean of the state c�c is the middle point of
our grid, c�ct?vc;t+1.
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The Euler equation for the Price-Consumption ratio is:

Wc(c�ck) =

 
IX
j=1

��e(1�
)(�+
c�ck+�vc�j)[1 +Wc(c�c0jjk)]�pj

! 1
�

(28)

wherec�c0jjk = �d�ck + (�� bc)�vc�j
solved by iterating until convergence the following recursion:

Wc;n(c�ck) =

 
IX
j=1

��e(1�
)(�+
c�ck+�vc�j)[1 +Wc;n�1(c�c0jjk)]�pj

! 1
�

n = 1; 2; :::

where the function is interpolated by a third order polynomial in c�c such that:
Wc;n�1(x

0
jjk) = [1 c�c0jjk (c�c0jjk)2 (c�c0jjk)3][�1;n�1 �2;n�1 �3;n�1 �4;n�1]0
�n = (�0�)�1�0

�!
W c;n n = 1, 2, 3,...

where

� =

266666664

1 c�c1 (c�c1)2 (c�c1)3
1 c�c2 (c�c2)2 (c�c2)3
...

...
...

...

1 c�ck (c�ck)2 (c�ck)3

377777775
�0 : initial guess

The price-dividend ratio is a function of the state variable bxd � c�d and the shock vd:
"
vc;t+1

vd;t+1

#
� i:i:d:N

 "
0

0

#
;

"
�2vc �vc;cd

�vc;vd �v2d

#!
and" c�cc�d

#
� N

 "
0

0

#
;

"
�2c�c �c�c;c�d
�c�c;c�d �2c�d

#!
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� A grid of combinations (c�dgjk;c�ck) is stacked in a matrix S with dimension (K�G)�2:

S =

26666666666664

c�c1 c�d1j1c�c1 c�d2j1
...

...c�c1 c�dgj1c�c2 c�d1j2
...

...c�cK c�dgjK

37777777777775
The recursion used to �nd the price-dividend ratio is given by:

Wd;n(c�cs; c�ds) =
IX
j=1

IX
i=1

��e�
(�+
c�cs+�vc�j)

 
1 + Vc(c�c0jjs)
Vc(c�cs)

!��1
�

�[1 +Wd;n�1(c�c0jjs; c�d0ijs)]e�+c�ds+�vd�ipij
(c�cs; c�ds) = [Ss;1Ss;2]

s = 1; 2; :::; K �G

The price-dividend ratio is interpolated as above by a quadratic polynomial in the two

states:

Wd;n�1(c�cs; c�ds) = [1 c�c0jjk c�d0ijk (c�c0jjk)2 (c�d0ijk)2 c�c0jjkc�d0ijk]�
�[�d1;n�1 �d2;n�1 �d3;n�1 �d4;n�1 �d5;n�1 �d6;n�1]0

�dn = (�d
0
�d)�1�d

0�!
W d;n

n = 1; 2; 3; :::

where

�d =

2664
1 S1;1 S1;2 S21;1 S21;2 S1;1S1;2
...

...
...

...
...

...

1 SG�K;1 SG�K;2 S2G�K;1 S2G�K;2 SG�K;1SG�K;2

3775
�0 : initial guess
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Foe zero coupon equity price-dividends, we implement the following recursion:

W n
d (
c�cs; c�ds) =

IX
j=1

IX
i=1

��e�
(�+
c�cs+�vc�j)

 
1 + Vc(c�c0jjs)
Vc(c�cs)

!��1
� (29)

�W n�1
d (c�c0jjs; c�d0ijs)e�+c�ds+�vd�ipij

W n�1
d (c�c0jjs; c�d0ijs) = [1 c�c0jjk c�d0ijk (c�c0jjk)2 (c�d0ijk)2 c�c0jjkc�d0ijk]�

�[�n�11 �n�12 �n�13 �n�14 �n�15 �n�16 ]0

�nd = (�d
0
�d)�1�d

0�!
W n

d

n = 1; 2; 3; :::

�0d = [1 0 0 0 0 0]:

6.3 Cash Flow Betas

Table A.1 shows the output from regressions of dividend growth on 4 and 8 quarter trailing

averages of consumption growth, using simulated data for cash �ow models of the form (13)-

(15). The slope coe¢ cients in these regressions are denoted ', and are reported for four

models that vary only by the short-run risk exposure parameter �c. The model is

�dt+1 = �+ '

 
1

K

KX
i=1

�ct+1�i

!
+ "t+1:

The model is simulated at a monthly frequency, consumption and dividend data are time-

aggregated to quarterly frequency, and regressions run on quarterly data, as in Bansal et al.

