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Abstract

Fluctuations in demand cause some plants to exit a market and
other to enter. Would eliminating these fluctuations reduce plant turnover?
A structural model of entry and exit in concentrated markets is es-
timated for the ready-mix concrete industry, using plant level data
from the U.S. Census. The Nested Pseudo-Likelihood algorithm is
used to find parameters which rationalize behavior of firms involved
in repeated competition. Due to high sunk costs, turnover rates would
only be reduced by 3% by eliminating demand fluctuations at the
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county level, saving around 20 million dollars a year in scrapped cap-
ital. However, demand fluctuations blunt firms’ incentive to invest,
reducing the number of large plants by more than 50%.

1 Introduction

Many industries face considerable uncertainty about future demand for their

products, perhaps most universally because of aggregate fluctuations in eco-

nomic activity due to the business cycle. These fluctuations are costly, since

firms change their production process to suit the current level of demand,

hiring and firing workers, purchasing and scraping machinery, opening and

shutting down plants. In this paper, I focus on a single industry, ready-mix

concrete, and a specific type of adjustment central to industrial economics,

plant entry and exit, to evaluate the cost of demand fluctuations.

The ready-mix concrete industry is unusually well suited to study the

impact of fluctuations in demand on entry and exit and industry structure.

The concrete industry witnesses large changes in output from year to year as

illustrated by Figure 1, which are of great concern to ready-mix producers.

These fluctuations are caused in part by the effect of changes in interest

rates on new construction activity, and variation in government spending

on highways and buildings. Moreover, there is substantial regional and local

variation in construction activity, that affects ready-mix plants within only

a limited area due to high transportation costs. Indeed, wet concrete cannot

travel for much more than an hour before it hardens in the barrel of a truck.
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Cement Consumption and Construction Employment 1976-1999
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Figure 1: Cement consumption (used in fixed proportion to concrete) and
construction sector salaries are very procyclical and volatile.
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There is considerable plant turnover in the ready-mix concrete industry.

In a five year period more than 30% of plants will shut down and 30% of

plants will be born. Moreover, entry and exit are responsible for 15% of jobs

created and destroyed. Would dampening fluctuations in demand for concrete

from the construction sector reduce job and plant turnover? What is the cost

to society of this turnover? Moreover, is industry composition substantially

altered by these demand fluctuations?

I answer these questions with longitudinal data provided by the Cen-

ter for Economic Studies at the Census Bureau, on the life histories of over

15 000 ready-mix concrete plants in United States from 1963 to 2000. These

data provided detailed information on the inputs and outputs of plants as

well as on entry and exit. I estimate a model of dynamic competition in

concentrated markets using the Nested Pseudo-Likelihood algorithm (NPL)

developed by Aguirregabiria and Mira (2006), that identifies’ the parameters

of the dynamic game firms play from their equilibrium strategies. Moreover,

I incorporate market level fixed effects into this model to control for persis-

tent, but unobserved, differences between markets. I cannot, however, use a

static model of entry and exit, such as the models of Bresnahan and Reiss

(1994), since these are incapable of performing the counterfactual: a perma-

nent change in the volatility of demand. Instead, a fully dynamic, multi-agent,

model is required.

I find that a ready-mix concrete plant entails substantial sunk costs. My

estimates indicate that a potential entrant is indifferent between a permanent
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monopoly market and a permanent duopoly market where she would not have

to pay sunk costs.

The econometric model is used to simulate the effect of eliminating yearly

changes in demand at the county level. I find that plant turnover would be

only 3% lower in a world without demand fluctuations. This number is quite

small, implying that 20 million dollars a year is lost due to unnecessary plant

shut down and opening. Because of large sunk costs, plants are unlikely to

exit during a temporary lull in demand. Sunk costs slow the reaction of firms

to short-run fluctuations in demand, since it is costly to build new plants or

to shut down old ones. Thus, high entry and exit rates in ready-mix concrete

must stem from idiosyncratic shocks to firm profits, caused by a myriad of

factors such as mergers and productivity.

However, focusing on industry turnover misses the impact of demand

fluctuations on industry composition. Demand uncertainty blunts firms in-

centives to invest. Eliminating fluctuations increases the number of large

plants (above 15 employees) in the industry by more than 50%. Firms are

more likely to build larger, more productive plants if they can be assured

that there will be continuing demand for their products.

In section 2, I discuss the source of sunk costs for the Ready-Mix Plants,

and the role of spatial differentiation in the industry. Section 3 describes how

I construct the data. In section 4, I present a dynamic model of competition,

and I describe estimation in section 5. Finally, in section 6 I discuss steady-

state industry dynamics predicted by the model for a world with demand
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fluctuations and one where they have been removed. Some supplementary

Tables and Figures are collected in section A. 1

2 The Ready-Mix Concrete Industry

Concrete is a mixture of three basic ingredients: sand, gravel (crushed stone)

and cement, as well as chemical compounds known as admixtures. Combining

this mixture with water causes the cement to undergo an exothermic chemical

reaction called hydration, turning cement into a hard paste that binds the

sand and gravel together. I focus on ready-mix concrete: concrete which is

mixed with water at a plant and transported directly to a construction site. 2

Ready-Mix is a perishable product that needs to be delivered within an hour

and a half before it becomes too stiff to be workable. 3 Concrete is also very

cheap for its weight. One producer describes the economics of transportation

costs in the ready-mix industry as follows:

A truckload of concrete contains about 7 cubic yards of con-

crete. A cubic yard of concrete weights about 4000 pounds and

will cost you around $60 delivered to your door. That’s 1.5 cents

1Further robustness checks, details of the construction of the data set and computa-
tional details can be found in Collard-Wexler (2006a), the web appendix to this paper.

2There are of course other types of concrete, such as bag concrete produced in small
batches at a construction site, or pre-cast concrete products, such as septic tanks and
pipes. These concrete products are neither substitutes for ready-mix concrete, nor are
they produced at ready-mix plants.

3 “ASTM C 94 also requires that concrete be delivered and discharged within 1 1/2
hours or before the drum has revolved 300 times after introduction of water to the cement
and aggregates” p.96 in Kosmatka, Kerkhoff, and Panarese (2002).
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a pound. If you go to your local hardware store, you get a bag of

manure weighing 10 pounds for $5. That means that concrete is

cheaper than shit. 4

A ready-mix truck typically drives 20 minutes to deliver a load. 5 Thus,

concrete’s most salient feature from an economic perspective is that markets

are geographically segmented. Figure 2 shows the dispersion of ready-mix

producers in the Midwest, with an handful of incumbents in each area. In

my empirical work I treat each county as a separate market, one that evolves

independently from the rest of the industry.

Table 6 shows that the vast majority of counties in the United States

have fewer than 6 ready-mix plants, reflecting a locally oligopolistic market

structure. At the same time, because even the most isolated rural areas has

demand for ready-mix concrete, most counties are served by at least one

ready-mix producer.6

Ready-Mix concrete is essentially a homogenous good. While it is possible

to produce several hundred types of Ready-Mix concrete, these mixtures basi-

cally use the same ingredients and machinery. Because of aggressive antitrust

policy on the part of the Department of Justice, the typical ready-mix pro-

4Telephone interview, January 2005.
5The driving time of twenty minutes is based on a dozen interviews conducted with

Illinois ready-mix concrete producers. Thanks to Dick Plimpton at the Illinois Ready-Mix
Concrete Association for providing IRMCA’s membership directory.

6Isolated towns have also been used as a market definition, in the manner of Bresnahan
and Reiss (1991) which are documented in Collard-Wexler (2005). Parameter estimates
for a static entry model using isolated markets are similar to those using county markets.
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Figure 2: Dispersion of Ready-Mix Plant Locations in the Midwest.
Source: Zip Business Patterns publicly available dataset at

http://www.census.gov/epcd/www/zbp base.html.
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ducer is a single plant operator.7 Indeed, Syverson (2004) reports that 3749

firms controlled the 5319 ready-mixed plants operating in 1987. Thus I will

assume that each firm owns a single ready-mix concrete plant, making plant

and firm interchangeable.

