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Abstract 

We discuss the use of robust analysis of variance (ANOVA) techniques as applied to quality 

engineering. ANOVA is the cornerstone for uncovering the effects of design factors on 

performance. Our goal is to utilize methodologies that yield similar results to standard 

methods when the underlying assumptions are satisfied, but also are relatively unaffected by 

outliers (observations that are inconsistent with the general pattern in the data). We do this by 

utilizing statistical software to implement robust ANOVA methods, which are no more 

difficult to perform than ordinary ANOVA. We study several examples to illustrate how 

using standard techniques can lead to misleading inferences about the process being 

examined, which are avoided when using a robust analysis. We further demonstrate that 

assessments of the importance of factors for quality design can be seriously compromised 

when utilizing standard methods as opposed to robust methods.  

 

Introduction 

In this article we discuss the use of robust analysis of variance (ANOVA) techniques 

as applied to quality engineering. ANOVA is the cornerstone for uncovering the effects of 

design factors on performance. In fact, even after decades of use, ANOVA forms the basis for 

discussion in the most prestigious statistical journals, leading off with the comment that 

“Analysis of variance (ANOVA) is an extremely important method in exploratory and 
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confirmatory data analysis” (Gelman, 2005, page 1). Indeed, as we shall discuss below, the 

various proposals for quality engineering all center on ANOVA methodology. 

One can hardly mention the field of quality engineering without referring to the 

seminal work of Taguchi (for discussion see Taguchi and Yokoyama, 1993a). Taguchi’s most 

significant contribution to quality engineering is his development of robust designs. He 

recognized the importance of the point that products not only be well-built and/or be of 

inherently high quality, but also that they be able to withstand non-ideal conditions. In order 

to robustify products, Taguchi suggested the use of experimental methods to select 

parameters such that the design is insensitive (robust) to variations in the production process, 

components, and in use. Many examples of this methodology and parameter design can be 

found in the literature, e.g., Taguchi and Yokoyama (1993b).  

Taguchi is credited and lauded for his work on robust design, but some of his 

suggestions on implementing the methods have received criticism from researchers both 

within and outside the quality engineering community (see, for example, Box, 1988, and 

Bisgaard, 1989). On the other hand, even his critics recognize that his techniques can be 

easily implemented without requiring knowledge of statistical methodologies. Thus, Taguchi-

based methods may very well have been adopted more often than general statistical methods 

by quality engineers. In either case, the methods utilized are based on ANOVA techniques. 

These techniques can be strongly affected by outliers, particularly since the ratio of 

observations to estimated coefficients is often small in such designs. 

The data analyzed using ANOVA methods are often collected from experiments. 

There is always the possibility that some observations may contain excessive noise. Thus, 

even though the primary interest is in understanding how noise affects performance, this must 

be tempered by the fact that excessive noise during experiments might lead to incorrect 

inferences. The term “robustness” in the statistics literature is often used to refer to methods 
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designed to be insensitive to distributional assumptions (such as normality) in general, and 

unusual observations (“outliers”) in particular. The goal is not only to devise methodologies 

that yield results that are similar to those from standard methods when the underlying 

assumptions are satisfied, but also are relatively unaffected by rogue observations that are 

inconsistent with the general pattern in the data. Robust methods have been applied in 

virtually every area of scientific investigation, including statistical process control; for 

example, Rocke (1992) developed robust versions of X and R control charts, and Stoumbos 

and Sullivan (2002) described the application of robust methods to multivariate control 

charts.  

In this paper, we discuss how the ideas of robustness can be applied in the context of 

ANOVA methods in quality engineering. We discuss this with respect to both traditional 

statistics methods and Taguchi methods. With the existence of statistical software to 

implement robust ANOVA methods, it is no more difficult to perform these analyses than it 

is to run an ordinary ANOVA, and we believe that this is an excellent way to verify that the 

experimental results have not been unduly affected by unusual observations. Confirmation 

that the standard analysis gives results that are insensitive to unusual observations leads to the 

avoidance of unnecessary experiments, since there is an additional level of certainty attached 

to the results; refutation of the standard analysis can lead to reduced costs in that the proper 

factors for control are more likely to be identified. 

