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Abstract

In this paper we investigate the effect of presmoothing on model selection. Christóbal
Christóbal et al. (1987) showed the beneficial effect of presmoothing for estimating
the parameters in a linear regression model. Here, in a regression setting, we show
that smoothing the response data prior to model selection by Akaike’s Information
Criterion can lead to an improved selection procedure. The bootstrap is used to
control the magnitude of the random error structure in the smoothed data. The
effect of presmoothing on model selection is shown in simulations. The method is
illustrated in a variety of settings, including the selection of the best fractional
polynomial in a generalized linear model.
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1 Introduction

Based on observations (xi, yi), i = 1, ..., n, consider the regression model

y ∼ f(y; θ,η), (1)

where

y = (y1, . . . , yn)T , θ = (θ(x1), . . . , θ(xn))T , η = (η(x1), . . . , η(xn))T .

∗ Corresponding author. Tel. +32-11-26-8247; fax: +32-11-26-8299
Email address: marc.aerts@uhasselt.be (Marc Aerts).

Preprint submitted to Elsevier Science 21 January 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by New York University Faculty Digital Archive

https://core.ac.uk/display/43021791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Here f denotes the joint density of y (given x), θ the parameter of interest
and η a nuisance parameter. We also assume that θ is in some way related to
E(y), more precisely we assume that there exists a function g such that

E(y) = g(θ; x).

The aim is to select an optimal or a few good models amongst a set of candi-
date models. Several model selection criteria have been developed, in different
settings and with different types of complexities in data and models (see e.g.
Akaike, 1973; Takeuchi, 1976; Schwarz, 1978; Spiegelhalter et al., 2002; Pan,
2001a,b; Hens et al., 2006), to accomplish this.

Assume we start from a collection of models, in particular we consider models
of the form (1) . The well-known AIC criterion (Akaike, 1973)

AIC = −2L(y; θ̂, η̂) + 2K, (2)

with L(y; θ,η) denoting the loglikelihood of the model and (θ̂, η̂) the maxi-
mum likelihood (ML) estimator of (θ,η), originates from information theory.
Here K stands for the total number of estimated parameters, nuisance param-
eters included. The second term in the AIC formula is often interpreted as a
penalization for complexity. The AIC was designed to be an approximately
unbiased estimator of the expected Kullback-Leibler (KL) information. In gen-
eral, the KL information between model f0 (denoting the ‘true’ model) and
model f (the approximating model (1)) is defined as (ignoring an ‘historical’
factor 2)

I(f0, f) = E

[
log

{
f0(y)

f(y; θ,η)

}]

(expectation with respect to the true model) and can be interpreted as the
information loss using f to approximate f0, or as the distance from f0 to f .
This KL distance is not a metric, but it has the property that I(f0, f) ≥ 0
with equality only if f ≡ f0.

The basic idea of the presmoothed AIC is to replace the observed value y

by the estimated value yS = Ê(y) = ĝ(x; λ) using a nonparametric regres-
sion model with smoothing parameter λ (e.g. local polynomials, penalized
regression splines, and so on). Next, the ‘smoothed’ AIC is calculated for all
candidate models using the “pseudo-data” (x,yS)

AICS = −2LS(yS; θ̂S, η̂S) + 2K, (3)

with (θ̂S, η̂S) the MLE’s of (θ,η) based on yS = (yS
1 , . . . , yS

n )T . These pres-
moothed AIC values are then used to select the final model, or to compute
an averaged model (Burnham and Anderson, 2002). The likelihood function
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LS might differ from the likelihood of the original data. The rationale of this
method is as follows: replacing the data by an estimated curve filters out most
of the error structure and more clearly exhibits the optimal parametric mean
structure, as a function of x. It is clear of course that by presmoothing focus is
on model selection of the mean structure, so on the main parameter θ. There
is some analogy with the beneficial effect of presmoothing for linear regression
estimators as shown in Christóbal Christóbal et al. (1987), Faraldo Roca and
González Manteiga (1987) and Janssen et al. (2001).

Presmoothing can also be motivated in the following way. It is well-known that
model selection is a highly variable process, in the sense that small perturba-
tions in the data can lead to very different models being chosen. Ye (1998)
showed that the cost of model selection (in the sense of overestimation of the
strength of the fit of the chosen model) is directly related to stability of the
model selection procedure when the data are perturbed, which is itself related
to the strength of the structure in the data relative to the noise. The goal of
presmoothing is to effectively increase the signal in the data relative to the
noise by using estimated curve values as the response data, thereby increasing
the stability of the model selection when the data are perturbed, and reducing
the cost of model selection.

The paper is organized as follows. In Section 2 we consider the basic imple-
mentation of the method in the setting of linear regression. Simulations illus-
trate the performance of the basic method. An interesting application is the
selection of the optimal fractional polynomial (Royston and Altman, 1994).
Section 3 highlights some shortcomings and complications of the basic method.
A bootstrap approach is proposed to solve these difficulties. The more general
setting of categorical response data and generalized linear models is studied in
Section 4. This smoothed latent variable approach is illustrated on a example
of age stratified seroprevalence data on Hepatitis A. A final discussion section
indicates some possible extensions and topics for further research.

