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ABSTRACT 

This paper develops time series methods for forecasting correlations in high dimensional 
problems.   The Dynamic Conditional Correlation model is given a new convenient 
estimation approach called the MacGyver method.  It is compared with the FACTOR 
ARCH model and a new model called the FACTOR DOUBLE ARCH model.   Finally 
the latter model is blended with the DCC to give a FACTOR DCC model.  This family of 
models is estimated with daily returns from 18 US large cap stocks.  Economic loss 
functions designed to form optimal portfolios and optimal hedges are used to compare the 
performance of the methods.   The best approach invariably is the FACTOR DCC and the 
next best is the FACTOR DOUBLE ARCH.   

 

I. Introduction 

 David Hendry is perhaps the best.  When the debate over general to simple 

specification searches gets most heated, the approach is often called the Hendry method.  

Critics say that only David can really do this.  Everyone agrees that in his hands, 

economic time series yield up reasonable models that are coherent with both data and 

theory.  To quiet the critics, much of David’s recent research has been to automate the 

methodology so that even a computer can do it.  Econometricians might be skeptical of 

such methods, yet their practical relevance for empirical work is hard to dismiss.  

 At the same time, David has carefully described what he calls “predictive failure” 

of economic time series models.  Even the best models appear to frequently have forecast 
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errors larger than can be expected.  Perhaps the economy is not as stationary as we think.  

Perhaps there are “Black Swans” everywhere, to use a recent metaphor by Taleb(2007) 

which refers to the observation that since every swan  seen in Europe was white, there 

was no way statistically to be prepared for the fact that there were black swans in 

Australia.  This tension between model selection and predictive failure lies at the heart of 

all empirical econometrics. 

 Nowhere is this tension more apparent than in Finance where large sums are 

invested on the assumption that history will repeat itself in some fashion.  Many such 

investments are well rewarded until there is some unexpected event where they go 

rapidly in the wrong direction.  The summer of 2007 is unfolding as such an event and it 

will be interesting to look back at it. 

 Many financial models are designed to measure risks.  Once risks are measured, 

then investments can be structured to maximize return and minimize risk.  However, if 

the risks are not well represented by historical experience, then it will turn out that 

investors frequently take risks they did not realize they were taking and consequently 

have, on average, inferior outcomes.   

 The goal of this paper is to develop time series measures of risks in a highly 

multivariate framework.  In this multidimensional context, the risk is often summarized 

not only by the volatility of the components but also the correlation among them.  Since 

the world is hopelessly multidimensional, the forecasting of correlations is a central 

feature of financial planning.  The dynamics must quickly adapt to new types of risks yet 

be unresponsive to random shocks.    The structure must evolve but still allow the 

possibility of “Black Swan” events without letting such events have undue effect on the 
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performance.  This is very similar to the model selection vs. predictive failure dichotomy 

emphasized by David Hendry.   

  In this paper I will take a forecasting point of view in modeling correlations 

between asset returns.   The paper will discuss the Dynamic Conditional Correlation 

model and its general approach to estimating correlations.  For large systems, a new 

improved estimation method will be presented, called the MacGyver method.  Then to 

increase accuracy, a factor structure will be incorporated into the DCC model.  This paper 

will introduce the FACTOR DCC model that has the potential to forecast correlations in 

high dimensional systems of asset returns.   

 

II. Dynamic Conditional Correlation 

 

 The search for multivariate models that can effectively estimate volatilities and 

correlations for a large class of assets continued for more than 20 years.  The menu of 

choices is immense and has been surveyed recently by Bauwens Laurent and 

Rambouts(2006) and less recently by Bollerslev Engle and Nelson(1994).  Only a few of 

these models are amenable to estimating correlations for more than half a dozen assets.   

 One of the most practical and simple is the Dynamic Conditional Correlation 

(DCC)  model introduced by Engle(2002).   This model uses a sequential estimation 

scheme and a very parsimonious parameterization to enable it to estimate models with 

fifty or more assets rather easily.  It is a simple generalization of Bollerslev’s Constant 

Conditional Correlation (CCC) model.   

 Consider an nx1 vector of returns,  , with conditional covariance matrix Htr t. 
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The conditional covariance matrix must be positive definite if there are no redundant 

assets.  Such a covariance matrix can always be decomposed into a diagonal matrix Dt 

which has the conditional standard deviation of each asset along the main diagonal, and a 

correlation matrix Rt which has ones on the diagonal and correlations off the diagonal.   

  (1) ( )1 , ~ , ~t t t t t t t tV r H D R D D diagonal R correlation− = =

Clearly, the correlation matrix is the same as the covariance matrix of standardized 

returns, st. 

 ( )1
1,t t t t ts D r V s R−
− t≡ =  (2) 

Hence models to estimate the conditional correlations would naturally use standardized 

returns as inputs.  These standardized returns are sometimes called volatility adjusted 

returns or standardized residuals.  As residuals will have a slightly different meaning in 

the factor model, I will use the expression, standardized returns. 

 The heart of the DCC model is the parameterization of the updating or forecasting 

equation.  The correlation matrix is expressed as a function of past observables and this 

matrix must indeed be a correlation matrix, i.e. be positive definite and have ones on the 

diagonal.  Two versions can be presented simply.   Many others are obvious 

generalizations.  The two are called “integrated” and “mean reverting”.  They are defined 

more precisely by 

  (3) ( ) ( )1/ 2 1/ 2
t t t tR diag Q Q diag Q−= −

where Q is defined either by the integrated model 

 ( ) 1 1 11 't t tQ s sλ λ tQ− −= − + −  (4) 

or the mean revering model  
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 1 1 1't t tQ s s tQα β− − −= Ω+ + . (5) 

There are advantages and disadvantages of each specification.  Both (4) and (5) will 

generate Q matrices that are positive definite as long as the initial condition is positive 

definite and the matrix intercept of (5) is positive definite.  If Q is positive definite, then 

R will be a correlation matrix.  The integrated model assumes all changes in correlations 

to be permanent.  This may be a reasonable assumption, although it appears that many 

correlation processes are mean reverting.   The integrated model is not a satisfactory 

description of the data in another way.  It implies that asymptotically correlations go to 

plus or minus one.  This can be verified by simulating (2),(3) and (4).  Nevertheless, it 

may be a good filter in the sense of Nelson and Foster(1994).   

