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Abstract

We consider estimation of a quantile from a discrete distribution. This gives rise to
three new ideas, the confidence set for such a quantile, the notion that the associated
confidence level can be increased after the data are collected, and that it is legitimate
to strive to obtain a singleton confidence set. We develop properties of the sample
quantile noting that the behavior for discrete populations is very different from the
behavior for continuous populations. We illustrate the results with simulations and
examples.

KEY WORDS: Quantile estimation, Discrete parameter, Discrete population, Ex-
post confidence, Singleton confidence set

1 Introduction

We develop statistical inference for a specified quantile based on a random sample from a
discrete population. Quantile estimation has been well developed for continuous populations
(see David (1981), Noether (1967), Scheffé and Tukey (1945), and for more recent contribu-
tions, see Hettmansperger and Sheather (1986), Chen (2000), and Ozturk and Deshpande
(2006).) But the discrete population case has received very little attention in the literature.
Our purpose is to develop quantile estimation methods specifically designed for discrete
populations.
We derive an exact distribution and consider asymptotic properties of the sample quantile.

We then develop a new large sample confidence set for a population quantile which is based
on inversion of a hypothesis test (TI). We also apply the result from David (1981) to construct
a confidence set for a population quantile based on order statistics (OS). The OS confidence
set is similar to the usual confidence interval for a quantile from continuous population. For
a given sample and specified confidence the two methods, TI and OS, may produce different
confidence sets.
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The distinguishing feature of the estimation of a quantile from a discrete population is
that the nominal level confidence set for a population quantile, obtained by either method,
is conservative; the observed coverage is more than the nominal confidence. Therefore we
propose, once the confidence set is obtained, to enlarge the confidence in this set by ex-
amining the data. We refer to the enlarged confidence as ex-post confidence. Simulation
results reported in this paper overwhelmingly show that ex-post confidence gives a more re-
alistic appraisal than the nominal one. The simulations involving the comparison of ex-post
confidence with the nominal one required a novel simulation approach because the ex-post
confidence, unlike the nominal one, changes from sample to sample. The ex-post and nomi-
nal confidence levels are compared using a conceptual betting game, and the closeness of the
betting game to the fair game is the criterion.
The other important aspect of the discrete estimation is that it is legitimate to ask for

a singleton confidence set, that is, a confidence set consisting of only the sample quantile.
We implement a heuristic, based on TI method, procedure to obtain a singleton confidence
set. This is a multi-stage procedure such that in each stage the sample size is appropriately
increased until the confidence set is a singleton or until a pre-specified bail-out sample size
is reached. The simulations and examples for a multi-stage procedure show that a correct
singleton set is relatively easy to obtain with large sample sizes. Very large sample sizes may,
however, be required when sampling from the populations, in which the population quantile
is extremely difficult to identify.
The paper is organized as follows. In Section 2 basic definitions are introduced and back-

ground literature is briefly discussed. The exact distribution, illustrated with simulation,
and asymptotic properties of sample quantile are obtained in Section 3. In Section 4 we
obtain a new large sample confidence set for the population quantile and also discuss confi-
dence set based on order statistics. The ex-post confidence level is defined in Section 5. The
characterization of a singleton confidence set and a heuristic procedure for obtaining such a
set are discussed in Section 6. Simulation results and examples are presented in Sections 7
and 8. The appendix derives the expression for the probability that the sample quantile is
not unique.

2 Notation and Background

For any random variable X, discrete or continuous, and for any value f between 0 and 1,
define the population f− quantile as any value ξ for which

P (X ≤ ξ) ≥ f

P (X ≥ ξ) ≥ 1− f
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The value ξ need not be unique. Based on a sample of independent values X1,X2,...,Xn the
sample f−quantile is any ξ̂ for which

number of {Xi ≤ ξ̂} ≥ nf

number of {Xi ≥ ξ̂} ≥ n(1− f)

If nf is an integer, then ξ̂ can be nonunique. If the random variableX is sampled from density
g, if ξ is unique, and if g(ξ)> 0, then, see David (1981, p. 255), the limiting distribution of

ξ̂ is asymptotically normal with mean ξ and standard deviation 1
g(ξ)

q
f(1−f)

n
.

A confidence interval for ξ in the continuous case can be formed from the limiting normal
distribution, but one can also give an exact nonparametric confidence interval. With a
sample of n, and integers r and s with 1 ≤ r < s ≤ n, it is shown routinely, see e.g., David
(1981, p 15), that

P (X(r) ≤ ξ ≤ X(s)) =
s−1X
i = r

µ
n

i

¶
f i (1− f)n−i

The desired confidence, say 1− α, is specified in advance, and then r and s are selected so
that

Ps−1
i = r

¡
n
i

¢
f i (1− f)n−i ≥ 1− α, but as close as possible to 1− α. Then interval

[X(r),X(s)] is to be used as 1− α confidence interval. The analyst may have to compromise
between “as close as possible to 1− α” and the length s− r.
If the random variable X is discrete, the corresponding result from David (1981, p 16),

for the closed interval is

P (X(r) ≤ ξ ≤ X(s)) ≥
s−1X
i = r

µ
n

i

¶
f i (1− f)n−i (1)

This had been observed earlier by Scheffé and Tukey (1945) and by Noether (1967). The
closed interval [X(r),X(s)] can always be used with confidence at least 1−α, but it might be
highly conservative when X is discrete. For example, the desire for a 95% confidence interval
might lead to a request for the interval (X(106),X(148)). The data could have X(92) = X(106)

and X(148) = X(159) and the confidence associated with (X(92), X(159)) would be larger than
0.95, perhaps by a lot. This begs the question as to whether examination of the data could
precede selection of the desired confidence coefficient and leads to the definition of the ex-post
confidence in Section 5.