 

Quality Engineering 

Although the development of robust designs is desirable, different ways of attempting 

to reach this goal have been presented in the literature. Before we discuss how these methods   

diverge, we first mention their starting point. This starting point is the set of goals (and thus 

the resulting problems) that Taguchi and collaborators suggested in order to produce robust 
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designs (see for example Taguchi, 1986, and Taguchi and Wu, 1985). These goals/problems 

are as follows:  

1. Even if products conform to specifications, the performance of the product might leave 

much to be desired, especially when in use by the consumer. Therefore, it is important to 

minimize the deviation from the target (midpoint) within the specification limits. The 

resulting problem is that we wish to minimize the deviation of one or more quality 

characteristics while adjusting its mean or other measure of centrality to a specified 

target.  

2. Since there always will be some variation of the various components within a product, we 

wish to develop a product with a design that is insensitive to variations in components. 

The resulting problem is to minimize product sensitivity to component variation. 

3. Although a product might have high quality levels, one needs to consider varying 

environmental conditions. The resulting problem is to minimize product sensitivity to 

environmental conditions.  

The point of departure is how to solve these problems. Both general ANOVA and 

Taguchi approaches involve techniques based upon experimental designs. The classical 

statistical approach suggests techniques based upon traditional statistical methods. For a 

discussion of several such techniques and references to related work, see Box (1988). On the 

other hand, Taguchi developed a more rigid set of techniques based upon what he refers to as 

signal-to-noise ratios (S/N ratios). Taguchi suggests using the signal to noise ratio as a metric 

to obtain a robust design. He suggests several different versions of S/N ratios depending on 

the various applications. In the case where a particular value is targeted and we wish to 

minimize the mean square error from the target value (“nominal is better”), it has been shown 

that the resulting S/N ratio is appropriate when the quality characteristic’s mean is 

proportional to its standard deviation (Leon, Shoemaker, and Kacker, 1987). Most 
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importantly in our context, the suggested S/N ratios may be very susceptible to outliers, as 

noted by Box (1988).  

Taguchi’s approach is similar to Gelman’s (2005) proposal to do ANOVA in a 

hierarchical manner. As Taguchi summarized, the ideal situation is one in which certain 

factors affect the variability only and others affect the mean response. If the experimental 

design can uncover that this is the case, then optimizing the S/N ratio is simple. Taguchi thus 

proposes a two-step strategy: 

1. Identify the control factors that have high S/N ratios. Select the combination that gives 

the highest S/N value.  

2. Identify the control factors that have the smallest effect on the S/N ratio and the highest 

effect on the mean value of the performance variable(s). Use these to adjust the mean 

response. 

The key point for this paper is that many of these tasks are ultimately based on 

ANOVA methods. Almost invariably, such analyses use standard (least squares) techniques, 

which are highly sensitive to unusual observations. As such, it is possible that assessments of 

the importance of factors for quality design can be seriously compromised, leading to waste 

and inefficiency. In the next section we discuss generally available approaches to 

robustifying ANOVA (that is, making it more robust). We then look at several examples to 

illustrate how using standard techniques can lead to misleading inferences about the process 

being examined, which are avoided when using a robust analysis.

 

Robust ANOVA Methodolgy  

Many techniques for identifying unusual observations and making statistical analyses 

insensitive to them have been proposed through the years, reflecting the wide range of 

situations where they apply (see, e.g., Barnett and Lewis, 1994). A prominent approach to 
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making statistical methods more robust is through the use of M-estimation, where estimates 

are derived through minimization of a robust criterion (Huber, 1964, 1973). We shall 

illustrate its application in an example utilizing experimental design. 

 Consider a situation where we are interested in “nominal is better.” The objective is to 

determinine a robust design of a product whose performance depends on several factors or 

components. In order to do so, the different factors or components are studied by observing 

the values of the response variables for various combinations of levels of the factors. Whether 

one computes an S/N ratio or studies the response values directly, one performs an ANOVA. 

In an ANOVA, the goal is to explain which factors and their associated levels are most 

explanatory of the variation in the response variable. This is performed by essentially 

regressing the response variable against indicator or dummy variables corresponding to the 

design of the experiment.  