Opening a concrete plant is an expensive investment. In interviews, man-

agers of ready-mix plants estimate the cost of a new plant costs at between

3 and 4 million dollars, while Table 11 in section A shows that continuing

plants in 1997 had on average 2 million dollars in capital assets. There are

few expenses involved in shutting down a ready-mix plant. Trucks can be

sold on a competitive used vehicle market, and land can be sold for other

uses. The plant itself is a total loss. At best it can be resold for scrap metal,

but many ready-mix plants are left on site because the cost of dismantling

them outweighs the benefits. An evocative illustration of capital’s sunkness

is Ramey and Shapiro (2001) study of the resale of capital assets at several

aerospace plants. Used capital sells for a fraction of its new value, even after

accounting for depreciation. I provide evidence of sunk costs in the ready-

mix industry at the plant level, including factors difficult to quantify, such

as long term relationships with clients and creditors. These intangible assets

may account for a large fraction of sunk costs. 8

7 The history of the Department of Justice’s policy toward mergers in the ready-mix
concrete industry is documented in McBride (1983).

8For instance, ready-mix operators sell about half of their production with a six month
grace period for repayment. Accounts receivable have a value equivalent to half of a plant’s
physical capital assets. It will be more difficult to collect these accounts if the firm cannot
punish non-payment by cutting off future deliveries of concrete.
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Concrete is consumed by the construction sector. Table 5 in section A

shows that the bulk of concrete purchases are made by the construction

sector, to build apartments, houses, roads and sidewalks. I use employment

in the construction sector as my demand measure. 9 Demand for ready-mix

concrete is inelastic since it is a small part of construction costs. Indeed,

Table 5 shows that concrete costs do not exceed 10% of material costs for any

construction sector. So it is unlikely that the ready-mix market substantially

affects the volume of construction activity. In addition Government purchases

about half of U.S. concrete, primarily for road construction.10 Fluctuations in

Government purchases of concrete are mainly due to the discretionary nature

of highway spending in state and federal budgets. Government purchases are

procyclical, and a major source of uncertainty for ready-mix producers.11

Ready-mix concrete has been studied extensively by Syverson (2004), who

provides evidence of productivity dispersion across plants. This productiv-

ity dispersion is evidence of large differences between plants which are not

eliminated by competitive pressures. I provide an explanation for why the

competitive adjustment process is not instantaneous.

9I have selected construction employment as my demand measure, out of a panoply of
measures of concrete demand such as: interest rates, construction payroll, employment in
the concrete contractor sector, area. I have used the static entry models of Bresnahan and
Reiss (1994) presented in Collard-Wexler (2005) to select the measure of demand which
accounts for most of the differences between markets.

10 According to the Kosmatka, Kerkhoff, and Panarese (2002) p.9, Government accounts
for 48% of cement consumption, with road construction alone responsible for 32% of total
consumption.

11Conversation with Edward Sullivan, chief economist at the Portland Cement Associ-
ation, May 2005.
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3 Data

Data on Ready-Mix Concrete plants is drawn from three different data sets

provided by the Center for Economics Studies at the United States Cen-

sus Bureau. The first is the Census of Manufacturing (henceforth CMF), a

complete census of manufacturing plants, every five years from 1963 through

1997. The second is the Annual Survey of Manufacturers (henceforth ASM)

sent to a sample of manufacturing plants (about a third for ready-mix) every

non-Census year since 1973. Both the ASM and the CMF involve question-

naires that collect detailed information on a plant’s inputs and outputs. The

third data set is the Longitudinal Business Database (henceforth LBD) com-

piled from data used by the Internal Revenue Service to maintain business

tax records. The LBD covers all private employers on a yearly basis since

1976. The LBD only contains employment and salary data, along with sec-

toral coding and certain types of business organization data such as firm

identification. Construction data is obtained by selecting all establishments

from the LBD in the construction sector (SIC 15-16-17) and aggregating

them to the county level.

3.1 Industry Selection

Production of ready-mix concrete for delivery predominantly takes place at

establishments in the ready-mix sector. Hence, establishments in the ready-

mix sector are chosen, corresponding to either NAICS (North American In-
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dustrial Classification) code 327300 or SIC (Standard Industrial Classifica-

tion) code 3273, a sector whose definition has not changed since 1963. The

criterion for being included in the sample is: an establishment that has been

in the Ready-Mix Sector (NAICS 327300 or SIC 3273) at any point of its

life, in any of the 3 data sources (LBD,ASM,CMF). To create my sample,

plants need to be linked across time, since plants can switch sectors at some

point in their lives.

3.2 Longitudinal Linkages

To construct longitudinal linkages, I use three different identifiers: Perma-

nent Plant Numbers (PPN), Census File Numbers (CFN) and Longitudinal

Business Database Numbers (LBDNUM). Census File Numbers (CFN) are

the basic identification scheme used by Census for its establishment data. A

plant’s CFN may change for many reasons, including a change of ownership,

and hence they are not well suited as a longitudinal identifier. Permanent

Plant Numbers (PPN) is the Census Bureau’s first attempt at a longitudi-

nal identifier, as they are assigned to a plant for its entire life-span. These

tend to be reliable, but are only available in the CMF and ASM. Moreover,

PPNs are missing for a large fraction of observations, leading to the incor-

rect conclusion that many plants have dropped out of the industry. The third

identification scheme is the Longitudinal Business Database Number, as de-

veloped by Jarmin and Miranda (2002). This identifier is constructed from

CFN, employer ID and name and address matches of all plant in the LBD.

12



Since the LBD is the basis for mailing Census questionnaires to establish-

ments, virtually all plants present in the ASM/CMF are also in the LBD

(starting in 1976), allowing a uniform basis for longitudinal matching. I use

LBDNUM as my basic longitudinal identifier, which I supplement with PPN

and CFN linkages when the LBDNUM is missing, in particular for the period

before 1976 for which there are no LBDNUMs.

To identify plant entry and exit, I use Jarmin and Miranda (2002)’s plant

birth and death measures. Jarmin and Miranda identify entry and exit based

on the presence of a plant in the I.R.S.’s tax records. They take special care

to flag cases where plants simply change owners or name by matching the

address of plants across time. The measurement of turnover is problematic,

since firms do not themselves report that they are exiting or that they have

just entered. Instead, entry and exit data must be constructed from the

presence and absence of plants in the data over time. Specifically entry and

exit are defined as: A plant has entered at time t if it is not in the LBD before

time t, but it is present at time t. A plant has exited at time t if it is not in the

LBD after time t, but it is present at time t. 12 Proper longitudinal matches

are important for constructing turnover statistics, since measurement error

tends to break longitudinal linkages, creating artificial entry and exit, raising

the implied turnover rate above its true value. Each year, about 40 plants (or

about 1.6% of plants) are temporarily shut down. I do not treat temporary

12If I a plant changes ownership, I do not treat this as an exit event since the cost of
changing the management at a plant should be much lower than the cost of building a
plant from scratch.
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shutdown as exit, since the cost of reactivating a plant is far smaller than

building one from scratch. 13 14

3.3 Panel

I select all plants that have belonged to the ready-mix sector at some point

in their lives. The entire history of a plant’s sectoral coding must be investi-

gated, since a plant can enter and exit the ready-mix sector many times. For

instance, many ready-mix concrete plants are located next to gravel pits, to

lower their material costs. If a plant’s concrete operations are not separated

from gravel mining when reporting to Census, then the plant can be classi-

fied as a gravel pit (NAICS 212321) or a ready-mix plant. This classification

can change from year to year, and differ between data collected by the IRS

(LBD) versus data collected by Census (ASM/CMF). Treating these sector

switches as exits would confuse shutting down a plant and a change in its

product mix. I assume a plant is either in the ready-mix concrete sector for

its entire life, or not. I select plants using the following algorithm: 1) Select

all CFN’s, PPN and LBDNUM’s which are in NAICS 327300 or SIC 32730.

13In empirical work with multiple plant states, temporary inactive plants have been
found to be more similar to plants with less than 15 employees than to potential entrants. A
potential entrant has a very low probability of entering, while the probability of observing
a temporarily inactive plant reentering is at least 80%.

14 If a plant is inactive for more than 2 years, then the IRS will reassign a tax code to
this establishment, breaking longitudinal linkages, creating an exit and the potential for a
future entry event. I can construct an upper bound on the number of plant births that are
in fact old plants being reactivated. If two plants enter in the same 9 digit zip code (an
area smaller than a city block) at different dates, assume the latter birth is a reactivation.
Under this assumption, less than 1% of births are reactivated plants.
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Call this file the master index file; 2) Add all plants that have the same CFN,

PPN or LBDNUM as a plant in the master index file. Add these to the new

master index file.