3 Distribution of a Sample Quantile

In this section we derive the exact distribution of the sample f−quantile from a discrete
population. Let X be a discrete random variable, and assume for convenience that its
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support is a subset of nonnegative integers {0, 1, 2, 3, . . . }. Let pi = P (X = i), and then
define the cumulative probabilities as pLEi = P (X ≤ i),and pGEi = P (X ≥ i). Let f be a
quantile of interest, so that f = 0.5 if we are seeking the median, f = 0.75 if we are seeking
the upper quartile, and so on. The integer ξ will be the population f− quantile when

pLEξ = P (X ≤ ξ) ≥ f

pGEξ = P (X ≥ ξ) ≥ 1− f (2)

The population f−quantile need not be unique. If pLEξ = f then both integers ξ and ξ + 1
qualify as a population quantile. From a random sample X1,X2,...,Xn define

Yj =
nX

i = 1

I(Xi = j) = number of sample values equal to j

Y LE
j =

nX
i = 1

I(Xi ≤ j) = number of sample values less than or equal to j

Y GE
j =

nX
i = 1

I(Xi ≥ j) = number of sample values greater than or equal to j,

and p̂j = Yj/n, p̂
LE
j = Y LE

j /n, p̂GEj = Y GE
j /n. Use m̂ to denote the sample quantile. The

standard definition is that m̂ is equal to any integer k for which

p̂LEk ≥ f

p̂GEk ≥ (1− f). (3)

The sample quantile is guaranteed to be unique whenever nf is non-integer. To avoid
confusion about the possible non-uniqueness of the sample quantile when nf is an integer,
we make this new definition: m̂ = the smallest integer qualifying as sample quantile and
U = 1 if sample quantile is unique and U = 0 if sample quantile is non-unique. Also note
that the sample quantile k is nonunique iff one of the inequalities in (3) is an equality.
This definition of m̂ implies that it is always a value in the population distribution.

The situation {U = 0} involving three or more consecutive integers is exceedingly unlikely,
especially when the sample size is large. We will nonetheless obtain exact calculations related
to {U = 0}. The probability distribution of m̂ will be given in terms of f, the p0is, and the
sample size n. Define B as the integer below nf meaning

B = bnfc the integer part of nf , when nf is not an integer

= nf − 1 when nf is an integer.
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3.1 Exact distribution of sample quantile

The event {m̂ > k} is exactly equivalent to ©Y LE
k ≤ B

ª
. A short example illustrates the

concern with whether or not nf is an integer. Suppose that n=100 and that f = 1
3
. Then

nf = 331
3
, and B = 33. The 1

3
−quantile is bigger than 18 provided that no more than 33

values are at or below 18. In symbols, {m̂ > 18} ≡ {Y LE
18 ≤ 33}. Now suppose that n = 100

and that f = 0.30. Then nf = 30, and B = 29. The 0.30 quantile is bigger than 16 provided
that no more than 29 values are at or below 16. In symbols, {m̂ > 16} ≡ {Y LE

16 ≤ 29}.
Certainly

P (Y LE
k ≤ B) =

BX
j = 0

µ
n

j

¶ ¡
pLEk

¢j
(1− pLEk )n−j.

Thus

P (m̂ = k) = P (m̂ > k − 1)− P (m̂ > k) = P (Y LE
k−1 ≤ B)− P (Y LE

k ≤ B)

=
BX

j = 0

µ
n

j

¶ ¡
pLEk−1

¢j
(1− pLEk−1)

n−j −
BX
j=0

µ
n

j

¶ ¡
pLEk

¢j
(1− pLEk )n−j. (4)

This result can be rearranged in a number of ways, but the resulting forms are not nearly
as computationally useful. An enumeration of P (Y LE

0 ≤ B), P (Y LE
1 ≤ B), P (Y LE

2 ≤ B), ...
will permit the immediate calculation of P (m̂ = 0), P (m̂ = 1), P (m̂ = 2), and so on.
An extension of this logic will permit the calculation of P (m̂ = k, U = 0), the probability

that k is the smallest of two or more sample f−quantile values, in the case that nf is an
integer (B = nf − 1). Note that {m̂ = k, U = 0} =

©
Y LE
k−1 ≤ B

ª∩ ©Y LE
k = B + 1

ª
. The

situation requires that Y LE
k be equal to B + 1 = nf exactly. Then

P (m̂ = k, U = 0) = P
£ ©

Y LE
k−1 ≤ B

ª ∩ ©Y LE
k = B + 1

ª ¤
= (1− pLEk )n−B−1

µ
n

B + 1

¶ h ¡
pLEk

¢B+1 − ¡pLEk−1¢B+1 i . (5)

The computation of expression (5) is shown in the appendix. We now consider a simula-
tion example illustrating (4) and (5).
Example 1 Consider the random variable X of Table 1 defined on the set {0, 1, 2,. . . ,

20}, and suppose that the estimation of quantile f = 0.3 is sought based on a sample
of size 100. The first three columns in Table 1 show only that part of the distribution
of X most relevant to the problem. The population 0.30−quantile is 7. Here nf is an
integer, and the sample quantile need not be unique. The fourth column was computed as
P (m̂ = k)−P (m̂ = k, U = 0) and fifth column as P (m̂ = k, U = 0) using equations (4) and
(5). The theoretical probability that the sample quantile will be uniquely 7 is 0.7940, and
the probability that both 7 and 8 will qualify as sample quantile is 0.0269. The sixth and
seventh columns show the results of 1,000,000 simulation runs. It can be seen, as expected,
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that the simulated probabilities are close to the theoretical ones. There were no cases in
these million trials in which the sample quantile was shared among three integers.
With smaller values of n, multiple quantiles (three or more) are more likely. For the same

situation with n = 40, there were 801 simulation runs, out of 1,000,000, in which three or
more values qualified as the sample quantile. Of these 801, there were two cases in which
the sample quantile was shared among four consecutive integers.

