
Conditions for the Propagation of Memory Parameter from

Durations to Counts and Realized Volatility

Rohit Deo∗ Clifford M. Hurvich∗ Philippe Soulier† Yi Wang∗

May 16, 2007

Abstract

We establish sufficient conditions on durations that are stationary with finite variance and memory

parameter d ∈ [0, 1/2) to ensure that the corresponding counting process N(t) satisfies Var N(t) ∼
Ct2d+1 (C > 0) as t → ∞, with the same memory parameter d ∈ [0, 1/2) that was assumed for the

durations. Thus, these conditions ensure that the memory parameter in durations propagates to the

same memory parameter in the counts. We then show that any Autoregressive Conditional Duration

ACD(1,1) model with a sufficient number of finite moments yields short memory in counts, while any

Long Memory Stochastic Duration model with d > 0 and all finite moments yields long memory in

counts, with the same d. Next, we present a result implying that the only way for a series of counts

aggregated over a long time period to have nontrivial autocorrelation is for the counts to have long

memory. In other words, aggregation ultimately destroys all autocorrelation in counts, if and only if

the counts have short memory. Finally, under assumptions on the pure-jump price process, we show

that the memory parameter in durations propagates all the way to the realized volatility, under both

calendar-time sampling and transaction-time sampling.
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I Introduction

There is a growing literature on long memory in volatility of financial time series. See, e.g., Robinson

(1991), Robinson and Henry (1999), Deo and Hurvich (2001), Hurvich, Moulines and Soulier (2005).

Long memory in volatility, which has been repeatedly found in the empirical literature (see Breidt, Crato

and de Lima 1998, Baillie, Bollerslev and Mikkelsen 1996, Bollerslev and Mikkelsen 1996, Andersen and

Bollerslev 1997), plays a key role in the forecasting of realized volatility, defined as the sum of squared

high-frequency returns (Andersen, Bollerslev, Diebold and Labys 2001, Barndorff-Nielsen and Shephard

2006, Deo, Hurvich and Lu 2006), and has important implications on option pricing (see Comte and

Renault 1998).

Given the increasing availability of transaction-level data it is of interest to explain phenomena ob-

served at longer time scales from equally-spaced returns in terms of more fundamental properties at the

transaction level. Engle and Russell (1998) proposed the Autoregressive Conditional Duration (ACD)

model to describe the durations between trades, and briefly explored the implications of this model on

volatility of returns in discrete time, though they did not determine the persistence of this volatility, as

measured, say, by the decay rate of the autocorrelations of the squared returns. Deo, Hsieh and Hurvich

(2007) proposed the Long-Memory Stochastic Duration (LMSD) model, and carried out an empirical

exploration of the question as to which properties of durations lead to long memory in volatility.

In principle, why should there be a link between the dependence properties of durations and volatility?

The durations between transactions determine the number of transactions (counts) in a given interval of

time. Thus, any dependence in durations will affect the dependence in the time series of counts. Inspired

by the work of Clark (1976), and other related work (Tauchen and Pitts 1983, Epps and Epps 1976,

Bollerslev and Jubinski 1999) on the Mixture of Distributions Hypothesis (MDH), financial econome-

tricians now generally accept that dependence in counts is related to dependence in volatility. Overall,

then, dependence in durations and volatility are closely linked.

The specification of a model for the durations, together with a model for the transaction-level price
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changes, constitutes a pure-jump model for the prices. In such a model, it is the transactions that generate

price changes. Therefore, the (logarithmic) price change in a given time interval is the accumulation of

transaction-level price changes. Furthermore, the total number of transactions up to a given time is simply

the counting process induced by the series of intertrade durations. Such models have been considered

recently by Oomen (2006), Rydberg and Shephard (2003), among others. Clearly, then, properties of

realized volatility calculated from high-frequency returns generated from such a process would also depend

on the properties of durations. It is therefore essential to get a better understanding of the theoretical

link between durations, counts and realized volatility so that price process models can be compatible

with what is observed in empirical data.

We present first a few basic definitions. The collection of time points · · · t−1 < t0 ≤ 0 < t1 < t2 < · · ·
at which a transaction (say, a trade of a particular stock on a specific market) takes place, comprises a

point process, a fact which was exploited by Engle and Russell (1988). These event times {tk} determine

a counting process,

N(t) = Number of Events in (0, t].

For any fixed time spacing ∆t > 0, one can define the counts ∆Ns = N(s∆t) − N((s − 1)∆t), the

number of events in the s’th time interval of width ∆t, where s = 1, 2, · · · . The event times {tk}∞k=−∞

also determine the durations, given by {τk}∞k=−∞, τk = tk − tk−1. In this paper, we will say that a

stationary series in discrete time (either counts or durations) has long memory with memory parameter

d ∈ (0, 1/2) (or short memory if d = 0) if the partial sum of n contiguous values of the series has a

variance that behaves as Cn2d+1 as n → ∞, where C > 0 is a constant. We will say that a stationary

counting process N(t) has long memory with memory parameter d ∈ (0, 1/2) (or short memory if d = 0)

if VarN(t) ∼ Ct2d+1 as t → ∞ where C > 0 is a constant. Note that if N(t) has memory parameter

d ∈ [0, 1/2), then so does the series of counts, with the same memory parameter, for any value of ∆t.

Deo, Hsieh and Hurvich (2007) analyzed transaction-level data on ten stocks traded on the NYSE.

They estimated the memory parameter of the durations between transactions, as well as the counts and

squared returns for various choices of ∆t, and the daily realized volatility. The estimates were all roughly

similar, taking the standard errors into account, typically lying in the range from 0.3 to 0.45. If it could be
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established theoretically that under certain reasonable conditions the memory parameter (be it positive

or zero) propagates unchanged from the durations to the counting process and then to realized volatility,

this would have strong implications on the choice of an appropriate model for durations.

Both the ACD and LMSD models imply that the doubly infinite sequence of durations {τk}∞k=−∞ is

a stationary time series, i.e., there exists a probability measure P 0 under which the joint distribution

of any subcollection of the {τk} depends only on the lags between the entries. On the other hand, a

point process N on the real line is stationary under the measure P if for every positive integer r the joint

distribution of {N(A1 + t), . . . , N(Ar + t)} does not depend on t, where A1, . . . , Ar are bounded Borel

sets. A fundamental fact about point processes is that in general (a notable exception is the Poisson

process) there is no single measure under which both the point process N and the durations {τk} are

stationary, i.e., in general P and P 0 are not the same. Nevertheless, there is a one-to-one correspondence

between the class of measures P 0 that determine a stationary duration sequence and the class of measures

P that determine a stationary point process. The measure P 0 corresponding to P is called the Palm

distribution. The counts are stationary under P , while the durations are stationary under P 0.

An economic interpretation of the distinction between P and P 0 is as follows. If the cumulative

number of transactions N(t) is calculated from the opening bell (e.g., 9:00 E.T., Wednesday, July 12’th

2006), then the appropriate measure is P . By contrast, if N(t) is calculated from the first transaction

of that trading day, then the appropriate measure would be P 0. For thinly traded stocks, the difference

between these two starting points may be quite large.

Deo, Hsieh and Hurvich (2007) pointed out, using a theorem of Daley, Rolski and Vesilo (2000) that

if durations are generated by an ACD model and if the durations have tail index κ ∈ (1, 2) under P 0,

then the resulting counting process N(t) has long memory with memory parameter d ≥ 1 − κ/2, under

P . An open question, however, is the determination of conditions under which the memory parameter

of a finite-variance duration sequence propagates unchanged to the counting process. This question is a

nontrivial one, since even a time-instantaneous transformation of a Gaussian long-memory process may

reduce the memory parameter. See Dittmann and Granger (2002).
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In this paper, we will establish sufficient conditions on durations that are stationary with finite variance

and memory parameter d ∈ [0, 1/2) under P 0 to ensure that the corresponding counting process N(t)

satisfies VarN(t) ∼ Ct2d+1 (C > 0) as t → ∞ under P , with the same memory parameter d ∈ [0, 1/2)

that was assumed for the durations. Thus, these conditions, given in Theorem 1, ensure that the memory

parameter in durations propagates to the same memory parameter in counts. Moreover, we show that

under a particular model for prices, the same memory parameter propagates further from the counting

process to the realized volatility.

We will verify that the sufficient conditions of our Theorem 1 are satisfied for the ACD(1,1) model

assuming finite 3 + ε moment (ε > 0) of the durations under P 0, and for the LMSD model with any

d ∈ [0, 1/2) assuming that the multiplying shocks have all moments finite. Thus, any ACD(1,1) model

with a sufficient number of finite moments yields short memory in the counting process, while any LMSD

model with d > 0 and all finite moments yields long memory in the counting process. These results for

the LMSD and ACD(1,1) models are given in Theorems 2 and 3, respectively. Proposition 1, which is

used in proving Theorem 2, provides a Rosenthal-type inequality for moments of absolute standardized

partial sums of durations under the LMSD model, and is of interest in its own right.

We then present a result (Theorem 4) implying that if counts have memory parameter d ∈ [0, 1/2)

then further aggregations of these counts to longer time intervals will have a lag-1 autocorrelation that

tends to 22d − 1 as the level of aggregation grows. Interestingly, this limit is zero if and only if d = 0.

Thus, one of the important functions of long memory in counts is that it allows the counts to have a

non-vanishing autocorrelation even as ∆t grows, as was found by Deo, Hsieh and Hurvich (2007) to occur

in empirical data. By contrast, short memory in counts implies that counts at long time scales (large ∆t)

are essentially uncorrelated, in contradiction to what is seen in actual data. To summarize, aggregation

ultimately destroys all autocorrelation in counts, if and only if the counts have short memory.

Finally, we provide the link between counts and realized volatility. Using a simple pure-jump model

for prices, we show that if the durations have long memory then realized volatility has long memory with

the same memory parameter. We also show that if the durations have short memory and finite variance
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then realized volatility has short memory. Thus, the properties of durations have direct implications on

the properties of realized volatility.

The pure-jump model for prices mentioned above assumes that the transaction-level price changes

are independent. However, as we discuss in Section IV, the observed transaction-level returns exhibit

autocorrelation at short lags. Hence we relax the independence to the far weaker assumption that the

price changes are q-dependent, and then replacing the realized volatility by the transaction-time-sampling

version advocated by Oomen (2006), we show that this alternative version of realized volatility inherits

the same memory parameter as the durations.

