
Estimation in the continuous time mover-stayer model
with an application to bond ratings migration *

Halina Frydman**
Stern School of Business, New York University

Ashay Kadam***
University of Michigan Business School

December 19th, 2002

*The authors are very grateful to Roger Stein, Managing Director of Quantitative Risk

Analytics at Moody’s Risk Management Services for providing data and for useful discus-

sions. We thank Petra Miskov for her very skillful work on organizing and analyzing the

data. Halina Frydman’s research on this paper was supported by the summer research

grant from the Stern School of Business at New York University.

**Information, Operations and Management Sciences, email: hfrydman@stern.nyu.edu

***Statistics and Management Science Department, email: ashay@umich.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by New York University Faculty Digital Archive

https://core.ac.uk/display/43021814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The usual tool for modeling bond ratings migration is a discrete, time-
homogeneuous Markov chain. Such model assumes that all bonds are ho-
mogeneous with respect to their movement behavior among rating categories
and that the movement behavior does not change over time. However, among
recognized sources of heterogeneity in ratings migration is age of a bond (time
elapsed since issuance). It has been observed that young bonds have a lower
propensity to change ratings, and thus to default, than more seasoned bonds.
The aim of this paper is to introduce a continuous, time-nonhomogeneuous

model for bond ratings migration, which also incorporates a simple form of
population heterogeneity. The specific form of heterogeneity postulated by
the proposed model appears to be suitable for modeling the effect of age of a
bond on its propensity to change ratings. This model, called a mover-stayer
model, is an extension of a time-nonhomogeneuous Markov chain.
This paper derives the maximum likelihood estimators for the parameters

of a continuous time mover-stayer model based on a sample of independent
continuously monitored histories of the process, and develops the likelihood
ratio test for discriminating between the Markov chain and the mover-stayer
model. The methods are illustrated using a sample of rating histories of
young corporate issuers. For this sample, the likelihood ratio test rejects
a Markov chain in favor of a mover-stayer model. For young bonds with
lowest rating the default probabilities predicted by the mover-stayer model
are substantially lower than those predicted by the Markov chain.

Keywords: Ratings migration, mover-stayer model, Markov chain, esti-
mation

JEL Classification: C13, G33

1 Introduction

The usual tool for modeling bond ratings migration is a time-homogenous,
discrete Markov chain. Such modeling assumes that all bond issues are ho-
mogeneous with respect to their movement behavior among rating categories
and also that their behavior does not change over time. However, there are
many sources of heterogeneity in the rating behavior, of which the age of a
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bond has been recognized as an important one. Evidence presented by Alt-
man(1998), Asquith et al, (1989), and Keenan, Soberhardt, and Hamilton
(1999) and references therein suggests that propensity of bonds to change
rating, and in particular to default, is lower during the early years after is-
suance than it is for seasoned bonds. However, this aspect of aging effect has
not yet been incorporated in any systematic way in modeling of the evolution
of ratings.
In this paper we propose a continuous time mover-stayer model to cap-

ture the aging effect described above.1 This model is an extension of a time-
nonhomogeneuous, continuous Markov chain. It postulates a simple form of
heterogeneity: a population of bonds is assumed to consist of two subpopu-
lations, “movers” and “stayers”. “Movers” evolve according to a continuous
time Markov chain, whereas “stayers” stay in their initial states. The pro-
portion of stayers in each rating state is a parameter of the model and can be
interpreted as a measure of immobility for the bonds in a given rating state.
If this parameter is zero in each rating, the mover-stayer model reduces to
a Markov chain. The mover-stayer model, which allows for a greater degree
of immobility of bonds than a Markov chain, may be a better description of
ratings migration for younger bonds. This paper develops a methodology for
estimation and testing of this model against the continuous Markov chain.
We consider a time-nonhomogeneuous mover-stayer model with time mea-

sured since the issuance of the bond. More precisely the age-nonhomogeneity
is modeled by assuming that the parameter of the mover-stayer model is a
piece-wise constant function of age with a constant value for each year of
life of the bond. In addition, according to the mover-stayer model, in each
year of life a bond may exhibit a stayer or a mover type behavior. Thus,
the proposed model incorporates both time (age) nonhomogeneity, as well as
simple heterogeneity in the movement behavior of bonds that are of similar
age.
Throughout we consider a continuous time framework, rather than a dis-