3.2 Asymptotic behavior of sample quantile

We consider limiting behavior of the sample quantile as n increases. We will first show that
the sample quantile converges in probability to the population quantile and specify the rate
at which this convergence takes place. This convergence rate also shows that the sample
quantile converges to the population quantile almost surely.
Using the usual normal approximation to the binomial distribution we obtain, for large

n, an approximate expression for the probability in (4)

P (m̂ = k) = P (Y LE
k−1 < B)− P (Y LE

k < B) ≈ Φ
¡√

ngk−1
¢− Φ

¡√
ngk
¢

(6)

where Φ is the standard normal cumulative, gk =
¡
f − pLEk

¢
/
p
pLEk (1− pLEk ), and we used

the approximations: B = bnfc /n ≈ f and B = (nf − 1) /n ≈ f , which hold for large n.
Assume that ξ, the population f -quantile, is unique. Then by (6)

P (m̂ = ξ) = P (Y LE
ξ−1 < B)− P (Y LE

ξ < B) ≈ Φ
¡√

ngξ−1
¢− Φ

¡√
ngξ
¢

By the definition of the unique population population quantile we have that gξ−1 > 0 and gξ <
0, so Φ (

√
ngξ−1) converges to 1 and Φ (

√
ngξ) converges to 0. Thus P (m̂ = ξ) converges to 1

as n→∞. If φ(x) is the standard normal density function, we can investigate the asymptotic
rate of this convergence through the approximation 1 − Φ(x) ≈ φ(x)/x which holds when

x→∞ and through the approximation 1−Φ(x) = 1− (1−Φ(−x)) = 1−
³
φ(−x)
−x

´
= 1+ φ(x)

x

when x→−∞, see Feller (1950, page 166) or Pollard (1984, Appendix B). Thus

P (m̂ = ξ) ≈ £1− Φ
¡√

ngξ
¢¤− £1− Φ

¡√
ngξ−1

¢¤ ≈ 1 + φ (
√
ngξ)√
ngξ

− φ(
√
ngξ−1)√
ngξ−1

,

from which we see that P (m̂ = ξ) converges to 1 on the order of 1√
n
exp(−n), considerably

faster than 1√
n
convergence.

Suppose next that the population quantile is nonunique. Let ξ1 and ξ2 be the two values
in the population distribution which are population quantiles with ξ1 < ξ2. This means that
pLEξ1 = f, pGEξ2 = 1−f . The first equality is equivalent to gξ1 = 0 and gξ1−1 > 0. If the sample
quantile is nonunique, then m̂ is the smallest value so qualifying. Then by (6)

P (m̂ = ξ1) ≈ Φ
¡√

ngξ1−1
¢− Φ

¡√
ngξ1

¢
=
£
1− Φ

¡√
ngξ1−1

¢¤− 0.5
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and thus limn→∞ P (m̂ = ξ1) = 0.5. By a nearly identical calculation limn→∞ P (m̂ = ξ2) =
0.5. Hence in the case of nonuniqness the sample quantile converges in probability to a
random variable D which takes values ξ1 and ξ2 each with probability 0.5. Machado and
Santos Silva (2003) obtained this result in the context of Bernoulli distribution. It can also
be shown that m̂→ ξ (D) almost surely in case of uniqness (nonuniqness).

4 Confidence Sets for the Population Quantile

We first develop a new large sample confidence set with nominal confidence level 1− α for
the population quantile and compare it with the confidence set that is given implicitly by
David’s formula (1). The proposed confidence set always contains a sample quantile and, in
general, also other values.

4.1 Confidence set based on test inversion (TI)

This confidence set will be derived by inverting the following hypothesis test H0 : p
LE
k ≥ f

and pGEk ≥ 1− f vs H1 : one of the statements of H0 is violated. The null hypothesis states
that the population f−quantile is k and the alternative states that it is not. Our (1−α)100%
confidence set will consist of the integers k for which H0 would be accepted with the Type
I error probability of at most α. We propose this rule: reject H0 if p̂

LE
k ≤ f − c or if

p̂GEk ≤ 1−f − c where p̂LEk and p̂GEk are defined in section 3 and c is a positive constant. The
two rejection events are mutually exclusive. We now compute c so that the test has required
level α :

P (rejecting H0 | H0) = P (p̂LEk ≤ f − c | H0) + P (p̂GEk ≤ 1− f − c | H0).

Note that
P (p̂LEk ≤ f − c | H0) ≤ P (p̂LEk ≤ f − c | pLEk = f) (7)

and
P (p̂GEk ≤ 1− f − c | H0) ≤ P (p̂GEk ≤ 1− f − c | pGEk = 1− f). (8)

We can bound each of the two probabilities above by α/2. Given that pLEk = f , the
distribution of Y LE

k is binomial (n, f). We evaluate the second probability in (7) through a
normal approximation and set it equal to α/2:

P ( Y LE
k ≤ n(f − c) ) = P

Ã
Y LE
k − nfp
nf(1− f)

≤ n(f − c)− nfp
nf(1− f)

!

≈ P

Ã
Z ≤ −ncp

nf(1− f)

!
= Φ

Ã
−ncp

nf(1− f)

!
=

α

2
.
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where Z is a standard normal random variable. This leads to the condition zα/2 =√
nc/
p
f(1− f) and thus

c ≡ cα = zα/2

r
f(1− f)

n
. (9)

The calculation for the probability in (8) produces the same expression. Hence the (1 −
α)100% confidence set is

{k : p̂LEk > f − cα and p̂GEk > 1− f − cα}

or equivalently
{k : p̂LEk > f − cα and p̂LEk−1 < f + cα} (10)

where cα is given in (9). Note that a sample quantile will always be in the confidence set.
Example 2 Suppose that f = 0.30, n = 500 and the sample results were p̂LE18 =

0.236, p̂LE19 = 0.274, p̂LE20 = 0.342, and p̂LE21 = 0.370. The sample quantile is 20. For a 99%

confidence, c0.01 = 2.5758
q

0.3×0.7
500

≈ 0.0528. The 99% confidence set is {19, 20, 21}.