 The mean reverting model assumes that all changes in correlations are transitory 

although they can last quite a long time if the sum of alpha and beta is close to unity.  

This model has ( )1 / 2 2n n − +  parameters while the integrated model has only 1.  The 

solution to this set of extra parameters is to introduce another set of estimating equations.  

These equations are moment conditions that can be used with the FOC of the likelihood 

function.  Letting the sample correlation of the standardized returns be R , a second 

relation can be obtained among the unknowns. 

 
1 1

1 1',
T T

t t t
t t

R s s Q Q R Q
T T

α β
= =

= = ≅ Ω+∑ ∑ +  (6) 

Finally, adding the assumption that on average, Q R= ,  the intercept can be expressed as 

 ( )1 Rα βΩ = − −  (7) 

 

and equation (5) can be rewritten as 
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 ( ) ( )1 1 1't t t tQ R s s R Q Rα β− − −= + − + −  (8) 

Hence, Q is mean reverting to the average correlation. Equation (8) only has two 

parameters no matter how big the system is.   The assumption (7) is called “correlation 

targeting” and is an estimator of the omega parameters that is different from maximum 

likelihood.   As a consequence, this is necessarily an asymptotically inefficient estimator 

although it may be relatively robust to some forms of misspecification.   This is a 

generalization of the “variance targeting” approach of Engle and Mezrich(1996).   It has 

been analyzed both theoretically and empirically in Engle and Sheppard(2005).  

 Many other specifications have been introduced for DCC models.   Asymmetric 

correlation models were introduced in Cappiello, Engle and Sheppard(2008) who find 

that correlations become larger when two returns are both negative than if they are 

equally positive and all other factors are the same.  They also introduce a more generous 

parameterization of the DCC process called Generalized DCC.  Engle(2002) discusses 

additional lags.  Many formulations are included in the forthcoming book Engle(200?).   

 Maximum likelihood estimation of such systems must include a distributional 

assumption and multivariate normality is common although not very accurate.  

Fortunately, most multivariate GARCH models are QMLE estimators so that they will be 

consistent as long as the covariance equations are correctly specified even if the 

normality assumption is incorrect.  See for example Bollerslev and Wooldridge(1992). 

 In the case of multivariate normality, the average log likelihood function plus 

some unimportant constants, becomes  
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1

2 1

1 1

1 log '
2
1 12log ' log ' '

2 2

T

t t t t
t
T T

t t t t t t t t t
t t

L H r H r
T

D r D r R s R s s s
T T

−

=

− −

= =

⎡ ⎤= − +⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + − + +⎣ ⎦ ⎣ ⎦

∑

∑ ∑
1

1
2

T

t
tT =
∑

 (9) 

This log  likelihood can be maximized with respect to all the parameters in the 

volatilities, which are inside the matrix D, and correlations which are inside R.  This 

means simply maximizing the first line of (9).  Alternatively, the likelihood can be 

approximately maximized by finding the maximum of the first square bracket terms with 

respect to the volatility parameters, and then the maximum of the second square bracket 

terms with respect to the correlation parameters.  As long as the first problem gives a 

consistent estimate of the volatility parameters, then the maximum of the second part will 

be consistent under standard regularity conditions and the third term will converge to a 

constant.  Engle and Sheppard(2005) gives this argument in more detail.  The log 

likelihood for the correlation estimation is called L2 and is given by 

 1
2

1

1 log '
2

T

t t t t
t

L R s −

=

R s⎡ ⎤= − +⎣ ⎦∑  (10) 

 

 This estimation method is very appealing.  Univariate models are estimated for 

each of the volatilities and typically these are simple GARCH models.  They can be 

estimated separately as long as there are no common parameters.  Then the correlations 

are estimated by MLE where the data are the standardized returns. In the two cases 

discussed above there are only one or two parameters respectively in this estimation stage 

regardless of n.  Thus a very parsimonious parameterization can be used to estimate 

arbitrarily large systems.    
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III. The MacGyver Method 

 The estimation of correlation matrices for large systems might appear solved from 

the previous section.   However, there are three reasons to believe that this is not a full 

solution.   First, the evaluation of the log likelihood function requires inversion of 

matrices, Rt , which  are full nxn matrices, for each observation.   To maximize the 

likelihood function, it is necessary to evaluate the log likelihood for many parameter 

values and consequently invert a great many nxn matrices.  Convergence is not 

guaranteed and sometimes it fails or is sensitive to starting values.   These numerical 

problems can surely be alleviated but ultimately for very large n, the numerical issues 

will dominate.  Secondly,  Engle and Sheppard(2005a) show that in correctly specified 

models with simulated data, there is a downward bias in α  when n is large.  Thus the 

correlations are estimated to be smoother and less variable when a large number of assets 

are considered than when a small number of assets are considered.   Thirdly, there may be 

structure in correlations which is not incorporated in this specification.  This of course 

depends upon the economics of the data in question but the introduction of the FACTOR 

DCC model in section IV is a response to this issue.   

 In this section I will introduce a new estimation method which is designed to 

solve the first two  problems and a few others as well.   I call this a MacGyver method 

after the old TV show which showed MacGyver using whatever was at hand to cleverly 

solve his problem.  The show was a triumph of brain over brawn.   

