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Abstract

We construct a model of counter-cyclical markups based on cyclical variation in
the dispersion of income across agents. The model is neoclassical in most respects,
with monopolistically competitive firms facing a distribution of buyers that changes
through time. Income dispersion is high during recessions, which reduces the price
elasticity of demand and increases markups applied by firms. Using recent estimates of
counter-cyclical income dispersion, we calibrate the model and show that it generates
realistic markups as well as other salient features of business cycles.
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A long line of empirical research suggests that the prices vary less over the business cycle

than marginal costs. In other words, markups are counter-cyclical. The question is why. We

argue that the cross-section dispersion of earnings might play a role. In recessions, when

earnings are more dispersed, buyers’ willingness to pay is also more dispersed. If sellers were

to reduce prices in recessions, they would attract few additional buyers (the small shaded

area in the left panel of figure 1). This low elasticity makes the marginal benefit of lowering

prices smaller and induces firms to keep prices high. Therefore when dispersion is high,

prices stay high but profits are low. In contrast, in booms when dispersion is low, a seller

who lowers her price attracts many additional buyers (the larger shaded area in the right

panel of figure 1). Therefore in booms, sellers keep prices low but earn high profits.

While there have been many previous explanations for counter-cyclical markups, the

mechanism we propose has two strengths: It is based on observables and is simple enough to

embed in a conventional business cycle model.1 The observable variable is earnings disper-

sion. Embedding the earnings process estimated by Storesletten, Telmer, and Yaron (2004)

in a production economy allows us to compare the model’s predictions to salient business

cycle aggregates. In particular, we deliver realistic pro-cyclical profits, a feature of the data

that many models struggle with. Beyond business cycle facts, the model can also explain

long-run trends and cross-state variations in markups.

To illustrate the workings of the model’s key mechanisms, section 1 analyzes a static

version of the model. There is a competitive sector and a monopolistically competitive sector

that produces differentiated products. Both produce with intermediate goods, whose only

input is effective labor. Agents choose how much to work, how much of the competitive good

to consume and how many of the differentiated products to buy. Income dispersion arises

1Seminal papers on counter-cyclical markups are Rotemberg and Saloner (1986) and Bils (1989). For a
review, see Rotemberg and Woodford (1999). Recent work on the related phenomenon of real price rigidity
includes Nakamura and Steinsson (2006) and Menzio (2007).
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Figure 1: Lowering price is more beneficial when dispersion is low.
The shaded area represents the increase in the probability of trade from lowering the price, by an amount
equal to the width of the shaded area. This higher probability, times the expected gains from trade, is the
marginal benefit to reducing the price. Willingness to pay is based on agents’ earnings.

because some agents are more productive. By manipulating the idiosyncratic productivity

distribution, we we show that more dispersion results in higher markups and higher prices.

Theory alone cannot tell us if the variation in earnings dispersion is too small or insuf-

ficiently counter-cyclical to generate observed markups. Therefore section 2 calibrates and

simulates a dynamic version of the model. Section 2.4 documents our main results: The

model’s optimal markups are determined primarily by earnings dispersion. Since measured

dispersion is counter-cyclical, markups are as well. This is consistent with empirical studies

in both macroeconomics and industrial organization. The resulting prices look inflexible

because they fluctuate less than marginal cost. Yet, there are no price-setting frictions.

The model explains markups without compromising its ability to match macroeconomic

aggregates. Section 2.5 compares the model’s predictions for employment, real wages, and

profits to their empirical counterparts. The model does reasonably well in capturing these

aggregates. To keep heterogeneous income processes tractable, our model abstracts from

important issues debated in the literature on income heterogeneity and welfare (Krusell and

Smith (1998), Rios-Rull (1996) and Krueger and Perri (2005b)), such as capital accumulation

or other consumption-savings behavior. Tractability comes at a cost: Omitting capital hurts
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the performance of the model by making aggregates too correlated with GDP.

A number of other mechanisms can generate counter-cyclical markups. One possibility is

that there are simply sticky prices and pro-cyclical marginal costs. Therefore, the difference

between price and cost, the markup, is counter-cyclical. The problem with this explanation

is that, without additional labor market frictions, it implies counter-cyclical firm profits,

strongly at odds with the data. Similarly, while firm entry and exit change the degree of

market competition and thus the markup (Jaimovich 2006), free entry implies zero profits.

Our model delivers the observed pro-cyclical profits. Booms are times when markups are

low but volume is high enough to compensate. In Comin and Gertler (2006), the causality

is reversed: They use shocks to markups as the source of business cycle fluctuations. Three

models closely related to ours also produce a cyclical elasticity of demand due to chang-

ing production technology (Kimball 1995), changing demand composition (Gali 1994), or a

change in product variety (Bilbiie, Ghironi, and Melitz 2006).

To argue that earnings dispersion is at least part of the reason for price variation, we look

for other evidence that long-run changes and cross-sectional differences in earnings dispersion

are correlated with differences in prices, output volatility and profit shares, as predicted by

the model. Section 3 shows that the observed increase in earnings dispersion is consistent

with the observed decline in business cycle volatility, the slow-down in real wage growth,

and the accompanying increase in profit shares. Section 4.1 uses state-level panel data to

test the model’s predicted relationships between earnings dispersion and prices. Section 4.2

documents additional facts from the empirical pricing literature that when the customer base

has a more dispersed earnings, prices tend to be higher.