II Theorems on the propagation of the memory parameter

Let E, E0, Var, Var0 denote expectations and variances under P and P 0, respectively. Define µ = E0(τk)

and λ = 1
µ . Our main theorem uses the assumption that P 0 is {τk}-mixing, defined as follows. Let

N = σ({τk}∞k=−∞) and Fn = σ({τk}∞k=n). Following Nieuwenhuis (1989, p. 597), we say that P 0 is

{τk}-mixing if

lim
n→∞

sup
B∈N∩Fn

|P 0(A ∩B)− P 0(A)P 0(B)| = 0

for all A ∈ N .

Our theorem also uses the notion of α-mixing, also known as strong mixing (see Bradley 2005, Section

2.1).

Theorem 1 Let {τk} be a duration process such that the following conditions hold:

i) ∃ d ∈ [0, 1
2 ) such that

Yn(s) =
∑bnsc

k=1 (τk − µ)
n1/2+d

, s ∈ [0, 1]

converges weakly to σB1/2+d(·) under P 0, where σ > 0 and B1/2+d(·) is fractional Brownian motion if

0 < d < 1
2 or standard Brownian motion B1/2 = B if d = 0.
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ii) Consider the d in i) above. If d ∈ (0, 1/2), then P 0 is {τk}-mixing. If d = 0, then {τk} is

exponential strong mixing.

iii) For the d in i) above,

sup
n

E0
∣∣∣
∑n

k=1(τk − µ)
n1/2+d

∣∣∣
p

< ∞





for all p > 0, if d ∈ (0, 1
2 )

for p = 3 + ε, ε > 0, if d = 0 ·

Then the induced counting process N(t) satisfies VarN(t) ∼ Ct2d+1 under P as t →∞ where C > 0.

Remark 1: Assumption iii) implies that Y 2
n (1) is uniformly integrable. This, together with i) implies

that Var0[Yn(1)] ∼ C for some C > 0, and hence that the durations have long (or short) memory with

memory parameter d ∈ [0, 1/2).

Remark 2: If d = 0, the proof of Theorem 1 implies that Var0N(t) ∼ Ct (i.e., under the Palm

measure P 0) even when Assumption iii) is weakened to p = 2 + ε for ε > 0. Nevertheless, we find it

preferable to present and prove the result in Theorem 1 in terms of VarN(t), i.e., under the measure P ,

since it is under this measure that N(t) is a stationary point process. The need for the more stringent

condition in our Theorem 1 can be explained as follows. In order for E[τ2+ε
k ] < ∞, it is necessary in

general to have E0[τ3+ε
k ] < ∞. See Equation (1.2.25) of Baccelli and Brémaud (2003), which we use in

our proof.

Remark 3: Inspection of the proof of Theorem 1 reveals that if d > 0, only 5−2d
1−2d + δ finite moments

are needed, where δ is arbitrarily small. The closer d is to 1/2, the larger the number of finite moments

required.

Remark 4: As pointed out by Nieuwenhuis (1989), if {τk} is strong mixing under P 0 then P 0 is

{τk}-mixing. Nevertheless, this weaker form of mixing is essential for our purposes in the case d > 0 since

even Gaussian long-memory processes are not strong mixing. See Viano, Deniau and Oppenheim (1995).

We now present two useful models for durations and give results stating that the conditions of Theorem
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1 apply for these models, thereby yielding the properties of the variance of the induced counting processes.

A LMSD Process

A latent-variable model for durations is the Stochastic Duration (SCD) model of Bauwens and Veredas

(2004). The model is given by

τk = ehkεk,

hk = ω + βhk−1 + ek,

where ω ∈ R, |β| < 1, the {ek} are iid N(0, σ2) and the {εk} are iid with unit mean and positive support.

This model is analogous to the widely-used Stochastic Volatility (SV) model for returns (see Harvey,

1998). Bauwens and Veredas (2004) estimated the SCD model to data and found that the autoregressive

coefficient β in the latent process {hk} is typically extremely close to 1. Based on a semiparametric

analysis, Deo, Hsieh and Hurvich (2007) concluded that the intertrade durations for stock prices have

long memory, so they proposed the Long Memory Stochastic Duration (LMSD) model, in which the {hk}
possess long memory. The generalization from the SCD to the LMSD model for durations is analogous to

that from the SV to the Long Memory Stochastic Volatility (LMSV) model for returns of Harvey (1998)

and Breidt, Crato and de Lima (1998).

Following Deo, Hsieh and Hurvich (2007), we now define the LMSD process {τk}∞k=−∞ for d ∈ [0, 1
2 )

as

τk = ehkεk

where under P 0 the εk ≥ 0 are i.i.d. with all moments finite, and hk =
∑∞

j=0 bjek−j , the {ek} are i.i.d.

Gaussian with zero mean, independent of {εk}, and

bj ∼





Cjd−1 if d ∈ (0, 1
2 )

Caj , |a| < 1 if d = 0

(C 6= 0) as j → ∞; for d = 0 we further assume that the spectral density of {hk} is bounded away

from zero. Any stationary, invertible ARFIMA process {hk} with d ∈ [0, 1/2) would satisfy the above
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assumptions. Note that for convenience, we nest the short-memory case (d = 0) within the LMSD model,

so that the allowable values for d in this model are 0 ≤ d < 1/2. In their empirical analysis, Deo, Hsieh

and Hurvich (2007) assumed that the {hk} follow an ARFIMA(1, d, 0) process. In the theoretical results

of this paper, we do not make any specific parametric assumption on the {hk}.

The following theorem establishes that long memory propagates unchanged from LMSD durations to

the counting process.

Theorem 2 If the durations {τk} are generated by the LMSD process with d ∈ [0, 1/2), then the con-

ditions of Theorem 1 are satisfied and therefore the induced counting process N(t) satisfies VarN(t) ∼
Ct2d+1 under P as t →∞ where C > 0.

To establish Theorem 2, we will use the following Rosenthal-type inequality, which is of independent

interest.

Proposition 1 For durations {τk} generated by the LMSD process with d ∈ [0, 1
2 ), for any fixed positive

integer p ≥ 2, E0{|yn − E0(yn)|p} is bounded uniformly in n, where

yn =
∑n

k=1 τk

n1/2+d
.

B ACD(1,1) Process

The ACD process was introduced by Engle and Russell (1998). While the LMSD model builds dependence

in the durations through an unobservable latent variable process, the ACD model is observation driven.

The ACD model treats the conditional mean of durations in the same way that the GARCH model treats

the conditional variance of returns. The simplest version is the ACD(1,1) process given by {τk}∞k=−∞ as

τk = ψkεk

ψk = ω + ατk−1 + βψk−1
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with ω > 0, α > 0, β ≥ 0 and α + β < 1, where under P 0, εk ≥ 0 are i.i.d. with mean 1. We will assume

further that under P 0, εk has a density gε such that
∫ θ

0
gε(x)dx > 0, ∀ θ > 0 and E0(τ3+ε

k ) < ∞ for some

ε > 0. This last assumption entails further restrictions on α and β. See Nelson (1990).

Nelson (1990) guarantees the existence of the doubly-infinite ACD(1,1) process {τk}∞k=−∞, which in

our terminology is stationary under P 0.

The next theorem shows that short memory propagates from ACD(1, 1) durations (with sufficiently

many finite moments) to the counting process.

Theorem 3 Suppose that the durations {τk} are generated by the ACD(1,1) model, with the additional

assumptions stated above. Then the conditions of Theorem 1 are satisfied and therefore the induced

counting process N(t) satisfies VarN(t) ∼ Ct under P as t →∞ where C > 0.

III Autocorrelation of Aggregated Counts

The following elementary result relates the memory parameter of a stationary process to the lag-1 auto-

correlation of partial sums as the level of aggregation grows.

Theorem 4 Let {Xt} be a stationary process such that Var(
∑n

t=1 Xt) ∼ Cn1+2d as n →∞, where C 6= 0

and d ∈ [0, 1/2). Then

lim
n→∞

Corr

[
n∑

t=1

Xt,

2n∑
t=n+1

Xt

]
= 22d − 1.

Proof:

Var

[
2n∑
t=1

Xt

]
= 2 Var

[
n∑

t=1

Xt

]
+ 2Cov

[
n∑

t=1

Xt,

2n∑
t=n+1

Xt

]
.

Thus,

Cov

[
n∑

t=1

Xt,

2n∑
t=n+1

Xt

]
= .5

(
Var

[
2n∑
t=1

Xt

]
− 2Var

[
n∑

t=1

Xt

])
.
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The result follows by noting that limn→∞ n−2d−1Var(
∑n

t=1 Xt) = C, where C 6= 0. ¤

This theorem has an interesting practical interpretation. If we write Xk = N [k∆t] − N [(k − 1)∆t]

where ∆t > 0 is fixed, then Xk represents the number of events (count) in a time interval of width ∆t,

e.g. one minute. Thus,
∑n

k=1 Xk is the number of events in a time interval of length n minutes, e.g. one

day. The theorem implies that as the level of aggregation (n) increases, the lag-1 autocorrelation of the

aggregated counts will approach a nonzero constant if and only if the non-aggregated count series {Xk}
has long memory. In other words, the only way for a series of counts over a long time period to have

nontrivial autocorrelation is for the short-term counts to have long memory. Since in practice long-term

counts do have substantial autocorrelation (see Deo, Hsieh and Hurvich 2007), it is important to use

only the models for durations that imply long memory in the counting process. Examples of such models

include the LMSD model (see Theorem 2), and ACD models with infinite variance (see Daley, Rolski and

Vesilo, 2000).

IV The Link Between Counts and Realized Volatility

To establish a link between counts and volatility it is necessary first to assume a continuous-time model

for prices which incorporates the counting process. We will start with a simple pure-jump model (to be

generalized subsequently),

log P (t) = log P (0) +
N(t)∑

j=1

ξj , (1)

where P (t) is the price at time t, N(t) is the number of transactions up to time t, and the {ξj} are i.i.d.,

independent of N(·), with zero mean, variance µ2 < ∞, and fourth moment µ4 < ∞.