 The MacGyver method is based on bivariate estimation of correlations.  It 

assumes that the selected DCC model is correctly specified between every pair of assets i 

and j.  Hence the correlation process is simply  
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( )

, ,
, ,

, , , ,

, , , , 1 , 1 , , 11 ,

i j t
i j t

i i t j j t

i j t i j i t j t i j t

q
q q

q R s s q

ρ

α β α β− − −

=

= − − + +

 (11) 

and the log likelihood function for this pair of assets is simply extracted from (10).  It is 

given by 

 
2 2
, , , , , .2

2, , , , 2
, ,

21 log 1
2 1

i t j t i j t i t j t
i j i j t

t i j t

s s s s
L

ρ
ρ

ρ

⎛ ⎞+ −
⎜ ⎟⎡ ⎤= − − +⎣ ⎦⎜ ⎟⎡ ⎤−⎣ ⎦⎝ ⎠

∑  (12) 

 

 Because the high dimension model is correctly specified, so is the bivariate 

model.  The estimates are MLE, at least conditional on the volatility parameters.  The 

only parameters are ( , )α β and the estimates should be consistent using only data on one 

pair of assets.  Obviously however, information is being ignored that could yield more 

efficient estimates.  Thus improved estimation should combine parameter estimates from 

these bivariate models.  The combined parameters are then used with equation (11) to 

calculate the correlations. 

 An analytical solution to optimal combination of bivariate parameter estimates 

seems extremely difficult.  The data are dependent from one pair to another but the 

dependence is a function of the parameters. Knowing the dependence of the data does not 

lead easily to measures of the dependence of the parameter estimates.  At some point 

perhaps an analytical solution to this problem will arise.  In the meantime, I will develop 

the estimator based on Monte Carlo performance. 

 A variety of simulation environments is postulated.   In each case all bivariate 

pairs are estimated and then simple aggregation procedures such as means or medians are 

applied.  Several issues immediately arise.  What should be done about cases where the 
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estimation does not converge or where it converges to a value outside the region of 

stationarity?  When averaging parameters that have constrained ranges, it is easy to 

introduce bias.   

 Six estimators will be considered.  These are shown in Table 1 below 

Table 1 

MacGyver Estimators 

 Unrestricted MLE Restricted MLE 

Mean MEAN _R MEAN 

Median MED _R MED 

5%Trimmed Mean MEANT05 _R MEANT05 

 

The trimmed means are computed by deleting the largest and smallest 5% of the 

estimates and then taking the mean of the remaining ones.  The unrestricted MLE simply 

maximizes the log likelihood (12) without restriction.  If it does not converge in a finite 

number of iterations, then the final value of the estimate is taken.  Obviously, this 

estimation can and does occasionally lead to some very bizarre parameter estimates.  The 

restricted MLE reparameterizes the log likelihood using a logistic functional form so that 

both parameters must lie in the interval (0,1).  Their sum was not restricted in this case.  

The model is expressed as 

 ( ) (, , , , 1 , 1 , , , 1 ,1 1i j t i j i t j t i j i j t i j
e eq R s s R q R

e e

θ φ

θ φ− − −= + − + −
+ +

)

)

 (13) 

The optimizer chooses  ( ,θ φ but the estimated values of ( ),α β  are passed back to be 

averaged across bivariate pairs.   
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 Ten experiments are run with various parameter values and dimensions.  All have 

a time series sample size of 1000 observations and 100 replications of each experiment.  

The dimensions range from n=3 to n=50.  The ten experiments are defined in Table A1.  

The true correlation matrix has all correlations equal to Rhobar.  In each case the 

parameters are estimated by bivariate MLE or restricted bivariate MLE and then the 

summary measures are computed according to each expression in Table 1. The ultimate 

result is a table of root mean squared errors and a table of biases across the simulations 

for each of the two parameters, alpha and beta.   

 The tables of RMS errors and biases are presented in the appendix as tables A2 

and A3.  The net result is that the smallest errors are achieved by the median estimator.   

For beta the best estimator for each experiment is either the median or the median of the 

restricted estimator.   On average the median of the unrestricted estimator is the smallest.  

For alpha, the medians are best in most experiments and the median of the unrestricted 

bivariate parameter estimates has the smallest rms error.  This estimator effectively 

ignores all the non-convergent and non-stationary solutions and gives parameter 

estimates which are very close to the true value.   

 The biases of these estimators are also of interest.  In all experiments the bias in 

beta is negative and the bias in alpha is positive.  This is not surprising in a context where 

the beta is truncated from above (at one) while alpha is truncated below (at zero). Notice 

however that this bias is in the opposite direction from the bias observed by Sheppard and 

Engle(2005a) who found alpha too small and beta too big for large systems.  Notice also 

that the bias is very small.   On average over the experiments the bias in alpha is .001 and 

the bias in beta is -.008.  Since these biases result from bivariate estimation, there is no 
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large system bias as there is for MLE estimation of DCC.  In fact, the RMSE’s are 

smallest for the largest systems. 

 In addition to the computational simplification and bias reduction, there are 

several other advantages to this MacGyver method of estimating a DCC model.  When 

there are 50 assets, there are 1225 bivariate pairs.  When there are 100 assets, there are 

4950 asset pairs.   Hence the number of bivariate estimations increases as well.   

However, since only the median of all these estimations is needed, there is little loss of 

efficiency if some are not run.   This opens the possibility of estimating a subset of the 

bivariate pairs.  While it is not clear how to select a good subset, it is clear that there is 

little advantage to doing all of them.  When new assets are added to the collection, it may 

not be necessary to reestimate at all if the investigator is confident that the specification is 

adequate.   

 A second advantage is that the data sets for each bivariate pair need not be of the 

same length.   Thus, an asset with only a short history can be added to the system without 

requiring the shortening of all other series.  This is particularly important when 

examining large asset classes and cross country correlations as there are many assets 

which are newly issued, merged or otherwise associated with short time histories.  