4.2 Confidence set based on order statistics (OS)

Let X(1) ≤ X(2) ≤ X(3) ≤ ... ≤ X(n) denote the order statistics in a sample of n independent
observations. We refer to (1.) in section 2, the probability inequality for the closed interval
about ξ. We will use this to construct a confidence set for ξ. The right side is a function of
n and f, which are given, and also r and s, which can be regarded as decision variables. As
discussed in section 2, we can select r and s so that the sum exceeds 1−α but is as close as
possible to 1−α. After selecting r and s, we can claim that [X(r), X(s)] is a 1−α confidence
interval for ξ, in that P (X(r) ≤ ξ ≤ X(s)) ≥ 1− α. Our (r, s) choice is thus determined
without looking at the data.
Example 3 (Example 2 revisited) With p̂LE18 = 0.236 = 118/500 we know that 118 of

the 500 values are 18 or less. Since p̂LE19 = 0.274 = 137/500, we see that 137 values are 19
or less. This means that X(119) = X(120) = ...= X(137) = 19. A similar strategy leads us to
X(138) = X(139) = ... = X(171) = 20 and also X(172) = X(173) = ... = X(185) = 21.

The calculation that dictates the set is
P176

i = 125

¡
500
i

¢
0.30i 0.70n−i ≈ 0.990185 > 0.99 =

1 − α. It follows that the 99% confidence set for the 0.30 quantile is [X(125) , X(177)]. The
125th value is 19, and the 177th value is 21. This leads to the 99% confidence set {19, 20,
21 }, which is identical to the set found by test inversion.
We note that 0.99185 is the closest confidence to the desired confidence of 0.99 that can

be attained when constructing confidence set using OS method. For future reference this
attained nominal confidence for OS confidence set, will be denoted by 1− α

0
.
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5 Ex-post confidence level

As will be seen from the development below the discreteness of the population causes the
confidence sets for a population quantile to be conservative, meaning that a 1−α confidence
set fails much less than α of the time. To overcome this (sometimes extreme) conservativism,
we introduce the notion of ex-post confidence. Once the nominal 1−α confidence level set has
been obtained our objective is to find the largest confidence level that would have produced
exactly the same set. We refer to this value as the ex-post confidence level. We show through
simulations that the ex-post confidence gives a more realistic appraisal of confidence than
the nominal value 1−α.We define the ex-post confidence for the TI and OS confidence sets.
Suppose that the 1−α confidence set obtained by using test inversion method is {k, ..., l}.

This notation should be understood as permitting the singleton case k = l. We now seek
the largest value of c (the smallest α) given in (9) that excludes k − 1 and l + 1 from the
confidence set. Note from (10) that value k − 1 will be excluded when p̂LEk−1 ≤ f − c; that
is, when c ≤ f − p̂LEk−1. Value l+1 will be excluded when p̂LEl ≥ f + c, which is c ≤ p̂LEl − f.
The largest value of c, cmax, that would produce the same confidence set {k, ..., l} is

cmax = min
¡
f − p̂LEk−1, p̂

LE
l − f

¢
, (11)

from which, using (9), we solve zα/2 = (
√
ncmax) /

³p
f(1− f)

´
for α and denote the

solution by αTI. The ex-post confidence in the set {k, ..., l} for the test inversion method is
defined as 1− αTI, where

αTI = 2

(
1− Φ

"√
nmin

¡
f − p̂LEk−1, p̂

LE
l − f

¢p
f(1− f)

#)
. (12)

We next define the ex-post confidence for the confidence set obtained using order statistics.
This confidence set has the form [X(r),X(s)] for some r ≤ s. Let q be the smallest integer
such that q ≤ r with X(q) = X(r) and t a largest integer such that t ≥ r with X(s) = X(t).
The set of values [X(q), X(t)] is the same set as [X(r),X(s)]. For the order statistics method
we define the ex-post confidence 1− αos of the set [X(r),X(s)] as

1− αOS =
t−1X
i = q

µ
n

i

¶
f i (1− f)n−i. (13)

Example 4 (Example 2 revisited) We compute the ex-post confidence using test inversion
method for the 99% confidence set {19, 20, 21} The largest value of c that excludes 18 and 22
is cmax = min

¡
0.3− p̂LE18 , p̂

LE
21 − 0.3

¢
= min(0.3− 0.236, 0.37− 0.3) = 0.064 which

gives zαTI/2 =
¡√
500× 0.064¢ / ¡√0.3× 0.7¢ ≈ 3.1229 and αTI=0.0018, leading to expost

confidence of 0.9982. This is of course larger than the nominal 0.99 used to construct the
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confidence set {19, 20, 21}. To compute the ex-post confidence using order statistics method
we recall that the 99% confidence set was identified as [X(125),X(177)], corresponding to
{19, 20, 21}. However, the data value 19 corresponds to rank positions 119, 120, ..., 137. Also
the data value 21 corresponds to rank positions 172, 173, ..., 185. The set [X(119), X(185)] is
also {19, 20, 21}. The ex-post confidence obtained by the order statistics method is the valueP184

i = 119

¡
500
i

¢
(0.30)i (0.70)500−i ≈ 0.998678. This is slightly larger than the ex-post

confidence for the test inversion confidence set.

It can be shown that if the confidence sets produced by the two methods (TI and OS)
are the same then 1− αOS ≥ 1− α

TI
. But simulations indicate that 1− αOS is only slightly

larger than 1− α
TI
.