In standard ANOVA, the underlying regression estimator is the least squares 

estimator, where parameters are chosen to minimize the regression sum of squares, 

1
[( ) / ],

n

i i
i

y xρ β σ
=

−∑  

where xi is the row vector of predictor values for the ith observation, β is the vector of 

regression parameters, σ is the standard deviation of the errors, and 2( )x xρ = . Such an 

estimate can be used to find the correct set of factors along with their appropriate levels 

(given in the design x) that correspond to a robust design. When there are no outliers in the 

data, traditional ANOVA methods work quite well. However, when there are outliers, the set 

of factors and levels that would be suggested as best or appropriate by traditional ANOVA 

methods may be very incorrect. This is because extreme and/or highly influential response 

values can easily affect the accuracy of least squares regression (which is the basis for 

traditional ANOVA). In contrast, in a robust form of ANOVA, the underlying regression 
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estimator is based on a criterion that is more resistant to outliers. There have been many 

different robust regression estimators proposed in the statistical literature. Although there are 

substantial differences between different robust estimators in terms of the technical definition 

of robustness, as well as with the difficulty of their calculation, all such estimators are 

designed to ensure that unusual observations do not adversely affect the values of the 

estimated coefficients.  M-estimation has been suggested as one approach to constructing a 

robust regression estimator.   

M-estimation is based on replacing ρ(.) with a function that is less sensitive to unusual 

observations than is the quadratic (see the discussion of LAD regression below as an 

example). Carroll (1980) suggested the application of M-estimation to ANOVA models. In 

this paper we use the implementation of M-estimation that is a part of the robust library of 

the statistical package S-PLUS (Insightful Corporation, 2002).  This implementation takes 

ρ(.) to be Tukey’s bisquare function, 

  (1) 6 4 2( ; ) ( / ) 3( / ) 3( / ) ,| |r c r c r c r c r cρ = − + ≤

and ( ; ) 1r cρ =  otherwise, where r is the residual and c is a constant chosen to achieve a 

specified level of efficiency of the estimate if the errors are normally distributed (in our case 

we specify 90% efficiency, where the efficiency is defined as the ratio of the large-sample 

variance of the least squares estimator to that of the robust estimator in the presence of 

normally distributed errors). The computational algorithm requires an initial estimate, which 

is taken to be the least absolute deviation (LAD) estimate, which takes ( ) | |x xρ =  (Portnoy 

and Koenker, 1997).  

LAD regression is itself an example of a robust M-estimator. It has been shown to be 

quite effective in the presence of fat tailed data (Sharpe, 1971) and its robustness properties 

have been studied (c.f. Giloni and Padberg, 2004). We note that in order that the resulting M-

estimator based on (1) be appropriately robust, it is important that the initial estimate is robust 
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itself. The reason is that we want the initial estimator to be able to locate or detect the 

outlying observations by ensuring that they have large absolute residuals. Although the 

reasons why LAD regression is more robust than least squares are quite technical and 

complex, one can consider the following intuition. In the case of univariate location, the LAD 

estimator determines the “center” of the data set by minimizing the sum of the absolute 

deviations from the estimate of the center, which turns out to be the median. On the other 

hand, the least squares estimator for the univariate case corresponds to the problem of 

minimizing the sum of the squared deviations from the estimate of the center, leading to the 

mean as the estimated center. It is well-known that the median is much more robust to 

outliers than the mean. Similarly, regression estimators based on minimizing the sum of 

absolute deviations are more robust than those that are based on squared deviations.  

Once LAD provides a provisional estimate that is insensitive to outliers, (1) is used to remove 

any further influence by bounding the influence of any observation with absolute residual 

greater than a cutoff (while also increasing the efficiency of the estimator compared to LAD). 

In fact, the shape of the bisquare function (1) implies that not only is the influence of unusual 

values bounded, but reduces to zero as the point becomes more extreme, thereby improving 

performance. 

Inference for the resultant models is based on a robust F-statistic, 

 ^ ^
1

2 ,
( )

n
qi pi

i
p p

r r
F

n p q
ρ ρ

σ σ=

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟= −⎢ ⎥⎜ ⎟ ⎜ ⎟− ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑  

where the subscript p indicates values for the “full” model with p parameters that includes all 

studied effects, and the subscript q indicates values for the “subset” model with q parameters 

that omits a specific effect. This is not actually an F-test, since it is referenced to a χ2 

distribution on p-q degrees of freedom. Thus, the importance of an effect is assessed by its 
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effect on the robust criterion ρ, in the same way that in standard ANOVA it is assessed by its 

effect on the (residual) sum of squares. 