Measurement error in any year that incorrectly labels a plant as part of the

ready-mix concrete sector introduces this plant into the sample for its entire

life. In particular, sectoral coding data from the LBD is of poorer quality

than sector data from the CMF/ASM. These coding errors introduce large

manufacturers, such as cement producers, with different internal organization

and markets than concrete producers, into the ready-mix sample. I delete

plants from the sample if in either the LBD or the ASM/CMF they are

coded in the ready-mix concrete sector for less than half their lives. If a plant

is only in the ready-mix sector for one year out of twenty, it is safe to conclude

that coding error led to its inclusion into the ready-mix sector. Table 7 offers

confirmation, since ready-mix concrete represents 95% of output for plants

in my sample. Moreover, when I collect all plants that produce ready-mix

concrete, based on their response to the product trailer of the Census of

Manufacturing (which collects detailed information on the output of plants),

I find that 94% percent of ready-mix concrete is produced by plants in my

sample versus only 6% produced by plants outside the sample. Hence, the

assumption that ready-mix plants do not switch sectors and produce only

ready-mix does little violence to the data.

Table 8 shows that over the sample period there are about 350 plants

births and 350 plants deaths each year compared to 5000 continuers. Turnover
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rates and the total number of plants in the industry are fairly stable over the

last 30 years. Indeed, Figure A shows annual entry and exit rates hovering

around 6% for the period 1976 to 1999, which similar to previous work on the

manufacturing sector such as Dunne, Roberts, and Samuelson (1988), with

net entry during the booms of the late 1980’s and late 1990’s, and net exit

otherwise. Table 9 and Table 11 in section A display characteristics of ready-

mix concrete plants: they employ 26 workers on average, and each sold about

3.2 million dollars of concrete in 1997, split evenly between material costs and

value added. However, these averages mask substantial differences between

plants. Most notably, the distribution of plant size is heavily skewed, with

few large plants and many small ones, indicated by the fact that more than

5% of plants have 1 employee, while less than 5% of plants have more than 82

employees. Moreover, Table 11 shows continuing firms are twice as large as

either entrants(births) or exitors(deaths), measured by capitalization, salaries

or shipments. I aggregate plant data by county to form market level data,

for which Table 10 in section A presents summary statistics. Notice that the

average number of plants per county is fairly small, equal to 1.86, while the

95th percentile of firms per county is only 6. Hence most ready-mix concrete

markets are best characterized as local oligopolies.
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4 Model

I use the theoretical framework for dynamic oligopoly developed by Eric-

son and Pakes (1995). Applying this framework to data has proven difficult

due to the complexity of computing a solution to the dynamic game, which

requires at a minimum several minutes of computer time. One approach,

pioneered by Bresnahan and Reiss (1994), is to directly estimate a firm’s

value function based on the current configuration of plants in the market,

without reference to what will happen in the future. This reduced form ap-

proach allows for a simple estimation strategy akin to an ordered probit,

but limits the counterfactual experiments that can be performed. Alterna-

tively, Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith (1994)

bypass the computation of equilibrium strategies (the approach followed in

Rust (1987)’s study of a single agent’s dynamic optimization problem) by

estimating strategies directly from the choices that firms make. Strategies

of rival firms are substituted into the value function of the firm, collapsing

the problem into a single-agent problem. This solution only requires that

firms play best-responses to their perception of the strategies employed by

their rivals, a much weaker assumption than the requirement that firms play

equilibrium strategies. The Hotz and Miller approach has been adapted by

several recent papers in Industrial Organization such as Bajari, Benkard, and

Levin (2006), Pakes, Berry, and Ostrovsky (2006), Pesendorfer and Schmidt-

Dengler (2003), Ryan (2006) and Dunne, Klimek, Roberts, and Xu (2006). I
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employ a refinement of this approach proposed by Aguirregabiria and Mira

(2006) (henceforth AM). They start with an initial guess at the strategies

employed by firms recovered from the data, and produce an estimate of the

parameter value of the firm’s payoff functions and the transition probabilities

of this system given this guess. Conditioning on the estimated value of the

parameters, the initial guess is updated by requiring that all firms play best

responses. This procedure is repeated until the strategies used by firms con-

verge, implying that these best responses are in fact equilibrium strategies

given estimated parameters. While Aguirregabiria and Mira impose more

assumptions than Hotz and Miller, AM delivers more precise parameter es-

timates in small samples. The first step of the AM technique yields the Hotz

and Miller estimates, and thus this algorithm encompasses Hotz and Miller.

I add the assumpton of exchangeability to the AM model in order to shrink

the size of the state space, and thus incorporate more detailed firm charac-

teristics. I also incorporate techniques that allow for persistent unobserved

heterogeneity between markets.

Each market has N firms competing repeatedly, indexed as i ∈ I = {1, 2

, ..., N}, and N is set to 6 in my empirical work. I have chosen a maximum

of 6 plants per market, since it allows me to pick up most counties in the

U.S. (note that 6 plants is the 95th percentile of the number of plants in

a county in Table 10), and keeps the size of the state space manageable. A

county with more than 6 active plants at some point its history is dropped

from the sample, since the model does not allow firms to envisage an envi-
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ronment with more than 5 competitors. To allay the potential for selection

bias this procedure entails, counties with more than 3000 construction em-

ployees at any point between 1976 and 1999 are also dropped. A market

with 6 players appears to yield fairly competitive outcomes. The effect of the

fifth additional competitor on prices is fairly small, as shown by the relation-

ship between median price and the number of plants in a county presented

in Figure A. 15 At any moment, some firms may be active and others not.

Since the vast majority of plants are owned by single plant firms, I assume

that a firm can operate at most one ready-mix concrete plant. Firm i can

be described by a firm specific state st
i ∈ Si that can be decomposed into

states which are observed by the researcher, xt
i, such as firm activity or age,

and states which are unobserved to the researcher, εt
i, such as the managerial

ability of the plant owner, or the competence of ready-mix truck drivers. In

the next section, I will assume that these εt
i’s are independent shocks to the

profitability of different actions and that a firm’s observed state xt
i is either

operating a plant or being out of the market. Assume that the set of ob-

served firm states is finite, so that xt
i ∈ Xi = {1, 2, ..., #Xi} . For now, this

is not an assumption, since any information lost when the data is discretized

ends up in the unobserved state εt
i. The firm’s state is the composition of

observed and unobserved states: st
i = {xt

i, ε
t
i}. Firms also react to market-

level demand, M t, which is assumed to be observable and equals one of a

15 I have also restimated the model with 12 firms per market instead of 6, and ob-
tain similar parameter estimates and demand fluctuation counterfactuals at the cost of
considerably greater computation time.
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finite number of possible values. I use the number of construction workers

in the county as my demand measure. Demand evolves following a Markov

Process of the first order (an assumption made for computational conve-

nience, which can easily be relaxed), with transition probabilities given by

D(M t+1|M t). 16 Demand is placed into 10 discrete bins Bi = [bi, bi+1), where

the bi’s are chosen so that each bin contains the same number of demand

observations. Making the model more realistic by increasing the number of

bins above 10 has little effect on estimated coefficients, but lenghens compu-

tation time significantly. The level of demand within each bin is set to the

mean demand for observations in this bin, i.e. Mean(i) =
PL

l=1 Ml1(Ml∈Bi)
PL

l=1 1(Ml∈Bi)
,

where L indexes observations in the data, and the D matrix is estimated

using a bin estimator D̂[i|j] =
P

(l,t) 1(Mt+1
l ∈Bi,M

t
l ∈Bj)

P
(l,t) 1(Mt

l ∈Bj)
. The state of a market is

the composition of firm-specific states, st
i, for all firms, and the state of de-

mand; st = {st
1, s

t
2, ..., s

t
N , M t}, which can be decomposed into the observed

market state, xt = {xt
1, x

t
2, ..., x

t
N , M t} and the unoberserved market state,

εt = {εt
1, ε

t
2, ..., ε

t
N}.