6 Singleton confidence set

In case of a unique sample quantile, the singleton set is defined as consisting of that sam-
ple quantile. In case of nonuniqness, the ”singleton” set consists of both observed sample
quantiles and all values in between them. For example, if 23 and 25 are two observations in
the sample that both qualify as sample quantiles then we would report the singleton confi-
dence set as {23,24,25}. We first give give necessary and sufficient conditions for a 1−α TI
confidence set for the population f−quantile, to be a singleton when the sample quantile is
unique (Proposition 1) and when it is nonunique (Proposition 2).

Proposition 1 Suppose that k is a unique sample quantile. Then the necessary and suffi-
cient condition for the 1 − α TI confidence set to be a singleton (contain only this sample
quantile) is: p̂LEk−1 ≤ f − cα ≤ f + cα ≤ p̂LEk or equivalently,

cα ≤ min(f − p̂LEk−1, p̂
LE
k − f), (14)

A necessary condition for the 1− α confidence set to be a singleton set is

p̂k ≥ 2cα. (15)

Proof: If k is a unique sample quantile then by an extension of definition (3) p̂LEk >
f, p̂LEk−1 < f, and thus both quantities in (14) are positive, which makes cα well defined.
Since k is a sample quantile, it is certainly in the confidence set (10), so that p̂LEk−1 < f + cα.
But p̂LEk−2 ≤ p̂LEk−1 < f+cα, which shows that the second inequality in (10) is automatically
satisfied by integer k− 1. Hence for an integer k− 1 not to be in the confidence set we must
have

p̂LEk−1 ≤ f − cα (16)

Similarly for an integer k + 1 not to be in confidence set we must have

p̂LEk ≥ f + cα. (17)
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Combining (16) and (17) gives (14). The necessary condition (15) follows by combining (16)
and (17).¥

Proposition 2 Suppose that sample quantile is not unique, and k1 and k2, with k1 < k2,
are two sample observations that are both sample quantiles. Then the confidence set does not
contain any values outside [k1, k2] if and only if

p̂k1 ≥ cα (18)

and
p̂k2 ≥ cα, (19)

or equivalently
cα ≤ min(p̂k1, p̂k2). (20)

Proof: Since both k1 and k2 are sample quantiles we must have

p̂LEk1 = f, p̂GEk1 > 1− f,

p̂LEk2 > f, p̂GEk2 = 1− f.

Now (18) holds if and only if p̂LEk1−1 = p̂LEk1 − p̂k1 = f− p̂k1 ≤ f−cα, that is, iff k1−1 is not
in the confidence set. Similarly (19) holds if and only if p̂GEk2+1 = p̂GEk2 − p̂k2 ≤ 1− f − cα,
that is, if k2 + 1 is not in the confidence set. ¥
These necessary and sufficient conditions for a singleton confidence set will be rarely

satisfied in practice with typical values of 1 − α. This will be illustrated with the simula-
tions below. However, if the confidence set is not a singleton we can obtain a TI singleton
confidence set by selecting c according to (14), or in case of nonuniqness, according to (20).
Similarly we can compute the ex-post confidence in the singleton set.
Example 5 In Example 2 the sample quantile is 20 and confidence set is {19, 20, 21}.

We want to declare {20} as the confidence set. The value of c which excludes values 19 and
21 from the original confidence set and thus produces the singleton set {20} is

cmax = min
¡
f − p̂LE19 , p̂

LE
20 − f

¢
= min(0.026, 0.042) = 0.026,

which leads to zα/2 =(
√
ncmax)/

p
f(1− f) ≈ 1.2687. The TI ex-post confidence level for the

singleton set is 1 − α = 0.7954, and we would claim that {20} is a 79.54% confidence set.
The OS ex-post confidence in {20} is

170X
i = 138

µ
500

i

¶
(0.30)i (0.70)500−i = 0.86569149 ≈ 0.8657.

Example 5 illustrates that restricting the confidence set to a sample quantile(s) may
result in a low confidence level. Thus, we propose the following multistage procedure for
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obtaining a singleton confidence set with a specified confidence level. There is a parallel with
the classic problem of obtaining a fixed-width confidence interval for a continuous parameter.
Stein (1945) does this for a nominal confidence, and he uses a two-stage procedure.
If the obtained confidence set in (10) with confidence level 1 − α is not a singleton, we

increase the sample size, but keep the confidence level fixed, until we reach a singleton set
or the bail-out sample size Nmax. The multistage procedure is based on the TI method of
constructing the confidence set and uses Propositions 1 and 2. The OS confidence set does
not allow us in any obvious way to create a multistage procedure for achieving a singleton
confidence set.
Suppose that m̂ = k is a unique sample quantile based on the initial sample of size

n < Nmax. If {m̂} is the 1 − α confidence set, then the procedure stops. If the sample
quantile is unique and the confidence set consists of two or more values then according to
Proposition 1 we must have

c0α ≡ zα/2

r
f(1− f)

n
> min(f − p̂LEk−1, p̂

LE
k − f) ≡ min(ε0k−1, ζ0k),

where we set ε0k−1 = f − p̂LEk−1 and ζ0k = p̂LEk − f, and the superscript ”0” refers to the initial
sample size n. The idea, motivated by lemma 1, is now to increase the sample size from n

to n1, so that the corresponding cα, namely c1α = zα/2

q
f(1−f)
n1

, satisfies c1α ≤ min(ε0k−1, ζ0k).
This requires a sample size of at least

n1 =

&¡
zα/2

¢2
f(1− f)£

min(ε0k−1, ζ
0
k)
¤2
'
, (21)

where dxe is the function which gives the smallest integer greater than, or equal to, x.
We enlarge the sample size to n1 by taking an additional n1 − n observations. If n1 exceeds
Nmax or if the resulting confidence set based on a sample of size n1 is a singleton we stop.
Otherwise we repeat the procedure.
If the sample quantile is not unique then, by Proposition (2), the expression in (21)

should be modified by replacing min(ε0k−1, ζ
0
k) with min(p̂

0
k1
, p̂0k2), where k1, k2 are two sample

quantiles satifying k1 < k2. The above procedure may converge to an incorrect singleton
confidence set, but, as the simulations results show, this is a rare occurence unless the
required quantile is extremely diificult to identify.