We apply this robust ANOVA approach directly in the first two examples. For the 

third example, we instead suggest a method for robustifying an S/N ratio. When this robust 

S/N ratio is used as the response variable utilizing standard ANOVA, overall we have a more 

robust procedure.  

 

Examples  

Our first example comes from Adam (1987). The goal of the experiment was to eliminate 

surface defects on automobile instrument panels. Ten factors were considered potential 

causes of defects. An L12 orthogonal array was chosen to fit the ten variables (plus an error 

factor). A sample of two parts was generated for each of the 12 runs, and then visually and 

manually inspected for defects. 

Table 1 summarizes the results of the least squares and robust analyses. Effects are 

given as the estimated expected difference in defects for the second level of the factor versus 

the first level, with low levels being better. In the standard analysis, factors F (low foam shot 

weight best), G (diverter use best), and I (use of venting B best) are most important. Although 

none of the runs are flagged as unusual in the standard analysis (see the left panel of Figure 1, 

which is a plot of standardized residuals in observation order), in the robust analysis point 17 

(panel B of run 5) shows up as clearly outlying (with a response that is too high; see the right 

panel of Figure 1). The robust analysis identifies the same three factors as important, but the 

estimated effects are noticeably weaker for all three factors. The reason for this is that run 5 

included settings with low foam shot weight, foam diverter presence, and use of venting B, 

and the unusually high number of defects inflated the magnitude of the effects. 
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This can be seen in the last two columns of the table, which correspond to standard 

(least squares) ANOVA with the unusual observation omitted. The estimated effects are the 

same as those for the robust analysis on all of the data, confirming that the robust approach 

downweights the effects of the outlier. Interestingly, now factors C (high skin weight best) 

and E (high foam throughput best) are statistically significant, and have the third- and fourth-

highest estimated effects. Thus, the robust analysis allows us to not only identify an unusual 

outcome, but also recognize that other factors should be examined more closely for potential 

effects on surface defects. 

The second example is from a 26-1 fractional factorial design that was used to 

investigate the fibril formation (fibrillation) of a polyester tape when it is twisted by two 

contra-rotating air jets (Goldsmith and Boddy, 1973). The response in this case is the denier 

(the average weight per unit length of fibril), and smaller values are better. Goldsmith and 

Boddy noted that apparently the values in rows 4 and 16 were interchanged, so we analyze 

the corrected data. Table 2 summarizes the standard and robust analyses. Run 12 shows up as 

outlying in the standard analysis (see the top plot of Figure 2), but if this observation is 

removed, no further runs show up as unusual (the middle plot of Figure 2). The effects and 

associated tail probabilities are given in Table 2. 

The robust analysis on the full data set flags both runs 12 and 20. Interestingly, 

Goldsmith and Boddy (1973), using a sophisticated algorithm that sequentially tests whether 

treating each run as a missing data point changes the implications of the model, identify first 

run 12 and then run 20 as outlying, which the robust analysis is able to do in one pass. Table 

2 also gives the estimated effects and tail probabilities for the robust analysis, and least 

squares results omitting both outliers. It is apparent that the robust estimates are very similar 

to the least squares estimates when the outliers are omitted, implying that the tape thickness 

effect and tape width by type of jet interaction effect are weaker than originally thought, 

10 



while the type of jet effect and type of jet by air pressure interaction effect are stronger than 

originally thought. 

Our final example is based on the Filippone (1989) and Suh (1990) discussions of the 

application of the Taguchi method to the design of a passive network filter, as discussed in 

Chapter 9 of Bagchi (1993). A passive network filter is an electronic circuit that is used to 

record small displacements, such as that experienced by a strain gauge. The circuit has 

several components, each of whose values deviate from their nominal value. Only three of the 

components, labeled R3, R2 and C, are control factors, with the remaining six treated as noise 

factors. The circuit in this example transforms mechanical movement into a deflection of a 

galvanometer. The deflection can be represented using the formula 

3

2 3 3 2( )( ) ( )
s g

sen g s s g s

V R R
D

G R R R R R R R R R R C
=

+ + + + + 3
. 