In each period, t, firms simultaneously choose actions, at
i ∈ Ai for i =

1, ..., N . In an entry/exit model, a firm’s action is its decision to operate

16 Table 13 in section A shows regressions of current demand on its lagged values,
which support a higher order Markov process, most likely because of mean reversion in
construction employment to some long term trend. I have reestimated the model with a
second order Markov process as described in the web appendix to this paper (Collard-
Wexler, 2006a). The estimated coefficients and demand counterfactuals remain essentially
unchanged. However, the model predicts twice as much variance in the number of firms
in a market from 1976 to 1999 as exists in the data, which suggests that there are still
persistent components of a market’s profitability that the model does incorporate.
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a plant in the next period, so that its action space is Ai = {in,out}. In

contrast to Ericson and Pakes (1995), where the result of a firm’s action is

stochastic, I assume that I perfectly observe a firm’s action. Specifically, each

firm’s action in period t, at
i, is the firm’s observed state in the next period:

at
i = xt+1

i . Hence each’s firm’s state is either operating a plant, or not. An

action profile, at, is the composition of actions for all firms in the market

at = {at
1, a

t
2, ..., a

t
N}. Each firm has a state xt

i based on being in or out of the

market. Each player takes an action at
i defined as next periods state xt+1

i . An

observation yt
im for player i in market m at time t is a vector composed of

the action at
im taken by the firm and the state of the market from this firm’s

perspective yt
im = (at

im, xt
im, {xt

km}k 6=i, M
t
m).

Note that each market has 6 firms making a choice every period. Hence,

the number of observations is greater than the number of firms in the indus-

try, due to the contribution of potential entrants that choose to remain out

of the market. 17

A firm’s per period reward function is r(st) which depends the state of

the market. The firm also pays transition costs, τ(at
i, s

t
i) when at

i 6= st
i. For

instance, if a firm enters the market it pays an entry fee of τ(1, 0). Note that

neither r nor τ are firm-specific, which by itself is not a restriction, since

17 The assumption that the number of entrants is 6 minuus the number of incumbents
leads to the unusual effect that there will be more turnover in smaller markets than
larger markets (3.3% turnover in markets with on average 4 firms versus 6.2% turnover
in markets with on average 1 firm), since smaller markets contain more potential entrants
that receive draws on their entry value. Since the proportion of small and large markets
does not change when demand fluctuations are eliminated, this error should not have an
effect on the demand counterfactual.
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the state, xt
i, could contain an indicator for the firm’s identity. The reward

function has parameters, θ, which will be recovered from the data. With slight

abuse of notation, denote the parameterized rewards and transition costs as

r(st|θ) and τ(st
i, a

t
i|θ). Without loss of generality, I can rewrite the reward

and transition cost functions as additively separable in observed state xt and

unobserved states εt: r(st|θ)+τ(st
i, a

t
i|θ) ≡ r(xt|θ)+τ(xt

i, a
t
i|θ)+ζ(εt, xt, at, θ).

In my empirical work I use a simple Bresnahan and Reiss (1991) style

reduced-form for the reward function, endowed with parameters θ. It is easily

interpreted and separable in dynamic parameters. Specifically, the entry/exit

model, in which at
i = 1 corresponds to activity and at

i = 0 to inactivity, has

the reward function:

r(at
i, x

t|θ) = at
i

 θ1︸︷︷︸
Fixed Cost

+ θ2M
t+1︸ ︷︷ ︸

Demand

+ θ3g

[∑
−i

at
−i

]
︸ ︷︷ ︸

Competition

 (1)

where g(·) is a non-parametric function of the number of competitors in a

market. Transition costs are:

τ(at
i, x

t
i|θ) = θ41(xt

i = 0, at
i = 1)︸ ︷︷ ︸

Sunk Costs

(2)

where θ4 is the sunk cost of entry.

Figure 4 captures the timing of this model: firms first observe the observed

states εt, then simultaneously choose actions at
i. Demand then evolves to its
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Figure 3: Timing of the game in period t.

new level M t+1, and firms receive period rewards.

A Markov strategy for player i is a complete contingent plan, assigning a

probability mixture over actions in each state s. In contrast to the theoretical

literature on Markov Perfect Equilibrium (e.g. Maskin and Tirole (1988)),

the assumption that firms play Markovian strategies is used not to only to

refine the set of equilibria, but also to limit the size of the state space, S. A

smaller state space requires less data for estimation and imposes a smaller

computational burden. For the purposes of this paper, it is convenient that a

strategy be defined as a function σi : S×Ai → [0, 1] , where σi is a probability

distribution, i.e.
∑

at
i∈Ai

σi(s
t, at

i) = 1. A strategy profile σ = {σ1, σ2, ..., σN}

is the composition of the strategies that each firm is playing. Denote the

firm’s value, conditional on firms playing strategy profile σ, as V (s|σ):

V (s|σ) =
∑
a∈A

{∫
s′

(r(s′) + τ(ai, si) + βV (s′|σ)) f [s
′|s, a]ds

}( N∏
i=1

σi(s, ai)

)
(3)

23



where f [s
′|s, a] is the probability density function of state s′ given that

firms chose action profile a in initial state s. A Markov Perfect Equilibrium

is a set of strategies σ∗ such that all players are weakly better off playing σ∗i

given that all other players are using strategies σ∗−i, i.e.:

V (s|σ∗) ≥ V (s|{σ′i, σ∗−i}) (4)

for any strategy σ′i, for all players i and states s.

4.1 Conditional Choice Probabilities

The econometrician cannot directly observe strategies, since these depend

not only on the vector of observable state characteristics, xt, but also on

the vector of unobserved state characteristics, εt. However, I can observe

conditional choice probabilities, the probability that firms in observable state

xt choose action profile at denoted as p : X×A → [0, 1]. These probabilities

are related to strategies as:

p(at|xt) =

∫
εt

N∏
i=1

σi({xt, εt}, at
i)g

ε(εt)dεt (5)

where gε(.) is the probability density function of ε. Without adding more

structure to the model, it is impossible to relate the observables in this model,

the choice probabilities p(at|xt), to the underlying parameters of the reward

function. Denote the set of conditional choice probability associated with an

equilibrium as P = {p(at|xt)}xt∈X,at∈A, the collection of conditional choice
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probabilities for all states and action profiles. To identify the parameters,

I place restrictions on unobserved states, similar to those used in the Rust

(1987) framework for dynamic single-agent discrete choice.

Assumption 1 (Additive Separability) The sum of period rewards and tran-

sition costs is additively separable in observed (xt) and unobserved (εt) states.

This assumption implies that ζ(εt, xt, at, θ) = ζ(εt, at, θ). So that ζ does

not vary with the observed state xt.

Assumption 2 (Serial Independence) Unobserved states are serially independent ,

i.e. Pr(εt|εk) = Pr(εt) for k 6= t.

Serial independence allows the conditional choice probabilities to be ex-

pressed as a function of the current observed state, xt, and action profile,

at, without loss of information due to omission of past and future states and

actions. Formally:

Pr(at|xt) = Pr(at|xt, {xt−1, xt−2, ..., x0}, {at−1, at−2, ..., a0}) (6)

for any k 6= t, any state xt, and action profile, at, since no information is

added to equation (5) that would change the value of the integral over ε.

Serial independence of unobserved components of a firm’s profitability is

violated by any form of persistent productivity difference between firms, or

long term reputations of ready-mix concrete operators. Any such persistence

would bias my results. In particular, suppose there are two indentical markets
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in the data, except that one has 4 plants and the other has only 2. Suppose

that these configurations are stable. Why don’t I see exit from the 4 plant

market or entry in the 2-plant market? Intuitively, it seems that there are

unobserved profitability differences between two markets. However, the model

can only explain these differences in market structure by resorting to high

entry and exit costs, which confound true sunk costs with persistent, but

unobserved, difference in profitability. 18

Assumption 3 (Private Information) Each firm privately observes εt
i before

choosing its action, at
i.

Combined with the assumption of serial independence of the ε’s, pri-

vate information implies that firms make their decisions based on today’s

observable state, xt, and their private draw, εt
i. In particular, they form an

expectation over the private draws of other firms, εt
−i, exactly as the econo-

metrician: by integrating over its distribution. This leads to the following

form for the conditional choice probabilities:

p(at|xt) =
N∏

i=1

pi(a
t
i|xt) (7)

The assumption that unobservables for the econometrician are also un-

observed by other firms in the market is a strong one. Firms typically have

18The appropriate interpretation for the sunk cost parameter I estimate is that it is a
“reduced-form” for the composition of persistent unobservables and the true sunk cost.
The demand counterfactuals I perform will be incorrect to the extent that the distribution
of the persistent unobservables changes when demand fluctuations are eliminated.
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detailedinformation on the operations of their competitors. It is of course

possible to include shocks which are unobserved by the researcher but com-

mon knowledge for all firms, denoted ξ, into the observed state vector x, and

integrate over this common shock. The critical assumption is the requirement

that private states εt
i are serially independent. Suppose that this condition is

violated. Then, a firm can learn about the private state of its competitors by

looking at their decisions in the past. Serial correlation introduces the entire

history of a market hT = {xt, at}T
t=0 into the state space, making estimation

computationally infeasible.