2 Presmoothing Data Prior to Model Selection

In this section we focus on the smoothed AIC criterion (3) in the setting of
linear regression with normal error structure.
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2.1 Akaike Information Criterion Based on Presmoothed Data

Consider classical regression and suppose data are generated by a true model

y
f0∼ Nn(µ0, σ

2
0In),

where µ0 = (µ0(1), . . . , µ0(n))T , Nn denotes an n-variate normal distribution
and In the n× n identity matrix . Consider the approximating, or candidate,
family of models

y
f∼ Nn(µ(θ), σ2In),

where µ(θ) = (µ(x1; θ), , . . . , µ(xn; θ))T .

For this setting, E{log f(y; θ,η)} can be written as (φ denoting the univariate
normal density)

E{
n∑

i=1

log φ(yi; µ(xi), σ
2)} = −n

2
log(2πσ2)−E

[
{y − µ(θ)}T{y − µ(θ)}

]
/(2σ2).

Using an analogous expression for E{log f0(y)}, it is easy to verify that

I(f0, f) =
n

2
log(σ2/σ2

0) +
n

2

{
σ2

0

σ2
− 1

}
+ {µ0 − µ(θ)}T{µ0 − µ(θ)}/(2σ2).(4)

It follows that this measure is minimized as a function of σ2 and µ(θ) (and
equals 0) by taking σ2 = σ2

0 and µ(θ) = µ0.

Now, let us introduce presmoothing based on a linear smoother. Define

yS = Sλy,

with Sλ the smoother matrix. In the case that rank(Sλ) = n, we have that
(see e.g. Chapter 6 in Ruppert et al., 2003)

yS f0∼ Nn(Sλµ0, σ
2
0SλS

T
λ ).

Approximating this smoothed ‘true’ model fS
0 by the smoothed approximate

model fS

yS fS∼ Nn(Sλµ(θ), σ2SλS
T
λ ),

would lead to exactly the same KL distance I(f0, f) = I(fS
0 , fS). This is not

unexpected since a linear transformation of the type Ay with y multivariate
normal and with A of rank n results again in multivariate normal data with
accordingly transformed mean and covariance structure. In general, however,
Sλ is singular with rank close to sample size n for so-called full-rank smoothers
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and with rank considerably less than n for low-rank smoothers (see e.g. Rup-
pert et al., 2003). Consequently the multivariate distribution of yS is degen-
erate (at least one component of yS can be written as a linear combination of
the others).

Therefore we consider, as a simplification, a first basic implementation in
which we ignore the dependence structure. We work with an ‘independence
true model’ f̃0

yS f̃0' Nn(Sλµ0, σ
2
0Dλ),

and its corresponding approximate model f̃S

yS f̃S

' Nn(Sλµ(θ), σ2Dλ),

with Dλ = diag(s2
1, . . . , s

2
n) where s2

i is the ith diagonal element of SλS
T
λ .

Some straightforward calculations show that I(f̃0, f̃
S) equals

n

2
log(σ2/σ2

0) +
n

2

{
σ2

0

σ2
− 1

}
+ {µ0 − µ(θ)}T ST

λ D−1
λ Sλ{µ0 − µ(θ)}/(2σ2).

First of all note that I(f̃0, f̃
S) ≥ 0 with equality only if µ0 = µ(θ) and

σ2
0 = σ2, so only if f ≡ f0. Assuming that both bias terms ‖ (Sλ − In)µ0 ‖2

and ‖ (Sλ−In)µ(θ) ‖2 are negligible, the only difference with I(f0, f) as shown
in (4), is the diagonal matrix D−1

λ . Expressing distance as the square root of a
positive definite quadratic form allows for a geometrical interpretation based
on the eigenvalues s−2

i and eigenvectors of D−1
λ . The half-length from the origin

µ0 = µ(θ) on the hyperellipsoid, defined by {µ0−µ(θ)}T D−1
λ {µ0−µ(θ)}, in

the direction of the ith observation is equal to si
∑n

j=1((µ0(j)−µ(xj; θ))/sj)
2.

For instance, in the case of a single covariate and using a local linear smoother
with bandwidth hn (the λ in our notation), it asymptotically holds that s2

i ∼
Ci/nh for some constants Ci, leading to a half-length of the order

√
nhn.

An optimal bandwidth hn ∼ n−1/5 (see e.g. formula (5.13) on page 152 in
Simonoff, 1996) shows that the half-lengths grow with n, showing the way in
which this distance measure magnifies the difference between the true model
f0 and the approximating model f .

Ignoring the bias of the smoother, as in the discussion above, we further sim-
plify the smoothed AIC criterion (3) by taking LS the likelihood associated
with the model

yS f̃S

' Nn(µ(θ), σ2In), (5)

resulting in

AICS = n log(σ̂2
S) + 2K, (6)
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where

σ̂2
S =

n∑

i=1

(yS
i − µ(xi; θ̂S))2/n

with θ̂S the ML estimator for θ using the likelihood (5). That is, model se-
lection proceeds by first fitting a nonparametric smoothed model to the data,
and then the usual AIC measure based on the resultant fitted values is used
to compare models.

In the next section we study this basic smoothed AIC criterion. It is based
on a substantially simplified normal likelihood. Note however that even if the
response data are not normally distributed, yS

i , for each i = 1, . . . , n, will be
approximately normally distributed for most smoothers.