(2006). The results for one parameter con�guration are displayed in Table A.1, but �ndings

for other parameter con�gurations studied in the main text are similar. The Table shows

that heterogeneity in exposure to short-run consumption risk can generate heterogeneity

in cash �ow betas ', when the cash �ow betas are constructed from K = 4 and K =

8 quarter trailing moving averages of consumption growth. This occurs only when the

data are time-averaged; regressions on monthly data produce no such discernible spread in

cash �ow betas across assets that di¤er solely by �c. The reason is that time-averaging

introduces additional serial correlation into the growth rates of consumption and dividends.

The overlapping nature of the time-aggregate data therefore generates a correlation between

dividend growth and lagged consumption growth that rises with the sensitivity of dividend

growth to consumption risk that is i.i.d. at the monthly frequency (but not at the time-

aggregate quarterly frequency). The longer the horizon K, the smaller is this a¤ect.
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Table 1

Asset Pricing Implications: Full Information vs. Limited Information

Row Model E (P/D) E (ri − rf ) E (rf ) σ (ri)

φx φc FI LI-A LI-V FI LI-A LI-V FI LI-A LI-V FI LI-A LI-V

1 1 2.2 166 300 164 1.06 1.20 1.63 1.37 0.95 0.81 17.29 17.43 17.42

2 1 6 46 14 45 2.45 7.73 3.04 1.37 0.95 0.81 22.79 22.44 22.87

3 2 2.2 35 300 34 3.31 1.26 4.00 1.37 0.95 0.81 18.40 19.95 18.92

4 2 6 23 14 22 4.90 8.12 5.62 1.37 0.95 0.81 23.67 23.92 24.02

5 3 2.2 22 238 21 5.20 1.26 6.01 1.37 0.95 0.81 20.24 23.29 21.19

6 3 6 17 13 16 6.63 8.42 7.46 1.37 0.95 0.81 25.02 26.09 25.83

Notes: This table reports financial statistics of the model with full information (FI) and limited information based on

system (LI-V) and univariate (LI-A) signal extraction, for varying degrees of exposure to the long-run and short-run risk

components, governed by φx and φc, respectively. The other parameters are set to γ = 10, ψ = 1.5, δ = 0.998985,

µ = 0.0015, ρ = 0.979, σ = 0.0078, σxc = 0.044, σd = 6. E (ri − rf ) denotes the annual log risk-premium, in

percent; E (rf ) denotes the annual log risk-free rate, in percent, and σ (ri) and σ (rf ) denote the standard deviations of

the annual equity return and risk-free rate, respectively. E (P/D) is the annual price-dividend ratio. Statistics are averages

from 1000 simulated samples of 840 monthly observations.



Table 2

Limited Information Implications of Value and Growth Portfolios: Univariate Signal Extraction

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

E
(

Ri −Rf
)

Model 6.39 6.41 6.45 6.55 6.76 7.16 7.89 9.01 10.28 11.47 5.08

Data 6.50 7.56 7.47 7.60 7.48 9.07 9.15 8.98 10.73 11.92 5.42

Sharpe Ratio Model 0.38 0.38 0.38 0.39 0.40 0.43 0.48 0.55 0.63 0.70 0.33

Data 0.38 0.49 0.49 0.49 0.64 0.63 0.61 0.72 0.67 0.64 0.26

CAPM: Ri
t −R

f
t = αi + βi

(

Rm
t −R

f
t

)

+ εit

αi Model -1.21 -1.18 -1.13 -1.03 -0.80 -0.36 0.44 1.65 2.99 4.22 5.42

Data -1.68 -0.05 0.08 0.24 2.47 2.31 2.41 4.10 3.71 4.19 5.87

βi Model 1.02 1.02 1.02 1.01 1.01 1.01 1.00 0.99 0.98 0.97 -0.05

Data 1.10 1.02 1.01 0.96 0.89 0.90 0.86 0.87 0.92 1.00 -0.10

Notes: Results are presented for limited information specifications based on univariate signal extraction. The results in

rows labled “Model,” are produced as follows. In each simulation year, firms are sorted into deciles based on the price-dividend

ratio. Returns are calculated over the subsequent year. Intercepts and slope coefficients are from OLS time-series regressions

of excess portfolio returns on the excess market return. Parameter values are set as follows: γ = 16.5, ψ = 1.3, δ = 0.997,

µ = 0.0015, ρ = 0.983, σ = 0.0057, σxc = 0.1, σd = 5.9 and the market portfolio has φx = 1 and φc = 3. Results

in rows labled “Data” are produced as follows. Portfolios are formed by sorting firms into deciles on the boot-to-market ratio