 A potential third advantage which will not be explored in this paper, is that there 

may be evidence in these bivariate parameter estimates that the selected DCC model is 

not correctly specified.  Presumably, the bivariate models would show less dispersion if 

the model is correctly specified than if it is incorrect. 

 

IV. FACTOR DCC 
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 The most popular approach to estimating large covariance matrices in finance is 

the use of  factor models.  By specifying a small number of factors that summarize all the 

dependence between returns, a complete matrix of correlations can be estimated.  This is 

a simple strategy in principle but in practice it is difficult to select factors and it is 

difficult to estimate the factor loadings and other parameters of the process.  

Nevertheless, this class of models can incorporate directly some effects which the DCC 

model can only indirectly replicate.   

 Consider first, the very simple static one factor model that is the centerpiece of 

the Capital Asset Pricing Model or CAPM.  Measuring returns in excess of the risk free 

rate and letting rm be the market return, the model is most simply expressed as 

 , ,i t i i m t i tr r ,α β ε= + +  (14) 

From theoretical arguments, we expect the alphas to be zero in an efficient market.  And 

we expect the idiosyncratic returns to be uncorrelated across assets.    

 
( ) ( ) ( )
( ) ( )

2
, ,

, , ,,
i t i m t i t

i t j t i j m t

V r V r V

Cov r r V r
,β ε

β β

= +

=
 (15) 

Thus the correlation between two assets can be expressed as 

 
( )

( ) ( )( ) ( ) ( )( )
,

,
2 2

, , , ,

i j m t
i j

i m t i t j m t j t

V r

V r V V r V

β β
ρ

β ε β ε
=

+ +
 (16) 

These expressions insure that the correlation matrix will be positive definite.  They 

however do not provide any measures of time varying variances, covariances or 

correlations.   

 The simplest approach to formulating a dynamic version of this one factor model 

is to follow Engle, Ng and Rothschild(1990,1992).  In this case the factor has time 
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varying volatility and can be modeled with some form of ARCH model.  Consequently, 

the expressions in (15) and (16) can be rewritten in terms of conditional variances.  The 

conditional correlation then becomes: 

 
( )

( ) ( )( ) ( ) ( )( )
1 ,

, ,
2 2

1 , 1 , 1 , 1 ,

i j t m t
i j t

i t m t t i t j t m t t j t

V r

V r V V r V

β β
ρ

β ε β ε

−

− − − −

=
+ +

 (17) 

 

 The model used by ENR assumed that the idiosyncratic volatilities were not 

changing over time.  They called this the FACTOR ARCH model and I will use that 

name here.     Letting ,and trβ  be nx1 vectors, the statistical specification is 

  (18) 
2

, ,
1

, , ,

'
, ~

'
t m t m t

t
m t m t m t

r h D h
V D diagonal

r h h
ββ β

β−

⎛ ⎞+⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

The conditional correlation between each pair of assets would be time varying only 

because the market volatility is changing.  From an examination of (17) it is clear that the 

conditional correlation in this model is a monotonic function of market volatility ranging 

from zero to one as market volatility ranges from zero to infinity.   

 In the ENR or FACTOR ARCH model, there would always be portfolios of assets 

which would have no ARCH.   Engle and Susmel(1993) looked for such portfolios and 

found in an international context, that they unlikely.  Almost all portfolios have time 

varying volatility, even if they have a zero beta on the market.  Hence, there must either 

be more factors or time varying idiosyncratic volatility.   

 Assuming normal errors, the statistical model is  

 ( ) ( )2
, 1 , , 1 ,, ~ , , ~ 0,t m t t m t m t t m tr r N r D r N hβ− −F F  (19) 
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This model can simply be estimated by MLE by regressing each asset return on the 

market return with OLS, and then estimating the market volatility with GARCH.   

 The natural extension of this model is to allow the idiosyncrasies to follow a 

GARCH process as well as the market return.   Thus there are two GARCH processes for 

an asset.   For convenience we will call this model a FACTOR DOUBLE ARCH.  The 

model is expressed as:  

  (20) {
2

, ,
1

, , ,

'
, ~

'
t m t t m t

t t
m t m t m t

r h D h
V D diagonal garch std

r h h
ββ β

β−

⎛ ⎞+⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

}

Where Dt is a diagonal matrix with GARCH standard deviations on the diagonal.   

 Assuming conditionally normal returns this can be rewritten as 

 ( ) ( )2
, 1 , , 1 ,, ~ , , ~ 0,t m t t m t t m t t m tr r N r D r N hβ− −F F  (21) 

This model is still easy to estimate by MLE.   The return on an asset is regressed on the 

market return with disturbances that follow a GARCH.  Then the GARCH for the market 

is only estimated once.   To see that this two step estimator is MLE,   express the  

likelihood for this problem as the density of asset returns conditional on the market return 

times the marginal density of market returns.  Ignoring irrelevant constants, the log 

likelihood is: 

 ( ) ( ) ( ) ( )
2
,2

, ,
1 1 1

1 1, log log
2 2

T T T
m t

m t t m t t t m t t
t t t t

r
L r r D r r D r r h

h
β β−

= = =

⎡ ⎤
= − − − − − +⎢ ⎥

⎣ ⎦
∑ ∑ ∑  (22) 

This model satisfies the weak exogeneity conditions of Engle Hendry and Richard(1983) 

which allow for separate estimation of the conditional and marginal models.  As long as 

the parameters are distinct or variation free so that no information from the marginal 

model would affect inference in the conditional model, then market returns can be 
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considered weakly exogenous and the MLE of the system is the same as the MLE done in 

two steps. 

 There are many reasons to believe that the ONE FACTOR DOUBLE ARCH   

model just described, will still be too simple to accurately forecast correlations.  The 

correlations between stock returns in the same industry are typically higher than for 

stocks across industries and these correlations will rise if the industry volatility rises.  