crete one, because rating agencies (Moody’s, Standard and Poor’s) monitor

1The discrete time mover-stayer model which was introduced by Blumen, Kogan and
McCarthy (1955) has been since employed in many areas (e.g. Colombo and Morrison
(1989), Sampson (1990), Chaterjee and Ramaswamy (1996), and Chen et al (1997)). Fry-
dman, Kallberg and Kao (1985) applied the estimation methods for the discrete time
mover-stayer model developed in Frydman (1984) to the analysis of credit behavior. Sub-
sequently, Altman and Kao (1991) used this methodology in their study of ratings migra-
tion.
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changes in bond ratings on daily basis which gives rise to very detailed data.
For a given bond issue the complete history of its rating changes is available,
which includes the exact dates of rating changes, the types of the changes that
occur, and the lengths of stay in different rating states. Modeling such data
using only information obtained at discrete time points would necessarily en-
tail a loss of information. In addition, a continuous time framework affords
a possibility of making predictions of quantities of interest, such as of future
rating state probabilities, at any relevant time horizon, whereas the predic-
tions with a discrete version of the model can be made only at times that are
multiples of the sampling interval. Until recently a discrete time framework
has been employed almost exclusively to model rating migrations. The first
statistical analysis of ratings migration with a continuous time Markov chain
has been in Lando and Skodeberg (2000) to which the reader is referred for a
more extensive discussion of the advantages of a continuous time framework
and related recent references.
To implement the continuous time mover-stayer model, we derive the

maximum likelihood (ml) estimators of its parameters based on a sample of
independent continuously observed realizations from this process. The ml
estimation in the continuous time mover-stayer model from continuously ob-
served realizations has not been considered before.2 ,3 Based on the derived
ml estimators we formulate the likelihood ratio test for discriminating be-
tween the Markov chain and the mover-stayer models. The main tool for
obtaining the ml estimators is the EM algorithm (Dempster, Laird, and Ru-
bin (1977)). However, we show that when realizations are observed over the
same fixed time horizon, the ml estimators can be easily obtained by direct
maximization of the likelihood function.
We illustrate our methods using the rating histories of the sample of 856

corporate bond issuers that were observed in the period from January, 1985
to December, 1995. On the basis of this sample, we estimate the continu-
ous age-nonhomogeneous mover-stayer model and Markov chain. The age-
nonhomogeneity is modeled by assuming that the parameter of the process

2Maximum likelihood estimation in the discrete time mover-stayer model was discussed
in Frydman (1984), Fuchs and Greenhouse (1988), and Swensen (1996). Bayesian estima-
tion in the continuous time mover-stayer model from panel data was considered in Fougere
and Kamionka (2002).

3Maximum likelihood estimation in the mixtures of continuous time Markov chains that
generalize the mover-stayer model is considered in Frydman (2002). Another generalization
of the discrete time mover-stayer model is in Cook et al. (2001).
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is a step function which is constant within each one-year age interval, that is,
the models are estimated separately for bonds in their first year of life, the
second year of life, etc, yielding age specific one-year transition probability
matrices.4 Because of data limitation we estimate the two models only up to
the fifth year of life of the bond.
We briefly summarize our empirical results reported in Section 4. The

likelihood ratio test rejects the Markov chain in favor of the mover-stayer
model in each of the one-year age intervals. The overall expected proportion
of stayers estimated by the mover-stayer model is large for very young bonds
and then decreases as bonds become more seasoned. This is consistent with
the aging effect. The interesting aspect of our results is the large estimated
proportion of stayers in the C (combined Caa, Ca and C) rating for young
bonds. This has a substantial implication for the estimation of the probabil-
ity of default from rating C: for young bonds one-year probabilities of default
from rating C estimated by the mover-stayer model are substantially smaller
than those estimated by a Markov chain. The difference in the default prob-
abilities resulting from the two models is largest for very young bonds and
then decreases with age. For both models the probability of default is largest
in the fifth year and much smaller for younger bonds. We do note that our
results are based on a small sample of bonds and thus we treat the empirical
analysis solely as an illustration of the methodology. An application of the
methodology developed here to a much larger sample is required to evaluate
the usefulness of the continuous-time mover stayer model in modeling the
aging effect.
This paper is organized as follows. In Section 2 we define the mover-

stayer model in continuous time and its time nonhomogeneuous version which
we use to model aging effect. Section 3 develops the ml estimation in the
mover-stayer model from continuous observations. In Section 4 we report
and discuss the results of the estimation of the mover-stayer model and the
Markov chain for ratings migration of young bond issuers.

4We note that the one-year transition matrix for a portfolio containing bonds of different
ages can then be estimated by the weighted average of the age specific one-year transition
matrices with the weights representing the proportions of bond issuers of different ages.
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2 The mover-stayer model

To define a mover-stayer model in continuous time we first consider a Markov
chain in continuous time with state space W = (1, 2, ..., w). The states cor-
respond to different rating categories. Such chain is characterized by the
generator matrix Q, which is the matrix with the following structure

qii ≤ 0, qij ≥ 0,
X
j 6=i

qij = −qii ≡ qi, i ∈W.

In the context of our application to ratings migration the entries inQ have
the following probabilistic interpretation: each time a bond enters rating i
it stays in it for the time that is exponentially distributed with parameter
(−qii) . When it exits from rating i, it makes a transition to rating j, j 6= i
with probability qij/ (−qii) . In particular,

1

−qii = expected length of time for an issuer in

rating i to remain in that rating.