In Section 3 we reconsider the simplifications made above, and propose a
bootstrap-based approach to overcome shortcomings related to them.

2.2 Simulations

We consider two scenarios: in scenario A the family of candidate models con-
sists of models with linear, quadratic and interaction terms in two explanatory
variables; in scenario B the family of candidate models is the set of fractional
polynomials (Royston and Altman, 1994) in a regression setting.

2.3 Scenario A

In a first scenario, uniform [0, 10] x-values were generated, together with (inde-
pendently) Bernoulli(0.5) z-values. Given x and z, response y-values were gen-
erated from a normal distribution with mean µ0(x, z) and variance σ2

0. Samples
{(xi, zi, yi), i = 1, . . . , n} were generated with fixed design {xi, zi, i = 1 . . . , n}.
The candidate set of models consists of all submodels of

µ(x, z) = β0 + β1x + β2x
2 + β3z + β4xz.

Four presmoothing strategies were considered based on:

(1) a penalized regression spline y ∼ s(x), with the level of smoothing chosen
using generalized cross-validation (Eilers and Marx, 1996);

(2) a GAM model with penalized splines built from y ∼ s(x) + z + z ∗ s(x)
according to Wood (2002); this approach is a “middle way” between the
GAM framework based on backfitting (being flexible and efficient, but fac-
ing difficulties when it comes to model selection and inference) and the com-
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putationally very expensive approach of the generalized spline smoothers of
Gu and Wahba (1991);

(3) a GAM model with penalized splines built from y ∼ s(x)+z+z ∗s(x) using
the corrected AIC-criterion as proposed by Hurvich et al. (1998), and

(4) using a GAM model y ∼ s(x) + z + z ∗ s(x) with penalized splines without
model building.

Note that since all of these methods include only a smooth curve for x, s(x),
none of the model building techniques associated with them address the ques-
tion of interest here; that is, whether a linear or quadratic term in x is neces-
sary.

When evaluating the properties of model selection criteria, an important dis-
tinction is between the situation where the ‘true’ model is among the candidate
models, and the situation where it is not (McQuarrie and Tsai, 1998). AIC is
known to be an inconsistent model selection criterion (a consistent model se-
lection criterion is one that, with probability approaching 1 as the sample size
increases, chooses the ‘true’ model, when it is among the candidate models).
It is, however, asymptotically efficient (an efficient model selection criterion
is one that chooses the model with prediction error asymptotically indistin-
guishable from that of the best model among all candidate models, when the
‘true’ model is not among the candidate models), which is in most cases to
be preferred (since in practice the true model is unknown and typically too
complex to be part of the candidate set of models, and a predictive criterion
is natural in the regression context). Theoretically, however, it is worthwhile
to consider both situations where the generating model is part of the set of
candidate models and where it is not. Therefore, we consider two different
mean structures for the normal distribution from which response y-values are
generated, µ1

0(x, z) = −3 + 3x + 5x2 and µ2
0(x, z) = −3 − 3 log(x + 1) + 5x2,

while we take σ0 = exp(5).

For µ1
0(x, z), Table 1 shows the selection results for 1000 simulated samples

of size n = 50. Strategy (1) outperforms all others. The true model with x-
and x2-effects is chosen much more often than based on the original data.
Strategy (1) assumes no z-effect (as in the generating model), an assumption
that makes model building unnecessary, but which has to be checked in real
data analyses. But strategies (2) and (3) also lead to an increased selection
of the true model. Model selection after smoothing without model building
(strategy 4), however, results in the selection of models that are far too com-
plex. This already illustrates a crucial point. Replacing the original responses
with presmoothed data, without any careful consideration or model building,
might falsely turn very small effects as produced by the smoother into relevant
effects (since noise has essentially been removed). We will come back to this
issue in Section 3.
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Table 1
Scenario A, µ1

0(x, z): the number of times each model has been selected, using the
original data and presmoothed data from the four smoothing strategies.

1 x z x, x2 x, z x, z, x, x2, x, x2,

xz z z, xz

Original Data 0 259 0 511 44 35 93 58

(1) 0 14 0 888 3 0 63 32

(2) 0 10 0 752 5 7 110 116

(3) 0 15 0 663 8 16 155 143

(4) 0 5 0 47 7 26 99 816

Table 2
Scenario A, µ1

0(x, z): MASE and bias and variance decomposition, using the original
data and presmoothed data from the four smoothing strategies.

MASE bias2 var

Original Data 1942.41 27.63 1914.79

(1) 1295.03 2.41 1292.62

(2) 1573.91 2.69 1571.22

(3) 1646.58 2.69 1643.90

(4) 2108.53 2.68 2105.85

Correct 1230.81 2.38 1228.44

Of course, selection of (too) complicated models is not disadvantageous per se.
Therefore, we also compared the different strategies by looking at the mean
averaged squared error (MASE), again based on 1000 simulated samples of
size n = 50,

MASE =
1

1000

1000∑

r=1

{
1

n

n∑

i=1

(µ̂(r)(xi, zi)− µ0(xi, zi))
2

}
.