Our explanation raises an obvious question: Why does earnings dispersion rise in reces-

sion? One explanation is that job destruction in recessions is responsible (Caballero and

Hammour 1994). Rampini (2004) argues that entrepreneurs’ incentives change in recessions,
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making firm outcomes and owners’ earnings more risky. Cooley, Marimon, and Quadrini

(2004) and Lustig and Van Nieuwerburgh (2005) argue that low collateral values inhibit

risk-sharing in recessions. Any one of these explanations could be merged with this model

to produce a model whose only driving process is aggregate technology shocks.

1 An illustrative static model

There is a continuum of agents indexed by i ∈ [0, 1], with identical preferences over a

numeraire consumption good ci, labor ni, and a continuum of differentiated products xij,

indexed by j ∈ [0, 1],

Ui = log(ci) + θ(1− ni) + ν

∫ 1

0

xijdj, θ, ν > 0. (1)

Each of the differentiated products is indivisible.2 An agent either buys good j or not,

xij ∈ {0, 1}. But the total quantity of x goods consumed can be adjusted by buying more

or fewer goods. Let pj denote the price of differentiated good j in terms of the numeraire.

Then the budget constraint facing agent i is,

ci +

∫ 1

0

pjxijdj ≤ wini + π, (2)

where π denotes lump-sum profits paid out by firms.

Heterogeneous labor productivity is the source of earnings dispersion. Labor productivity

is IID uniform: wi ∼ unif[z− σ, z+ σ], with z > σ > 0 so that wi > 0 all i. The distribution

of productivity is summarized by its mean z and a measure of dispersion, σ.

2Following Kiyotaki and Wright (1989), we assume that the imperfectly competitive x-good is indivisible.
We do this both because it makes the model easy to solve and because it reduces sellers’ marker power by
preventing them from using complicated non-linear pricing strategies. Similar indivisibility assumptions are
often made in search models of money.
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Profit-maximizing firms transform effective labor 1-for-1 into numeraire goods or differ-

entiated goods. Since aggregate effective labor is
∫ 1

0
winidi, the labor market clears when

∫ 1

0

cidi+

∫ 1

0

xjdj =

∫ 1

0

winidi, (3)

where xj :=
∫ 1

0
xijdi is the total demand for good j.

Firms choose prices and quantities to maximize profit. Let πj denote the profits of firm

j. Profits are price pj times aggregate amount sold x(pj) minus cost,

πj = (pj − 1)x(pj). (4)

Since competitive firms make zero profits, aggregate profits are the integral of all x-good

firm profits, π :=
∫ 1

0
πjdj. Each household gets an equal share of these aggregate profits.

Equilibrium An equilibrium in this economy is: (i) a set of consumption choices ci and

xij and labor supply choices ni for each household that maximize utility (1) subject to the

budget constraint (2), (ii) a price pj for each firm that maximizes profit (4) taking as given

the demand for the firm’s product such that (iii) the markets for c-goods, x-goods, and labor

(3) all clear.

Results Optimal consumption of differentiated products xij follows a cutoff rule, agent

i buys good j if the additional utility it provides exceeds the price pj times the agent’s

Lagrange multiplier on (2), i.e., if ν ≥ pjλi. The first order condition for labor supply tells

us that λi = θ/wi. Combining these two expressions yields the x-good consumption rule,

xij =

 1 if wi ≥ θ
ν
pj

0 otherwise
. (5)
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The fraction of agents who buy a differentiated product is just the probability that each

agent has a labor productivity higher than the cutoff value,

x(pj) :=

∫ 1

0

xijdi =

∫ z+σ

θpj/ν

1

2σ
dwi =

z + σ

2σ
− θ/ν

2σ
. (6)

The demand facing firm j is linear in its price pj. Substituting the demand curve (6) into

the profit function (4) and differentiating with respect to pj yields the first order condition

characterizing the profit-maximizing price,

pj +
x(pj)

x′(pj)
= 1. (7)

The left hand side is the firm’s marginal revenue, the right hand side its constant marginal

cost. Equivalently, the price set by firm j is a markup over the marginal cost of 1, pj =

ε(pj)/(ε(pj) − 1), where ε(pj) := −x′(pj)pj/x(pj) is the firm’s price elasticity of demand.

Rearranging (6) delivers the markup,

mj :=
pj
1

= 1 +
1

2

(
z + σ

θ/ν
− 1

)
. (8)

Firms only produce if they earn non-negative profits, which is when mj ≥ 1. To ensure that

mj ≥ 1, we assume that marginal cost is sufficiently low: 1 ≤ (z+σ)ν/θ. If this assumption

were violated, no firm would produce.

Result. The markup mj is strictly increasing in aggregate productivity z and dispersion σ.