Matrix Q is called a generator, because it generates M(t), the matrix of
transition probabilities mij(t) of a continuous time Markov chain. M(t) is
obtained, for every time t, by exponentiation of tQ, that is,

M(t) = exp(tQ), t ≥ 0.

For the definition of the matrix exponential and an exposition of Markov
chains in continuous time see, for example, Norris (1997).
A continuous time mover-stayer model on state space W ={1, 2, .., w} is

a mixture of two independent Markov chains, one which evolves according to
some infinitesimal generator Q, and the other whose transition probability
matrix is an identity matrix I. The transition probability matrix, P (t), of a
continuous time mover-stayer model on state space W is then defined as

P (t) = SI + (I − S) exp(tQ), t ≥ 0, (1)

where S =diag(s1, s2, ..., sw), with

si = proportion of stayers in state i, i ∈W.
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The Markov chain defined above is time homogeneous because its generator
is constant in time. Similarly the mover-stayer model defined above is time
homogeneous because it involves a time homogeneous Markov chain, and
proportions of stayers that do not change over time.
A time-nonhomogeneous Markov chain has a generator Q(t) which is a

function of time. A simple, but for our purpose very useful, time-nonhomogeneous
Markov chain can be defined by assuming that its generator, Q(t), is a piece-
wise constant function of time on some time interval (0, T ) that corresponds
to the time of the study. The particular specification of Q(t) of interest to
us is

Q(t) = Q(1), 0 ≤ t ≤ 1, (2)

= Q(2), 1 < t ≤ 2,
...

= Q(m),m− 1 < t ≤ m = T

where 1, 2, ...,m−1 are the times where regime changes occur and Q(k) is the
generator in the k0th time subinterval, 1 ≤ k ≤ m. With the view towards
our application, we assume that time is measured in years since the issuance
of the bond so that the generator in (2) depends on the age of the bond issuer
and the one-year transition probability matrix for bonds age (k− 1) is given
by

M(k − 1, k) = exp(Q(k)), 1 ≤ k ≤ m− 1.
We define the time-nonhomogeneous mover-stayer model by assuming

that a generator of a Markov chain which describes the evolution of movers
is as in (2). Furthermore, we assume that a bond in state i at the beginning
of the k’th one-year age interval, (k − 1, k), has probability si(k) of being
a stayer in that interval independently of its behavior in the preceding age
intervals. Thus, the k’th age interval has its own vector of proportions of
stayers, denoted by s(k) = (si(k), 1 ≤ i ≤ w). The k’th one-year age interval
transition probability matrix is then given by

P (k − 1, k) = S(k) + (I − S(k)) exp(Q(k)), 1 ≤ k ≤ m− 1,

where S(k) =diag(s1(k), s2(k), ..., sw(k)). The transition matricesM(k−1, k)
and P (k− 1, k), 1 ≤ k ≤ m− 1, are age specific one-year transition matrices
for the Markov chain and mover-stayer model respectively.
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We note that for both models we can easily compute the transition prob-
ability matrix between arbitrary times s, t such that 0 ≤ s ≤ t ≤ m. For
example, setting s = 0.5 and t = 2.5, the transition probability matrix
M(s, t) of a Markov chain with generator in (2) is

M(0.5, 2.5) = exp(0.5Q(1)) exp(Q(2)) exp(0.5Q(3)), (3)

and the transition matrix P (s, t) of a mover-stayer model is

P (0.5, 2.5) = [S(1) + (I − S(1)) exp(0.5Q(1))]

× [S(2) + (I − S(2)) exp(Q(2))] (4)

× [S(3) + (I − S(3)) exp(0.5Q(3))] .

The expression in (3) follows by Markov property and the expression in (4)
by the definition of the mover-stayer model which implies that the model has
Markov property at discrete time (age) points 0, 1, ...,m, but behaves as the
mover-stayer model within each age interval.
For both a Markov chain and a mover-stayer model the estimation of

their parameters can be done separately in each one-year age interval. By
assumption in each such time interval both models are time homogeneous.
Thus, to estimate the generator in (2) for a Markov chain, we use the ml
estimate of Q(k) using the data on bonds with age (time since issuance) in
the interval (k − 1, k). This is a well known ml estimator of the generator of
a time homogeneous Markov chain and is presented in Section 3.1. Similarly
we estimate Q(k) and S(k) in the mover-stayer model based on bonds with
age in the interval (k − 1, k). The ml estimators of these parameters, that
is, of the parameters of a time homogeneous mover-stayer model are derived
below.