The purpose of this experiment is to calibrate the galvanometer deflection, a “nominal is 

better” situation in the Taguchi parlance. 

The L9 orthogonal array was used to accommodate three levels of R3, R2 and C. The 

levels are given in Table 3. The remaining factors are assumed to have nominal values as 

follows: Rs 120  15% (ohms), V 15 ± ±  15% (milliVolts), Rg 98 ±  15% (ohms) and Gsen 

657.58 ±  15% (milliVolts per inch). The data without outliers were created by replicating 

each of the nine experiments (corresponding to L9) twenty-seven times. In each replication, 

the values of the four remaining factors (as well as the control factors) were sampled from a 

uniform distribution that was centered around the nominal value and had the minimum and 

maximum values as  15% of the nominal value.  ±

To create the contaminated data, we randomly chose three replications in each 

experiment corresponding to a value of C = 1,400. This could mimic the situation when some 

experimental set-up became loose during the particular experiments with this value of C. The 
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deflection produced was scaled up by a factor chosen randomly in the range zero to three 

using the uniform distribution. 

The least squares and robust analyses of the level of deflection (not presented here) 

agree that all three factors are associated with changes in expected deflection level, but the 

analyses on S/N ratio are noticeably different. This problem allows for a more direct 

approach to robustifying the standard analysis than is used for the analysis of level (described 

in the previous section). Instead of estimating the signal-to-noise ratio using the mean and 

variance of the 27 replicated responses for each experimental setting, as is done in the 

standard analysis (and which are affected by the outliers in the data), it can be estimated 

using robust estimates of location and scale. We use the median M and the median absolute 

deviation MAD (robust) for this purpose, where 

 1.4826 * | |,iMAD Median y M= −   

with the constant resulting in consistency for the standard deviation for normally distributed 

data. As discussed in the previous section, these estimators are much less sensitive to outliers 

than are the mean and standard deviation, being based on absolute values rather than squares. 

The standard S/N ratio in this “nominal is better” situation is 

2 2
10 10/ 10 log / 20 log | / |,S N X s X s= =  

so we define the robust measure of S/N to be  

 10/ 20 log | /robS N M MAD | .=  

The results of the analyses are given in Table 4. The standard (least squares) analysis 

(first column of part (a)) finds marginal evidence for an effect of factor C on S/N, with the 

highest level (1,400) associated with lower S/N. Unfortunately, this inference is misleading, 

since it is unduly affected by the outliers. The robust analysis (second column) finds no 

evidence of any factors being related to the S/N ratio, a finding confirmed by the standard 

analysis on the uncontaminated data (third column; obviously, in real data situations we 
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would not know which values are actually outliers, but this is possible for these simulated 

data). The estimated expected S/N values for each of the runs (part (b) of the table) are very 

similar for the robust analysis and the analysis on uncontaminated data, while it is clear that 

the standard analysis on the contaminated data gives incorrect answers. The standard analysis 

would prompt further investigation into factor C when it is not warranted, resulting in wasted 

effort. 

 

Discussion 

In this paper we have discussed how so-called robust analyses, which are insensitive to 

unusual observations, can be incorporated into the analysis of process design. We do not wish 

to give the impression that we believe that these robust analyses should take the place of 

standard ANOVA analyses in this context; rather, we believe that the robust analyses should 

be undertaken as an adjunct to the standard analyses. If the results are similar, that provides 

support for the appropriateness of the standard analysis, but if the results are noticeably 

different, this should prompt closer examination of the data in particular, and the experiment 

in general, to see if unusual observations have occurred.  

We see the potential for further work in this area, particularly in the S/N context. The 

median and MAD are highly resistant to outliers, but are relatively inefficient for normally-

distributed data. Using more efficient robust estimates of location (Huber, 1964) and scale 

(Lax, 1985) in the definition of S/Nrob could potentially lead to better performance when 

outliers are less extreme. An alternative approach to consider is to remove the outliers from 

the original data, and then calculate S/N in the usual way using the sample mean and 

variance; when the points are omitted in the proper fashion, this leads to highly robust and 

efficient estimates of location (Simonoff, 1984) and scale (Simonoff, 1987). Similar robust 
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versions of the suggested Taguchi “larger is better” and “smaller is better” S/N ratios also can 

be defined. 