This result follows immediately from differentiating (8) with respect to z and σ. 3 The

3A previous version of the paper proved this result holds as long as idiosyncratic productivity is non-
negative and its distribution is log-concave. We thank Jeff Campbell for pointing this result out to us.
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intuition for the result is that both variables decrease the elasticity of demand,

ε(pj) =

z+σ
θ/ν

+ 1
z+σ
θ/ν
− 1

. (9)

When elasticity rises, firms reduce prices because doing so results in many additional sales.

If business cycles involved only changes in productivity, then markups would be pro-

cyclical. That is counter-factual. But if dispersion is counter-cyclical, so that σ falls when

z rises, then markups may be counter-cyclical. To determine if dispersion is sufficiently

counter-cyclical to explain counter-cyclical markups, section 2 builds a dynamic quantitative

model.

2 A dynamic quantitative model

Our dynamic model departs from the static model in four ways. First, aggregate productivity

z and dispersion σ fluctuate. Second, the distribution of idiosyncratic labor productivity is

log-normal, not the simple uniform distribution we used in section 1 for illustrative purposes.

Third, marginal cost is variable instead of constant, so that firm profit shares are realistic.

Fourth, richer preferences deliver a more realistic wealth effect on the labor supply.

In the model, profits rise in booms. With a strong wealth effect on labor, cyclical prof-

its can make labor counter-cyclical. Although other models encounter this problem, it is

particularly acute here because imperfect competition in x goods makes profits larger and

more volatile. We use “GHH” preferences (Greenwood, Hercowitz, and Huffman 1988) that

eliminate the wealth effect on labor supply to deliver more realistic labor fluctuations.

We omit capital and other assets to keep the model tractable. Since agents have no

opportunity to share risk or smooth consumption, such assumptions could distort the results.

As a robustness check, we gauge the effect of this distortion by re-calibrating the model to
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match consumption data, which incorporates the effect of financial income, savings and

transfers.

2.1 Model setup

Individuals again have preferences over ci, ni and xij but the utility function is now

Ui = log

(
ci − θ

n1+γ
i

1 + γ

)
+ ν

∫ 1

0

xijdj, (10)

which they maximize subject to their budget constraint (2).

The log of aggregate productivity is an AR(1) process

log(zt) = (1− ρ) log(z̄) + ρ log(zt−1) + εzt, εzt ∼ N(0, σ2
z). (11)

Idiosyncratic labor productivity is log-normal, log(wit) = log(zt) + εit where εit ∼ N(0, σ2
t ).

Our model of idiosyncratic productivity follows Storesletten, Telmer, and Yaron (2004) who

estimate an earnings process with persistent and transitory shocks. Let

εit = ξit + uit, uit ∼ N(0, σ2
u)

ξit = ρξξit−1 + ηit, ηit ∼ N(0, σ2
ηt).

(12)

The key feature of the earnings process is that σ2
η,t increases when GDP is below its long-run

mean, specifically σ2
η,t = σ2

H if yt ≥ y and σ2
η,t = σ2

L if yt < y, where σ2
H < σ2

L, yt is GDP, as

defined in equation (15) below, and y is its long-run mean.

Putting these elements together, our stochastic process for dispersion is

σ2
t = ρ2

ξσ
2
t−1 + (1− ρ2

ξ)σ
2
u +

 σ2
H if yt ≥ y

σ2
L if yt < y

. (13)
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Finally, we give x-good firms variable marginal costs. They transform effective labor n

into xj goods: xj = nα, for 0 < α < 1. Aggregate effective labor is
∫ 1

0
winidi and the labor

market clears when
∫ 1

0
cidi+

∫ 1

0
x

1/α
j dj =

∫ 1

0
winidi. Profits for firm j are:

πj = pjxj − x1/α
j , (14)

with variable marginal cost x
(1−α)/α
j /α.

Measuring GDP in the model In order to calibrate and evaluate the model, we need a

measure of total value-added to compare to GDP in the data,

y :=

∫ 1

0

cidi+

∫ 1

0

∫ 1

0

pjxijdjdi. (15)

GDP varies both because of changes in the production of each good and because of changes

in the relative price of x-goods and c-goods.

2.2 Model solution

The first-order condition for labor choice tells us that labor depends only on the wage and

on preference parameters

ni =
(wi
θ

)1/γ

. (16)

This simple relationship, devoid of any wealth effect is what GHH preferences are designed

to deliver. It implies that log earnings are proportional to log idiosyncratic productivity,

log(niwi) = (1 + γ) log(wi)/γ − log(θ)/γ. But GHH preferences complicate the model’s

solution because the cutoff rule for x-good demand is no longer linear in the wage. While

agent i still buys a unit of xj if ν ≥ pjλi, the Lagrange multiplier on their budget constraint

is now λi =
(
ci − θn

1+γ
i

1+γ

)−1

. To derive the x-good consumption rule, use (2) and (16) to
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substitute out ci and ni in the λi formula. Then, substitute λi into the cutoff rule at the

indifference point (pj = ν/λi). This delivers a critical wage ŵ(pj) such that any agent with

wage higher than this threshold buys the good. Thus the aggregate consumption of good j

is x(pj) = Pr[wi ≥ ŵ(pj)].