3 Maximum Likelihood Estimation

Let X = (Xt, t ≥ 0), be a mover-stayer model with transition probability
function defined in (1). Assume that we observe n independent realizations
of X and that the k’th realization, Xk, is observed continuously on some
time interval [0, T k] with T k ≤ T, where T is the time horizon of the study.
Thus, Xk = (Xt, 0 ≤ t ≤ T k) and individual realizations may be observed
over time intervals of different lengths. This may be the case when right
censoring is present or when the mixture process has an absorbing state.
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The right censoring is assumed to be independent. Let A be the set of all
realizations that stayed continuously in an initial state, and B be the set of
all realizations with at least one transition. We note that A may contain
movers as well as stayers.
Let LQ

k be the likelihood of observingX
k when it is generated by a Markov

chain with an intensity matrix Q. Then conditional on knowing an initial
state (see e.g., Albert (1962)),

LQ
k =

Y
i 6=j
(qij)

nkij
Y
i

exp(−qiτki ),

where

nkij = the number of times Xk makes an i→ j transition, i 6= j,

τki = the total time Xk spends in state i.

Thus, the likelihood of Xk ∈ B under the mover-stayer model, conditional
on knowing an initial state is

wY
i=1

(1− si)
Iki LQ

k ,

and the similar likelihood for Xk ∈ A is

Lk =
wY
i=1

(si)
Iki +

wY
i=1

(1− si)
Iki LQ

k ,

where

Ikr = 1 if Xk
0 = r

= 0, otherwise.

It is seen that the likelihood function of n independent realizations, L ≡Qn
k=1 Lk, is difficult to maximize directly. Instead we develop the EM algo-

rithm for obtaining the mles of Q and s. To implement this algorithm we
require Q̂c and ŝc, the mles of the parameters based on complete information.
The derivation of Q̂c and ŝc, is straightforward, but we include it below for
completeness and also to introduce the notation needed for the formulation
of the EM algorithm. Let

Y k = 1, if the k’th realization is generated by a stayer,

0, otherwise.
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Obviously, for any realization with nonzero number of transitions, Y k = 0,
and for any realization with zero transitions, Y k is not observed. Assuming
that all Y ks are observed, Lc

k, the likelihood function of the k
th realization

of the mover-stayer model is simply

Lc
k =

wY
r=1

(sr)
Ikr Yk (1− sr)

Ikr (1−Yk)
ÃY

i6=j
(qij)

nkij
Y
i

exp(−qiτki )
!1−Yk

,

or

logLc
k =

wX
r=1

Ikr log(1− sr) + Yk

wX
r=1

Ikr log [sr/(1− sr)]

+(1− Yk)
X
i6=j

nkij log(qij)− (1− Yk)
X
i

¡
qiτ

k
i

¢
,

which for all realizations becomes

logLc =
wX
r=1

mr log(1− sr) +
wX
r=1

mS
r log [sr/(1− sr)]

+
X
i6=j

nij log(qij)−
X
i

qiτ i +
X
i

qiτ
S
i ,

where

mr =
wX
r=1

Ikr = total number of individuals that begin in state r,

mS
r =

nX
k=1

Ikr Yk = number of stayers in state r

nij =
nX

k=1

nkij = total number of i→ j transitions in the sample,

ni =
wX
j 6=i

nij = total number of transitions out of state i

τ i =
nX

k=1

τki = total time in state i for all individuals in the sample,

τSi =
nX

k=1

Ykτ
k
i = the total time in state i for stayers, τ

M
i = τ i − τSi

10



Solving the score equation ∂ logLc/∂si = 0, gives the natural estimatorbsci = mS
i /mi. Now setting ∂ logLc/∂qij = 0, we obtain

q̂cij =
nij

τ i − τSi
=

nij
τMi

, (5)

and from
Pw

j 6=i qij = qi,

q̂ci =
wX
j 6=i

nij
τMi

=
ni
τMi

, (6)

From (5) and (6) we also get

q̂cij =
nij
ni

q̂i. (7)

3.1 The EM algorithm

Based on the mles assuming complete information we develop the EM al-
gorithm for the estimation of the parameters (si, qi, i ∈ W ). We note that
because of (7) we don’t have to update the value of qij, j 6= i, at each iter-
ation of the algorithm. After the algorithm converges to (bsi, q̂i, i ∈ W ), we
compute q̂ij using (7).

1. Initialize
At the p+ 1st iteration, p ≥ 0, set the values of (si, qi, i ∈W ) to:

spi , q
p
i , i ∈W.

Define Qp to be the intensity matrix with the entries given by qpij =
(nij/ni)q

p
i , i 6= j, and qpii = −qpi .

2. Expectation step
For the k’th history, which starts in state r, 1 ≤ k ≤ n, r ∈W, and does
not make any transition compute the probability that it is generated
by a stayer:

Ep(Yk) =
spr

spr + (1− spr) exp(−qprτkr)
.

For the k’th history with at least one transition set

Ep(Yk) = 0.
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Then compute the following expectations

Ep(τSi ) =
nX

k=1

τkiE
p(Yk),

Ep(τQi ) = τ i − Ep(τSi ),

Ep(mS
i ) =

nX
k=1

Iki E
p(Yk),

3. Maximization step

Compute the quantities

sp+1i =
Ep(mS

i )

mi
,

and
qp+1i =

ni

Ep(τQi )
.

4. Iterate

Go back to Step 2 and iterate until convergence.