7 Simulation results

The simulation study was conducted to assess whether ex-post confidence gives a more
realistic appraisal of confidence than the nominal confidence, and to evaluate the performance

12



of multistage procedure. We also compare confidence sets generated by TI and OS methods
for nominal confidence.
We used a simulation approach based on a conceptual betting game. This was necessary

because, unlike the nominal confidence, ex-post confidence changes from sample to sample.
The betting game is this. In the jth simulation round when sample j produces ex-post
confidence 1−αj , place a conceptual bet of 1−αj dollars on coverage against αj dollars on
noncoverage. This bet will win αj on coverage and win −(1−αj) dollars when the confidence
set does not cover the population quantile. The betting game for the nominal confidence
is the same, but each bet uses the same nominal confidence α. More precisely, the average
ex-post payout over N simulation runs is

average ex-post payout =
1

N

NX
j = 1

[αjCj − (1− αj)(1− Cj)] =
NC

N
− (1−

P
αj

N
),

where NC is the number of times the confidence set covered population quantile in N sim-
ulation rounds and Cj = 1 when the j

th confidence set covers the population quantile and
Cj = 0 if not. This is compared to the average payout with nominal confidence 1− α given
by NC/N − (1−α) for TI method and by NC/N − (1−α0) for OS method.The criterion for
the appraisal of the two ways of assigning confidence is the fairness of the betting game. The
preferred way of assigning confidence is the one for which the corresponding betting game
has the average payout closer to zero.
The results of the simulations are reported in Tables 2 - 6. We used three populations,

and asked for the 0.30 quantile in each. The relevant information about these populations
is given in Table 3 and repeated in subsequent tables. In each population the 0.30 quantile
is 79. The populations are listed in the order of the level of difficulty in identifying the 0.30
quantile from the ”easy” to a very ”difficult” one. In the first population the quantile was
well identified, in the second it is difficult to know whether 79 or 80 is the 0.30 quantile. In
the third population it is extremely difficult to know whether 78, 79 or 80 is the quantile.
In Tables 2 and 3 we used 0.99 as the nominal confidence and sample size of 83 and

803 respectively. For each combination of the sample size and the population the simulation
consisted of N = 10, 000 repetitions. It is seen that for all simulations, except for the last one
in Table 2, the actual coverage is more than the nominal of 0.99. Consequently the average
ex-post confidence payout for both TI and OS methods is closer to zero than the nominal
one except for the one simulation, which involves the ”very difficult” population and a small
sample size of 83. The ex-post confidence payouts are comparable by OS and TI methods.
These simulations illustrate that nominal level is in general too low and one can do better
by using ex-post confidence with either TI or OS methods.
As an illustration Table 4 enumerates all confidence sets that were achieved by TS and OS

methods in simulation involving the second population and sample size of 803 and also gives
the most frequent confidence sets obtained by TS and OS methods for the same population
when sample size was 83.
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Tables 5 and 6 report simulation results for obtaining a singleton confidence set {79} using
the procedure described in Section 6. Three values were specified for the nominal confidence:
0.90, 0.95 and 0.999. For each combination of population and nominal confidence the initial
sample size was 1000 and there were 10,000 simulaton runs. The bail-out sample size for
each simulation run was 500,000. Table 6 lists all confidence sets achieved. The second
column gives the number of times population quantile was covered in 10,000 simulations
either when the singleton set was achieved or when the bail out sample size was reached.
For the first population the correct singleton was achieved in all simulations for confidence
levels of 0.95 and 0.999. For a lower confidence of 0.90, the procedure converged to a wrong
singleton confidence set 7 out of 10,000 times. For the second population the number of
wrong singleton sets decreased with the confidence level from 309 to 7. For the extremely
”difficult” population at 0.999 confidence no simulation converged to a singleton confidence
set, but all confidence set resulting from these simulations covered population quantile. We
note that very large sample sizes are required to obtain a singleton confidence set for each
considered population. In particular a sample size larger than 500,000 is required to obtain
a singleton confidence set for the extremely difficult population. Further illustrations of
obtaining singleton confidence set are given in the next section.

8 Estimation Examples

We illustrate our methods with the data set from the KDD-CUP competition in data mining
available at http://kdd.ics.uci.edu/databases/kddcup98/kddcu. This is the 1998 competi-
tion set, which concerns contributions to a charity following a mailing solicitation. The
participants were asked to devise an algorithm to predict the amount contributed. The data
set has 95,413 data lines, each representing a regular donor. There are 481 data fields. Two
of those data fields will be used to illustrate our methods: Field 24: Number of children
living in household and Field 468: Time-lag in months between first and second gifts. For
each data field we regard the set of 95,413 values as the population and want to obtain a
singleton confidence set with 95% confidence.for the population 70th percentile based on a
sample of size 200.
In a random sample of 200 from field 24 the data are these:

Value Count Cumulative Count
0 165 165
1 23 188
2 10 198
3 2 200
4 0 200

Total 200
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The confidence set procedure based on test inversion gives the 95% confidence set as
{0}, with ex-post confidence of 0.99991. (We only report the test inversion confidence set
because in this and next example the order statistics confidence set is the same as the test
inversion one and has practically the same ex-post confidence.) With more than 80% of the
data values at 0, this result was obvious. For the full set of 95,413 values, there are 83,027
zeroes, which gives 83, 027/95, 413 = 87.01% of zeros so that indeed 0 is the population 70th
percentile. Thus, for this population estimating the 70th percentile is a very easy problem.
Our small starting sample size of 200 was sufficient to produce a singleton confidence set.
We now consider field 468, months between first and second gifts. The data from the

sample of size 200 is this:

Value Count Cumulative Count
6 109 109
7 11 120
8 20 140
9 9 149
10 9 158
11 9 167
12 7 174
13 5 179
14 21 200

Total 200

There are two observations in this data that qualify for a sample quantile: 8 and 9. A
95% confidence set is {7, 8, 9, 10} with ex-post confidence of 0.995132. Since the sample
quantile is not unique and the confidence set contains other values than samples quantiles
we now use a modified version of (21) to enlarge the sample size. With k1 = 8 and k2 = 9
we obtain

n1 =

&¡
zα/2

¢2
f(1− f)

[min(bp8, bp9)]2
'
=

&
(1.96)2 × 0.7× 0.30
[min(0.1, 0.045)]2

'
= 399

so that we should increase the sample size to 399. With n = 399, the data results are:
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Value Count Cumulative Count Cumulative Proportion
6 209 209 0.523810
7 42 251 0.629073
8 22 273 0.684211
9 18 291 0.729323
10 15 306 0.766917
11 20 326 0.817043
12 15 341 0.854637
13 8 349 0.874687
14 50 399 1.000000

Total 399

This time, the sample quantile is unique at 9. The confidence set is {8, 9, 10}, with
ex-post confidence of 0.997211. We can apply formula (21) to suggest a sample size that
would produce a singleton confidence set. This leads to

n1 =

&¡
zα/2

¢2
f(1− f)£

min(ε08, ζ
0
9)
¤2
'
=

&
(1.96)2 × 0.7× 0.30

[min(0.015789, 0.029323)]2

'
= 3, 237

We will enlarge the sample size to 3,237. With n = 3, 237,

Value Count Cumulative Count Cumulative Proportion
6 1,750 1,750 0.540624
7 213 1,963 0.606426
8 172 2,135 0.659561
9 159 2,294 0.708681
10 146 2,440 0.753784
11 138 2,578 0.796416
12 130 2,708 0.836578
13 81 2,789 0.861600
14 448 3,237 1.000000

Total 3,237

The sample quantile is again unique at 9, but the confidence set is {9, 10} with the
ex-post confidence of 1.0000. As this is not a singleton, we will use formula (21) again to get
a new sample size:

n1 =

&¡
zα/2

¢2
f(1− f)£

min(ε08, ζ
0
9)
¤2
'
=

&
(1.96)2 × 0.7× 0.30

[min(0.040439, 0.008681)]2

'
= 10, 706.

We will enlarge the sample size to 10, 706. With n = 10, 706
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Value Count Cumulative Count Cumulative Proportion
6 5,954 5,954 0.556137
7 653 6,607 0.617131
8 560 7,167 0.669438
9 540 7,707 0.719877
10 453 8,160 0.762189
11 451 8,611 0.804315
12 416 9,027 0.843172
13 297 9,324 0.870914

≥ 14 1,382 10,706 1.000000
Total 10,706

The sample quantile is now 9, and the 95% confidence set is the singleton {9} with the
ex-post confidence at 0.999995. For the entire set of 95,413, the summary is this:

Value Cumulative Probability
7 0.61981071
8 0.67499187
9 0.72202949
10 0.76187731
11 0.80118013

from which we see that the population 70th percentile is indeed 9 and the method has
succeded in identifying this quantile.
In both examples, the target quantile is nailed down with very high precision, although

a relatively large sample size was required in the second example.
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9 Appendix

We derive here the expression given in (5), which is the probability that the sample quantile
is non-unique with k as the smallest value. Setting G = B + 1 we have

P (m̂ = k, U = 0)

= P
£©
Y LE
k−1 ≤ B

ª ∩ ©Y LE
k = G

ª¤
=

BX
j = 0

P (Y LE
k−1 = j) P (Yk = G− j | Y LE

k−1 = j)

=
BX

j = 0

µ
n

j

¶ ¡
pLEk−1

¢j ¡
1− pLEk−1

¢n−j µn− j

G− j

¶ µ
pk

1− pLEk−1

¶G−j µ
1− pk

1− pLEk−1

¶n−G

=
BX

j = 0

µ
n

j

¶ µ
n− j

G− j

¶ ¡
pLEk−1

¢j ¡
1− pLEk−1

¢n−j µ pk
1− pLEk−1

¶G−j µ
1− pLEk
1− pLEk−1

¶n−G

= (1− pLEk )n−G
µ
n

G

¶ BX
j = 0

µ
G

j

¶ ¡
pLEk−1

¢j
(pk)

G−j

= (1− pLEk )n−G
µ
n

G

¶ "
GX

j = 0

µ
G

j

¶ ¡
pLEk−1

¢j
(pk)

G−j − ¡
pLEk−1

¢G#

= (1− pLEk )n−G
µ
n

G

¶ h¡
pLEk

¢G − ¡pLEk−1¢Gi .
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TABLE 1. The description of this table appears in Example 1 
 

   P[  = x ] m̂ # times in sample 
m̂  = x 

x px LE
xp  

x is unique 
sample 
quantile 

x is 
minimum 

non-unique 
sample 
quantile  

x is unique 
sample 
quantile 

x is 
minimum 

non-unique 
sample 
quantile 

4 0.04197170 0.07007117 0.00000000 0.00000000 0 0 
5 0.07219132 0.14226250 0.00001430 0.00002486 17 37 
6 0.10347423 0.24573673 0.08661756 0.04061139 86,662 40,715 
7 0.12712548 0.37286221 0.79398164 0.02690271 793,861 26,898 
8 0.13665989 0.50952211 0.05182996 0.00001062 51,793 8 
9 0.13058612 0.64010823 0.00000693 0.00000000 9 0 
10 0.11230406 0.75241229 0.00000000 0.00000000 0 0 

TOT     932,342 67,658 
 



TABLE 2:  Results for 99% confidence sets, using sample size n = 83. The description of 
this table is given in Section 7. 
 