Here, µ̂(r)(xi, zi) denotes the fitted value within simulation run r and µ0(xi, zi)
the true generating model. In Table 2, MASE-values together with bias and
variance decomposition confirm the performance of the different methods.
There is a large decrease in bias and applying methods (1), (2) and (3) re-
duces the variability, while using method (4) results in an increased variability
compared to model selection based on the original data. Different simulation
settings (different sample sizes n, different values of σ0) show essentially the
same results.

In a second setting, we took µ2
0(x, z), i.e. the generating model is not included
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in the set of candidate models. Figure 1 shows MASE results as a function of
the sample size n ∈ {50, 100, 150, 200}, and for σ0 ∈ {exp(5), exp(6), exp(7)}.
This figure shows that strategy (1) (indicated as gam(x) in the figure) is per-
forming very well, especially for σ0 small or n large. It gets close to the MASE
of the (estimated) true model µ2

0(x, z). Model selection based on presmoothed
data according to strategy (2) and (3) is better than based on the original
data, except when the variance is very large. If the sample size gets large, all
methods seem to converge. Strategy (4) is no longer included.

Fig. 1. Scenario A, µ2
0(x, z): MASE-values based on model selection using AIC for the

original data, the gam(x)-presmoothed data (strategy 1), the Wood-presmoothed
data (strategy 2), the AICc-presmoothed data (strategy 3) and the correct model
µ2

0(x, z). The horizontal axis of each plot indexes sample size n, while σ0 increases
from exp(5) (left) to exp(6) (middle) to exp(7) (right panel).

2.4 Scenario B

In a second scenario we generate data according to the same setting as Sce-
nario A with µ1

0(x, z), but now the family of candidate models is the family
of fractional polynomials of degree 1 and 2 within the recommended grid
{−2,−1,−0.5, 0, 0.5, 1, 2, 3} (Royston and Altman, 1994) . Note that the true
model is a fractional polynomial of degree 2 with p1 = 1 and p2 = 2. Since
the candidate models here include no z-effect, only presmoothing strategy (1)
was applied.
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Table 3
Scenario B, µ1

0(x, z): selected powers within the family of fractional polynomials,
using the AIC-criterion (left) and AICS-criterion (right).

AIC AICS

p1\p2 0.0 0.5 1.0 2.0 3.0 p1\p2 0.5 1.0 2.0 3.0

-2.0 1 4 28 134 87 -2.0 7 7

-1.0 2 3 10 29 36 -1.0 4 9 8

-0.5 2 13 14 11 39 -0.5 2 1 16 19

0.0 11 14 10 36 0.0 7 11 28 24

0.5 29 42 15 31 0.5 11 26 68 43

1.0 49 16 31 1.0 48 297 159

2.0 12 8 2.0 40 45

3.0 118 3.0 120

Table 3 shows an overview of the powers chosen by AIC and AICS. Powers not
chosen by any of the selection criteria were omitted from the table. All frac-
tional polynomials selected using the AIC-and AICS-criterion are of degree 2.
It can be seen that the generating model, which is contained in the set of the
candidate models (p1, p2) = (1, 2), was chosen 16 times by the AIC-criterion
while it was chosen 297 times using AICS. Moreover there is a clear concen-
tration around the true combination (p1, p2) = (1, 2) for AICS, whereas AIC
leads to a larger spread over different and typically lower powers. Many other
simulations with different true functions were performed, but they essentially
showed the same results.

We also compared the MASE of the best models selected by AICS with the
ones selected by AIC, by looking at the ratio MASE(AIC)/MASE(AICS). In
about 85%, these ratios are larger than 1, indicating an improved model choice
when using the AICS-criterion.

Figure 2 shows a smoothed density plot of the ratio MASE(AIC)/MASE(AICS)
for similar simulations (1000 runs) but now using the generating model µ2

0(x, z).
Again, a large majority (84%) of the ratios is larger than 1. The smallest value
was 0.58, the largest 204.33, again indicating that the models selected by pres-
moothing outperform the ones selected by original data.

The main conclusions of these simulations on the basic presmoothing method,
under Scenario A and B, can be summarized as follows. The method clearly
shows some potential to improve model selection in a regression setting. This
improvement is most apparent in the case where there are only one or two
explanatory variables and the family of candidate models is a very ‘rich family’
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Fig. 2. Scenario B, µ2
0(x, z): Smooth density plot of the fraction of MASE-values

according to the model chosen on the original data (ASEc) and the model chosen
on the smoothed data (ASEs).

(like the family of fractional polynomials). In the case where there are many
explanatory variables and the family of candidate models does not contain
enough models to allow flexible curvatures, the preliminary smoothing has
to be guided carefully, and some model building is necessary. Finally, it is
obvious that by focusing on the mean structure, the method cannot be used
to compare models with e.g. the same mean structure but different variance
structures.

3 Presmoothing and Bootstrapping

The basic smoothed AIC approach (6) treats the smoothed data as indepen-
dent, homoscedastic normal data, hereby ignoring that i) Sλ is singular, ii)
yS

i , i = 1, . . . , n, are not independent, iii) yS
i , i = 1, . . . , n, do not have the

same variance and iv) a smoother is biased. In the following section, we pro-
pose to generate new bootstrap samples, conditional on the original sample,
and to apply AIC on these bootstrap samples to overcome these limitations.
We first restrict attention to the case of continuous response. Section 4 treats
the case of categorical outcomes.
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3.1 A Bootstrap Approach

Consider the additive location model

y = g(θ; x) + ε, (7)

and the residuals resulting from an estimated smooth fit (with smoother ma-
trix Sλ)

e = y − Sλy.