These are essentially additional factors with impacts on correlations that vary over time.   

Even more interesting are factors that have zero variance some of the time and a large 

variance other times.   Energy prices might be in this category.   It would be impossible to 

identify this factor until it is active but then it may be too late.  Finally, the model 

assumes that the factor loadings or betas are constant over time, yet whenever a firm 

changes its line of business, its sensitivity to various factors will naturally change.   

 Ideally, the model should allow correlations among idiosyncrasies and between 

idiosyncrasies and market shocks and these correlations should be time varying.  In this 

way the statistical model will recognize the changing correlation structure when a new 

factor emerges or factor loadings change.   

 The FACTOR DCC model is designed to do just this.   It proceeds exactly as 

described above for the FACTOR DOUBLE ARCH and then estimates a DCC model on 

the residuals.  More precisely, the FACTOR DCC model has the specification 

 (, , ,
,

, , ~t
t m t t t m t t m t

m t

r r D r h N R
ε

β ε ε
ε
⎛ ⎞

= + = ⎜ ⎟
⎝ ⎠

)0, t  (23) 

The specification of the correlation matrix can be the same as (3) coupled with either (4) 

or (5) or more general versions of DCC.  Partitioning the (n+1)x(n+1) correlation matrix 

into its conformal parts as  
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  (24) 11, 1, ,

,1, 1
t m t

t
m t

R R
R

R
⎛ ⎞

= ⎜
⎝ ⎠

⎟

the covariance matrix of returns is given by 

 
, 1,1, , ,1, , 1, , , , 1, ,

1
, , , ,1, ,

' '

'

m t t t t m t m t t m t t m t m t m t t m tt
t

m t m t m t m t t m t

h D R D h R D h D R h h D Rr
V

r h h R D h

ββ β β β

β
−

⎛ ⎞+ + + +⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
(25) 

When new factors arise, the correlations between some stocks will increase.  These are 

captured by the second term in the upper left hand block.  When betas change, these 

effects will be captured by the third and fourth terms.   

 The model in equation (23) is only a small generalization of the basic DCC 

model.   The data in this case are not just standardized returns but standardized 

idiosyncratic returns.  If either the FACTOR ARCH or the FACTOR DOUBLE ARCH 

are correctly specified, then the DCC should find zero correlations both conditionally and 

unconditionally.  Estimation is naturally done in two steps again where the first step 

estimates both the static factor loading and the idiosyncratic GARCH.   The second step 

estimates the DCC parameters.  Here joint estimation is possible or the MacGyver 

method can be used.   In this paper the MacGyver method will be employed. 

 The conditional correlations are again defined as the conditional covariance 

divided by the product of the conditional standard deviations using the expression for the 

conditional covariance matrix of returns in (25).    In each case there are now four terms 

and the last three depend upon the DCC estimated correlations.  

 V.  Performance 

 To examine the properties of these correlation estimators a set of 18 daily US 

large cap equity returns will be examined.  The data range from 1994 through 2004 for 
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2771 observations.  The tickers are {aa, axp, ba, cat, dd, dis,  ge, gm, ibm, ip, jnj, jpm, 

ko, mcd,  mmm, mo, mrk, msft } which are all components of the Dow.  The S&P500 is 

taken as the market return.   

1. MacGyver Estimates 

 The MacGyver method is applied to this data set to estimate all the correlations 

with DCC.  Although it is not necessary to use the same GARCH model for each series, 

in this investigation I do.  To account for the asymmetry in volatility the GJR or 

Threshold GARCH model is used.   It is specified by 

 
, 1

2 2
, , , , , 1 , 1 0,

i ti t i t i t i t i i i t i i t r i tr h h r r I hε ω θ γ φ
− , 1− − <= = + + + −  (26) 

The standardized returns from these models are saved and used as inputs for the DCC 

estimation by MacGyver.  For 18 returns there are 18*17/2=153 bivariate models.  For 

most of these, the results are quite standard.  For a few, they are completely 

unsatisfactory.  For example, all of the alphas are estimated to be between zero and .05 

except for one that is just over 2.  Similarly, most of the betas are less than one but for the 

same bivariate estimate, beta is over four thousand.  A few of the betas are quite small or 

negative.  Nevertheless, the medians are very close to general experience.  The median 

for alpha is 0.0157 and the median for beta is .9755 so that the sum is just over .99 

leading to a good degree of persistence in correlations.  The actual plots are given in the 

appendix.  

 The DCC estimation produces 153 time series of correlations based on these two  

parameters and the unconditional correlations.  It is difficult to examine so many time 

series at once.  Some clear patterns can easily be seen by looking at the average 

correlations.  These will establish the stylized facts of correlations in the US equity 
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market.   In Figure 1, the mean correlation is plotted from the 100 day historical method 

and the DCC method with TARCH volatilities. 

 

.0

.1

.2

.3

.4

.5

.6

94 95 96 97 98 99 00 01 02 03 04

MEAN CORR 100 MEAN CORR DCC

 

Figure 1 

Mean Historical and DCC Correlations 

 

 The historical correlations and the DCC correlations trace out very much the same 

pattern.  The range of the historical correlations is a little greater but this may be a result 

of the choice of smoothing.   A 200 day correlation would move substantially less.  The 
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historical correlations also have wider peaks making the correlation estimate somewhat 

slower to respond to news.  A plot of the cross sectional standard deviation of the 153 

bivariate correlations reveals that the historical correlations are more varied across pairs 

than the DCC.   