Models related to (1) have been considered in the economic literature. Clark (1973) wrote the model

log P (t) = log P (0) + B(Ñ(t)),

where B is Brownian motion, and Ñ(t) is a nondecreasing positive stochastic process with independent

increments, independent of B. Our model generalizes that of Clark (1973) in that it allows for non-
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independent increments of N(·) and non-Gaussian price changes, however in our model N(·) is restricted

to be a pure-jump process since it is derived from the underlying duration process. Press (1967) considered

a model of form (1), but included an additional continuous component, assumed normality of price

changes, and assumed that N(·) is a Poisson process. Oomen (2006) has generalized the pure-jump

version of the model of Press (1967) to allow for time-varying intensity of the Poisson process, and to

allow for non-independent price changes so as to describe market microstructure effects (see below).

The existing literature on realized volatility generally assumes that the logarithmic price process is a

diffusion given by

log P (t) = log P (0) +
∫ t

0

σ(u)dW (u)

where W is a Brownian motion and σ, the instantaneous volatility, is a positive càdlàg process. Though

the diffusive and pure-jump frameworks appear to be very different, Oomen (2006) points out that they

may have similar implications for realized volatility. Nevertheless, the diffusive models by themselves do

not yield a mechanism for generating transaction times, or therefore, durations and counts. We choose

to use a pure-jump framework here since our goal in this paper is to link the properties of the observable

durations, counts and realized volatility.

In (1) and henceforth, we adopt the convention that a sum is taken to be zero if the upper limit is

less than the lower limit. Since the price changes are independent of each other and of the process N(·),
the log prices under (1) are a Martingale.

The model (1) implies that the returns rs at equally-spaced clock-time intervals of width ∆t > 0 may

be expressed as

rs =
N(s∆t)∑

j=N [(s−1)∆t]+1

ξj , s = 1, 2, · · · . (2)

Recall that the counts {∆Ns} are given by ∆Ns = N(s∆t)−N [(s− 1)∆t], that is, the number of events

occurring within the given equally-spaced intervals of clock time. The following theorem shows that under

the model (1) the memory parameter of the durations propagates unchanged to the realized volatility,
∑n

s=1 r2
s .
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Theorem 5 For durations {τk} satisfying the assumptions of Theorem 1 with d ∈ [0, 1/2), we have

Var(
n∑

s=1

r2
s) ∼ Cn2d+1

as n →∞, where {rs} are the returns given by (2).

Remark 5: The conclusions of Theorem 5 would continue to hold if instead of making assumptions

on the durations, we assume that VarN(t) ∼ Ct2d+1.

Remark 6: It follows from Theorem 5 that if N(·) is a Poisson process, the realized volatility has a

variance that is asymptotically proportional to n, i.e., short memory.

Remark 7: The tick-time return process {ξj} in Thereom 5 could be extended to a sum {ξj + ηj}
where {ηj} are iid, and independent of {ξj}.

The model (1) implies that clock-time returns are uncorrelated, whereas there is considerable empirical

evidence to the contrary (see, e.g., Roll 1984). This autocorrelation is often attributed to microstructure

effects such as bid-ask bounce. We therefore consider a generalization that allows returns in tick time to

be autocorrelated, which in turn allows for autocorrelation in the clock-time returns. The generalization

we consider is in keeping with the literature for both pure-jump models (Oomen 2006) and diffusion

models (Bandi and Russell 2004, Hansen and Lunde 2006, Zhang, Mykland and Aı̈t-Sahalia 2005). The

generalization of model (1) takes the form

log P (t) = log P (0) +
N(t)∑

j=1

(ξj + ηj), (3)

where {ηj} is a stationary, zero-mean q-dependent process with finite fourth moment, independent of the

counting process N(·). We assume also that the process {ξj +ηj} is q-dependent. We can view the process

{ηj} as representing microstructure noise. Note that we do not require the {ηj} to be independent of the

efficient price shocks {ξj}. Model (3) covers the case considered by Oomen (2006), who assumed that the

{ηj} are a Gaussian q’th-order moving average with respect to the difference of an iid process.

We have so far been unable to derive a result corresponding to Theorem 5 for the variance of the

realized volatility based on the clock-time returns generated by the price process in the presence of

12



microstructure noise given by (3). Obtaining such a result would require knowledge of the asymptotic

behavior of the variance of the number of zero counts in a sequence of n counts, which is not known as far

as we are aware. While this is unfortunate, there are alternative sampling schemes for the construction of

realized volatility that have been proposed in the literature, which have desirable properties. We consider

the transaction time sampling scheme, TTS, proposed by Oomen (2006), under which the returns are

measured every K (tick-time) transactions, and then the squares of these returns are aggregated to form

a realized volatility. This contrasts with calendar time sampling, CTS (i.e., sampling in fixed intervals

of clock time), which results in the realized volatility studied in Theorem 5. Oomen (2006) found that

transaction time sampling leads to realized volatility that has superior performance relative to that based

on calendar time sampling.

Define zj = ξj + ηj for j = 1, 2, . . .. Sampling every K transactions yields the sampled returns

r̃j = z(j−1)K+1 + . . . + zjK . Since {zj} is q-dependent, {r̃j} is also q-dependent. Aggregating the

available squared sampled returns up to time T yields the TTS realized volatility

R̃V T =
bN(T )/Kc∑

j=1

r̃2
j . (4)

The following theorem shows that under the model (3) the memory parameter of the durations

propagates unchanged to the TTS realized volatility, R̃V T .

Theorem 6 Let the durations {τk} satisfy the assumptions of Theorem 1 with d ∈ [0, 1/2). Furthermore,

when d = 0, assume that the spectral density of {r̃2
j} is positive at zero frequency. Then

var(R̃V T ) ∼ CT 2d+1

as T →∞ for some C > 0, where R̃V T is defined in (4).

Remark 8: Gaussianity of {r̃j} is a sufficient condition for the positivity of the spectral density

of {r̃2
j} at zero frequency. This follows since if {r̃j} is Gaussian, cov(r̃j , r̃k) ≥ 0 for all j, k by the
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formula of Isserlis (1918), and since the spectral density at zero is the variance plus twice the sum of the

autocovariances at nonzero lags.

V Discussion

In their empirical study, Deo, Hsieh and Hurvich (2007) found that the high frequency data on durations,

counts and realized volatility possesses long memory and the memory parameter is apparently identical

across the three series. In this paper, we have established conditions on the durations that guarantee the

propagation of the memory parameter, without change, from the durations to the counting process and

then to the realized volatility resulting from the return models considered here. Our theoretical results

imply that short-memory models, such as the finite-variance ACD model, and the SCD model of Bauwens

and Veredas (2004), cannot generate long memory in the resulting counts or realized volatility.

Two duration models which can yield long memory in counts are the LMSD model (see Theorem 2),

and ACD models with infinite variance (see Daley, Rolski and Vesilo, 2000). Although these two models

could generate identical second-order dependence properties in counts, the realizations in general would

look very different. Under the infinite-variance ACD model, realizations of the counting process would

tend to be dominated by a few very long durations, and hence the resulting series of counts would tend

to have long strings of zeros. On the other hand, this behavior would not be displayed by the LMSD

model. Nevertheless, there is no known statistical procedure for distinguishing between finite and infinite

variance of durations based on runs of zeros in the counts. One could consider estimating the tail index

directly from durations. Although there exist semiparametric tail index estimators, they are known to be

badly behaved even when the series is independent (Resnick 1997), to say nothing of strong dependence,

as in the case of transaction durations.

We also presented a result implying that the only way for a series of counts aggregated over a long

time period to have nontrivial autocorrelation is for the short-term counts to have long memory. In

other words, aggregation ultimately destroys all autocorrelation in counts, if and only if the counts have
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short memory. Deo, Hsieh and Hurvich (2007) found that the empirical lag-1 autocorrelations of the

aggregated counts did not decay to zero with increasing aggregation. They also found, in accordance

with Theorem 4, that the lag-1 autocorrelations of counts generated from simulated durations generated

from the empirically estimated LMSD models also did not decay to zero whereas those from the estimated

exponential and Weibull ACD models (whose estimated parameters implied finite variance though this

restriction was not imposed in the estimation) did decay to zero, in contradiction to what was observed

in the data. This lends further support to the conclusion that LMSD models are more appropriate for

intertrade durations than finite-variance ACD models.
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VI Appendix: Proofs

Let P denote the stationary distribution of the point process N on the real line, and let P 0 denote the

corresponding Palm distribution. P determines and is completely determined by the stationary distri-

bution P 0 of the doubly infinite sequence {τk}∞k=−∞ of durations. Note that the counting process N is

stationary under P , the durations are stationary under P 0, but in general there is no single distribu-

tion under which both the counting process and the durations are stationary. For more details on the

correspondence between P and P 0, see Daley and Vere-Jones (2003), Baccelli and Brémaud (2003), or

Nieuwenhuis (1989).

Following the standard notation for point processes on the real line (see, e.g., Nieuwenhuis 1989, p.

594), we assume that the event times {tk}∞k=−∞ satisfy

. . . < t−1 < t0 ≤ 0 < t1 < t2 < . . . .

Let

uk =





t1 if k = 1

τk if k ≥ 2 ·
Here, the random variable t1 > 0 is the time of occurrence of the first event following t = 0. For t > 0,

define the count on the interval (0, t], N(t) := N(0, t], by

N(t) = max{s :
s∑

i=1

ui ≤ t}, u1 ≤ t

= 0, u1 > t.

Throughout the paper, the symbol =⇒ denotes weak convergence in the space D[0, 1].

Proof of Theorem 1:

The proof proceeds by establishing the following facts.

A) Yn converges weakly under P to Brownian motion (d = 0) or fractional Brownian motion (d > 0).

B) The standardized counting process converges weakly under P to a multiple of the same limit obtained
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in A).

The theorem then follows by applying the uniform integrability of the standardized counting process

established in Lemma 2 below, in conjunction with Theorem 25.12 of Billingsley (1986, p. 348).

We start by proving A). By assumption i), Yn =⇒ σB1/2+d under P 0, where σ > 0. First, we will

apply Theorem 6.3 of Nieuwenhuis (1989) to the durations {τk}∞k=−∞ to conclude that Yn =⇒ σB1/2+d

under P . Since the {τk}∞k=−∞ are stationary under P 0 and are generated by the shift to the first event

following time zero (see Nieuwenhuis 1989, p. 600), and since it follows from ii) and Remark 4 that P 0

is {τk}-mixing, his Theorem 6.3 applies. It follows that Yn =⇒ σB1/2+d under P .

We next establish B). Define

Ỹn(s) =
∑bnsc

k=1 (uk − µ)
n1/2+d

, s ∈ [0, 1].