Define new observations, centered at the smooth fit, together with “controlled”
error, using a constant 0 ≤ c ≤ 1,

ỹS(c) = Sλy + c e. (8)

Equation (8) mimics the location model (7) and allows one to control the
signal-to-noise ratio by the constant c. Both terms, the systematic component
Sλy and the error component c e have distributional properties driven by that
of the original sample. The bootstrap allows us to disconnect this relation, thus
avoiding most of the drawbacks of the basic smoothed AIC approach. If the
original error ε has an i.i.d. structure, a nonparametric bootstrap approach
can be defined as

y∗S(c) = Sλy + c e∗, (9)

using resampled residuals e∗ = (e∗1, . . . , e
∗
n)T , taking randomly with replace-

ment from the set {e1, . . . , en}.

Once bootstrap data y∗S(c) are generated, model selection can be based on the
AIC-criterion (mimicking (2))

AIC∗ = −2L(y∗S(c); θ̂
∗
, η̂∗) + 2K,

with (θ̂
∗
, η̂∗) the MLE’s of (θ, η) based on y∗S(c) and using the log-likelihood

L of the original data y.

Conditional on the original sample these new smoothed and bootstrapped data
y∗S(c) reflect approximately i) the right location, by consistency of Sλy (see e.g.
Ruppert et al., 2003), and ii) the right i.i.d. error structure, by consistency of
the nonparametric bootstrap (see e.g. Efron and Tibshirani, 1998). By taking
0 < c < 1, one can control the level of error and consequently, to some extent,
the quality of the data in order to select the most appropriate model.
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Figure 3 illustrates this intuitively appealing idea. The black solid line is the
true generating function (a fitted spline model). The dashed line is the corre-
sponding estimated spline model based on the original data, shown in the left
upper panel. The right upper panel and the lower left and right panels show
bootstrap data generated according to (9) with c taking decreasing values 1,
0.5 and 0.25. The idea is that the data shown in the lower panels, according
to smaller values of c, more clearly show the true underlying mean function.

Alternatively other bootstrap based error structures can be used, e.g. based
on the parametric bootstrap, e.g. for normal i.i.d. errors

e∗ ∼ Nn(0, σ̂2
SIn),

where

σ̂2
S =

1

n
yT (I − Sλ)

T (I − Sλ)y,

the variance estimator based on the smoother. The parametric bootstrap also
easily allows more complicated (e.g. correlated) error structures.

An interesting question is how to determine an optimal value for the parameter
c in (9). In the next section we try to get more insight in the role of this
parameter c.

3.2 Choice of error-control parameter c

For simplicity, we again focus on classical regression (with normal error struc-
ture). Reconsider identity (4), and assume a ‘true’ model µ0 = X0θ0 for some
design matrix X0 and an approximating model µ(θ) = Xθ for some typi-
cally different design matrix X. Consider the true values θ0 and σ2

0 as fixed.
Minimizing the right-hand side of (4) as a function of θ and σ2 leads to the
minimum

min
f

I(f, f0) =
n

2
log

(
1 +

(X0θ0)
T (I −H)X0θ0

nσ2
0

)
,

attained at

θ = (XT X)−1XT X0θ0,

and

σ2 = σ2
0 +

(X0θ0)
T (I −H)X0θ0

n
,

where H = X(XT X)−1XT is the well-known hat matrix associated with ma-
trix X. Note that if X = X0 (so the approximating model equals the true
model), then θ = θ0 and (I −H)X0 reduces to the zero-matrix and σ2 = σ2

0

and minf I(f, f0) = 0, as expected. Note also that if the approximating model
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Fig. 3. Simulated data according to bootstrap model (9): original data (open circles,
left upper panel) and smoothed data with c ∈ {1, 0.5, 0.25} (stars, right upper and
left and right lower panels). The solid curve is the true regression function; the
dashed curve is the spline fit to the original data.

is not equal (or does not contain) the true model, the scale on which the dis-
tance minf I(f, f0) is measured depends on the value of σ2

0. If σ2
0 → ∞, then

minf I(f, f0) → 0, even if f is a wrong model. In other words, using the AIC
estimate for the KL distance, a large value of σ2

0 will make it more difficult
to detect differences between models. Small values of σ2

0 however magnify the
distance scale and will allow AIC, for a fixed sample size n, to more easily se-
lect a good model. This confirms the intuition that for data with little noise,
better suited models can be selected, as compared to high noise data. With
respect to the choice of c in (9), this seems to suggest taking c small.

Conditional on y, we can mimic these considerations, but now based on a
‘true’ generating (bootstrap) model

y∗S(c)|y f∗0∼ Nn(Sλy, c2σ̂2
SIn),

and an approximating model (the same as on the original data)

y∗S(c)|y f∗∼ Nn(Xθ∗, σ∗2In).