Assumption 4 (Logit) εi is generated from independent draws from a type

1 extreme value distribution.

These assumptions allow the conditional ex-ante value function (before

private information is revealed) to be expressed as:

V (x|P, θ) =
∑
x′

{
r(x′|θ) +

∑
ai

τ(ai, xi|θ)pi(ai|x) + E(ε|P ) + βV (x′|P, θ)

}
F P (x′|x)

(8)

where E(ε|P ) = γ+
∑

ai∈Ai
ln(pi(ai|x)) (where γ is Euler’s Constant). For

the logit distribution, E(ε|P ) is the expected value of ε given that agents are

behaving optimally using conditional choice probabilities P. State-to-state

transition probabilities conditional on the choice probability set P , F P (x′|x),
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are computed as:

F P (x′|x) =

(
N∏

i=1

pi(x
′
i|x)

)
D[Mx′|Mx] (9)

It is convenient to develop a formulation for the value function conditional

on taking action aj today, but using conditional choices probabilities P in

the future:

V (x|aj, P, θ) =
∑
x′

{r(θ, x′) + τ(θ, xi, aj) + βV (x′|θ, P )}F P (x′|x, aj) + εj

(10)

where F P (x′|x, aj) is the state to state transition probability given that

firm i took action aj today:

F P (x′|x, aj) =

(∏
k 6=i

pi(x
′
k|x)

)
1(x′i = aj)D[Mx′|Mx] (11)

This allow us to write the conditional choice probability function Ψ as:

Ψ(aj|x, P, θ) =
exp

[
Ṽ (x|aj, P, θ)

]
∑

ah∈Ai
exp

[
Ṽ (x|ah, P, θ)

] (12)

where Ṽ (x|aj, P, θ) is the non-stochastic component of the value function,

i.e. Ṽ (x|aj, P, θ) = V (x|aj, P, θ)− εj. Note that I normalize the variance of ε

to 1, since this is a standard discrete choice model which does not separately
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identify the variance of ε from the coefficients on rewards.

4.2 Nested Pseudo Likelihoods Algorithm

An equilibrium to a dynamic game is determined by two objects: value func-

tions and policies. A set of policies P generate value functions V , since these

policies govern the evolution of the state across time. But policies must also

be optimal actions given the values V that they generate.

Suppose I form the likelihood following Rust (1987)’s nested fixed point

algorithm, in which the set of conditional choice probabilities P used to eval-

uate the likelihood at parameter θ must be an equilibrium to the dynamic

game, which I denote as P ∗(θ). To estimate parameters, the following like-

lihood will be maximized: LRust(θ) =
∏L

l=1 Ψ(at
l |xt

l , P
∗(θ), θ). However, each

time I evaluate the likelihood for a given parameter θ, I need to compute an

equilibrium to the dynamic game P ∗(θ). Even the best practice for solving

these problems, the stochastic algorithms of Pakes and McGuire (2001), leads

to solution times in the order of several minutes, which is impractical for the

thousands of likelihood evaluations typically required for estimation.

To cut through this difficult dynamic programming problem, Aguirre-

gabiria and Mira (2006) propose a clever algorithm:

Algorithm Nested Pseudo-Likelihoods Algorithm

1. Compute a guess for the set of conditional choice probabilities that

players are using via a consistent estimate of conditional choices P̂ 0(j, x),
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where the index on P̂ , denoted by k, is initially 0. I estimate P̂ 0 using

a simple non-parametric bin estimator, i.e.:

p̂0(aj|x) =

∑
m,t,i 1(at

mi = aj, x
t
mi = x)∑

m,t,i 1(xt
mi = x)

(13)

which is a consistent estimator of conditional choice probabilities.

2. Given parameter estimate θ̂k and an guess at player’s conditional choices,

P̂ k, values V (x|P̂ k, θ̂k) are computed according to equation (8). Thus

optimal conditional choice probabilities can be generated as:

Ψ(aj|x, P̂ k, θ̂k) =
exp

[
Ṽ (x|aj, P̂

k, θ̂k)
]

∑
ah∈Ai

exp
[
Ṽ (x|ah, P̂ k, θ̂k)

] (14)

3. Use the conditional choice probabilities Ψ(aj|x, P̂ k, θ̂k) to estimate the

model via maximum likelihood:

θ̂k+1 = arg max
θ

L∏
l=1

Ψ(al|xl, P̂
k, θ) (15)

where al is the action taken by a firm in state xl where l indexes ob-

servations from 1 to L. The Hotz and Miller estimator corresponds is

θ1, the specific case where the likelihood of equation (15) is maximized

conditional on choice probabilities P̂ 0.
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4. Update the guess at the equilibrium strategy as:

p̂k+1(aj|x) = Ψ(aj|x, P̂ k, θ̂k+1) (16)

for all actions aj ∈ Ai and observable states x ∈ X.

Note that p̂k+1 is not only a best response to what other players were

using last iteration(p̂k), but also a best-reponse given that my future in-

carnations will use strategy p̂k. I have problems with oscillating strate-

gies in this model, i.e. P̂ k’s that cycle around several values without

converging. To counter this problem, a moving average update proce-

dure is used (with moving average length MA), where:

p̂k+1(aj|x) =
1

MA + 1

[
Ψ(aj|x, P̂ k, θ̂k+1) +

MA−1∑
ma=0

p̂k−ma(aj|x)

]
(17)

is the weighted sum of this step’s conditional choice probabilities and

those used in previous iterations.

5. Repeat steps 2-4 until
∑

aj∈Ai,x∈X

∣∣p̂k+1(aj|x)− p̂k(aj|x)
∣∣ < δ, where δ

is a maximum tolerance parameter, at which point p̂k(aj|x) = Ψ(aj|x, P̂ k, θ̂k+1)

for all states x, and actions j. Hence, P̂ k are conditional choice proba-

bilities associated with a Markov Perfect Equilibrium given parameters

θ̂k+1.

Although this algorithm is analogous to the Hotz and Miller (1993) tech-

nique, it is closer to the Expectations Maximizing algorithm (for details on
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EM see Dempster, Laird, and Rubin (1977)) used to solve Hidden Markov

Models, where the equilibrium strategies P are unknowns. Monte-Carlo re-

sults show that diffuse priors for initial conditional choice probabilities P̂ 0, i.e.

where first stage conditional choice probabilities for each action p̂0(aj|x) =

1
#Ai

, yield the same results as those where carefully estimated initial condi-

tional choice probabilities were used. This is important since Hotz and Miller

(1993) estimates are known to be sensitive to the technique used to estimate

initial conditional choice probabilities P̂ 0. In particular, if there is a large

number of states relative to the size of the sample, some semi-parametric

technique must be used to estimate conditional choice probabilities. The

Aguirregabiria and Mira (2006) estimator bypasses this issue entirely.

4.3 Auxiliary Assumptions

While the Nested Pseudo-Likelihoods algorithm speeds estimation of dy-

namic games, two techniques speed up this process even more: symmetry

and linearity in parameters.

I impose symmetry (or exchangeability in Pakes and McGuire (2001) and

Gowrisankaran (1999)’s terminology) between players, so that only the vector

of firm states matter, not the firm identities. Encoding this restriction into

the representation of the state space allows for a considerable reduction in

the number of states. For instance, an entry-exit model with 12 firms and

10 demand states entails 40960 states, while its symmetric counterpart only

uses 240.
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As suggested by Bajari, Benkard, and Levin (2006), and also noted by

Aguirregabiria and Mira (2006), the Separability in Dynamic Parameters as-

sumption (henceforth SSP) is incorporated to speed estimation by maximum

likelihood. A model has a separable in dynamic parameters representation

if period payoff r(x′|θ)+ τ(ai, xi|θ) can be rewritten as θ · ρ(x′, ai, xi) for all

states x′, x ∈ X and actions ai ∈ A, where ρ(x′, ai, xi) is a vector function

with the same dimension as the parameter vector. While this representation

may seem unduly restrictive, it is satisfied by many models used in Indus-

trial Organization such as the entry-exit model of equations (1) and (2).