In this paper we have focused on how response level (through robust ANOVA) and 

variability (through S/N ratios) can be studied separately, and how the corresponding 

analyses can be made more robust. A challenging statistical problem is to model level and 

variability simultaneously, but there has been some recent work on this question (see, e.g., 

Smyth, 1989, and Rigby and Stasinopoulos, 1996). It would seem that application of these 

methods to quality engineering problems (particularly “nominal is better” problems) would 

be a fruitful avenue to explore, and this would also lead to a similar goal of attempting to 

robustify the methodologies. 
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Table 1. Standard (least squares) and robust analyses of automobile instrument panel surface 

defect data. Columns give the estimated effects for each factor and the p-value of the 

test of significance of the effect. 

 
 Least  Squares Robust  Least squares without outlier 

Factor Effect P Effect p Effect p 

 

A (foam formulation) 0.02 .998 0.82 .752 0.82 .312 

B (venting A) 0.68 .543 -0.12 .180 -0.12 .857 

C (skin weight) -0.83 .460 -1.63 .578 -1.63 .050 

D (tooling aid A) 0.03 .976 0.83 .599 0.83 .236 

E (foam throughput) -0.80 .478 -1.60 .294 -1.60 .039 

F (foam shot weight) 3.47 .008 2.67 .023 2.67 .009 

G (diverter) -2.20 .067 -1.40 .018 -1.40 .117 

H (tooling aid B) -0.02 .988 -0.82 .837 -0.82 .278 

I (venting B) -2.50 .041 -1.70 .072 -1.70 .056 

J (cure time) 1.45 .209 0.65 .581 0.65 .391 

Error 0.10 .929 0.90 .298 0.90 .289 
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Table 2. Standard (least squares) and robust analyses of tape fibrillation data. Columns give 

the estimated effects for each factor and the p-value of the test of significance of the 

effect. 

 
 Least squares without 1 outlier Robust  Least squares without 2 outliers 

Factor Effect p Effect p Effect p 

 

A (tape width) 1.46 .874 1.39 .709 1.30 .271 

B (tape thickness) 4.11 <.001 3.56 .006 3.53 <.001 

C (type of jet) -5.88 <.001 -6.79 <.001 -6.87 <.001 

D (tape speed) 0.36 .828 0.64 .842 0.77 .522 

E (air pressure) -5.75 .002 -5.98 .007 -5.75 <.001 

F (tape tension) -0.91 .894 -1.04 .773 -1.07 .400 

A x C -2.96 .079 -1.96 .003 -1.81 .105 

A x E 0.79 .580 0.14 .051 -0.05 .805 

A x F -0.04 .931 -1.28 .339 -1.19 .447 

C x E 3.96 .019 4.88 .011 4.80 .001 

C x F 0.79 .643 1.87 .180 1.94 .141 

E x F 1.04 .516 0.34 .799 0.20 .871 
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Table 3. Treatment levels for simulated passive network filter data experiment. 

 

Treatment Level 

 1 2 3 

R3 (ohms) 20 50,000 100,000 

R2 (ohms) 0.01 265 525 

C (microfarad, μ) 1,400 815 231 
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Table 4. Results of S/N analyses for simulated passive network filter data. 

(a) ANOVA tables. 

 

Effect Standard p Robust p Standard (no outliers) p

 

R3 .438 .348 .700 

R2 .838 .297 .550 

C .079 .207 .492 

 

(b) Estimates of expected S/N ratio for each run. 

 

R3 R2 C Standard Robust Standard (no outliers) 

 

20 0.01 1400 7.25 12.87 16.58 
50000 265 815 13.61 16.74 16.78 
100000 525 231 12.93 18.80 18.56 

20 265 231 14.83 17.54 17.01 
50000 525 1400 7.37 15.39 17.15 
100000 0.01 815 11.59 15.48 17.76 

20 525 815 15.31 15.05 17.42 
50000 0.01 231 13.75 16.56 17.85 
100000 265 1400 4.73 16.80 16.65 
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Figure 1. Plots of standardized residuals by observation order for automobile instrument 

panel surface defect data. 
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Figure 2. Plots of standardized residuals by observation order for fibrillation data. 
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Least squares omitting run 12 
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Robust analysis on full data 
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