 It is clear that these correlations have changed substantially over the 10 year 

period.  The highest correlations are during the recession in 2002 and the first part of 

2003.  Correlations are low during the internet bubble and the subsequent bursting of the 

bubble.  They rise in 2001 and abruptly increase further after 9/11.  In 2003 correlations 

fall as the economy and stock market recover.  There are two episodes of spiking 

correlations in the late 90’s which can be associated with the LTCM/Russian Default and 

the Asian currency crisis.  In fact the proximate cause of the second spike is the 

“Anniversary Crash” on October 27, 1997 when the market fell 7% and then recovered 

5% the next day.  These events are plotted with the correlations in Figure 2.1   It certainly 

appears that economic crises lead to rising correlations. 

                                                 

1 The LTCM dummy is defined for August 1998 through 25 September 1998, the Asia Crisis dummy is 

defined for May 14 1997 through July 31, 1997, the Anniversary Crash dummy is defined for October 27 

and 28, 1997.   
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Figure 2 

Mean Correlations and Significant Dates 

 

2. FACTOR ARCH, FACTOR DOUBLE ARCH  

 

 The sharp movements in correlations that are associated with movements in the 

S&P itself suggest the usefulness of a factor model.  The FACTOR ARCH and the 

FACTOR Double ARCH are now calculated.   They follow the specification (18) and 
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(20) .  The betas are estimated by OLS for the FACTOR ARCH and by GLS with 

GARCH errors for the FACTOR Double ARCH and consequently are slightly different.  

From Figure 3, it is clear that these differences are small for all 18 stocks. 
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Figure 3 

Betas 

 

 The correlations from each of these models can be calculated using (17).  The 

average across all pairs is again a useful measure.  This is shown in Figure 4. 
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Figure 4. 

Mean Correlations of FACTOR MODELS 

 

The average correlation from the FACTOR DOUBLE ARCH model is very similar in 

level to the average DCC.  It differs primarily in that the FACTOR DOUBLE ARCH 

correlations are more volatile.  When the correlations spike up because of some market 

event, they rise up to .7 in several cases, and when the correlations fall, they fall further.  

It is not clear whether the higher volatility is a good or bad aspect of this estimator as we 

do not know what the true conditional correlations are at any point in time.   

 23



 The patterns of the FACTOR ARCH are however different in several important 

ways.  Over the last two years of the sample, the FACTOR ARCH correlations fall much 

lower than any of the other correlation estimators.  This is also the case in the middle 

nineties.  The opposite however occurs in 1999 and 2000 when the FACTOR ARCH 

correlations are higher than DCC and FACTOR DOUBLE ARCH.  These differences are 

easy to understand.  The monotonic relation between average correlation and market 

volatility in the FACTOR ARCH model implies that the correlations should be at their 

lowest in the middle nineties and since 2003 since market volatility is lowest then.   

However, the idiosyncratic volatilities also change in much the same direction so that the 

more accurately estimated correlations either from the DCC or the FACTOR Double 

ARCH model mitigate these movements.  In the internet bubble, the opposite effect is 

observed.  The market volatility is high but so are idiosyncratic volatilities so the 

correlations are low.  The FACTOR ARCH model cannot do this.  The observation of 

Campbell et al(   ). that idiosyncratic volatilities are rising, should not be interpreted as a 

trend but rather as a process that ultimately reverses in about 2002. 

 The cross sectional standard deviations of these three estimators are interesting.  

They are shown in Figure 5. 
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Figure 5 

Cross Sectional Standard Deviations of Factor Correlations 

 

From the figure it is clear that the DCC has correlations that differ more across pairs than 

the two factor models.  Perhaps this is not surprising as the component due to the factor is 

the same for all pairs in the Factor models, whereas each pair has its own time series in 

the DCC.  Thus the FACTOR DOUBLE ARCH model is more volatile over time but the 

DCC is more volatile cross sectionally.  It remains to be seen whether this is a good or a 

bad feature of the models.   
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3. FACTOR DCC   

 

 As discussed above,  FACTOR DCC simply estimates a DCC model from the 

residuals of the FACTOR DOUBLE ARCH model following the specification in (23).   

The MacGyver method is used to estimate the parameters of this DCC.  The median 

alpha =.009 while the median beta =.925.  The sum of these two numbers is much farther 

from unity than the DCC estimates on the simple returns; hence the correlation process is 

less persistent.  Because alpha is smaller, it is also lest volatile. 

 The residuals from the FACTOR DOUBLE ARCH model should be uncorrelated 

both conditionally and unconditionally of the one factor model is correct, thus the DCC 

on these residuals might not find anything.  The average residual correlation and its cross 

sectional standard deviation are shown in figure 6.  
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Figure 6 

Mean and Standard Deviation of Residual Correlations from FACTOR DCC 

 

The average correlation of the residuals is quite small.  It averages .01 over time and 

cross sectional pairs.  It does rise in the middle of the sample but only to .04.  The cross 

sectional standard deviation is however of the same order of magnitude as the cross 

sectional standard deviation of the DCC although it does not rise quite so much.  Thus the 

average correlation is small but it has substantial cross sectional variability.   
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 When these residual correlations are incorporated into the calculation of the 

conditional correlations, the result is a substantial change for some pairs and very little 

for many others.  In fact, the average correlation looks almost identical to the FACTOR 

DOUBLE ARCH.  However the cross sectional dispersion is now greater.   The cross 

sectional standard deviation of FACTOR DCC is shown in Figure 7. 
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Figure 7 

Cross Sectional Standard Deviation of FACTOR Correlations. 
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 The reasons for these differences are easily seen in a few examples shown in the 

appendix.  Stocks in the same industry have idiosyncratic shocks that are correlated.  The 

FACTOR DCC method incorporates these idiosyncratic correlations into the correlation 

estimates.  If these residual correlations are constant, the correction is static but if it is 

dynamic, then a time varying correction is automatically generated by the FACTOR DCC 

method.  The appendix shows the correlations estimated between International Paper and 

Caterpillar, between Merck and Johnson and Johnson, and between Coke and Phillip 

Morris. 