Note that for all s, Ỹn(s) = Yn(s) + n−(1/2+d)(u1 − τ1). From Baccelli and Brémaud (2003, Equation

1.4.2, page 33), for any measurable function h,

E[h(τ1)] = λE0[τ1h(τ1)] . (5)

Since u1 ≤ τ1, and since assumption iii) implies that τ1 has finite variance under P 0, using h(x) = x in

(5), it follows that n−(1/2+d)(u1 − τ1) is op(1) under P . Thus, Ỹn =⇒ σB1/2+d under P .

Let

Z(t) =
N(t)− t/µ

t1/2+d
. (6)

By Iglehart and Whitt (1971, Theorem 1), it follows that Z(t) L→ C̃B1/2+d(1) under P as t → ∞,

where C̃ > 0.

Finally, by Lemma 2, Z2(t) is uniformly integrable under P and hence by Theorem 25.12 of Billingsley

(1986, p. 348), limt Var[Z(t)] = C̃2Var[B1/2+d(1)]. The theorem is proved. ¤

Proof of Theorem 2:

We simply verify that the conditions of Theorem 1 hold for this process.
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Assume first that d > 0. By definition {τk} is stationary under P 0 and by Lemma 3, P 0 is {τk}
mixing. By Surgailis and Viano (2002), Yn =⇒ σB1/2+d under P 0, where σ > 0 and by Proposition 1,

supn E0
∣∣∣
Pn

k=1(τk−µ)

n1/2+d

∣∣∣
p

< ∞ for all p. Thus, the result is proved for d > 0. If d = 0, the proof follows

along the same lines as the proof of Theorem 3, since in this case under our assumptions on the model

for d = 0 the process is exponential α-mixing (see, e.g., Doukhan 1994, Corollary 1, Section 2.1, p. 58),

and the weak convergence of Yn follows again from Surgailis and Viano (2002) with d = 0. ¤

Proof of Theorem 3:

We simply verify that the conditions of Theorem 1 hold for this process.

By Lemma 3, {τk} is exponential α-mixing, and hence strong mixing and thus by Nieuwenhuis (1989),

P 0 is {τk}-mixing. Furthermore, since all moments of τk exist up to order 3 + ε, ε > 0, we can apply

results from Doukhan (1994, Theorem 1, Section 1.5, p. 46) to obtain

Yn ⇒ CB, (7)

if 1
nVar(

∑n
k=1 τk) → C2 > 0, as n →∞.

It is well known that the GARCH(1,1) model can be represented as an ARMA(1,1) model, see Tsay

(2002). Similarly, the ACD(1,1) model can also be re-formulated as an ARMA(1,1) model,

τk = ω + (α + β)τk−1 + (ηk − βηk−1) (8)

where ηk = τk−ψk is white noise with finite variance since E(τ3+ε
k ) < ∞. The autoregressive and moving

average parameters of the resulting ARMA(1,1) model are (α + β) and β, respectively.

It is also known that for any stationary invertible ARMA model {zk}, nVar(z̄) → 2πfz(0), where

fz(0) is the spectral density of {zk} at zero frequency. For an ARMA(1,1) process, fz(0) > 0 if the

moving average coefficient is less than 1. Here, since 0 ≤ β < 1, we obtain 1
nVar(

∑n
k=1 τk) = nVar(τ̄) →

2πfτ (0) > 0, as n →∞. Therefore (7) follows.

Define yn = 1√
n

∑n
k=1 τk. Since all moments of τk are bounded up to order 3 + ε, (ε > 0) under P 0,
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by Yokoyama (1980), we obtain

E0{|yn − E0(yn)|3+ε} ≤ K < ∞, ε > 0 (9)

uniformly in n, provided that {τk} is exponential α-mixing, which is proved in Lemma 3.

Therefore, we can apply Theorem 1 to the ACD(1,1) model and the result follows. ¤

Proof of Theorem 5: It follows from the proof of Lemma 2 that, for any fixed ∆t and integer

m ≥ 1, under assumptions of Theorem 1,

E{(∆Ns)m} = E{[N(∆t)]m} = C < ∞ · (10)

Denote RV =
∑n

s=1 r2
s . By the law of total variance,

var(RV ) = E{var[RV |N(·)]}+ var{E[RV |N(·)]}.

First, consider Var{E[RV |N(·)]}. Since {ξi} is i.i.d., we have

E[r2
s |N(·)] = µ2∆Ns

where µ2 = E(ξ2
i ). Thus, by Theorem 1,

var{E[RV |N(·)]} = var{
n∑

s=1

E[r2
s |N(·)]} = var{µ2N(n∆t)} ∼ Cn2d+1 · (11)

Next, we consider E{var[RV |N(·)]}. Since E[r4
s |N(·)] ≤ µ4∆N4

s , where µ4 = E(ξ4
i ), we obtain

var[r2
s |N(·)] = E[r4

s |N(·)]− {E[r2
s |N(·)]}2 ≤ µ4∆N4

s − (µ2∆Ns)2 · (12)

Since {ξi} is i.i.d., {r2
s} is serially independent, conditional on the counting process, N(·). By (10),

(12) and the stationarity of {∆Ns}, we obtain

E{var[RV |N(·)]} = E{
n∑

s=1

var[r2
s |N(·)]} =

n∑
s=1

E{var[r2
s |N(·)]} = nK , (13)

where K is a positive constant.
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The result follows from (11) and (13). ¤

Proof of Proposition 1:

We present the proof for the case 0 < d < 1
2 . The proof for the case d = 0 follows along similar lines.

Also, we assume here that p is a positive even integer. The result for all positive odd integers follows by

Hölder’s inequality.

Let ỹn = yn − E0(yn). Since p ≥ 2 is even and E0(ỹn)p can be expressed as a linear combination of

the products of the joint cumulants of ỹn of order 2, . . . , p, we have

0 ≤ E0|ỹn|p = E0(ỹp
n) =

∑
π

[
cπ

∏

j∈π

cum(ỹn, . . . , ỹn︸ ︷︷ ︸
j terms

)
]

≤
∑

π

[
|cπ|

∏

j∈π

|cum(ỹn, . . . , ỹn︸ ︷︷ ︸
j terms

)|
]

where π ranges over the additive partitions of n and cπ is a finite constant depending on π.

Since the first order cumulant of ỹn is zero and for all integers m ≥ 2, the m-th order cumulant of

ỹn is equal to that of yn, it suffices to show that the absolute value of the m-th order cumulant of yn is

bounded uniformly in n under P 0, for all m ∈ {2, . . . , p}.

We first consider the second and the third order cumulants.

For the second order cumulant (m = 2),

|cum(yn, yn)| = |cum(
∑n

k=1 τk

nd+ 1
2

,

∑n
s=1 τs

nd+ 1
2

)| ≤ 1
n2d+1

n∑

k=1

n∑
s=1

|cum(τk, τs)| .

To calculate the joint cumulant cum(τk, τs), we briefly introduce some terminology, mainly from

Brillinger (1981): consider a (not necessary rectangular) two-way table of indices,

(1, 1) . . . (1, J1)

... . . .
...

(I, 1) . . . (I, JI)
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and a partition P1 ∪ P2 ∪ . . . ∪ PM of its entries. We say sets Pm′ , Pm′′ of the partition hook if there

exist (i1, j1) ∈ Pm′ and (i2, j2) ∈ Pm′′ such that i1 = i2, i.e. at least one entry of Pm′ and one entry

of Pm′′ come from the same row in the two-way table. We say that sets Pm′ and Pm′′ communicate

if there exists a sequence of sets Pm1 = Pm′ , Pm2 , . . . , PmN = Pm′′ such that Pmn and Pmn+1 hook for

n = 1, . . . , N − 1. So Pm′ and Pm′′ communicate as long as one can find an ordered sequence of sets such

that all neighboring pairs hook, and this sequence links Pm′ and Pm′′ together. Finally a partition is said

to be indecomposable if all sets in the partition communicate.

By Brillinger (1981), Theorem 2.3.2, for a two-way array of random variables Xij , j = 1, . . . , Ji,

i = 1, . . . , I (see the corresponding two-way table above), the joint cumulant of the I row products

Yi =
Ji∏

j=1

Xij , i = 1, . . . , I

is given by,

cum(Y1, . . . , YI) =
∑

ν

cum(Xij ; ij ∈ ν1) . . . cum(Xij ; ij ∈ νw)

where the summation is over all indecomposable partition ν = ν1∪ . . .∪νw of the two-way table of indices.

It is more convenient to write the partitions in terms of symbols representing the random variables,

instead of the indices themselves. We will always use distinct symbols, so that there is a one-to-one

correspondence between the indices and the symbols. Nevertheless, the random variables represented by

distinct symbols need not be distinct. For example, ehk and ehs are distinct symbols, but if k = s, they

are not different random variables. Ultimately, the cumulants are computed from the random variables.

To compute cum(τk, τs), we use the two-way table of indices (left) and the corresponding table of

symbols (right),

(1, 1) (1, 2) ehk εk

(2, 1) (2, 2) , ehs εs

with I = 2, J1 = 2 and J2 = 2.

From Brillinger (1981), Theorem 2.3.1, all joint cumulants corresponding to partitions with at least
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one of the symbols representing {ehk} and at least one of the symbols representing {εk} in the same set,

are zero because the corresponding random variable sequences are mutually independent. So for m = 2,

excluding those with at least one of ehk , ehs and at least one of εk, εs in the same set, the only possible

indecomposable partitions (here, the partition is given in terms of the symbols) are:

{ehk , ehs}, {εk, εs}

{ehk , ehs}, {εk}, {εs}

{ehk}, {ehs}, {εk, εs} .

Thus, |cum(yn, yn)| ≤ A + B + C, where,

A =
1

n2d+1

n∑

k=1

n∑
s=1

|cum(ehk , ehs)||cum(εk, εs)|

B =
1

n2d+1

n∑

k=1

n∑
s=1

|cum(ehk)cum(ehs)||cum(εk, εs)|

C =
1

n2d+1

n∑

k=1

n∑
s=1

|cum(ehk , ehs)||cum(εk)||cum(εs)|

Both A and B reduce to a single summation because of the serial independence of the {εk}, so

A = O(n−2d) and B = O(n−2d). For C, by Surgailis and Viano (2002), Corollary 5.3,

|cum(ehk , ehs)| = eσ2
h |er|k−s| − 1|

where r|k−s| = cov(hk, hs) and σ2
h = Var(hk).