Similar calculations show that the KL distance (conditional on y) attains a
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minimum

min
f∗

I(f ∗, f ∗0 ) =
n

2
log

(
1 +

(Sλy)T (I −H)Sλy

nc2σ̂2
S

)
,

attained at
θ∗ = (XT X)−1XT Sλy,

and

σ∗2 = c2σ̂2
S +

(Sλy)T (I −H)Sλy

n
,

with H the same hat matrix as before.

Of course, here minf∗ I(f ∗, f ∗0 ) depends on y and hence is a random variable. A
crucial point is that now minf∗ I(f ∗, f ∗0 ) > 0, even if one uses the true model for
f ∗ (i.e. X = X0). Indeed since a smoother has finite sample bias, it holds that
Sλy 6= X0θ0 with probability one, and consequently (Sλy)T (I − H)Sλy 6= 0
with probability one.

Comparing minf∗ I(f ∗, f ∗0 ) and minf I(f, f0), we see that this bias, the differ-
ence between Sλy and X0θ0, plays a major role. Compared to a (relatively)
simple true model (such as X0θ0 with θ0 of limited dimension), the smooth
fit Sλy may expose more local and small curvatures and complexities. Since
the bootstrap approach (9) treats model f ∗0 with Sλy as true model, small
values of c would, as discussed above, magnify the distance-scale to an ex-
tent that these little and local complexities are getting relevant, when using
the estimate AIC∗ of minf∗ I(f ∗, f ∗0 ). This latter consideration indicates one
should not take c too small, in order to downplay the bias of the smoother.
Moreover it indicates that ideally, c depends on the original sample y, and it
should reflect the bias Sλy−X0θ0. The smaller the bias, the smaller c should
be taken. Since the bias is unknown and hard to estimate, this indicates that
finding the optimal c is not straightforward. One option is to conduct a kind
of sensitivity analysis, by showing how the selection of models change with
the value of c ranging on a grid from 0 to 1. In case the sample size allows,
one could split the sample in two subsamples: a learning sample to select and
build the models and a test sample to select the optimal value of c, minimizing
the prediction error. This method will be illustrated in Section 4.2.

The simulations in the next section illustrate how the smoothed data with
bootstrap error lead to an improved selection of models and give some further
insights in the optimal choice of c.

3.3 Simulations

We generated 100 samples of size n = 100. As in Section 2.3, uniform[0,10] x-
values were generated, together with (independently) Bernoulli(0.5) z-values.
Given x and z, response y-values were generated from the normal distribution
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Table 4
Spline model µ0(x, z) as true model: the number of times each model has been
selected, using the original data and presmoothed data with controlled level of
bootstrap error.

c 1 x z x, z x, x2 x, z x, x2 x, x2 x, x2 x, x2 x, x2 x, x2 x, x2

xz z x3 z, xz x3, z z, xz x3, z x3, z

x2z xz xz, x2z

Original Sample

23 14 13 3 28 1 1 8 1 1 5 0 2

Smoothed Sample + c× Parametric Bootstrap Errors

0 1 1 0 0 11 0 1 49 0 4 4 5 24

10−6 1 5 0 1 13 1 1 45 1 4 3 4 21

0.001 1 5 0 1 14 1 1 46 1 4 3 4 19

0.01 1 5 0 1 16 1 1 50 2 7 3 2 11

0.1 1 6 0 1 23 1 3 45 3 8 2 1 6

0.2 1 6 0 1 27 1 5 39 3 8 2 1 6

0.5 5 9 2 3 30 3 3 29 6 2 3 1 4

0.8 13 11 2 2 31 6 3 18 6 2 3 0 3

0.9 17 11 1 2 30 6 2 16 6 2 4 0 3

1 20 13 2 1 27 7 2 13 6 2 4 0 3

with standard deviation σ0 = exp(5) and with true mean function µ0(x, z)
equal to a particular nonlinear function, namely the solid line in Figure 3
corresponding to a fitted spline model. Uniform[0,10] x-values were generated,
together with (independently) Bernoulli(0.5) z-values. So, the left upper panel
of Figure 3 shows a typical data set, and the other panels show smoothed data
for three different values of c, as they are used in the simulations.

As candidate models we consider a family of 13 models, all submodels of the
model with terms x, x2, x3, z, xz, x2z. Given the true model is highly nonlinear
without z-effect, the cubic model with x, x2 and x3 terms can be considered
as the best model. Table 4 shows how often each of the different models have
been chosen, based on the original data (top line) and based on smoothed
data according to model (9) using presmoothing strategy (3) and with the
parametric bootstrap error (3.1), for different values of c. Model selection
based on the original data seems to lead often to too simple models (the
constant model, the model with only a linear x effect or a spurious z effect).
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Fig. 4. Spline model µ0(x, z) as true model: relative squared bias, variance and
MASE-values based on model selection using presmoothed data according to strat-
egy 1 (bold lines) and strategy 3 (normal lines) and using fixed error (solid lines)
and bootstrap error, nonparametrically (dotted lines) and parametrically (dashed
lines). The horizontal axes indicate the level c of error structure.