Using SSP, period profits can be expressed as θ · ρ(x′, ai, xi). Value functions

conditional on conditional choice probabilities P are also linear in dynamic

parameters, since:

V (x|P, θ) =
∞∑

t=1

βt

∑
xt∈X

∑
at

i∈A

θρ(xt+1, at
i, x

t
i)pi(a

t
i|xt)

F P (xt+1|xt) + E(ε|P )


= θ

∞∑
t=1

βt
∑
xt∈X

∑
at

i∈A

ρ(xt+1, at
i, x

t
i)pi(a

t
i|xt)

F P (xt+1|xt)

+
∞∑

t=1

βt
∑
xt∈X

∑
at

i∈A

γ ln(pi(a
t
i|xt))

Denote by θ̃J(x|P ) ≡ V (x|P, θ) the premultiplied value function where

θ̃ = {θ, 1} is extended to allow for components which do not vary with the
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parameter vector. The value of taking action aj is thus:

V (x|aj, P, θ) = θ̃
∑
x′

[ρ(x′, aj, xi) + βJ(x′|P )] F P (x′|x, aj) (18)

Let Q(aj, x, P ) =
∑

x′ [ρ(x′, aj, xi) + βJ(x, P )] F P (x′|x, aj). Conditional Choice

Probabilities are given by:

Ψ(aj|x, P, θ̃) =
exp

[
θ̃Q(aj, x, P )

]
∑

h∈Ai
exp

[
θ̃Q(ah, x, P )

] (19)

Maximizing the likelihood of this model is equivalent to a simple linear

discrete choice model. In particular, the optimization problem is globally

concave, which simplifies estimation. This is not generally the case for the

likelihood problem where P is not held constant, i.e. LRust(θ) but required

to be an equilibrium given the current parameters. 19

4.3.1 Heterogeneity

Different markets can have different profitability levels. These differences are

not always well-captured by observables such as demand factors, and can lead

to biased estimates. To deal with this problem, I use a fixed effect estimation

strategy , in which rewards in market m have a market specific component

αm, i.e. rm(x|θ) = r(x|θ) + αm.

Differences in the profitability of markets also affect the choices that firms

19 A description of estimation, included ”nitty-gritty” computational details, is provided
in the web appendix (Collard-Wexler, 2006a).
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make. Each market will have its own equilibrium conditional choice proba-

bilities Pm. The likelihood for this model is:

LHet(θ, {α1, ..., αM}) =
M∏

m=1

(
T∏

t=1

N∏
i=1

Ψ(at,m
i |xt,m

i , Pm, {θ, αm})

)
(20)

It is then possible to estimate αm using maximum likelihood techniques as

any another demand parameter. However, there are too many markets in the

data to estimate individual market specific effects. I therefore group markets

into categories based on some common features, and assign each catagory

a group effect. In my empirical work, these group are formed based on the

average number of firms in the market over the sample, rounded to the nearest

integer. The idea for this grouping comes from estimating the static entry

and exit models of Bresnahan and Reiss (1994) with county fixed effects (see

Collard-Wexler (2005) for more detail). These estimates give similar results

to a model with grouped fixed effects.

5 Results

I estimate the model using the Nested of Pseudo-Likelihoods Algorithm. I fix

the discount factor to 5% per year. The discount factor is not estimated from

the data since dynamic discrete choice models have notoriously flat profile

likelihoods in the discount parameters as in Rust (1987). The discount pa-

rameter β̂ that maximizes the profile likelihood is in the range between 20%
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and 30%. Table 1 presents estimates for two dynamic models, using either

the Hotz and Miller (column I and III) or Aguirregabiria and Mira (column

II and IV) methods to compute conditional choice probabilities. The two

empirical models include one without market heterogeneity (column I and

II) and one with market level fixed effects (column III and IV). 20 These

estimates show a number of features. First, competition quickly reduces the

level of profits. The first competitor is responsible for 75% of the decrease

in profits due to competition. This is consistent with Bertrand Competition

with a relatively homogeneous good and constant marginal costs, where price

falls to near the competitive level if there is more than one firm in the mar-

ket. This case is well approximated by the ready-mix concrete industry for

competition between firms in the same county. This result is consistent with

the relationship between price and the number of competitors displayed in

Figure A which indicate that price falls most with the addition of the first

competitor, and with estimates of thresholds in the models of Bresnahan and

Reiss (1994) presented in Collard-Wexler (2005) which show a similar pat-

tern. Second, estimates of sunk costs are quite large, of the same magnitude

as the effect of permanently going from a duopoly to a monopoly (equal to

about 0.37/0.05 = 7.4 in net present value terms, versus 6.2 for sunk costs).21

20Standard errors are computed using inverse the likelihood’s Hessian from equation
15. This formula assumes that the conditional choice probabilities and the demand tran-
sition process are estimated without error. I have also computed standard error for the
entry/exit model using a non-parametric bootstrap presented in the web appendix that
corrects for this additional source of sampling error, and I find confidence intervals that
are quantitatively similar.

21 This relative magnitude of sunk costs versus the effect of the first competitor is also
found in estimates of the models of Bresnahan and Reiss (1994) with market fixed effects
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Thus, a market’s history, as reflected by the number of plants in operation,

has a large influence on the evolution of market structure. Third, correcting

for unobserved heterogeneity significantly increases the effect of competitors

on profits. Note that the effect of the second competitor on profits is posi-

tive in the model without market fixed effects (0.11 and 0.15 in columns I

and II), but negative when market fixed effects are added (−0.01 and −0.04

in columns III and IV). It is improbable that competitors have positive ex-

ternalities on their rivals. However, positive coefficients on competition are

consistent with more profitable markets attracting more entrants, which in-

duces a positive correlation between the number of competitors in a market

and the error term. Thus, estimates of the effect of entry on profits are biased

upwards. The panel structure of data permits a correction for this problem.

Furthermore, notice that the fixed costs are significantly higher in markets

with fewer firms (reducing profits by −0.30, −0.12, −0.06 and −0.02 respec-

tively in column IV), supporting the presence of unobserved differences in

market profitability.

The estimates of sunk costs may seem high. In fact, they are generally

consistent with interview data. Based on my interviews, I reckon the sunk cost

of a plant is about 2 million dollars. Alternatively, Figure A shows that prices

fall by 3% from monopoly to duopoly (from about $42 to $41). According

to Table 11 the average continuing plant had sales of $3 M in 1997, so the

average decrease in profits from monopoly to duopoly are on the order of $90

that I have also estimated.
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000 per year (3%×$3M), which implies that the ratio between a standard

deviation of the error and dollars is about $250 000. Table 14 converts entry-

exit parameters from the preferred specification to dollars, where period profit

parameters expressed in net present value to be directly comparable to sunk

costs. Note that sunk costs are estimated at $1.24 M, slightly less than what

interviewees reported.

Finally, this model does well in fitting the observed industry dynamics.

Table 3 compares the steady-state industry dynamics predicted by the model

(Baseline) versus those in the data. The model predicts 145 entrants and 145

exits per year, while the average in the data (over all years in the sample) is

142. Likewise, the model predicts 2507 continuing plants versus 2606 in the

data. This match is somewhat surprising, since nowhere have I imposed the

restriction that the industry is in steady-state.

5.1 Multiple Plant Sizes

In this section, I discuss an extension of the model to allow for large and small

plants. I categorize plants as either big or small according to wethever the

number of employees at the plants is above or below 15.22 Employment is used

as the measure of size for two reasons. First, Census imputes data on capital

assets and shipments for smaller plants. If capital assets were used, the data

would include too few small plants relative to large ones. Second, interviewees

22The model was also estimated with different cutoffs for the number of employees,
yielding similar qualitative results.
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have indicated that employment is a fair proxy for the number of ready-mix

delivery trucks associated with a plant, since each truck is associated with a

single driver. Figure A shows that a plant in the lowest decile of employment

is five times as likely to exit as a plants in the top decile of employment,

suggesting that the entry and exit behavior of large and small plants are

quite different.

Table 2 displays estimates of the multiple firm size model using the Nested

of Pseudo-Likelihoods algorithm, with column I presenting Hotz and Miller

estimates and column II presenting Aguirregabiria and Mira estimates. I only

show estimates with market level fixed effects since these yield more sensible

coefficients. There are a number of salient differences between small and

large plants. Note that higher levels of demand increase the profit of large

plants five time faster than the profits of small plants, with a coefficient on

log construction workers of 0.02 for small plants and 0.14 for large plants in

column I. This reflects the fact that large plants, i.e. plants with more than 20

employees, represent 26% of plants in the bottom quartile of market size, but

44% of plants in markets in the top quartile of market size. This is evidence

for either returns to scale in the ready-mix concrete industry, or that plants

with higher managerial capital have more opportunities to expand in larger

markets as in Lucas Jr (1978). However, large plants have entry costs that

are 30% higher than those of small plants (6.4 for small plants versus 9.8 for

large plants in column II). In the same vein, large plants pay higher fixed

costs each period than small plants (0.2 for small plants versus 0.5 for large
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plants in column II for the first market group). This indicates that while large

plants are more profitable if there is sufficient demand, they also have to cover

much higher costs of entry and operation. Notice as well that the gap between

fixed costs for large and small plants in column I is constant across market

groups (equal to 0.26, 0.22, 0.19 and 0.19 for groups 1 to 4 respectively). This

indicates that the model can distinguish between two distinct effects: markets

with higher profitability have more plants, versus higher operating costs for

large plants across all markets. The effect of competitors on large and small

plants is similar, with large plants slightly more affected by competition.