By the assumption on {bj} in the Theorem 2, it follows that rs ∼ Ks2d−1, as s →∞, where K > 0,

so that

n∑

k=1

n∑
s=1

|er|k−s| − 1| ≤ 2
n∑

k=1

n∑

s>k

|er|k−s| − 1|+ n|er0 − 1|

≤ Kn

n∑

j=1

j2d−1 + n|er0 − 1| = O(n2d+1).

Thus term C is O(1). Hence, |cum(yn, yn)| is O(1).

26



Next, for the third order cumulant (m = 3), we have

|cum(yn, yn, yn)| = 1
n3d+ 3

2
|

n∑

k=1

n∑
s=1

n∑
u=1

cum(τk, τs, τu)| ≤ 1
n3d+ 3

2

n∑

k=1

n∑
s=1

n∑
u=1

|cum(ehkεk, ehsεs, e
huεu)| .

We will use the following two-way table:

ehk εk

ehs εs

ehu εu

For convenience, we group the indecomposable partitions according to how many sets (L = 1, 2, 3)

the symbols ehk , ehs , ehu are partitioned into.

We have three groups of indecomposable partitions, excluding those with at least one of ehk , ehs , ehu

and at least one of εk, εs, εu in the same set:

i) Group 1

{ehk , ehs , ehu}, {εk, εs, εu}

{ehk , ehs , ehu}, {εk, εs}, {εu}

{ehk , ehs , ehu}, {εk, εu}, {εs}

{ehk , ehs , ehu}, {εk}, {εs, εu}

{ehk , ehs , ehu}, {εk}, {εs}, {εu}

ii) Group 2

{ehk , ehs}, {ehu}, {εk, εs, εu}

{ehk , ehs}, {ehu}, {εk}, {εs, εu}

{ehk , ehs}, {ehu}, {εs}, {εk, εu}

{ehk , ehu}, {ehs}, {εk, εs, εu}

{ehk , ehu}, {ehs}, {εk}, {εs, εu}
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{ehk , ehu}, {ehs}, {εs}, {εk, εu}

{ehu , ehs}, {ehk}, {εk, εs, εu}

{ehu , ehs}, {ehk}, {εk}, {εs, εu}

{ehu , ehs}, {ehk}, {εs}, {εk, εu}

iii) Group 3

{ehk}, {ehs}, {ehu}, {εk, εs, εu}.

We next study the order of the dominant contribution to |cum(yn, yn, yn)| corresponding to each

group.

In Group 1, the dominant term arises from the last partition since it yields a triple summation,

1
n3d+ 3

2

n∑

k=1

n∑
s=1

n∑
u=1

|cum(ehk , ehs , ehu)||cum(εk)||cum(εs)||cum(εu)| = µ3
ε

n3d+ 3
2

n∑

k=1

n∑
s=1

n∑
u=1

|cum(ehk , ehs , ehu)|

where µε = E0(ε1).

By Surgailis and Viano (2002), Corollary 5.3,

n∑

k=1

n∑
s=1

n∑
u=1

|cum(ehk , ehs , ehu)|

≤
n∑

k=1

n∑
s=1

n∑
u=1

e
3
2 σ2

h |er|k−s| − 1||er|k−u| − 1||er|s−u| − 1|

+
n∑

k=1

n∑
s=1

n∑
u=1

e
3
2 σ2

h |er|k−s| − 1||er|k−u| − 1|+
n∑

k=1

n∑
s=1

n∑
u=1

e
3
2 σ2

h |er|k−s| − 1||er|s−u| − 1|

+
n∑

k=1

n∑
s=1

n∑
u=1

e
3
2 σ2

h |er|k−u| − 1||er|s−u| − 1|

The last three summations are actually the same due to symmetry: we can simply relabel the indices in

the last summation by s ↔ u. As for the first summation, since |r|k−u|| = |cov(hk, hu)| ≤ σ2
h = Var(hk),
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we have |er|k−u| − 1| ≤ (eσ2
h + 1) < ∞. So

n∑

k=1

n∑
s=1

n∑
u=1

|cum(ehk , ehs , ehu)| ≤ K

n∑

k=1

n∑
s=1

n∑
u=1

e
3
2 σ2

h |er|k−s| − 1||er|s−u| − 1|

+ 3
n∑

k=1

n∑
s=1

n∑
u=1

e
3
2 σ2

h |er|k−s| − 1||er|s−u| − 1|

≤ K

n∑

k=1

n∑
s=1

n∑
u=1

|er|k−s| − 1||er|s−u| − 1| (for some K > 0)

= O(n4d+1)

The last step follows from Lemma 1. So µ3
ε

n3d+ 3
2

∑n
k=1

∑n
s=1

∑n
u=1 |cum(ehk , ehs , ehu)| converges to

zero because (4d + 1) < (3d + 3
2 ).

Similarly, the dominant contribution from Group 2 is of order

1
n3d+ 3

2

∑

i

∑

j

|cum(ehi , ehj )||cum(ehj )|

Note that in Group 2, all three of ehk , ehs , ehu are partitioned into two sets. Therefore, partitions with

all three of εk, εs, εu in different sets are not indecomposable, so the dominant contribution is a double

sum,

1
n3d+ 3

2

∑

i

∑

j

|cum(ehi , ehj )||cum(ehj )| = µeh

n3d+ 3
2

∑

i

∑

j

|cum(ehi , ehj )| ≤ Kn(2d+1)−(3d+ 3
2 ) = O(n−d− 1

2 )

where µeh = E0(eh1).

So the dominant term in Group 2 also converges to zero.

For Group 3, all three of ehk , ehs , ehu are partitioned into three different sets, so that the part of the

partition involving εk, εs, εu must be {εk, εs, εu} in order to be indecomposable. The resulting summation

now is only a single one of order O(n1). The dominant contribution again converges to zero.

Notice that the order of the dominant contribution from group 3 (O(n−3d− 1
2 )) is of smaller order than

that from group 2 (O(n−d− 1
2 )), which is of smaller order of that from group 1 (O(nd− 1

2 )). This will be

shown to hold in general for any m-th order joint cumulant.
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Next, we prove that the m-th order joint cumulant, which satisfies

|cum(yn, . . . , yn︸ ︷︷ ︸
m terms

)| ≤ 1
nm(d+ 1

2 )

n∑

k1=1

. . .

n∑

km=1

|cum(ehk1 εk1 , . . . , e
hkm εkm

)| (14)

converges to zero for all m > 2.

The indecomposable partitions of (ehk1 εk1 , . . . , e
hkm εkm

) are organized in a similar manner as before

into m groups, where in Group L the symbols ehk1 , . . . , ehkm are divided into L sets (L = 1, . . . , m).

a) First, consider Group 1. The dominant contribution to the righthand side of (14) corresponding

to Group 1 must be the one from the partition in which all of the symbols ehk1 , . . . , ehkm are in one

set and each of the symbols εk1 , . . . , εkm
is in a set by itself. The resulting summation is an m-fold

summation. By Corollary 5.3 of Surgailis and Viano (2002), the absolute value of the m-th joint cumulant,

|cum(ehk1 , . . . , ehkm )|, is bounded by a summation taken over all connected graphs with m vertices. Each

entry of the summation is a product of terms of the form |er|ki−kj | − 1| along the edges that connect

vertices ki and kj of a connected m-vertex graph.

For a graph with m vertices, we need at least (m − 1) edges to connect them. It is known (see

Andrasfai, 1977, Chapter 2) that any connected m-vertex graph with (m− 1) edges may be represented

as a tree. Let W{ki,...,kj} < ∞ be the total number of trees with vertices labeled by ki, ki+1, . . . , kj .

If a connected m-vertex graph used in applying Corollary 5.3 of Surgailis and Viano (2002) has more

than (m− 1) edges, it is not a tree, and there will be more than (m− 1) terms of the form |er|ki−kj | − 1|
being multiplied together in the m-fold summation in (14). But, for all ki, kj , |r|ki−kj || = |cov(hki , hkj )| ≤
σ2

h = Var(hki), so |er|ki−kj | − 1| ≤ (eσ2
h + 1) < ∞, and for any connected m-vertex graph with more than

(m − 1) edges, there exists an m-vertex subgraph that has a tree representation. So we can retain a

product of (m− 1) terms of the form |er|ki−kj | − 1| in the m-fold summation in (14) and move remaining

terms out of the summation, bounding each by (eσ2
h + 1). The resulting product of (m− 1) terms of the

form |er|ki−kj | − 1| is itself a product over the edges of an m-vertex tree.

In all, |cum(ehk1 , . . . , ehkm )| is bounded by a constant times a summation over the set G{k1,...,km} of
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all W{k1,...,km} trees. Each entry of the summation is a product of terms of the form |er|ki−kj | − 1| being

multiplied over the (m− 1) edges of the tree. Thus, we have

n∑

k1=1

. . .

n∑

km=1

|cum(ehk1 , . . . , ehkm )| ≤ K

n∑

k1=1

. . .

n∑

km=1

{ ∑

G{k1,...,km}

∏

(ki,kj)∈Ω(G{k1,...,km})

|er|ki−kj | − 1|
}

, (K > 0)

= K
∑

G{k1,...,km}

n∑

k1=1

. . .

n∑

km=1

{ ∏

(ki,kj)∈Ω(G{k1,...,km})

|er|ki−kj | − 1|
︸ ︷︷ ︸

(m−1) terms

}

where Ω(G{k1,...,km}) is the set of edges of the graph indexed by G{k1,...,km}.