The same happens for the smoothed AICS with c close to 1. This is expected
because the same level of error as in the original data is added to the mean
structure. Choices of c close to 0, coinciding with the basic implementation
discussed in Section 2, leads to the selection of overly complicated models with
spurious z effects (as already noticed in Section 2). When c increases, there is a
clear shift to simpler models, with overall dominance of the best cubic model.
So, based on Table 4, model selection is optimal and stable for c-values within
the range [0.1, 0.2]. Similar results were found for the nonparametric approach
(9).

Figure 4 shows results of squared bias, variance and MASE using the smoothed
AICS, relative to the corresponding values when using AIC based on the orig-
inal data. Whereas Table 4 only shows results for strategy (3) as discussed in
Section 2 and the parametric bootstrap, Figure 4 also includes results for strat-
egy (1) (smoothed), strategy (3) (MB smoothed), for the implementation with
fixed residuals (8) (indicated by +error) and the nonparametric and paramet-
ric bootstrap implementation (indicated by +NB and +PB respectively). The
figures show that especially the variance is reduced by using AICS. Since the
normal distribution is the right one, there is not much difference between the
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nonparametric and parametric bootstrap approach. Using the correct univari-
ate smoother leads to better results than when strategy (3) is used. According
to the short dashed curve (the setting of Table 4 in the right panel: relative
MASE), the choice c = 0.2 leads to the best results.

4 Latent Variable Approach for Categorical Data

In this section we discuss the implementation of presmoothing and bootstrap-
ping in the case of categorical outcomes. Of course, in this situation the ad-
ditive structure of mean plus error structure no longer holds. The approach
of categorical outcomes generated by a latent continuous outcome, however,
allows us to implement a similar idea as in the previous section.

4.1 Smoothed Latent Variable

Consider a categorical variable y with ordered categories 1, . . . , J , and a latent
continuous variable

y
L
− µ(x) ∼ G,

such that

y = j if αj−1 < y
L
≤ αj,

for cutpoints

−∞ = α0 < α1 < . . . < αJ = ∞.

Then the cumulative distribution of y can be written in terms of the latent
distribution G as

P (y ≤ j|x) = P (y
L
≤ αj|x) = G(αj − µ(x)).

Different choices of the latent distribution G correspond to different general-
ized logit models. Taking G = Φ (the standard normal distribution function)
leads to the cumulative probit model, taking G the logistic distribution to the
proportional odds model, and taking G(z) = 1− exp(− exp(z)) coincides with
the proportional hazards model. For more details, see Section 7.2 in Agresti
(2002) or Section 10.2 in Simonoff (2003).

The analogue of the presmoothing and bootstrap approach (9) using the latent
distribution is as follows. Fit the model G−1(P (y ≤ j|x)) = αj − µ(x) using
a smoother (e.g. spline), leading to µ̂S(x). Next, generate bootstrap values of
the latent variable, using the parametric bootstrap

y∗
L,i

(c) = µ̂S(xi) + ce∗i , (10)
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with

e∗i ∼ G, (11)

and, as before, some value of 0 < c < 1. Finally, select the parametric model
µ(x, θ) using AIC on these smoothed and bootstrapped data y∗

L,i
(c) and taking

density g (corresponding to G) in the construction of the log likelihood. Use
as a final model

G−1(P (y ≤ j|x)) = αj − µ(x, θ). (12)

Once again a sensitivity analysis can show the dependence on c, and in case a
test sample is available, this can be used to select an optimal value of c (min-
imizing the prediction error). In the next section this approach is illustrated
to select the best fractional polynomial to fit Hepatitis A seroprevalence data.

4.2 Data Example: Hepatitis A Seroprevalence

Hepatitis A virus (HAV) is mainly (> 95 %) transmitted by the feco-oral route
(e.g. through food and water polluted by faeces containing the virus). Trans-
mission is facilitated by poor hygienic living and housing conditions, and is
particularly common in developing countries (see e.g. Hadler, 1991; Beutels et
al., 1997). In these countries HAV is mainly a childhood infection, whereas in
industrial countries HAV infection occurs during adulthood as well as child-
hood. In the poorest developing countries, the pattern of high endemicity is
characterized by rapid infection at a very young age; over 90% of the children
become infected by the age of 5. In 1993 and early 1994 , a study of the preva-
lence of HAV antibodies was conducted in the Flemish community in Belgium.
The purpose of this study was to obtain data on the prevalence of hepatitis
A in Flanders and to analyze the epidemiological pattern of HAV. During the
study period serum samples were collected from hospitals (non-infectious dis-
ease wards) in the Flemish community. The dataset contains the serological
results of 3161 Belgian individuals, i.e. a binary response y = 1 if infected
(and 0 otherwise); together with their age a in years, ranging from 0.5 to 92.5
years. The study group was similar in composition to the Flemish population
in terms of age. Here we focus on Belgian males, resulting in 1646 observa-
tions, which we consider, for illustrative purposes, as our population, and a
random subset of size 200 as our random sample (RS). This sample of size 200
is used to select the model by both methods, with and without presmoothing,
and the remaining 1446 observations form the test sample (TS) that will be
used to compute the prediction errors (number of misclassified cases) for both
methods. When using AIC directly on the original data, all 200 observations
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of the RS will be used as such. When using AIC on the smoothed data, the
sample of size 200 is randomly split in two subsamples of size 100, one of
which we call the learning sample (LS), and the other the validation sample
(VS). The LS is used to identify the best model by the smoothed AIC using
presmoothing strategy (1), for a grid of values for the control parameter c.
The VS is subsequently used to identify the optimal value of c.