3.2 The special case of identical observation horizons

In a special case when all realizations are observed continuously during a
fixed period of time [0, T ], the estimates of the parameters can be easily
obtained by direct maximization of the likelihood function. In this case we
define

ar = number of realizations that stay continuously in state r

br = number of realizations with at least one transition that start in state r,

τAi = total time in state i for histories with no transitions,

τBi = total time in state i for histories with at least one transition,

The likelihood function, LA(Q, s), of the realizations in set A is

LA(Q, s) =
Y
k∈A

(Y
r

[sr + (1− sr) exp(−qrT )]Ikr
)

(8)

=
Y
r

[sr + (1− sr) exp(−qrT )]ar ,
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and the likelihood function, LB(Q, s), of the realizations in B is

LB(Q, s) =
Y
k∈B

(Y
r

(1− sr)
Ikr

"Y
j 6=i

q
nkij
ij

Y
i

exp(−qiτki )
#)

(9)

=
Y
r

(1− sr)
br
Y
j 6=i

q
nij
ij

Y
i

exp(−qiτBi ),

Thus, the overall loglikelihood function becomes

logL(Q, s) = logLA(Q, s) + logLB(Q, s)

=
X
r

ar log sr + (1− sr) exp(−qrT ) (10)

+
X
r

br log(1− sr) +
X
j 6=i

nij log qij −
X
i

qiτ
B
i .

The score equation with respect to sr

∂ logL

∂sr
=

ar[1− exp(−qrT )]
sr + (1− sr) exp(−qrT ) −

br
1− sr

= 0,

gives

sr =
ar −mr exp(−qrT )
mr −mr exp(−qrT ) . (11)

Substituting (11) into (10), we obtain, up to the terms not depending on the
parameters,

logL(Q, s) ∼ −
X
r

br log(1− exp(−qrT )) +
X
j 6=i

nij log qij −
X
i

qiτ
B
i . (12)

From the score equation

∂ logL

∂qij
=

biT

1− exp(qiT ) +
nij
qij
− τBi = 0,

we get

qij =
nij(exp(qiT )− 1)

Tbi + τBi (exp(qiT )− 1)
=

nij
Tbi(exp(qiT )− 1)−1 + τBi

. (13)
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Now taking into account that
P

j 6=i qij = qi, gives the following equation for
qi

ni
Tbi(exp(qiT )− 1)−1 + τBi

= qi, (14)

which can be rewritten as

(ni − qiτ
B
i )(exp(qiT )− 1) = qiTbi. (15)

It follows from (15), that q̂i < ni/τ
B
i . The equation (14) can be easily solved

in an iterative fashion for q̂. At the n’th iteration the left hand side of this
equation is evaluated at q(m)i . This results in the value q(m+1)i . The iterations
are repeated until convergence is achieved. The starting value for qi could
be taken as any value in the interval (0, ni/τBi ).By (13), the estimates of
the transition rates qij are given by q̂ij = (nij/ni)q̂i, and the estimate of si is
obtained from (11).

3.3 The likelihood ratio test

We note that the a Markov chain can be obtained from the mover-stayer
model by setting all si equal to zero, that is, a Markov chain is nested in
the mover-stayer model. This allows us to use the likelihood ratio statistic
to test a Markov chain model against a mover-stayer model. The hypothesis
test is of the form H0 : s = 0 versus H1 : s 6= 0, where the equality s = 0
and the inequality should be understood in the vector sense. The likelihood
ratio statistic is

Λ = sup
Q,s=0

L(Q, s)/ sup
Q,s

L(Q, s) = L(Ĉ, 0)/L(Q̂, ŝ).

Here Ĉ is the mle of the intensity matrix Q under H0, that is, when the
process is assumed to be aMarkov chain, and Q̂, ŝ are the mles of the intensity
matrix and fractions of stayers, respectively, in the mover-stayer model. By
the standard result, under H0, the asymptotic distribution of −2 logΛ is χ2
with w degrees of freedom.
We now compute−2 logΛ.Wewrite the likelihood function for the mover-

stayer model as L(Q, s) = LA(Q, s)LB((Q, s), where, LB((Q, s) is given in
(9), and

LA(Q, s) =
Y
k∈A

(Y
r

£
sr + (1− sr) exp(−qrτkr)

¤Ikr) ,
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Note that this is more general than (8), because here we do not assume
that realizations are observed over the same time horizons. The likelihood
function of the observations under H0 evaluated at Ĉ is

L(Ĉ, 0) =
Y
k

ÃY
i6=j
(ĉij)

nkij
Y
i

exp(−ĉiτki )
!
,

where ĉij = (nij/ni) ĉi, and ĉi = ni/τ i. In order to simplify the expression for
−2 logΛ, we write L(Ĉ, 0) = LA(Ĉ, 0)LB(Ĉ, 0), where

LA(Ĉ, 0) =
Y
k∈A

ÃY
i

exp(−ĉiτki )
!
= exp

Ã
−
X
i

ĉiτ
A
i

!