By Lemma 1, each entry of the summation over G{k1,...,km} is of order O(n2dm−2d+1). Also this

summation is taken over a finite number of graphs (W{k1,...,km} < ∞), therefore

n∑

k1=1

. . .

n∑

km=1

|cum(ehk1 , . . . , ehkm )| = O(n2dm−2d+1)·

Because the normalization term in (14) is of order O(nm(d+ 1
2 )), the dominant contribution to cum(yn, . . . , yn︸ ︷︷ ︸

m terms

)

from Group 1 converges to zero, for any m > 2.

b) For Group 2, the symbols ehk1 , . . . , ehkm are partitioned into two sets. Thus, the partitions with

each of the m symbols εk1 , . . . , εkm in a set by itself are not indecomposable. Relabel the two sets as

{ehg1 , . . . , ehgq }, {ehgq+1 , . . . , ehgm }. Since the partition must be indecomposable, there must be one

I ∈ (1, . . . , q) and one J ∈ (q + 1, . . . , m), such that gI = gJ . The dominant contribution to (14) from

Group 2 is therefore

1
nm(d+ 1

2 )

n∑
g1=1

. . .

n∑
gm=1

|cum(ehg1 , . . . , ehgq )||cum(ehgq+1 , . . . , ehgm )||cum(εgI
, εgJ

)| (15)

Similarly as above, after applying Corollary 5.3 of Surgailis and Viano (2002) and after bounding

certain terms, we obtain
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n∑
g1=1

. . .

n∑
gm=1

|cum(ehg1 , . . . , ehgq )||cum(ehgq+1 , . . . , ehgm )||cum(εgI
, εgJ

)|

≤ K

n∑
g1=1

. . .

n∑
gm=1

{ ∑

G{g1,...,gq}

∏

(gi,gj)∈Ω(G{g1,...,gq})

|er|gi−gj | − 1|
︸ ︷︷ ︸

(q−1) terms

}

·
{ ∑

G{gq+1,...,gm}

∏

(gi,gj)∈Ω(G{gq+1,...,gm})

|er|gi−gj | − 1|

︸ ︷︷ ︸
(m−q−1) terms

}{
|cum(εgI , εgJ )|

}

= K
∑

G{g1,...,gq}

∑

G{gq+1,...,gm}

n∑
g1=1

. . .

n∑
gm=1

1{gI=gJ}

·
{ ∏

(gi,gj)∈Ω(G{g1,...,gq})

|er|gi−gj | − 1|
∏

(gi,gj)∈Ω(G{gq+1,...,gm})

|er|gi−gj | − 1|

︸ ︷︷ ︸
(m−2) terms, denote as Γ(g1,...,gm:G{g1,...,gq},G{gq+1,...,gm})

}
.

As mentioned before, any graph Ga in G{g1,...,gq} and any graph Gb in G{gq+1,...,gm}, can be represented

by trees with q and (m−q) vertices, respectively. Since for any two trees, the resulting structure obtained

by merging one vertex from each tree is again a tree, under the constraint gI = gJ , there exists a graph Gc

in G{g1,...,gI−1,gI+1,...,gm}, such that Gc is obtained by merging Ga and Gb together at the vertex gI = gJ .

Therefore, the numerical value of the term Γ evaluated for graphs Ga and Gb and indices {g1, . . . , gm}
with the constraint gI = gJ (which follows from the independence of the {εgi}) is equal to the value of the

term Φ (defined below) evaluated using the graph Gc in G{g1,...,gI−1,gI+1,...,gm} and indices {g1, . . . , gI−1, gI+1, . . . , gm}
without any constraint on the values of these indices. After re-parameterizing {g1, . . . , gI−1, gI+1, . . . , gm}
by {l1, . . . , lm−1}, we obtain

n∑
g1=1

. . .

n∑
gm=1

|cum(ehg1 , . . . , ehgq )||cum(ehgq+1 , . . . , ehgm )||cum(εgI
, εgJ

)|

≤ K
∑

G{l1,...,lm−1}

n∑

l1=1

. . .

n∑

lm−1=1

∏

(li,lj)∈Ω(G{l1,...,lm−1})

|er|li−lj | − 1|

︸ ︷︷ ︸
(m−2) terms, denote as Φ(l1,...,lm−1:G{l1,...,lm−1})

= O(n2d(m−2)+1)
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where the final equality follows from Lemma 1.

The above (m− 1)-fold summation for Group 2 is of smaller order than the m-fold summation from

Group 1, which was O(n2d(m−1)+1). Hence, the dominant contribution from Group 2 also converges to

zero.

c) In general, for Group L ∈ {1, . . . , m}, the symbols ehk1 , . . . , ehkm are partitioned into L sets. Relabel

the L sets as {ehg1 , . . . , ehgq1 }, {ehgq1+1 , . . . , ehgq2 }, . . . , {ehgqL−1+1 , . . . , ehgm}. Since the partition must be

indecomposable, there must be L indices {I, J, . . . , Z}, where I ∈ (1, . . . , q1), J ∈ (q1 +1, . . . , q2), . . . , Z ∈
(qL−1 + 1, . . . , m), such that gI = gJ = . . . = gZ︸ ︷︷ ︸

L terms

. The dominant contribution to (14) from Group L is

then,

1
nm(d+ 1

2 )

n∑
g1=1

. . .

n∑
gm=1

|cum(ehg1 , . . . , ehgq1 )| . . . |cum(e
hgqL−1+1 , . . . , ehgm )|︸ ︷︷ ︸

L−terms

|cum(εgI
, εgJ

, . . . , εgZ︸ ︷︷ ︸
L terms

)|. (16)

Similarly as before, we obtain
n∑

g1=1

. . .

n∑
gm=1

|cum(ehg1 , . . . , ehgq1 )| . . . |cum(e
hgqL−1+1 , . . . , ehgm )|︸ ︷︷ ︸

L−terms

|cum(εgI , εgJ , . . . , εgZ︸ ︷︷ ︸
L terms

)|

≤ K
∑

G{g1,...,gq1}

. . .
∑

G{gqL−1+1,...,gm}
︸ ︷︷ ︸

L−fold

n∑
g1=1

. . .

n∑
gm=1

1{gI = gJ = . . . = gZ︸ ︷︷ ︸
L terms

}

·
{ ∏

(gi,gj)∈Ω(G{g1,...,gq1})

|er|gi−gj | − 1| . . .
∏

(gi,gj)∈Ω(G{gqL−1+1,...,gm})

|er|gi−gj | − 1|
}

︸ ︷︷ ︸
(m−L) terms

≤ K
∑

G{l1,...,lm−L+1}

n∑

l1=1

. . .

n∑

lm−L+1=1

∏

(li,lj)∈Ω(G{l1,...,lm−L+1})

|er|li−lj | − 1|

︸ ︷︷ ︸
(m−L) terms

= O(n2d(m−L)+1),

by Lemma 1.

The constraint gI = gJ = . . . = gZ︸ ︷︷ ︸
L terms

allows the re-parameterization from {g1, . . . , gm} to {l1, . . . , lm−L+1}

and reduces the m-fold summation in (16) to an (m − L + 1)-fold summation in the last inequality. It
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was shown for Group 2 that the graph obtained by merging one vertex from each of any pair of trees

is again a tree. By induction, we obtain a tree by merging one vertex from each of L > 2 trees, which

allows us to apply Lemma 1 with M = m− L + 1 in the last step.

So, the dominant contribution from Group L is O(n2d(m−L)+1−m(d+ 1
2 )), (L = 1, . . . , m). Since d > 0,

the dominant contribution from all groups occurs for L = 1. Finally, the dominant contribution from

Group 1 is O(n2d(m−1)+1−m(d+ 1
2 )), which tends to zero for m > 2 since d < 1

2 . ¤

Lemma 1 For any M > 2 and 0 < d < 1
2 ,

n∑

k1=1

. . .

n∑

kM=1︸ ︷︷ ︸
M−fold

{ ∏

(ki,kj)∈Ω(G)

|er|ki−kj | − 1|
︸ ︷︷ ︸

(M−1) terms

}
= O(n2d(M−1)+1) (17)

where Ω(G) is the set of edges of G, G is any connected M -vertex graph with vertices {k1, . . . , kM} and

(M − 1) edges; r|ki−kj | = cov(hki , hkj ), 1 ≤ i ≤ M, 1 ≤ j ≤ M , {hki} is a long memory process with

memory parameter d.

Proof: Since G is a connected graph with M vertices and (M−1) edges, it can be represented as a tree

(see Andrasfai 1977, Chapter 2). The tree representation is not unique. Fix a particular representation.

Then there is one vertex with no parent, called the root. A vertex with both a parent and a child is

called a node. A vertex with no child is called a leaf.

We proceed iteratively. First, select any leaf vertex. By definition of a leaf, the corresponding index

only appears once in the product, so the sum on this index can be evaluated for this term only, holding

the other terms fixed. Since rs ∼ Cs2d−1 as s → ∞, we have for any fixed integer i with 1 ≤ i ≤ n,
∑n

j=1 |er|i−j| − 1| = O(n2d).

It follows that the sum on the first index is O(n2d). Next, delete the leaf just used from the tree. The

resulting graph is again a tree. Repeat the process of selecting a leaf, performing the corresponding sum

and deleting the leaf until only the root remains. The M -fold sum in (17) is now bounded by a constant

times the sum of n terms each of which is O(n2d(M−1)). Thus, the sum in (17) is O(n2d(M−1)+1). ¤
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Lemma 2 For durations {τk} satisfying the assumptions of Theorem 1, there exists δ > 0 such that

sup
t≥1

E[|Z(t)|2+δ] < ∞,

where Z(t) is defined in Equation (6).

Proof: Select any δ ∈ (0, ε). Let θ = 1/(2 + δ) and assume without loss of generality that µ = 1, and

hence that λ = 1
µ = 1. By Chung (1974, Theorem 3.2.1, page 42), E[|Z(t)|2+δ] ≤ 1+

∑∞
s=1 P [|Z(t)|2+δ ≥

s]. Thus, it suffices to show that

sup
t≥1

∞∑
s=1

P [|Z(t)|2+δ ≥ s] < ∞. (18)

Note that for any real k,

N(t) ≥ k ⇐⇒
bkc∑

i=1

ui ≤ t. (19)

For any s ≥ 1, we have

P [|Z(t)|2+δ ≥ s] = P [Z(t) ≤ −sθ] + P [Z(t) ≥ sθ]. (20)

Using the relationship (19), we obtain

P [Z(t) ≤ −sθ] = P [N(t) ≤ t− sθt1/2+d]

≤ P [N(t) < t− sθt1/2+d + 1] =





P (
∑bv(t,s)c

i=1 ui > t), s ≤ a(t);

0, s > a(t).
(21)

where a(t) = t(1/2−d)(2+δ) and v(t, s) = t− sθt1/2+d + 1. Similarly,

P [Z(t) ≥ sθ] = P [N(t) ≥ t + sθt1/2+d] = P (
bg(t,s)c∑

i=1

ui ≤ t) (22)

where g(t, s) = t + sθt1/2+d.