(B/M). Moments are annualized in percentages (multiplied by 1200 in the case of means and 12/
√
12 in the case of Sharpe

ratios). Intercepts and slope coefficients are calculated from OLS time-series regressions of excess portfolio returns on the

excess return on the CRSP value-weighted index. Intercepts are annualized in percentages (multiplied by 1200). The return

data are monthly and span the period 1947-2004.
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Table 3

Limited Information Implications of Value and Growth Portfolios: Univariate Signal Extraction

CAPM & HML: Ri
t −R

f
t = αi + βi

(

Rm
t −R

f
t

)

+ γiHMLt + εit

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

αi 0.41 0.41 0.40 0.38 0.33 0.24 0.10 -0.04 0.06 0.41 0.00

βi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

γi -0.30 -0.29 -0.28 -0.26 -0.21 -0.11 0.06 0.31 0.54 0.70 1.00

Notes: Results are presented for limited information specifications based on univariate signal extraction. In each sim-

ulation year, firms are sorted into deciles based on the price-dividend ratio. Returns are calculated over the subsequent

year. Intercepts and slope coefficients are from OLS time-series regressions of excess portfolio returns on the excess market

return together with HML. Parameter values are set as follows: Parameter values are set as follows: γ = 16.5, ψ = 1.3,

δ = 0.997, µ = 0.0015, ρ = 0.983, σ = 0.0057, σxc = 0.1, σd = 5.9 and the market portfolio has φx = 1 and

φc = 3.
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Table A1

Cash Flow Betas

Regression: ∆dt+1 = α+ ϕ
(

1
K

∑K
i=1∆ct+1−i

)

+ εt+1

K = 4 K = 8

ϕ t-stat ϕ t-stat

φx = 3 φc = 0.5 0.96 1.69 1.23 1.71

φx = 3 φc = 3 1.19 1.94 1.37 1.76

φx = 3 φc = 6 1.45 1.95 1.52 1.61

φx = 3 φc = 10 1.80 1.81 1.73 1.36

Notes: This table displays regression coefficients and t-statistics from regressions of quarterly dividend growth on to

smoothed consumption growth. The quarterly data are time-aggregated from monthly data. The reported statistics are

averages from 1000 simulations of length 1000 months (250 quarters). The other parameters are set to µ = 0.0015,

ρ = 0.979, σ = 0.0078, σxc = 0.044, σd = 6.
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Figure 1 
 

 Impulse Responses of Cash Flow Forecasts and Surprises: Univariate Signal Extraction 
v.s. Full Information 
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Notes: The figure shows the 40-month response of variables to a one-standard deviation 
innovation in the shock labeled at each row. The vertical axis represents monthly percent 
deviations of variables from steady state. Variables denoted with “hat” correspond to 
those from the univariate signal extraction limited information case, based on 
ARMA(1,1) estimation. Variables without a “hat” are from the full information 
benchmark. The responses are based on the calibration δ = 0.998985, cd μμ = = 0.0015, 
ρ =0.979, σ = 0.0078, xcσ = 0.044,  Ψ = 1.5, γ =10, dσ = 6, xφ = 1, cφ = 6. 



Figure 2 
 

Impulse Responses of Cash Flow Forecasts and Surprises: System Signal Extraction v.s. 
Full Information 
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Notes: The figure shows the 40-month response of variables to a one-standard deviation 
innovation in the shock labeled at each row. The vertical axis represents monthly percent 
deviations of variables from steady state. Variables denoted with “hat” correspond to 
those from the system signal extraction limited information specification, based on 
VARMA(1,1) estimation. Variables without a “hat” are from the full information 
benchmark. The responses are based on the calibration δ = 0.998985, cd μμ = = 0.0015, 
ρ =0.979, σ = 0.0078, xcσ = 0.044,  Ψ = 1.5, γ =10, dσ = 6, xφ = 1, cφ = 6. 
 



Figure 3 
 

Price-Dividend Ratios: Univariate Signal Extraction v.s. Full Information 
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Notes: This figure displays price-dividend ratios at steady state, and plus/minus two 
standard deviations of the state variables(s) around steady state, as a function of the 
relative exposure to long-run risk, governed by xφ , and to short-run risk, governed by cφ . 
Held fixed is the five-quarter variance of dividend growth attributable to the consumption 
innovations. The limited information model corresponds to the univariate signal 
extraction specifications discussed in the text. Parameter values are set as follows: 
γ =16.5, Ψ =1.3, δ =0.997, dc μμ = =0.0015, ρ =0.983, σ =0.0057, xcσ =0.1, dσ =5.9  
and the market portfolio has xφ =1 and cφ =3.  