Shkedy et al. (2006) propose to model the prevalence and force of infection as a
function of age, within the framework of fractional polynomials. They discuss
several parametric examples from the infectious diseases literature and show
that all of these examples can be expressed as special cases of fractional poly-
nomial models. Here we consider as candidate models the family of fractional
polynomials of order two with powers p1 ≤ p2, where

pi = {from -2 to 3 in steps of 0.1}, i = 1, 2,

together with the probit link function.

Using AIC on the original data from the RS leads to the optimal powers
p1 = −1.3 , p2 = −1.3, which identifies the probit model

Φ−1{P (y = 1)} = θ0 + θ1a
−1.3 + θ2a

−1.3 log(a). (13)

This model leads to 26 misclassifications on the LS, 16 on the VS, resulting
in a total of 42 on the RS, and leads to 351 misclassifications on the TS.

The upper panels of Figure 5 show the powers selected by the approach based
on (10)-(12) with G = Φ, as a function of c (using the learning sample). As
c increases, the both powers gradually increase from 1.5 to their maximal
value of 3. The left middle panel shows the number of misclassifications using
the validation sample, as a function of c. It suggests to take a value c in the
neighborhood of 0.5. We took c = 0.5, which corresponds to powers 2.4 and
2.4 and probit model

Φ−1{P (y = 1)} = θ0 + θ1a
2.4 + θ2a

2.4 log(a). (14)

The number of misclassifications for this model is equal to 26 on the LS and
to 14 on the VS and to 322 on the TS, which is almost 10% less than the
model based on the classical AIC. The right middle panel shows the smoothed
and bootstrapped latent observations y∗

L,i
= µ̂S(xi) + ce∗i (equation (10)) for

c = 0.5. The fits of both final models (13) and (14) on the LS, together with
the (jittered) data, are shown in the left lower panel of Figure 5. The fits are
quite different. The model selected by using AIC on the classical data of the
RS (dashed line) has an unexpected rise for very small ages. The right lower
panel shows the fits of both models on the TS, together with the (jittered)
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Fig. 5. The Hepatitis A Example. Upper panels: the first (left) and second (right)
powers of the optimal fractional polynomial, based on the smoothed and boot-
strapped data, as a function of c. Left middle panel: the prediction error using
the smoothed AIC on the VS. Right middle panel: the latent smoothed and boot-
strapped observations which were used to select the optimal model. Lower left panel:
fitted optimal fractional polynomials together with the (jittered) data of the LS.
Lower right panel: fitted optimal fractional polynomials together with the (jittered)
data of the TS.

data. Again there is a substantial difference between both models. As a gold
standard we also selected the best fractional polynomial on the full population
(all 1646 data; the unsmoothed and presmoothed choices are virtually indis-
tinguishable on the full data set). The selected powers were 2.0 and 2.1. The
fits of this population model on the LS and the TS are shown in bold dotted
lines in the left and right lower panel respectively. These fits are remarkably
close to the fits based of the fractional polynomial selected by the smoothed
and bootstrapped data from the (small) LS and VS. These particular fits
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show a well-known pattern, reaching a maximum and then slightly decreasing
again for the older age group. Under conditions of so-called stationarity, cross-
sectional (sero)prevalence data can be interpreted as if they were longitudinal.
One would then expect the prevalence to be monotone as a function of age
(Anderson and May, 1991). At older ages however, it is quite possible that the
seroprevalence declines, due to age-related decline in antibody levels. There
is a lot of interest by infectious diseases epidemiologists to see unconstrained
and flexible fits for the seroprevalence. The selection of optimal unconstrained
models for the seroprevalence as a function of age is therefore important to
get more detailed insights in this phenomenon, and presmoothed choice of a
fractional polynomial ordered probit model provides a way to do this.

5 Discussion and Further Research

We have shown that a simple application of presmoothing yields a selection
criterion AICS with improved behavior over the standard AIC criterion. Fur-
ther, we have shown that using the AIC criterion AIC∗ on smoothed and
bootstrapped data y∗S(c) = Sλy + c e∗ can lead to improved model selection,
at least in a setting with a limited number of explanatory variables. The opti-
mal choice of c depends on the original data y and the bias of the smoother.
A data-driven method to select c = c(y) is a topic of further research. At
this point, we recommend using several values for c and to explore in which
way different models are selected, as a sensitivity analysis, or to use a test
sample if available. Also note that minf∗ I(f ∗, f ∗0 ) → minf I(f, f0) as n →∞
and that one might expect c to be taken smaller as n increases. On the other
hand, for large n, the classical AIC criterion, used on the original data y,
may perform so well that it might not be worthwhile to apply the proposed
method. A more detailed study on when there is substantial benefit to use the
method (in terms of type of outcome data, sample size, number of explanatory
variables, etc) is planned as further research.

Finally we like to mention that presmoothing can also be applied to other
criteria, such as Mallow’s Cp, BIC, etc. Some initial analyses and simulations
show similar results and conclusions. A deeper study of the performance for
other criteria and for different settings, such as multivariate and longitudinal
settings, are also topics of further research.
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