The first competitor decreases profits for small plants by 0.21, while the first

competitor decreases profits for large plants by 0.27. Moreover, the pattern of

competition found in the entry-exit model, where each additional competitor

had a decreasing marginal effect on profits, is also found in the declining

effect of additional competitors on the profits of both small and large plants.

As before, the model’s steady-state matches industry turnover well, as

indicated by Table 4. Moreover, industry dynamics for the total number of

plants in the multitype model are almost exactly the same as those produced

by the simple entry-exit model.

6 No-Fluctuation Industry Dynamics

Consider a policy of demand smoothing, under which the smoothed demand

transition matrix SD is equal to: SD(σ) = (1 − σ)D̂ + σI, where σ ∈ [0, 1]
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I S.E. II (Preferred) S.E.

Log Construction Workers Small Plant† 0.030 (0.008) 0.024 (0.007)
Big Plant‡ 0.137 (0.017) 0.136 (0.012)

Effect of competition on*
Small Plant 1 Competitor -0.156 (0.017) -0.211 (0.019)

2 Competitors -0.004 (0.020) -0.066 (0.024)
3 Competitors 0.008 (0.031) -0.011 (0.027)
4+ Competitors 0.183 (0.051) -0.011 (0.031)

Big Plant 1 Competitor -0.126 (0.037) -0.274 (0.035)
2 Competitors -0.070 (0.047) -0.104 (0.037)
3 Competitors -0.021 (0.079) -0.008 (0.047)
4+ Competitors 0.182 (0.090) -0.021 (0.029)

Transition Costs Out → Small -6.471 (0.051) -6.419 (0.019)
Out → Big -9.781 (0.171) -9.793 (0.118)
Small → Big -3.370 (0.110) -3.478 (0.072)
Big → Small -0.932 (0.109) -0.851 (0.060)

Fixed Cost Group 1 Small Plant -0.331 (0.017) -0.277 (0.014)
Big Plant -0.576 (0.046) -0.534 (0.031)

Fixed Cost Group 2 Small Plant -0.203 (0.023) -0.136 (0.017)
Big Plant -0.470 (0.055) -0.353 (0.042)

Fixed Cost Group 3 Small Plant -0.132 (0.031) -0.063 (0.021)
Big Plant -0.381 (0.068) -0.250 (0.046)

Fixed Cost Group 4 Small Plant -0.105 (0.054) -0.015 (0.031)
Big Plant -0.339 (0.091) -0.204 (0.050)

Equilibrium Conditional Choices X
Log Likelihood -10307 -10274
Observations 214000 214000

*The effect of competition displayed is the marginal effect of each additional competitor
† Small: Plant with less than 15 employees.
‡ Big: Plant with more than 15 employees.
I: Hotz and Miller technique with market fixed effects
II: Aguirregabiria and Mira technique with market fixed effects

Table 2: Two Type Entry Model with Non-Parametric Competiton indica-
tors (total number of competitors)
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is the smoothing parameter, D̂ is the demand transition process in the data

and I is the identity matrix. As σ approaches 1, demand fluctuations are

completely eliminated. I consider two polar cases: complete demand smooth-

ing (σ = 1), where firms know that the current level of demand will stay the

same forever, and no demand smoothing(σ = 0), in which case demand will

vary from year to year according to the process D̂ estimated from the data.

I simulate the effect the of changing the volatility of demand by com-

puting the steady-state (or ergodic) industry dynamics when demand fluc-

tuations are present, and when these have been removed. Remember that

the state-to-state transition process F P (x′|x) of equation (9) depends both

on the set of conditional choice probabilities P and on the process for de-

mand D. Thus, if I change the process for demand, this change will alter

the underlying equilibrium of the game, and the conditional choice probabil-

ities P ∗(θ,D) associated with it. I recompute the equilibrium both for the

world with demand fluctuations(P ∗(θ, D̂)) and without them(P ∗(θ, I)) using

the Pakes and McGuire (1994) algorithm. I can use these new conditional

choice probabilities to compute the steady-state industry dynamics for this

game, using transition probabilities F P ∗(θ,D̂)(x′|x), and generate the ergodic

distribution. First, stack state to state transitions F (x′|x) over all values of

x and x′ to form a matrix, which I denote as F . Second, I choose the initial

state of the market, Ŷ , as the distribution of firms and demand estimated

from the data, i.e. Ŷx =
∑L

l=1 1(xl = x) for all states x ∈ X and all years

in my sample. Note that this initial condition has no effect on the ergodic
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distribution if it is possible to reach any state xa from any other state xb (I

will show an exceptional case where states do not communicate in the next

paragraph). The ergodic (or steady-state) distribution is computed by solv-

ing for the distribution of states an arbitrarily large number of periods in the

future. Next period’s probability distribution over states can be computed

as: Y t+1

D̂
= Y t

D̂
F P ∗(θ,D̂), where Y and F are matrices, and Y 0

D̂
= Ŷ . The er-

godic distribution W D̂ produced by the demand transition process D̂ can be

approximated by Y T
D̂

, where T is a suitably large number of periods in the

future. 23

However, in the case where fluctuations are eliminated demand in the

future is solely determined by initial conditions Ŷ . If the demand transition

process is the identity matrix I, then it is impossible to move between two

states xa and xb if these states have different levels of demand. Thus, the

average level of demand could differ substantially between worlds with and

without fluctuations. I circumvent this problem by insuring that the cross-

sectional distribution of demand is the same for both the fluctuation and

no fluctuation worlds. I first compute the ergodic distribution of demand

generated by the process in the data D̂, which I denote as W D̂. I compute

the ergodic distribution of the no fluctuation world using W D̂ as my initial

condition Y 0
I and iterating on Y t+1

I = Y t
I F P ∗(θ,I) for a suitably large number

of periods. Thus, W I = Y T
I is the ergodic distribution generated by complete

23I compute the distribution of firms one hundred thousand periods into the future
(T = 100 000), which is a very good approximation to the ergodic distribution.
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Data Baseline (σ = 0 ) Smoothing (σ = 1 )

Exitors and Entrants* 142 145 140
Number of Plants 2606 2507 2518

*In steady-state, the number of entrants and exitors must be the same.

Table 3: The steady-state number of plants and entrants/exitors under No
Demand Fluctuations and Baseline

demand smoothing, with the demand transition matrix equal to the identity

matrix I.

Table 3 shows that smoothing all fluctuations in demand, i.e. setting

σ = 1, decreases plant turnover by 3% from 145 entrants and exitors to

140. Note that both cases yield approximately the same number of plants.

The differences in turnover rates are not generated by a change in the mean

level of demand , but instead by the change in the volatility of demand.

Extrapolating to the industry as a whole (with about 5000 plants as of 1999),

demand smoothing would lead to 10 fewer plant deaths and 10 fewer plant

births each year. If the value of capital lost when a plant is shut down is set at

a least 2 million dollars, which accounts for only the physical capital lost when

a plant shuts down and not capital embedded into economic relationships,

scrapped capital losses would be reduced by 20 million dollars a year.

When the effect of multiple plants sizes is incorporated, as shown by Ta-

ble 4, a more detailed picture emerges. The number of entrants and exitors

is the same for the simple entry/exit model at 145 for the world with fluctu-

ations, and 140 for smoothed demand. However, the number of large plants
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increases by 50% from 407 to 598 when demand fluctuations are eliminated.

Thus demand uncertainty appears to leads firms to lower investment in or-

der to reduce their exposure to negative demand shocks. Eliminating demand

fluctuations also reduces the number of plants which switch from small to

big and vice-versa by 6 per year, reducing adjustment costs on the intensive

margin by a small amount.

To identify the contribution of demand fluctuations to plant turnover, de-

mand shocks need to be separated from plant specific shocks to profitability.