4. Hedging Experiment  

 

 To establish which of these models does a better job of forecasting correlations, 

an economic criterion is desirable since we never know what the correlations truly were.  

A natural criterion is based on portfolio optimization or hedging. This is an example of 

the methodology introduced by Engle and Colacito(2006).  The optimal portfolio of two 

stocks with equal expected return, is to choose the minimum variance combination.  For 

example, the minimum variance combination of assets (i,j) is given by 
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( )
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= + −

−
= =

+ − t tr H
 (27) 

Thus the optimal proportion of each asset to hold is changing over time based on the 

forecast of the covariance matrix.  To achieve this optimal holding, the investor would 

forecast the next day covariance matrix just before the close and then adjust his portfolio 

to have the weights given in (27).  The criterion for success is that the portfolio indeed 

has a smaller variance than if the weights had not been changed.  More generally, this 
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benefit should cover transaction costs.  For the purpose here, we simply want to know 

which method of forecasting the covariance matrix achieves the lowest variance. 

 A closely related problem is holding a position in one stock because it has an 

abnormal expected return and hedging the position with a second stock.  Typically this 

would mean shorting the either the first or second stock to obtain a hedge portfolio with 

the minimum variance.  Although the problem is different, the same approach can be 

used to solve it.  The optimal hedge is given by 

 , , , , , , , , , ,,port t i t i j t j t i j t i j t j j tr r r h h ,/β β= − =  (28) 

The criterion for success again is simply the smallest variance of the portfolio.  

 These two criteria are applied for each of the models we have discussed, to all the 

pairs of stocks in the data set, and on all the dates in the data set.  The average volatility 

for each pair over time is averaged over all pairs to obtain a single number for the 

performance of a particular correlation estimator.  The results are in Table 1 and two 

figures in the appendix.   

Table 1 

Average Volatility of Optimized Portfolios 

 
 

CONST HIST100 DCC 
FACTOR 

ARCH 
DOUBLE 

ARCH 
FACTOR 

DCC 
Min Variance  0.015764 0.015889  0.015632  0.015743  0.015628  0.015604 

Hedge  0.018989  0.019072  0.018844  0.019026  0.018883  0.018804 
 

The results show that for both criteria, the FACTOR DCC model produces the best hedge 

portfolio.  For the Hedging problem, the DCC is next followed by the FACTOR 

DOUBLE ARCH while for the minimum variance criterion, the order is the opposite.  All 

except the 100 day historical volatility outperform the optimal constant set of weights and 
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in the hedging problem, the FACTOR ARCH.  The differences are however very small.  

It appears that the gains from a better model may only be 1% reduction in volatility.  This 

does not however mean that for other problems the gains will also be small.  See for 

example Engle and Colacito(200 ) for discussion of this. 

 To determine whether these differences are systematic or not, I looked at how 

many of the pairs preferred one estimator to another.  These winning percentages tell a 

much stronger story.  In the appendix, tables A2 and A3 show the fraction of times the 

row method beats the column method.  The best method has the largest fractions in the 

labeled row.    For example, in hedging,  the FACTOR DCC is superior to a constant 

hedge for 88% of the pairs, and superior to the DCC for 74%.  It beats the historical 

hedge 98%, the FACTOR ARCH 99% and the DOUBLE ARCH 91%.  Although the 

differences are small, they are systematic.   

 

V. Conclusion 

 

 Forecasts of correlations are of prime importance for financial decision making.   

This paper has introduced several new models and compared them with existing models.   

The use of FACTOR models combined with time series methods such as ARCH/GARCH 

and DCC provides a rich class of estimators that can approximate a flexible correlation 

structure.  Models called FACTOR ARCH, FACTOR DOUBLE ARCH and FACTOR 

DCC are introduced and compared.  The paper discusses estimation of these models in 

the context of large systems.  A new method for estimating DCC models in large systems 
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is called the MacGyver method.  It first estimates all the bivariate models and then selects 

the median of all these parameter estimates to use in creating and forecasting correlations.  

 An economic loss function is used to compare these models on a data set of large 

cap US stocks.  Dynamic portfolio strategies designed to create minimum variance 

portfolios from pairs of stocks have different performance depending on what model is 

used for correlations.  By averaging over time and pairs of stocks, it is found that the 

FACTOR DCC method has the best performance.   This is followed either by the DCC or 

the FACTOR DOUBLE ARCH in different circumstances.  The standard one factor 

model FACTOR ARCH is not as good and a 100 day Historical correlation is worse than 

a constant hedge.   
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APPENDIX 

 

 

 

 

Table A1 
Experiments for MacGyver Simulation 

 
 Number Alpha Beta Rhobar 

Exp1 3.00 0.05 0.90 0.50 
Exp2 5.00 0.05 0.90 0.50 
Exp3 10.00 0.05 0.90 0.50 
Exp4 20.00 0.05 0.90 0.50 
Exp5 30.00 0.05 0.90 0.50 
Exp6 50.00 0.05 0.90 0.50 
Exp7 10.00 0.05 0.94 0.50 
Exp8 10.00 0.02 0.97 0.50 
Exp9 10.00 0.05 0.90 0.20 

Exp10 10.00 0.05 0.90 0.80 
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Table A2 

RMS Errors from MacGyver Method 
Alpha 

 amean a_rmean ameant05 a_rmeant05 amed a_rmed 
exp1  0.01092  0.01233  0.01150  0.01386  0.01150  0.01386 
exp2  0.00720  0.00807  0.00710  0.00854  0.00682  0.00843 
exp3  0.02550  0.00543  0.00528  0.00504  0.00491  0.00510 
exp4  0.01509  0.00419  0.00438  0.00383  0.00410  0.00357 
exp5  5.63324  0.00403  0.00389  0.00361  0.00358  0.00321 
exp6  0.01088  0.00352  0.00301  0.00308  0.00274  0.00275 
exp7  0.00578  0.00380  0.00430  0.00371  0.00424  0.00379 
exp8  471.66375  0.00552  0.00377  0.00391  0.00283  0.00295 
exp9  10.58470  0.00469  0.00424  0.00432  0.00402  0.00441 

exp10  0.00554  0.00498  0.00542  0.00483  0.00539  0.00516 
average  48.79626  0.00566  0.00529  0.00547  0.00501  0.00532 