 

Population distribution near 0.30 
quantile (middle value is the 

quantile) 

2 1 1

2 1 1
LE LE LE LE LE
k k k k k

k k k k k
p p p p p− − + +

− − + + 
 
 2

2

 

 

Times 
Covered, 

out of 
10,000 

Nominal 
Confidence 

Payout 

Ex-post 
Confidence 

Payout 

,958 0.005800 0.001466 77 78 79 80 81
0.2447 0.2814 0.3203 0.3613 0.4037
 






 
Order Stat 9,945 0.003252 -0.001259 

9,957 0.005700 0.001237 77 78 79 80 81
0.2259 0.2636 0.3042 0.3471 0.3919
 
 
 

 
Order Stat 9,963 0.005052 0.000372 

9,868 -0.003200 -0.005117 77 78 79 80 81
0.2955 0.2980 0.3005 0.3030 0.3055
 
 
 

 
Order Stat 9,850 -0.006248 -0.006684 

Test Inv 9

Test Inv 

Test Inv 

 
 

TABLE 3:  Results for 99% confidence sets, using sample size n = 803. The description 
of this table is given in Section 7. 
 

Population distribution near 0.30 
quantile (middle value is the 

quantile) 

2 1 1

2 1 1
LE LE LE LE LE
k k k k k

k k k k k
p p p p p− − + +

− − + + 
 
 2

2

 

 

Times 
Covered, 

out of 
10,000 

Nominal 
Confidence 

Payout 

Ex-post 
Confidence 

Payout 

0.009900 0.001979 77 78 79 80 81
0.2447 0.2814 0.3203 0.3613 0.4037
 






 
Order Stat 9,999 0.009764 0.001259 

 0.008100 0.000107 77 78 79 80 81
0.2259 0.2636 0.3042 0.3471 0.3919
 






 
Order Stat 9,981 0.008964 0.000493 

 0.002000 -0.000605 77 78 79 80 81
0.2955 0.2980 0.3005 0.3030 0.3055
 






 
Order Stat 9,916 0.001464 -0.000345 

Test Inv 9,999 

Test Inv 9,981

Test Inv 9,920

 
 
 
 
 



 
TABLE 4:  99% Confidence Sets Produced for population: 

  
77 78 79 80 81

0.2259 0.2636 0.3042 0.3471 0.3919
 
 
 
 
With sample size of 83:  
 
Most likely by Test Inversion (out of 10,000): 

{76, …, 82} 1,068 times 
{77, …, 83}    859 times 
 

Most likely by Order Statistics (out of 10,000): 
{75, …, 82}    908 times 
{76, …, 83} 1,084 times 
 
 

With sample size of 803: 
 

 Test 
Inversion 

Order 
Statistics 

{77, 78, 79            } 66 104 
{77, 78, 79, 80        } 83 122 
{    78, 79            } 64 85 
{    78, 79, 80        } 5,105 5,615 
{    78, 79, 80, 81    } 976 967 
{        79, 80        } 852 805 
{        79, 80, 81    } 2,829 2,291 
{        79, 80, 81, 82} 6 2 
{            80, 81    } 15 8 
{            80, 81, 82} 4 1 
TOTAL 10,000 10,000 

 



TABLE 5:  Simulation results for the multistage procedure.  The table is described in 
Section 7 
 

Population distribution near 0.30 
quantile (middle value is the 

quantile) 

2 1 1

2 1 1
LE LE LE LE LE
k k k k k

k k k k k
p p p p p− − + +

− − + +

 2

2



 

Starting 
confidence 

1 - α 

Number of 
times 

covered in 
10,000 
trials 

Number of 
times correct 

singleton 
achieved 

Average 
sample size 

required  
(bail out at 

N = 500,000) 

0.90 9,993 9,993 55,257.58 
10,000 59,542.28 

77 78 79 80 81
0.2447 0.2814 0.3203 0.3613 0.4037
 
 
 

 

0.999 10,000 10,000 96,818.69 
0.90 9,691  9,691 162,809.53 

9,923 190,595.25 
77 78 79 80 81

0.2259 0.2636 0.3042 0.3471 0.3919
 
 
 

 
0.999 9,993 9,993 289,378.88 
0.90 9,936   1,195 499,919.10 

       41 499,997.03 
77 78 79 80 81

0.2955 0.2980 0.3005 0.3030 0.3055
 
 
 

 
0.999 10,000 0 500,000.00 

0.95 10,000 

0.95 9,923 

0.95 9,973 

 
 
 
TABLE 6:  Simulation results for the multistage procedure. The table is described in 
Section 7. 
 

Number of times producing confidence sets 
No 

cover 
(low) 

Cover population quantile No cover (high) 

Population distribution near 0.30 
quantile (middle value is the quantile) 

2 1 1

2 1 1
LE LE LE LE LE
k k k k k

k k k k k
p p p p p− − + +

− − + + 
 
 2

2


 

Starting 
confidence 

1 - α 
{78} {77,78,79} {78,79} {79} {78,79,80} {79,80} {79,80,81} {80} {80,81} 

0.90 6   9,993   1  
  10,000      

77 78 79 80 81
0.2447 0.2814 0.3203 0.3613 0.4037
 
 
 

 

0.999    10,000      
0.90    9,691    309  

  9,923    77  
77 78 79 80 81

0.2259 0.2636 0.3042 0.3471 0.3919
 
 
 

 
0.999    9,993    7  

    720 1,195  8,021  53 11 
 1,117 41 154 8,655 6 1 26 

77 78 79 80 81
0.2955 0.2980 0.3005 0.3030 0.3055
 
 
 

 
0.999  3    56  5,756 3,257 928   

0.95  

0.95  

0.90  
0.95  

 
 
 



 
 

 