Firms’ prices are chosen to maximize profit (14), taking agents’ demand functions as

given. The first order condition for profit maximization equates marginal revenue and

marginal cost,

pj +
x(pj)

x′(pj)
=

1

α
x(pj)

(1−α)/α. (17)

The set of equations that determine a solution to the model can no longer be solved in

closed form. Appendix A.1 details the fixed point problem solved in the following numerical

analysis.

2.3 Calibration

Parameter Calibration target

utility weight on leisure θ 15 steady state hours 0.33
mean of productivity z̄ 7.7 steady state profit share 0.3
concavity of production α 0.24 steady state average markup 11%
utility weight on x-goods ν 100 steady state x-sector markup 30%
inverse labor supply elasticity γ 0.6 measured elasticity (GHH) 1.67
productivity innovation std dev σz 0.0032 output std dev 0.017
productivity autocorrelation ρ 0.80 output autocorrelation 0.78
transitory earnings std dev σu 0.024 STY estimate (annual) 0.065
persistent earnings std dev y > ȳ σH 0.012 STY estimate (annual) 0.032
persistent earnings std dev y < ȳ σL 0.020 STY estimate (annual) 0.054
earnings autocorrelation ρξ 0.988 STY estimate (annual) 0.952

Table 1: Parameters and the moment of the data each parameter matches.
Appendix A.1 derives the steady state moments of the model. Appendix A.3 details our transformation of
STY moments from annual to quarterly.

Table 1 contains a summary of the calibrated parameters. Since average productivity and

labor inputs determine firm profits, z̄ and θ are chosen to match 33% of time spent working
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in steady state and a 30% profit share, both standard business cycle calibration targets. The

second moments of the productivity process match the persistence and standard deviation

of output as reported in Stock and Watson (1999).

Markups in the x-sector are defined as price divided by marginal cost,

mx := α
p

x(1−α)/α
. (18)

Estimates of markups vary widely, depending on the sector of the economy being measured.

At the high end, Berry, Levinsohn, and Pakes (1995) and Nevo (2001) document markups

of 27-45% for automobiles and branded cereals. For the macroeconomy as a whole, Chari,

Kehoe, and McGrattan (2000) argue for a markup size of 11%. Since the competitive c-

sector has zero markup, the markup for the economy as a whole is the x-sector markup mx,

times the x-sector expenditure share. Our calibration uses the concavity of production and

the utility weight on x goods to match both the x-sector and the aggregate markup facts.

Markups of 30% and 11% imply that the x-sector has an expenditure share of 37%. One

caveat is that since α depends on a ratio of the markups, which are two small numbers, small

changes in the markups do have big effects on the calibrated level of α. Therefore, appendix

A.2 explores model results with higher and lower α’s.

The relationship between earnings dispersion and output is not something we can ma-

nipulate directly because both earnings and GDP are endogenous variables. Therefore, we

use the data to craft a process for exogenous variables – aggregate and idiosyncratic la-

bor productivity – that produces endogenous series that fit the data. Because log labor

is proportional to log productivity (equation 16), wage dispersion and log output have the

same correlation as do productivity dispersion and log output. However, earnings (wini) has

a higher dispersion because an individual’s labor supply is positively correlated with their

productivity. Earnings dispersion is higher by a factor of (1 + γ)/γ = 1.60/0.60 = 2.67.
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Therefore, our idiosyncratic productivity parameters are the STY estimates, transformed

from yearly to quarterly, divided by 2.67. (See appendix A.3 for details.)

To determine whether the economy is in the high or low dispersion state (σH or σL), we

first simulate the model in one state and then check whether GDP is higher or lower than its

steady-state level. If realized GDP is inconsistent with the dispersion state, we re-simulate

with the correct dispersion parameter. This process does not guarantee that dispersion and

GDP have the same correlation as in the data, but the resulting correlations are quite close:

−0.29 in the model and −0.30 in the data.

Issues in measuring dispersion A big question is whether earnings dispersion is the

right measure of inequality to compare with the model. Either income, including capital

income and transfers, or consumption are arguably more appropriate. Labor earnings are

only 63% of income for the average household; yet, earnings and income dispersion have

remarkably similar levels and cross-sectional variation (Diaz-Gimenez, Quadrini, and Rios-

Rull 1997). The primary motivation for calibrating to earnings dispersion is the availability

of reliable estimates of its cyclical properties. To measure dispersion in a number of business

cycles requires a panel data set with a long time-series dimension. Storesletten, Telmer, and

Yaron (2004) overcome this problem by using age characteristics of the PSID respondents

to construct synthetic earnings data back to 1930. They do this same estimation with food

consumption data. Because people use savings to smooth earnings fluctuations, consumption

dispersion is considerably smaller. Appendix A.2 shows that using consumption dispersion

instead of income dispersion strengthens our main result.