Next, we show that both (21) and (22) are summable in s, uniformly in t. We treat the cases

d ∈ (0, 1/2) and d = 0 separately, since in condition iv) of Theorem 1, we assume p = 3 + ε for d = 0,

which is much weaker than what we assume for d ∈ (0, 1/2).
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Case I: d ∈ (0, 1/2).

First, we consider (21). Suppose first that s ≤ a(t), so that v(s, t) ≥ 1. Let

W =
∑bv(t,s)c

i=1 ui − bv(t, s)c
bv(t, s)c1/2+d

·

Then, for t ≥ 4, since sθt1/2+d − 1 ≥ 1
2sθt1/2+d and bv(t, s)c ≤ v(t, s),

P (
bv(t,s)c∑

i=1

ui > t) = P
(∑bv(t,s)c

i=1 ui − bv(t, s)c
bv(t, s)c1/2+d

>
t− bv(t, s)c
bv(t, s)c1/2+d

)
≤ P

(
W >

t− v(t, s)
v(t, s)1/2+d

)

≤ E(|W |2+ε) · (t− sθt1/2+d + 1)(2+ε)(1/2+d)

(sθt1/2+d − 1)2+ε

≤ E(|W |2+ε) · (2t)(2+ε)(1/2+d)

( 1
2sθt1/2+d)2+ε

= C
E(|W |2+ε)
s(2+ε)/(2+δ) ·

(23)

where C > 0 is a constant.

For s > a(t), P [Z(t) ≤ −s1/(2+δ)] = 0.

Since 0 < δ < ε, the righthand side of (23) is summable in s, uniformly in t, provided that

supt≥1,s≥1 E(|W |2+ε) < ∞, which we show next.

Define

B1 =
u1 − 1

bv(t, s)c1/2+d
, B2 =

∑bv(t,s)c
i=2 (τi − 1)
bv(t, s)c1/2+d

,

so that W = B1 + B2. By Minkowski’s Inequality,

E[|W |2+ε] ≤
[(

E|B1|2+ε
)1/(2+ε)

+
(
E|B2|2+ε

)1/(2+ε)
]2+ε

.

Since u1 ≤ τ1, using h(x) = (x + 1)2+ε in E[h(τ1)] = E0[τ1h(τ1)] (see Equation 1.4.2 on page 33 of

Baccelli and Brémaud (2003)), and since our assumptions imply that E0[τ3+ε
k ] < ∞, we obtain

sup
t≥1,s≥1

E|B1|2+ε < ∞ .

From Baccelli and Brémaud (2003, Equation 1.2.25, page 20), for any measurable function h,

E[h(τ2, . . . , τn)] = E0[τ1h(τ2, . . . , τn)] .
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This, together with Holder’s inequality, yields

E|B2|2+ε = E0(τ1|B2|2+ε) ≤ [E0(τ3+ε
1 )]1/(3+ε) [E0|B2|3+ε ](2+ε)/(3+ε) · (24)

By assumption iv) of Theorem 1, supt≥1,s≥1 E0|B2|3+ε < ∞, thus we have supt≥1,s≥1 E|B2|2+ε < ∞,

and

sup
t≥1,s≥1

E|W |2+ε = E
∣∣∣
∑bv(t,s)c

i=1 ui − bv(t, s)c
bv(t, s)c1/2+d

∣∣∣
2+ε

< ∞ · (25)

Therefore,

sup
t≥1

∞∑
s=1

P [Z(t) ≤ −sθ] = sup
t≥1

∞∑
s=1

P (
bv(t,s)c∑

i=1

ui > t) < ∞. (26)

Next, we consider (22). Defining

U =
∑bg(t,s)c

i=1 ui − bg(t, s)c
bg(t, s)c1/2+d

,

an argument similar to that in (23) gives

P (
bg(t,s)c∑

i=1

ui ≤ t) ≤ E(|U |m)
(t + sθt1/2+d)

m(1/2+d)

(sθt1/2+d − 1)m

for any m > 0.

For t ≥ 4, since sθt1/2+d − 1 ≥ 1
2sθt1/2+d and t1/2+d < t, we obtain for all m > 0

P (
bg(t,s)c∑

i=1

ui ≤ t) ≤ E(|U |m)
(t + sθt1/2+d)

m(1/2+d)

( 1
2sθt1/2+d)m

≤ C
E(|U |m)

sθm(1/2−d)
(27)

where C is a constant.

Since d ∈ (0, 1/2), we can choose m sufficiently large so that (27) is summable in s. By a similar

argument as in the proof of (25), we have for this same value of m that supt≥1,s≥1 E(|U |m) < ∞.

Therefore,

sup
t≥1

∞∑
s=1

P [Z(t) ≥ sθ] = sup
t≥1

∞∑
s=1

P (
bg(t,s)c∑

i=1

ui ≤ t) < ∞ · (28)

Case II: d = 0.
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The bound for P [Z(t) ≤ −sθ] for case II follows along similar lines as in Case I, replacing d by 0 in

the proof. Next, we obtain a bound for P [Z(t) ≥ sθ]. Since d = 0, g(t, s) = t + sθt1/2.

Let integer s0 = bKt(2+δ)/2c for some K to be chosen later. Consider

sup
t≥1

∞∑
s=1

P (
bg(t,s)c∑

i=1

ui ≤ t) ≤ sup
t≥1

s0∑
s=1

P (
bg(t,s)c∑

i=1

ui ≤ t) + sup
t≥1

∞∑
s=s0

P (
bg(t,s)c∑

i=1

ui ≤ t)· (29)

The first term on the righthand side of (29) involves summation in s from 1 to s0. By (27) with m = 2+ε,

we obtain

P (
bg(t,s)c∑

i=1

ui ≤ t) ≤ E(|U |2+ε)
(t + sθt1/2)(2+ε)/2

(1
2sθt1/2)2+ε

·
(30)

As in the proof of (25), we obtain supt≥1,s≥1 E(|U |2+ε) < ∞.

Since

(t + sθt1/2)(2+ε)/2 < C(t(2+ε)/2 + sθ(2+ε)/2t(2+ε)/4) (31)

we obtain

P (
bg(t,s)c∑

i=1

ui ≤ t) ≤ C
[ 1
sθ(2+ε)

+
1

sθ(2+ε)/2t(2+ε)/4

]
·

(32)

The first term on the righthand side of (32) is summable in s since θ(2+ ε) = 2+ε
2+δ > 1. As for the second

term, since s0 = bKt(2+δ)/2c ≤ Kt(2+δ)/2, we obtain

1
t(2+ε)/4

Kt(2+δ)/2∑
s=1

1
sθ(2+ε)/2

≤ C

t(2+ε)/4
s−θ(2+ε)/2+1

∣∣∣
s=bKt(2+δ)/2c

≤ C

t(2+ε)/4
(Kt(2+δ)/2)−θ(2+ε)/2+1 = Ct(δ−ε)/2

which is bounded uniformly in t. It follows that

s0∑
s=1

P (
bg(t,s)c∑

i=1

ui ≤ t) ≤ C1 + C2

where the constants C1 and C2 are free of t. Hence

sup
t≥1

s0∑
s=1

P (
bg(t,s)c∑

i=1

ui ≤ t) < ∞ · (33)

38



We now consider P (
∑bg(t,s)c

i=1 ui ≤ t) for s ≥ s0. By Equation 1.2.25 of Baccelli and Brémaud (2003)

P [Z(t) ≥ sθ] = P (
bg(t,s)c∑

i=1

ui ≤ t) = E0
[ ∫ ∞

0

I{0 ≤ x ≤ τ1}I{τ1 − x +
bg(t,s)c∑

i=2

τi ≤ t}dx
]

≤ E0
[ ∫ ∞

0

I{0 ≤ x ≤ τ1}I{
bg(t,s)c∑

i=2

τi ≤ t}dx
]

= E0τ1I{
bg(t,s)c∑

i=2

τi ≤ t} · (34)

We bound (34) by Holder’s inequality:

E0τ1I{
bg(t,s)c∑

i=1

τi ≤ t} ≤ (E0τα
1 )1/α [P 0(

bg(t,s)c∑

i=1

τi ≤ t)]1/β , (35)

where 1/α + 1/β = 1, α > 0, β > 0 and the values of α and β will be chosen later.

We now show that the term [P 0(
∑bg(t,s)c

i=1 τi ≤ t)]1/β on the righthand side of (35) is bounded and

summable in s. Note that, for all nonnegative integers i and all a ≥ 0, 0 ≤ E0(e−aτi) < ∞, since by

dominated convergence theorem, lima→0 E0(e−aτi) = 1 and lima→∞E0(e−aτi) = 0. Hence

∃ 0 < a0 < ∞, such that E0(e−a0τi) = e−1,

where a0 is free of i since {τi} are identically distributed under P 0.

Then,

P 0(
bg(t,s)c∑

i=1

τi ≤ t) = P 0
(
e−

1
bg(t,s)c

Pbg(t,s)c
i=1 a0τi ≥ e−a0

t
bg(t,s)c

)
· (36)

Since by Jensen’s inequality,

e−
1

bg(t,s)c
Pbg(t,s)c

i=1 a0τi ≤ 1
bg(t, s)c

bg(t,s)c∑

i=1

e−a0τi

we conclude from (36) that

P 0(
bg(t,s)c∑

i=1

τi ≤ t) ≤ P 0
( 1
bg(t, s)c

bg(t,s)c∑

i=1

e−a0τi ≥ e−a0
t

bg(t,s)c
)

= P 0
( 1
bg(t, s)c

bg(t,s)c∑

i=1

xi ≥ e−1(e1−a0
t

bg(t,s)c − 1)
)

(37)

where xi = e−a0τi − e−1.
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Now, we choose K > max(2, 2a2+δ
0 ). Since s ≥ s0 = bKt(2+δ)/2c,

bg(t, s)c − a0t ≥ (t + sθt1/2 − 1)− a0t ≥ sθt1/2 − a0t ≥ (Kt(2+δ)/2 − 1)θt1/2 − a0t

≥ (
1
2
Kt(2+δ)/2)θt1/2 − a0t = [

(K

2

)θ

− a0]t (since t ≥ 1)

≥ γ > 0·

Hence, for every s ≥ s0, e1− a0t

bg(t,s)c − 1 > 0.