LB(Ĉ, 0) =
Y
k∈B

 nkijY
j 6=i

Y
i

exp(−ĉiτki )
 =Y

k∈B

"Y
j 6=i
(
nij
ni

ĉi)
nkij
Y
i

exp(−ĉiτki )
#

Now, evaluating L(Q, s) at Q̂, ŝ, and noting (7), we obtain

Λ =
LA(Ĉ, 0)

LA(Q̂, ŝ)

Y
i

½µ
ĉi
q̂i

¶ni

exp
£
(q̂i − ĉi)τ

B
i

¤¾
=

Y
i

½µ
ĉi
q̂i

¶ni

exp(q̂iτ
B
i − ĉiτ i)

¾
/LA(Q̂, ŝ)

=
Y
i

½µ
ĉi
q̂i

¶ni

exp(q̂iτ
B
i − ni)

¾
/LA(Q̂, ŝ),

or

−2 logΛ = −2
(X

i

ni log

µ
ĉi
q̂i

¶
+
X
i

(q̂iτ
B
i − ni)− logLA(Q̂, ŝ)

)
. (16)

For the case of realizations observed over fixed time horizon (0, T ), using (8)
and (11), we get

−2 logΛ = −2
(X

i

ni log

µ
ĉi
q̂i

¶
+
X
i

(q̂iτ
B
i − ni)−

X
i

ai log(ai/mi)

)
.
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4 Application to bond ratings migration

4.1 The Data and the Methods

The data consist of the rating histories of 856 corporate bond issuers in the
industrial sector that were observed for some time in the period from January,
1985 to December, 1995. The data was obtained fromMoody’s and thus uses
Moody’s rating system. As is customary, and in our case necessary due to
the small sample size, we grouped the original ratings into eight states: Aaa,
Aa, A, Baa, Ba, B, C, D and WR where the ratings are ordered from the
highest to the lowest with Aaa being the top ranking, D being the default
state and WR denoting the state of rating withdrawal. This resulted in an
initial distribution of 7, 50, 131, 119, 264, 256, 29, 0, 0 bonds in these states,
respectively. Thus a majority of the bonds under consideration were issued
with Ba or B rating.
About 30% of issuers entered the sample after 1990, thus providing us

with only with relatively short times under study. Because of this sample
limitation we decided to study aging effect only in the first five years of life of
the bonds. To study this effect we estimate a time-nonhomogeneuous Markov
chain and a mover-stayer model defined in Section 2 on the age interval (0, 5).
In both processes time t represents age of the bond issuer. Thus, we assume
that a generator of a Markov chain, Q(t), is a piecewise constant function of
age:

Q(t) = Q(1), 0 ≤ t ≤ 1, (17)

= Q(2), 1 < t ≤ 2,
...

= Q(5), 4 < t ≤ 5,

and in case of a mover-stayer model, that the k0th one-year age interval has
its own vector of proportions of stayers, s(k) = (si(k), 1 ≤ i ≤ 8), 1 ≤ k ≤ 5,
where i refers to a rating.
We now discuss estimation of the age specific transition matrices under

the two models. To obtain these matrices under a Markov model we first
estimate Q(k) for each age interval. The mle Ĉ(k) of Q(k), is given by (see
for example, Andersen et al. (1993))

16



ĉij(k) =
nij(k − 1, k)R k
k−1 Yi(s)ds

, i 6= j, ĉii(k) = −
X
j 6=i

ĉij(k) ≡ −ĉi(k) (18)

where nij(k − 1, k) is the total number of i→ j transitions for all issuers in
the k0th year of their life and Yi(s) is the number of issuers in rating category
i at time s. Thus,

R k
k−1 Yi(s)ds is the total exposure time in rating category

i in the age interval (k − 1, k). We note that the estimators ĉij(k) use all of
the available information and do not require that an issuer be present for the
whole observation period.
To estimate the age specific transitions matrices under the mover-stayer

model we estimate for each age interval the generator for the movers and
the vector of proportions of stayers using the EM algorithm developed in
Section 3.1. After testing that the algorithm converged to the same final
values for different initial values we chose the initial values for the algorithm
in the following way. For each one-year age interval we chose the observed
proportion of bonds that stayed in a rating for that whole interval as an
initial value for the proportion of stayers in this rating. For the k0th age
interval we chose ĉi(k), as the initial value for qi, 1 ≤ i ≤ 8, where ĉi(k) is
given in (18).