These idiosyncratic shocks are potentially large, due to a number of fac-

tors. Perhaps the most thoroughly investigated is the reallocation of output

towards more efficient units (Foster, Haltiwanger, and Syverson, 2005). More-

over, other plant characteristics, such as plant size, being part of a multi-unit

firm, or plant age above 10 years affects the likelihood of exit of plants, as

illustrated by logit regressions on exit reported in Table 15 in section A.

Demand shocks do not account for all the observed plant turnover. 24

7 Conclusion

The Ready-Mix concrete industry is characterized by high sunk costs, due

to capital assets with little resale value and long term relationships with

customers and suppliers. Competition between plants in the same county is

intense, in that a single competitor reduces profits to close to the competi-

24 In Collard-Wexler (2006b), I find that plants experience very large yearly productivity
shocks.
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Baseline

From
Out Small Big

To Out 136 7
Small* 130 1886 93
Big** 14 87 407

Smoothed

From
Out Small Big

To Out 131 8
Small 125 1806 90
Big 14 84 598

Data

From
Out Small Big

To Out 137 7
Small 151 1972 103
Big 15 94 491

* Small: Plant with less than 15 employees.
** Big: Plant with more than 15 employees.

Table 4: Steady-State Industry Dynamics with and without demand fluc-
tuations (Basline and Smoothed). Data represents industry dynamics in the
data averaged over all sample years.
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tive level. The industry is subject to large demand shocks, on the order of

30% per year. These demand shocks vary across geographically segmented

markets, causing plants to exit declining markets and enter growing ones.

High sunk costs slow the response of entry to demand shocks, allowing firms

to remain in unprofitable markets for some time. High adjustment costs im-

ply that turnover would only be reduced by 3% if demand fluctuations were

eliminated. This policy of demand smoothing would save at most 20 million

dollars a year for this industry from reduced plant exit. Reducing the volatil-

ity of the construction sector is by no means unrealistic, since an important

component of demand is driven by government spending decisions and the

Federal Reserve’s interest rate policy. Yet, demand fluctuations sharply re-

duce firm’s incentives to invest in larger more efficient units, reducing the

number of large plants in the industry by 50%. These larger plants have an

important role in raising the productivity of the industry.

This study focuses on a single industry, which by itself accounts for less

than a tenth of a percent of national output. However, the ready-mix concrete

industry provides a window on potential benefits from reducing uncertainty

due to demand fluctuations.
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A Tables and Figures

Sector Name NAICS Concrete sector as fraction of
Total Sales Materials Used

Owner-occupied dwellings S00800 21% NA
New residential 1-unit structures 230110 17% 3%
New residential additions and alterations 230130 10% 7%
Commercial and institutional buildings 230220 9% 2%
Highway, street, bridge, and tunnel construction 230230 8% 7%
New multifamily housing structures 230120 7% 10%
Other new construction 230250 4% 2%
Maintenance and repair of nonresidential buildings 230320 3% 2%
Real Estate 31000 3% NA
Maintenance and repair of residential structures 230310 2% 3%
Other State and local government enterprises. S00203 2% NA
Power generation and supply 221100 2% NA
Manufacturing and industrial buildings 230210 1% 2%
New farm housing units 230140 1% 7%
Other maintenance and repair construction 230340 1% 2%
Water, sewer, and pipeline construction 230240 1% 1%
Maintenance and repair of highways, streets 230330 0.4% 1%
Total For selected Sectors 92%

Table 5: Concrete purchases by sector, and relative importance of concrete
costs for the sector.

Source: 1997 Benchmark Input-Output Tables.
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Number of Concrete Plants Number of Counties/Years Percent

0 22,502 30%
1 23,276 31%
2 12,688 17%
3 6,373 9%
4 3,256 4%
5 1,966 3%
6 1,172 2%
More than 6 3,205 4%
Total 74,438

Table 6: Most counties in the United States are served by less than 6 ready-
mix concrete plants.

Product Fraction of output in value

Ready-Mix Concrete 95%
Unknown 4%
Construction sand and gravel 2%
Precast Concrete Products 1%
Asphalt Paving Mixtures and Blocks 1%

Table 7: Plants in sample tend to produce concrete exclusively
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Year Birth Continuer Death

1976 501 4,737 N.A.
1977 557 4,791 410
1978 327 5,043 445
1979 392 5,093 333
1980 271 5,140 387
1981 313 5,069 360
1982 313 4,875 423
1983 273 4,991 315
1984 328 4,972 295
1985 309 4,988 339
1986 300 5,003 305
1987 390 4,898 404
1988 270 5,016 269
1989 248 4,275 448
1990 194 4,103 304
1991 220 3,882 291
1992 214 4,643 348
1993 133 3,668 270
1994 163 3,952 232
1995 196 3,840 243
1996 195 3,734 230
1997 338 4,768 274
1998 239 4,949 267
1999 320 4,961 234

Table 8: The number of Births, Deaths and Continuers is fairly stable over
the last 25 years
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Average Shipments (in thousands) Birth Continuer Death

1977 461 1,164 402
1982 1,045 1,503 520
1987 1,241 2,307 601
1992 1,509 2,218 1,417
1997 1,559 3,293 1,358

Average Capital (in thousands) Birth Continuer Death

1977 217 491 185
1982 403 598 187
1987 549 1,050 270
1992 565 1,131 632
1997 728 1,992 770

Average Salaries (in thousands) Birth Continuer Death

1977 83 211 83
1982 185 269 83
1987 205 413 101
1992 257 428 267
1997 243 567 241

Table 11: Characteristics of Plants that are Births, Deaths and Continuers
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Figure 4: Net Entry is sensitive to the business cycle.

Price per Cubic Yard in 1963 Dollars Coefficient S.E.

1 Competitor -0.95 (0.21)
2 Competitors -1.19 (0.21)
3 Competitors -1.38 (0.24)
4 Competitors -1.33 (0.24)
5 Competitors -1.57 (0.25)
6 Competitors -1.69 (0.27)
7 Competitors -1.72 (0.30)
8 Competitors -1.78 (0.31)
Area in thousand of acres 0.28 (0.04)
Year Effects(Base Year 1963) Yes
Constant about 42

Number of Observations 3148
Sum of Deviations 18225
Pseudo-R2 17%

Table 12: Median Regression of Prices pooled over the entire sample on the
Number of Plants in a county
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Figure 5: Prices Decline Dramatically with the addition of the first com-
petitors, and little afterwards.
Note: Bars represent 95% confidence interval on median price. I report the
complete median regression in Table 12 in section A.25

Next Year’s Construction Employement OLS S.E. Fixed Effect S.E.

construction employement t 0.657 (0.008) 0.506 (0.009)
construction employement t-1 0.216 (0.008) 0.129 (0.008)
construction employement t-5 0.114 (0.005) -0.010 (0.007)
interest rate -0.012 (0.001) -0.027 (0.001)
interate rate*payroll 0.000 (0.000) 0.000 (0.000)
constant 0.218 (0.013) N.A.

Number of Group 14333 1339
Number of Time Periods N.A. 11
R2 97% 96%
R2-within N.A. 49%
F-statistic 98075 2585

Table 13: Forecasting the Evolution of Demand for Concrete with OLS and
county fixed effect regressions

58



Net Present Value in Thousands of Dollars

Log Construction Workers 217
1 Competitor -1,493
2 Competitor -171
3 Competitor -198
4 and More Competitor -80
Sunk Cost 1,242
Fixed Cost -499

Normalized By Decrease in Price in % from monopoly
to duopoly times average sales

Table 14: Dollar Value of Sunk Costs from the model match Interview Data

Plant Size  and Exit
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Figure 6: Small firms are much more likely to exit than large firms
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Baseline Exit probability 4.51%
Parameter Standard Error

Employees -0.11% (0.02%)
Employees*Employement Construction 0.01% (0.00%)
5-10 Years Old 0.74% (0.15%)
0-5 Years Old 0.30% (0.17%)
Multi-Unit Firm -1.82% (0.11%)
Less than 6 employees 4.98% (0.22%)
Log of county construction employment -0.24% (0.19%)
Log of county concrete plants 1.49% (0.18%)
Square log of construction employement -0.22% (0.05%)
Square log of concrete plants 0.00% (0.01%)

Number of Observations 143204
Log-Likelihood -28396
Pseudo-R2 4.7%

Table 15: Marginal Effects on the Probability of Exit estimated from a Logit
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