Also, for fixed t, as s →∞, e1− a0t

bg(t,s)c is monotonically nondecreasing. Thus,

inf
s≥s0

e1− a0t

bg(t,s)c − 1 ≥ e
1− a0t

bg(t,s0)c − 1 ≥ e
1− a0t

g(t,s0)−t − 1 ≥ e1−a0(
2
K )θ − 1 = ξ,

using the fact that, for s0 = bKt(2+δ)/2c ≥ Kt(2+δ)/2 − 1,

g(t, s0)− t = sθ
0t

1/2 ≥ (Kt(2+δ)/2 − 1)θt1/2 ≥ (
1
2
Kt(2+δ)/2)θt1/2 =

(K

2

)θ

t

and for K > 2a2+δ
0 , 0 < a0( 2

K )θ < 1, so that ξ > 0.

Therefore, (37) becomes

P 0(
bg(t,s)c∑

i=1

τi ≤ t) ≤ P 0
( 1
bg(t, s)c

bg(t,s)c∑

i=1

xi ≥ e−1ξ
)

≤ 1
bg(t, s)cm/2

E0
∣∣∣ 1
bg(t, s)c1/2

bg(t,s)c∑

i=1

xi

∣∣∣
m 1

(e−1ξ)m
, (38)

for any m > 0.

Note that E0(xk
i ) < ∞ for all positive integers k. Also {xi} is strong-mixing since {τi} is, hence by

Yokoyama (1980), for any m > 0

E0
∣∣∣ 1
bg(t, s)c1/2

bg(t,s)c∑

i=1

xi

∣∣∣
m

< C

and (38) yields,

P 0(
bg(t,s)c∑

i=1

τi ≤ t) ≤ C

(t + sθt1/2 − 1)m/2
≤ C

smθ
(since t ≥ 1)·
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Thus,
[
P 0(

bg(t,s)c∑

i=1

τi < t)
]1/β

≤ C

smθ/β
(39)

Now, in the righthand side of (35), we can choose α = 3 + ε > 0 and β = α
α−1 > 0. Given this choice

of α, β, we then choose m sufficiently large in (39) so that it is summable in s. Therefore, the righthand

side of (35) is summable in s, uniformly in t.

This then implies,

sup
t≥1

∞∑
s=s0

P (
bg(t,s)c∑

i=1

ui < t) < ∞ · (40)

In all, by (33) and (40), we obtain

sup
t≥1

∞∑
s=1

P [Z(t) ≥ sθ] = sup
t≥1

∞∑
s=1

P (
bg(t,s)c∑

i=1

ui ≤ t) < ∞ · (41)

¤

Lemma 3 Under the LMSD model described in Theorem 2 with memory parameter d ∈ [0, 1
2 ), P 0 is {τk}-

mixing; The durations {τk} generated by the ACD(1,1) model described in Theorem 3 are exponential α-

mixing.

Proof: Under P 0, {hk} is a stationary Gaussian process with a log spectral density having an integral

on [−π, π] that is greater than −∞, so that the innovation variance is positive. Since Gaussian processes

are time reversible, it follows that we can represent hk =
∑∞

j=0 ajwk+j where
∑

a2
j < ∞ and {wk} is an

iid Gaussian sequence. Arguing as in the proof of Theorem 17.3.1 of Ibragimov and Linnik (1971), pp.

311–312, replacing {. . . wk−1, wk} by {wk, wk+1, . . .}, it follows that P 0 is {hk}-mixing. Since the {εk}
are iid it follows that P 0 is also {εk}-mixing. Since for any process {ξk}, P 0 is {ξk}-mixing if and only

if the future tail σ-field of {ξk} is trivial (see, e.g., Nieuwenhuis (1989), Equation (3.3)), it follows from

Lemma 4 that P 0 is {τk}-mixing, where τk = ehkεk.

For the ACD(1,1) model, by Proposition 17 of Carrasco and Chen (2002), {τk} is exponential β-mixing

(or also called absolutely regular) if {τ0, ψ0} are initialized from the stationary distribution. Their result
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still holds for a doubly infinite sequence {τk}, k ∈ (−∞,∞). It is well known that β-mixing implies α-

mixing (or strong mixing), (see Bradley (2005), Section 2.1). Therefore, {τk} is also exponential α-mixing,

which further implies {τk}-mixing of P 0 for the ACD(1,1) model, see Nieuwenhuis (1989), Equation (3.5).

¤

Lemma 4 Let {ξs} and {ζs} be two independent processes whose future tail σ-fields are trivial. Then

the future tail σ-field of the process {ξs, ζs} is trivial.

Proof: Define St = σ(ξs, s ≥ t), Tt = σ(ζs, s ≥ t) and Ut = σ(ξs, ζs, s ≥ t). As pointed out by

Ibragimov and Linnik (1971, p. 303) (for regularity), to prove that U∞ is trivial, it suffices to prove that

for all U0-measurable zero mean random variables η such that E[η2] ≤ 1, E[η | Ut] converges to 0 in

quadratic mean. By standard arguments, it suffices to prove this for a random variable η that can be

expressed as η = η1η2 with η1 S0-measurable and η2 T0-measurable and, without loss of generality, both

with zero mean. Then, by independence of {ξs} and {ζs},

E[η | Ut] = E[η1 | St]×E[η2 | Tt] .

Since S∞ and T∞ are trivial, both terms in the right hand side above tend to 0 in q.m. By independence,

their product also tends to 0 in q.m. ¤

Proof of Theorem 6: We will separately consider the cases d ∈ (0, 1/2) and d = 0.

Case I: d ∈ (0, 1/2).

By the law of total variance

var(R̃V T ) = E{var[R̃V T |N(·)]}+ var{E[R̃V T |N(·)]}

First, consider Var{E[R̃V T |N(·)]}. We have

E[R̃V T |N(·)] = E[
bN(T )/Kc∑

j=1

r̃2
j |N(·)] = σ2

r̃

⌊N(T )
K

⌋
, (42)
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where σ2
r̃ = E(r̃2

j ).

By Theorem 1, we know that Var
[

N(T )
K

]
∼ CT 2d+1 which goes to infinity as T increases. Since

⌊N(T )
K

⌋
=

N(T )
K

−A ,

where the random variable A can take only K finite values in [0, 1) hence var(A) must be finite, by the

Cauchy-Schwartz inequality, we obtain

var
⌊N(T )

K

⌋
∼ CT 2d+1 · (43)

Using (43) in (42), it follows that

var{E[R̃V T |N(·)]} ∼ CT 2d+1 · (44)

Next, conditionally on N(·), since {r̃j} is at most q-dependent, by the Cauchy-Schwartz inequality,

we have

0 ≤ var[R̃V T |N(·)] = var[
bN(T )/Kc∑

j=1

r̃2
j |N(·)] ≤ σ2

r̃2 · (1 + 2q) ·
⌊N(T )

K

⌋

where σ2
r̃2 = var(r̃2

j ). Since E
⌊

N(T )
K

⌋
= O(T ),

E{var[R̃V T |N(·)]} ≤ CE
⌊N(T )

K

⌋
= O(T ), (45)

where C > 0.

Finally, by (44) and (45), we obtain var(R̃V T ) ∼ CT 2d+1.

Case II: d = 0.

Equation (44) still holds when d = 0 since Theorem 1 includes the d = 0 case.

Next, we consider E{var[R̃V T |N(·)]}. Denote the lag-k autocorrelation of {r̃2
j} by γk. Since {r̃j} is
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at most q-dependent, we have γk = 0 for all k > q. Conditionally on N(·), if
⌊

N(T )
K

⌋
≥ q, we have

var[R̃V T |N(·)] = var
{ bN(T )/Kc∑

j=1

r̃2
j |N(·)

}

=
⌊N(T )

K

⌋
σ2

r̃2 + 2(
⌊N(T )

K

⌋
− 1)σ2

r̃2γ1 + . . . + 2(
⌊N(T )

K

⌋
− q)σ2

r̃2γq

= (1 + 2γ1 + . . . + 2γq)σ2
r̃2︸ ︷︷ ︸

K1,q

⌊N(T )
K

⌋
−2(γ1 + . . . + qγq)σ2

r̃2︸ ︷︷ ︸
K2,q

= K1,q

⌊N(T )
K

⌋
+ K2,q. (46)

Since (1 + 2γ1 + . . . + 2γq) is equal to the spectral density of {r̃2
j} at zero frequency, which we assume

to be positive, K1,q > 0.

Similarly, conditionally on N(·), if
⌊

N(T )
K

⌋
= k where k = 0, . . . , q − 1, we have

var[R̃V T |N(·)] = K1,k

⌊N(T )
K

⌋
+ K2,k (47)

for some constants K1,k and K2,k.

Overall, conditionally on N(·), by (46) and (47),

var[R̃V T |N(·)]

=
{

K1,q

⌊N(T )
K

⌋
+ K2,q

}
I{

⌊N(T )
K

⌋
≥ q}+

{
K1,q−1

⌊N(T )
K

⌋
+ K2,q−1

}
I{N(T ) = q − 1}

+ . . . +
{

K1,0

⌊N(T )
K

⌋
+ K2,0

}
I{N(T ) = 0}

=
{

K1,q

⌊N(T )
K

⌋
+ K2,q

}
−

{
K1,q

⌊N(T )
K

⌋
+ K2,q

}
I{

⌊N(T )
K

⌋
< q}

︸ ︷︷ ︸
Γq

+
{

K1,q−1

⌊N(T )
K

⌋
+ K2,q−1

}
I{

⌊N(T )
K

⌋
= q − 1}

︸ ︷︷ ︸
Γq−1

+ . . . +
{

K1,0

⌊N(T )
K

⌋
+ K2,0

}
I{

⌊N(T )
K

⌋
= 0}

︸ ︷︷ ︸
Γ0

Since K1,q > 0 and E
⌊

N(T )
K

⌋
= O(n), we have

E
{

K1,q

⌊N(T )
K

⌋
+ K2,q

}
∼ CT
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for some C > 0. Therefore, to prove the theorem for the d = 0 case, it is enough to show that

E(Γ0), . . . , E(Γq) are all o(T ).

Consider Γq. Since

∣∣∣E
{[

K1,q

⌊N(T )
K

⌋
+ K2,q

]
I{

⌊N(T )
K

⌋
< q}

}∣∣∣ ≤ |K1,q|q + |K2,q| = O(1)

we have E(Γq) = o(T ). Similarly, E(Γk) = o(T ) for k = 0, . . . , q − 1. ¤
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