4.2 Estimation results

We summarize here the results of the estimation of the mover-stayer and the
Markov chain models for the five age intervals. As default probabilities play
an important role in the pricing of bonds and other related applications in
finance, the main focus of the summary will be the comparison of default
probabilities estimated by the two models.
First, for the purpose of the illustration we report and compare the results

of the estimation of the two models for the age interval (2, 3). The results
are in Tables 1-6. We note (Table 4) that for this age interval there is a very
high proportion of stayers in rating C (81%). As a result the CC entry in
the mover-stayer transition matrix (Table 6) is much larger (0.8594) than the
corresponding one in the Markov chain transition matrix (Table 3) (0.7288).
Since there is little movement out of the C rating to other nondefault ratings,
this, in turn, results in the smaller default probability from the C rating in
the mover-stayer model (0.0826) as compared to the Markov chain estimate
(0.1569). Rating Baa also has a relatively high proportion of stayers (56%)
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but the BaaBaa entry is only somewhat larger (0.8715) in the mover-stayer
matrix than in the Markov chain matrix (0.8558), and the default probabil-
ities from this rating estimated by the two models are comparable. In fact
the mover-stayer model predicts somewhat higher probability of default from
this rating. Here the small increase in the BaaBaa entry in the mover-stayer
model as compared to the Markov chain results in the mover-stayer’s model
lower probability of the downgrade from Baa to Ba (0.0379) as compared to
the Markov chain’s estimate (0.0425). Thus, a large proportion of stayers in
a rating may have a substantial (as in the case of the C rating) or relatively
minor (as in the case of Baa rating.) implication for the default probability
from that rating.
We now consider the estimation results for the five age intervals. For

each one-year age interval including the one just discussed, we carried out
the likelihood ratio for discrimination between the mover-stayer and Markov
chain. The test rejected the Markov chain in favor of the mover-stayer model
at less than 0.1 percent significance level in each of those intervals.
To obtain an overall heuristic measure of the proximity of the mover-

stayer and Markov chain models we computed for each age interval the ex-
pected proportion of stayers as estimated by the mover-stayer model. This
is defined for each one-year age interval as a weighted average of the esti-
mated proportions of stayers in each state with weights given by the initial
distribution. The expected stayer proportions estimated for the first through
fifth year of age were 0.3417, 0.2483, 0.1748, 0.1549 and 0.1345 respectively,
demonstrating that the estimated proportion of issuers that are not going to
move out of their ratings during a one year horizon decreases as bond issuers
age and therefore the two models are most different for the young issuer age
and become similar with age.
We now consider the dependence of the default probabilities on age of

a bond. In Table 7 we report the estimated by the two models one-year
default probabilities from speculative ratings for bonds 0-4 years old. In the
last column of this table we also report the proportion of stayers in each
speculative rating for each age interval.
The one-year probabilities of default from rating C estimated by the

mover-stayer model are substantially smaller than those estimated by aMarkov
chain. (For bonds just issued the one-year probability of default is estimated
to be zero by both models.) The difference in the default probabilities es-
timated by the two models is largest for young bonds and then decreases
monotonically with age. For both models the probability of default is largest
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in the fifth year and much smaller for younger bonds.
The two models estimate similar probabilities of default from rating B for

all considered ages with the mover-stayer proving somewhat larger estimates
for 1-2 years old bonds. These probabilities increase with age in a monotonic
fashion reflecting the aging of the bonds. The estimated proportion of stayers
in rating B declines from 15% in the first year of bond issuer’s life to 0 in the
fifth year. This explains the virtual equality of probabilities of default from
B estimated by the two models in the fifth year of life of the bonds. There
is no clear age pattern in the estimated probabilities of default from rating
Ba. However, the estimates of default probabilities from this rating in the
two models are again closer for older bonds.
Our empirical results show that for 1-4 years old bonds the mover-stayer

model estimates substantially lower default probabilities from rating C than
a Markov chain. These probabilities are particularly different for 1 and 2
years old bonds. It also estimates somewhat different default probabilities
than a Markov chain from other speculative ratings for 1 and 2 years old
bonds. The empirical discrepancy suggests that a mover-stayer model, as
a model subsuming a Markov chain, may provide, in particular for younger
bonds, more accurate estimates of the default probabilities than a mover-
stayer model. However, a much larger sample of bonds is needed to further
assess this possibility.
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Table 1: Initial distribution of two years old bonds and observed number of stayers for each rating in 

the age interval (2,3) 
 

 
Rating Aaa Aa A Baa Ba B C WR 
Initial Distribution 6 39 126 104 253 193 23 45 
Observed number 
of stayers 

5 31 106 91 208 157 20 43 

 
 

Table 2: Maximum likelihood estimate of Markov chain generator for the (2,3) age interval 
 

Aaa Aa A Baa Ba B C D WR 
Aaa -0.1593 0.0000 0.1593 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Aa 0.0283 -0.2262 0.1697 0.0000 0.0000 0.0000 0.0000 0.0000 0.0283
A 0.0000 0.0166 -0.1745 0.1329 0.0000 0.0000 0.0000 0.0000 0.0249
Baa 0.0000 0.0000 0.0296 -0.1580 0.0494 0.0296 0.0000 0.0000 0.0494
Ba 0.0000 0.0000 0.0000 0.0128 -0.1967 0.0684 0.0086 0.0043 0.1026
B 0.0000 0.0000 0.0000 0.0000 0.0816 -0.2214 0.0350 0.0466 0.0583
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3164 0.1808 0.1356
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WR 0.0000 0.0000 0.0159 0.0000 0.0000 0.0637 0.0000 0.0318 -0.1114
 