 
Beta 

 
 bmean b_rmean bmeant05 b_rmeant05 bmed b_rmed 

exp1  0.03743  0.05134  0.03417  0.03584  0.03417  0.03584 
exp2  0.03693  0.03630  0.02716  0.02910  0.02186  0.02438 
exp3  1.20351  0.02736  0.02080  0.02040  0.01629  0.01515 
exp4  0.21512  0.02543  0.01796  0.01729  0.01289  0.01179 
exp5  0.07398  0.02388  0.01542  0.01592  0.01041  0.01047 
exp6  0.14473  0.02400  0.01490  0.01578  0.00969  0.01022 
exp7  0.01311  0.00819  0.00705  0.00747  0.00578  0.00703 
exp8  88.71563  0.05939  0.06618  0.03728  0.01015  0.01178 
exp9  15.72034  0.03100  0.02297  0.02220  0.01510  0.01449 

exp10  0.02063  0.01894  0.01585  0.01453  0.01361  0.01177 
average  10.61814  0.03058  0.02425  0.02158  0.01499  0.01529 
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Table A3 
Bias from MacGyver Method 

Alpha 
 amean a_rmean ameant05 a_rmeant05 amed a_rmed 

exp1  0.00071  0.00110  0.00024  0.00094  0.00024  0.00094 
exp2  0.00124  0.00285  0.00077  0.00210  0.00079  0.00153 
exp3 -0.00036  0.00261  0.00184  0.00195  0.00082  0.00106 
exp4  0.00352  0.00254  0.00222  0.00188  0.00142  0.00088 
exp5 -0.55754  0.00248  0.00183  0.00180  0.00099  0.00095 
exp6  0.00096  0.00224  0.00152  0.00152  0.00071  0.00067 
exp7  0.00272  0.00158  0.00214  0.00134  0.00134  0.00092 
exp8 -48.11060  0.00428  0.00158  0.00298  0.00142  0.00174 
exp9 -1.05017  0.00251  0.00208  0.00192  0.00072  0.00113 

exp10  0.00247  0.00233  0.00215  0.00196  0.00183  0.00170 
average -4.97070  0.00245  0.00164  0.00184  0.00103  0.00115 

 
Beta 

 bmean b_rmean bmeant05 b_rmeant05 bmed b_rmed 
exp1 -0.01710 -0.02087 -0.01165 -0.01022 -0.01165 -0.01022 
exp2 -0.01945 -0.02216 -0.01450 -0.01674 -0.00942 -0.01079 
exp3  0.09886 -0.02275 -0.01615 -0.01605 -0.01036 -0.00933 
exp4 -0.01104 -0.02333 -0.01524 -0.01518 -0.00951 -0.00900 
exp5 -0.02231 -0.02257 -0.01333 -0.01429 -0.00741 -0.00811 
exp6 -0.00020 -0.02264 -0.01344 -0.01414 -0.00765 -0.00789 
exp7  0.00175 -0.00661 -0.00062 -0.00577 -0.00252 -0.00479 
exp8  11.18001 -0.05195 -0.01487 -0.02937 -0.00859 -0.00998 
exp9  1.54597 -0.02653 -0.01931 -0.01814 -0.01033 -0.00994 

exp10 -0.01524 -0.01525 -0.01106 -0.01087 -0.00803 -0.00666 
average  1.27412 -0.02347 -0.01302 -0.01508 -0.00855 -0.00867 
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Table A4 

Fraction of Minimum Variance Portfolios Where Row Beats Column 

 

 CONST HIST 100 DCC 

FACTOR 

ARCH 

DOUBLE 

ARCH 

FACTOR 

DCC 

CONST  0.000  0.778  0.235  0.451  0.196  0.163 

HIST 100  0.222  0.000  0.000  0.196  0.013  0.007 

DCC  0.765  1.000  0.000  0.791  0.464  0.261 

FACTOR ARCH  0.549  0.804  0.209  0.000  0.137  0.137 

DOUBLE ARCH  0.804  0.987  0.536  0.863  0.000  0.183 

FACTOR DCC  0.837  0.993  0.739  0.863  0.817  0.000 

 

 

Table A5 

Fraction of Hedges Where Row Beats Column 

 CONST HIST 100 DCC 

FACTOR 

ARCH 

DOUBLE 

ARCH 

FACTOR 

DCC 

CONST  0.000  0.660  0.154  0.634  0.258  0.114 

HIST 100  0.340  0.000  0.013  0.379  0.121  0.013 

DCC  0.846  0.987  0.000  0.899  0.569  0.255 

FACTOR ARCH  0.366  0.621  0.101  0.000  0.059  0.007 

DOUBLE ARCH  0.742  0.879  0.431  0.941  0.000  0.088 

FACTOR DCC  0.886  0.987  0.745  0.993  0.912  0.000 
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Figure A1 
Estimated Alphas from Bivariate estimates in MacGyver 

Method
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Figure A2 

Estimated Betas from Bivariate estimates in MacGyver Method
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Figure A3 

Correlations between International Paper Catepillar by several Methods 
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Figure A4 

Correlations between Merck and Johnson and Johnson by various methods 
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Figure A5 

Correlations between Phillip Morris and Coca Cola by various Methods 
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Average Performance of Minimum Variance Portfolios 
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Average Volatility of Optimal Hedge Portfolios 
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