Storesletten, Telmer, and Yaron (2004)’s estimates have been controversial, because of

the difficulty identifying transitory and permanent shocks. Guvenen (2005) and others argue

that, because of unmeasured permanent differences in earnings profiles, the persistence of

earnings shocks is overestimated. While this distinction is crucial in a consumption-savings

12



0 20 40 60 80 100 120 140 160 180 200
!4%

 

!2%

 

0    

 

2%

 

4%

quarter

de
vi

at
io

n 
fro

m
 m

ea
n

 

 

markup
earnings dispersion
aggregate productivity

Figure 2: Simulated markups, earnings dispersion and productivity.

problem, it is not relevant for our model. Whether earnings dispersion is persistent because

each person gets persistent shocks or because new workers with more dispersed characteristics

enter the sample — this does not matter to our seller who sets the price facing a distribution

of willingness to pay. Thus both sides in this debate hold views consistent with our model’s

predictions.

2.4 Results: counter-cyclical markups

Recessions are times when firms pursue low-volume, high-margin sales strategies. The cor-

relation of markups and log GDP in the simulated model is −0.20. Thus, markups are

counter-cyclical. The standard deviation of detrended markups is 1.5% in the model and

2.1% in the data (Gali, Gertler, and Lopez-Salido 2007). In contrast, in a perfectly compet-

itive market, the markup would always be zero. Figure 2 illustrates a simulated time-series

of markups.

In the data, counter-cyclical markups have been documented by and Rotemberg and

Woodford (1999) using three different methods, by Murphy, Shleifer, and Vishny (1989)

using input and output prices, by Chevalier, Kashyap, and Rossi (2003) with supermarket
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data, by Portier (1995) with French data and by Bils (1987) inferring firms’ marginal costs.

Besides their negative correlation with output, the other salient cyclical feature of markups

is that they lag output. Figure 3 shows that the model’s markup is negatively correlated as

a lagging variable, but turns to positively correlated when it leads, just as in the data. The

difference is that the model’s markup must lead by 5 quarters, rather than 2 quarters, to

achieve a positive correlation.
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Figure 3: Leads and lags of markup-GDP correlations.

Entries are corr(log(markupt), log(yt+k)). Positive numbers indicate leads and negative numbers indicate
lags. Data from Rotemberg and Woodford (1999) (table 2, column 2). Markup is estimated using the labor
share in the non-financial corporate business sector and an elasticity of non-overhead labor of −0.4.

The reason that the model’s markups are lagging is that the earnings dispersion process

is highly persistent. In low-productivity periods, it is the shocks to the persistent component

of earnings that become more volatile (equation 12). As these high-volatility shocks continue

to arrive, the earnings distribution fans out. When productivity picks up and shocks become

less volatile, there is enormous dispersion in the persistent component of earnings that takes a

long time to revert to its mean. It takes many periods of low-volatility shocks for the earnings

distribution to become less dispersed. Since markups are driven by earnings dispersion, which

is a lagging variable, markups are lagging as well. This feature of the model is similar to

Bilbiie, Ghironi, and Melitz (2006). In their setting, a large fixed cost causes firms to delay
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entry. Since markups depend on how many firms enter, markups lag the cycle.

2.5 Can the model match standard business cycle moments?

Model variable relative std dev corr with GDP
profit share 0.94 0.69
labor 0.49 0.96
real wages 0.28 0.47

Data variable relative std dev corr with GDP
profit share 0.80 0.22 (0.37)
labor (employment) 0.84 (0.82) 0.81 (0.89)
labor (hours) 0.97 (0.98) 0.88 (0.92)
real wages 0.39 (0.36) 0.16 (0.25)∗

King and Rebelo (1999) relative std dev corr with GDP
profit share 0.00 0.00
labor 0.48 0.97
real wages 0.54 0.98

Table 2: Second moments of aggregate variables in the model and data.
Standard deviations are divided by the standard deviation of GDP. Most statistics are from Stock and
Watson (1999). Labor and wage numbers in parentheses are from Cooley and Prescott (1995). Number
with an asterisk is from Rotemberg and Woodford (1999) All capital share statistics come from the labor
share statistics reported in Gomme and Greenwood (1995). The second correlation, in parentheses, comes
from NIPA data. But the NIPA-based measure counts all proprietors’ earnings as profits, although it is part
profit and part labor compensation. The first correlation corrects for this by removing proprietor’s earnings.

The goal of the paper is to simultaneously explain markups and match business cycle quan-

tities. There is no investment in the model; thus output and consumption are equal. We

compare GDP to the other quantities in the model: labor and profits. We also want to inves-

tigate properties of prices. But, comparing prices of x and c goods to a measure like the CPI

has the problem that the CPI is the rate of exchange between goods and money. Yet there

is no money in this model. Therefore, we report a relative price we can interpret, the real

wage. In the model, the real wage is the relative price of labor to the expenditure-weighted

price index of x and c goods.

Table 2 compares the model aggregates to data. The profit share’s cyclical properties do a
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reasonable job of matching the data. Most importantly, profits are pro-cyclical (although too

pro-cyclical and a little too volatile). This is an important piece of evidence that distinguishes

this model from sticky price theories, models with free-entry or standard business cycle

models such as King and Rebelo (1999). Labor and real wages do slightly less well, but

not worse than the standard model. Without a capital stock in the model, wages, labor

and output are more driven by changes in productivity. This makes their correlations with

output too high.