 
 

Table 3: Maximum likelihood estimate of Markov chain transition probability matrix for the (2,3) 
age interval 

 
 

 
Aaa Aa A Baa Ba B C D WR 

Aaa 0.8527 0.0011 0.1350 0.0090 0.0001 0.0001 0.0000 0.0000 0.0019
Aa 0.0233 0.7987 0.1411 0.0095 0.0002 0.0009 0.0000 0.0004 0.0259
A 0.0002 0.0136 0.8429 0.1127 0.0028 0.0024 0.0000 0.0004 0.0248
Baa 0.0000 0.0002 0.0255 0.8558 0.0425 0.0274 0.0006 0.0015 0.0465
Ba 0.0000 0.0000 0.0009 0.0108 0.8241 0.0585 0.0076 0.0075 0.0906
B 0.0000 0.0000 0.0004 0.0005 0.0663 0.8053 0.0270 0.0456 0.0549
C 0.0000 0.0000 0.0009 0.0000 0.0001 0.0035 0.7288 0.1569 0.1098
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
WR 0.0000 0.0001 0.0138 0.0009 0.0022 0.0540 0.0009 0.0315 0.8965
 
 



 
 

Table 4: Maximum likelihood etimates of the proportion of “stayers” in the (2,3) age interval 
  
 

Rating  Aaa Aa A Baa Ba B C  WR 
si 0 0 0.11 0.56 0 0.07 0.81  0.75 
 

 
Table 5: Maximum likelihood estimate of the generator for the movers in the (2,3) age interval 

  
 

Aaa Aa A Baa Ba B C D WR 
Aaa -0.1594 0.0000 0.1594 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Aa 0.0283 -0.2268 0.1701 0.0000 0.0000 0.0000 0.0000 0.0000 0.0283
A 0.0000 0.0187 -0.1967 0.1499 0.0000 0.0000 0.0000 0.0000 0.0281
Baa 0.0000 0.0000 0.0660 -0.3522 0.1101 0.0660 0.0000 0.0000 0.1101
Ba 0.0000 0.0000 0.0000 0.0129 -0.1972 0.0686 0.0086 0.0043 0.1029
B 0.0000 0.0000 0.0000 0.0000 0.0877 -0.2379 0.0376 0.0501 0.0626
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.3100 0.7486 0.5614
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WR 0.0000 0.0000 0.0314 0.0000 0.0000 0.1256 0.0000 0.0628 -0.2197
 
 
 
Table 6: Maximum likelihood estimate of transition probability matrix of the mover - stayer model in 

the (2,3) age interval 
 

 
Aaa Aa A Baa Ba B C D WR 

Aaa 0.8527 0.0012 0.1336 0.0094 0.0004 0.0003 0.0000 0.0001 0.0022
Aa 0.0233 0.7988 0.1399 0.0099 0.0004 0.0017 0.0000 0.0008 0.0250
A 0.0002 0.0135 0.8458 0.1019 0.0059 0.0051 0.0001 0.0009 0.0266
Baa 0.0000 0.0002 0.0227 0.8715 0.0379 0.0254 0.0005 0.0022 0.0396
Ba 0.0000 0.0000 0.0017 0.0099 0.8246 0.0608 0.0050 0.0106 0.0874
B 0.0000 0.0000 0.0008 0.0004 0.0661 0.8078 0.0172 0.0519 0.0557
C 0.0000 0.0000 0.0010 0.0001 0.0001 0.0039 0.8594 0.0826 0.0530
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
WR 0.0000 0.0001 0.0063 0.0005 0.0011 0.0247 0.0003 0.0147 0.9524
 
 
 
 

 
 
 
 
 
 
 
 
 



Tables 7a-c: One-year default probabilities from ratings C, B and Ba using mover - stayer and 
Markov chain models. 

 
Table 7a 

 
C-->D    
Year Markov Chain  Mover - Stayer Model Proportion of 

Stayers in C 
1 0.0000 0.0000 0.88 
2 0.1920 0.1153 0.77 
3 0.1569 0.0826 0.81 
4 0.1000 0.0737 0.81 
5 0.2118 0.1892 0.43 

 
Table 7b 

 
B-->D    
Year Markov Chain Model Mover - Stayer Model Proportion of 

Stayers in B 
1 0.0039 0.0039 0.15 
2 0.0379 0.0435 0.3 
3 0.0456 0.0519 0.07 
4 0.1006 0.1038 0.13 
5 0.1173 0.1189 0 

 
Table 7c 

 
Ba-->D    
Year Markov Chain Model Mover - Stayer Model Proportion of 

Stayers in Ba 
1 0.0000 0.0000 0.86 
2 0.0379 0.0064 0 
3 0.0075 0.0106 0 
4 0.0202 0.0214 0 
5 0.0077 0.0088 0 
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