 
Figure 4 

 
Impulse Responses of SDF and Returns: Univariate Signal Extraction v.s. Full 

Information 
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Notes: The figure shows the 40-month response of variables to a one-standard deviation 
innovation in the shock labeled at each row. The vertical axis represents monthly percent 
deviations of variables from steady state. Variables denoted with “hat” correspond to 
those from the univariate signal extraction limited information case, based on ARMA(1,1) 
estimation. Variables without a “hat” are from the full information benchmark. The 
variable mr  denotes the return on the dividend claim; m denotes the stochastic discount 
factor. The responses are based on the calibration δ = 0.998985, cd μμ = = 0.0015, 
ρ =0.979, σ = 0.0078, xcσ = 0.044,  Ψ = 1.5, γ =10, dσ = 6, xφ = 1, cφ = 6. 



Figure 5 
 

Impulse Responses of SDF and Returns: System Signal Extraction v.s. Full Information 
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Notes: The figure shows the 40-month response of variables to a one-standard deviation 
innovation in the shock labeled at each row. The vertical axis represents monthly percent 
deviations of variables from steady state. Variables denoted with “hat” correspond to 
those from the system signal extraction limited information case, based on VARMA(1,1) 
estimation. Variables without a “hat” are from the full information benchmark. The 
variable mr  denotes the return on the dividend claim; m denotes the stochastic discount 
factor. The responses are based on the calibration δ = 0.998985, cd μμ = = 0.0015, 
ρ =0.979, σ = 0.0078, xcσ = 0.044,  Ψ = 1.5, γ =10, dσ = 6, xφ = 1, cφ = 6. 
 



Figure 6 
 

Zero-Coupon Equity: Univariate Signal Extraction v.s. Full Information 
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Notes: The top panel shows log risk-premia on zero-coupon equity ( )11, ++ − t
f

tn rrE  as a 
function of maturity, n, in months; the middle panel shows the standard deviation of 
excess returns on zero-coupon equity; the bottom panel shows the Sharpe ratio. Returns 
are simulated at a monthly frequency and aggregated to annual frequency. The limited 
information model corresponds to the univariate signal extraction specifications 
discussed in the text. Parameter values are set as follows: γ =16.5, Ψ =1.3, δ =0.997, 

dc μμ = =0.0015, ρ =0.983, σ =0.0057, xcσ =0.1, dσ =5.9  and the market portfolio has 

xφ =1 and cφ =3.  
 



Figure 7 
 

CAPM Regressions for Zero-Coupon Equity: Univariate Signal Extraction v.s. Full 
Information 
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Notes: The top panel shows the intercept from regressions of zero-coupon equity excess 
returns on the excess return of the market, as a function of maturity in months; the bottom 
panel shows the slope coefficient from the same regression. Returns are simulated at a 
monthly frequency and aggregated to annual frequency. The limited information model 
corresponds to the univariate signal extraction specifications discussed in the text. 
Parameter values are set as follows: γ =16.5, Ψ =1.3, δ =0.997, dc μμ = =0.0015, 
ρ =0.983, σ =0.0057, xcσ =0.1, dσ =5.9  and the market portfolio has xφ =1 and cφ =3.  
 



Figure 8 
 

Zero-Coupon Equity: Two Types of Limited Information v.s. Full Information 
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Notes: The figure shows log risk-premia on zero-coupon equity ( )11, ++ − t

f
tn rrE   as a 

function of maturity, n, in months. Returns are simulated at a monthly frequency and 
aggregated to annual frequency. Parameter values are set as follows: γ =16.5, Ψ =1.3, 
δ =0.997, dc μμ = =0.0015, ρ =0.983, σ =0.0057, xcσ =0.1, dσ =5.9  and the market 
portfolio has xφ =1 and cφ =3.  



Figure 9 
 

Zero-Coupon Equity: System Signal Extraction and Long-Run Insurance Full 
Information Model 
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Notes: The figure shows log risk-premia on zero-coupon equity ( )11, ++ − t

f
tn rrE  as a 

function of maturity, n, in months. Returns are simulated at a monthly frequency and 
aggregated to annual frequency. Parameter values are set as follows: γ =50, Ψ =1, 

,99327.0=δ  dc μμ = =0.0015, ρ =0.983, σ =0.0057, xcσ =0.1, dσ =5.9 and the market 
portfolio has 78.0=xφ  and 6.3=cφ .  
 