Understanding counter-cyclical markups is important for business cycle research because

the resulting prices are more rigid (less volatile); price rigidity amplifies the effects of pro-

ductivity shocks on output. In our model, the standard deviation of the log price of the

x-good is 0.02 while the standard deviation of log marginal cost is 0.03. Thus, prices are

only 2/3rds as volatile as they would be in a standard competitive economy where price

equals marginal cost. If our prices were more flexible, they would fall further in recessions so

that more x-goods would be sold. But from reading table 2, it appears as though our model

does no better than the standard model in explaining macro volatility. But the similarity

in the standard deviations of labor and real wages is misleading. Recall that we calibrated

our aggregate productivity process to match the volatility of GDP. The calibrated shocks

are 1/7th as volatile as those in King and Rebelo (1999).4 Because our model’s recessions

are deeper, using the King and Rebelo (1999) productivity process would make our business

cycles many times more volatile.

Figure 4 illustrates the behavior of real wages and GDP. It has two features that look

familiar. First, real wages look like the mirror image of markups. The intuition for this is

that wages are the main component of marginal costs and so wages relative to p behaves

4In our calibration, aggregate log productivity has a quarterly persistence of 0.80 and an innovation
standard deviation of 0.032 which implies an unconditional quarterly standard deviation of log productivity
that is a function of the persistence and volatility of the innovations: 0.0032/

√
1− 0.802 = 0.005. In King

and Rebelo (1999), the quarterly standard deviation of log productivity is 0.0072/
√

1− 0.9792 = 0.035.
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like the reciprocal of the markup. Furthermore, both real wages and markups are closely

correlated with dispersion. Many empirical measures of markups are functions of the inverse

real wage (see Rotemberg and Woodford (1999)). The fact that simulated real wages are

pro-cyclical means that this alternative measure of the model’s markups is counter-cyclical

as well. Second, the measure of GDP looks quite similar to the productivity plotted in figure

2. This tells us that, although dispersion has an effect on GDP, it is still primarily driven

by productivity shocks.
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Figure 4: Real wages, earnings dispersion and GDP in the simulated model.

2.6 Benchmark economies

The results so far have been presented in comparison to a standard business cycle model.

Because that model has zero markups, the comparison does not tell us which model as-

sumptions drive the markup results. Therefore we compare our model to two more similar

benchmarks. The first is an economy where earnings dispersion is constant, always equal

to its steady-state value. The second benchmark is an economy where there is no earn-

ings dispersion, only a representative consumer. In both benchmarks, the correlation of

markups with GDP is positive, regardless of whether markups are contemporaneous, leading
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or lagging.

When dispersion is constant and equal to its unconditional mean, many of our calibration

targets look similar. The x-good markup (33%), the aggregate markup (12%), the average

labor supply (0.33), average profit share (0.30), and the standard deviation and autocorrela-

tion of output (0.017, 0.78) are all essentially unchanged. The key difference is the correlation

of markups and GDP (0.23). Markups switched from being counter-cyclical to pro-cyclical.

Alternatively, when earnings dispersion is zero, aggregates are either insufficiently volatile

or almost perfectly cyclical. Defining markups in this setting is not obvious because sellers

either sell 1 or 0 units, making marginal cost sometimes zero, and markups undefined.

Defining the markup as price/average cost, we find that the average markup is negative.

Furthermore, the markup is perfectly correlated with and more volatile than GDP. This stark

contrast makes clear that the effects of our model are being driven by the earnings dispersion

mechanism and that both the presence of earnings dispersion and its time-variation are

essential for counter-cyclical markups.

3 Evaluating long-run predictions

While our model is built to explain fluctuations at business cycle frequencies, there has been a

long-run increase in the level of earnings dispersion that should cause low-frequency changes

too. Earnings dispersion increased by 20% from 1967-1996, an average annual rate of 0.66%

(Heathcote, Storesletten, and Violante 2006). To determine if our model’s predictions are

consistent with the long-run facts, we simulate six model economies, with different levels of

earnings dispersion. Each economy represents a decade from the 1950’s to the 2000’s. To

make the time-averaged moments of our growing economy like the moments in our benchmark

business cycle model, we choose the 1970’s to be the same as our benchmark calibration.
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In doing this exercise, we run into a well-known problem. GHH preferences are inconsis-

tent with balanced growth. The standard solution to this problem is to scale up the utility

weight on leisure as productivity increases so as to keep hours flat. The formula for individ-

ual labor supply is ni = (wi/θ)
1/γ. If we proportionately scale up θ with wi, average hours

will not change. In our model with linear preferences over the x-goods, we also need to scale

up the utility weight ν. Changing these two parameters at the rate of productivity growth

keeps both average hours and expenditure shares constant. Below we refer to results as

having ‘no correction’ when we do not shift preference parameters and to ‘balanced growth’

results when we do.

3.1 Long-run slowdown in real wage growth

A long-run change that has been of particular concern to policy-makers is the slowdown in

the growth of real wages. The left panel of figure 5 illustrates how real wages were keeping

pace with productivity growth until the 1970’s, when real wage growth slowed down.
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Figure 5: Productivity and wage growth in the data and the simulated model.
The trend added to the model is the decade-by-decade increase in labor productivity and in earnings dis-
persion estimated by Heathcote, Storesletten, and Violante (2006). All other parameter values are listed in
table 1. Data: See appendix A.3 for details.

To ask the if the model produces the same effect, we need to calibrate not just the changes

in earnings dispersion, but also the changes in aggregate productivity. To do this, we use
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annual estimates of labor productivity from the BLS, averaged by decade. The right panel

of figure 5 shows a pattern in the model similar to that in the data. While our model with

balanced growth preferences predicts only half the relative decline in real wages, the baseline

model without correction produces an effect twice as strong as that in the data. In contrast,

a standard business cycle model would predict that wages and productivity grow in tandem.

The flip side of the relative decline in real wages is an increase in firms’ profit shares. The

balanced growth model’s share of output paid as profits rises steadily from 25% in 1950’s to

35% (our calibrated value) in the 1970’s to 38% in the 2000’s. What happens is that higher

dispersion reduces demand elasticity, prompting higher markups and delivering higher profit

shares. In the no correction model, rising productivity reinforces this effect, making the

rise in profit share more extreme (18% in 1950 to 73% in 2000). As higher productivity

increases earnings, the composition of demand changes. Consuming more x-goods means

consuming a broader variety of goods and is therefore not subject to the same diminishing

marginal returns that set in when c-good consumption increases. Therefore, when earnings

increase, x-good consumption rises more than c-good consumption. This effect is big. The

expenditure share for x-goods is 22% in 1950 and 75% in 2000. Higher demand for x-goods

prompts firms to increase markups, raising profits.

In the data, the evidence on the size of the increase in profit shares is mixed. The share of

output not paid out as labor earnings – a very broad definition of profits – rose only by about

5% from 1970-96 (NIPA data). Meanwhile, Lustig and Van Nieuwerburgh (2007) document

that net payouts to security holders as a fraction of each firm’s value added – a much more

narrow definition of profits – rose from 1.4% to 9% (based on flow of funds data) or 2.3%

to 7.5% (NIPA data). While the broad measure suggests that our model over-predicts the

rise in profits, the 3- to 6-fold rises in profits reflected in the latter measure suggest that the

dramatic profit increases predicted by the model may not be so far from the truth.
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3.2 The long-run decline in business cycle volatility

One of the most discussed low-frequency changes in the U.S. economy has been the de-

cline of business cycle volatility. One might think that the increase in earnings dispersion

over the last 50 years would make the model’s cycles more volatile because the individual

earnings processes have become more volatile. This concern is not founded. Higher disper-

sion can lower business cycle volatility because high earnings dispersion makes fewer agents

marginal. In other words, it reduces aggregate demand elasticity. Therefore, shocks to labor

productivity have less effect on who buys what products. Since producers are producing in

anticipation of changes in aggregate demand, when aggregate demand becomes less volatile,

GDP volatility falls as well. While our model does not explain the bulk of the fall in business

cycle volatility, with the balance growth correction, it can generate a modest decline (see

appendix A.4 for details).

4 Evaluating cross-sectional predictions

The model’s key mechanism is that higher earnings dispersion increases markups. Because

higher markups with a given wage level imply lower real wages, a common measure of

markups is the inverse real wage. If this mechanism is operative, then in years and U.S.

states with similar productivity, the higher-earnings-dispersion state should have a lower

real wage and thus a higher markup. This section documents that pattern and surveys

related evidence in the industrial organization literature.

4.1 Testing the model with state-level panel data

The data is a panel of annual observations on 49 U.S. states from 1969-1997. For each state

s and year t, our panel contains average labor productivity zst, average real wage, and a
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measure of cross-county earnings dispersion σst. As a proxy for state labor productivity, we

use real state GDP per employed worker. To measure a state’s earnings dispersion, we take

the log average salaries in each of the state’s counties, weight them by the number of jobs

in the county, and take their cross-sectional standard deviation. Of course, the cross-county

dispersion is much lower than cross-individual dispersion would be. We measure the state-

level markup as the inverse of the real wage. All three variables are transformed into log

differences from their national averages. Appendix A.3 gives further details.

To determine if in years and U.S. states with similar productivity, the higher-earnings-

dispersion state has a higher markup, we do a double-sort of the data. For each year, sort

each state into one of three bins, depending on whether its productivity is in the highest,

medium or lowest third for that year. Within each of these three bins, sort states again

by earnings dispersion into high-, medium- and low-dispersion bins. That delivers a sort of

states into 9 bins, with about 5 states in each bin. Average the markups for the states in

each bin. Do this for each year and average the 3-by-3 matrix of markups over all years.

Finally, subtract the low-dispersion column from the high-dispersion column. The resulting

three numbers (in table 3) reveal what the average difference in markups is between states

with similar productivity, relative to the national average, but with higher rather than lower

dispersion. The null hypothesis is that the difference in markups is zero. This hypothesis is

rejected at the 95% confidence level in each of the three productivity categories.

To compare these numbers to results from our model, we simulate a panel of 50 economies

followed for 200 quarters and repeat our double-sort procedure on this artificial data. We

calculate the high minus low statistics and then repeat this exercise 100 times and report

the average moments in table 3.

As in the data, similar-productivity economies with high dispersion economies have larger

markups than those with low dispersion. Moreover for economies in the middle third the
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Model high σ - low σ markup
low z 3.37
medium z 3.84
high z 3.42

Data high σ - low σ markup t-stat
low z 1.69 2.07
medium z 3.67 8.78
high z 2.91 3.45

Table 3: Difference in percentage markup, high dispersion states minus low
dispersion states, in three productivity categories. High, medium and low states refer
to top third, middle third and bottom third of observations. See text and appendix A.3 for further details.
The t-statistic for null hypothesis of no significant difference is based on Newey-West standard errors.

difference in markups in the model (3.84%) is close to what it is in the state data (3.67%).

For economies in the high and low productivity thirds, the model change in markups is

somewhat larger than their empirical counterparts. In short, our main result holds up in the

data. In the model higher dispersion raises price because more dispersion reduces the price

elasticity of demand. When aggregate demand is less sensitive to price changes, sellers raise

prices by raising their markup. In the data, the positive estimates of high σ minus low σ

markups confirm this result.

By first sorting states by productivity and then looking for the dispersion effect in each

productivity category, we isolate the dispersion effect, without imposing strong parametric

assumptions on our estimation. Of course, this exercise does not rule out the possibility that

some external factor is causing both markups and dispersion to vary. This would be some

force that caused states and years with similar labor productivity but high earnings disper-

sion to have low real wages (high markups). But since we removed any nationwide source

of variation (all variables are deviations from their national averages), any external force

generating the covariance cannot be a cyclical effect. It must be independent of aggregate

fluctuations.
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4.2 Support from empirical pricing studies

Our results are also qualitatively consistent with the findings of Chevalier, Kashyap, and

Rossi (2003). Periods of good-specific high demand (e.g., beer on the fourth of July) are

times when consumers’ values for the goods are more similar. While one might expect that

high demand would increase prices, the authors find that prices and markups fall. The same

outcome would arise in our calibrated model if productivity dispersion σ falls.

More support for our mechanism comes from a study of the effect willingness-to-pay

dispersion has on car sales. Goldberg (1996) estimates that blacks’ valuations for new cars

are more dispersed than whites’. She then collects data on the initial offer to blacks and

whites by a car salesman. The initial offer price is higher, and the probability of sale lower,

for the group with more dispersed willingness to pay.

5 Conclusion

Our production economy is set up to capture the intuition that when earnings dispersion is

higher, the price elasticity of demand is lower, so sellers optimally raise markups. However,

without quantifying the model, the cyclical behavior of prices and markups is ambiguous

because the productivity and earnings dispersion effects work in opposite directions. Using

estimates of the time-series variation in the earnings distribution, we calibrate the model.

Although the model is a simple one, it does a reasonable job of matching the business cycle

features of markups and traditional macro aggregates.

Our model provides a theory of real price rigidity, meaning prices that fluctuate less than

marginal cost. By themselves, rigid real prices make business cycles more costly. When

interacted with a form of nominal rigidity, real rigidities also amplify the real effects of

nominal shocks (Ball and Romer (1990) and Kimball (1995)). Future work could merge this

24



theory with a nominal price-setting friction. If such a model delivered enough amplification

of small nominal shocks, it could further our understanding of monetary policy’s role in the

business cycle.
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A Appendix

A.1 Solving the GHH model

Agents buy good xj if and only if ν ≥ λipj , where λi is the Lagrange multiplier on the budget constraint
and satisfies:

λi =

(
ci − θ

n1+γ
i

1 + γ

)−1

. (19)

In equilibrium each seller sets the same price p = pj all j and each agent buys either none or all of the
j goods. Since x goods are sold in discrete {0, 1} amounts, each agent’s expenditure on j goods is either p
or 0.

Let p̂(wi) denote the highest price that an agent with idiosyncratic productivity wi will pay for the x
goods. Using the cutoff rule for x good purchases, this price p̂(wi) satisfies ν = p̂(wi)λi. Substituting for λi
from (19) gives:

ν = p̂(wi)

(
ci − θ

n1+γ
i

1 + γ

)−1

= p̂(wi)
(
win̂(wi) + π − p̂(wi)− θ

n̂(wi)1+γ

1 + γ

)−1

.

where the second line uses the budget constraint (2) to eliminate ci and n̂(wi) is given in (16). Solving for
p̂(wi) yields:

p̂(wi) =
ν

1 + ν

[
win̂(wi) + π − θ n̂(wi)1+γ

1 + γ

]
. (20)

This is a continuous, strictly increasing and strictly convex function of wi.
Now let ŵ(p) denote the inverse of the reservation price function p̂(w), i.e., ŵ(p̂) = 1, so that ŵ(p)

represents the lowest idiosyncratic productivity draw that will lead a buyer to purchase at price p (so ŵ(p)
is strictly increasing and strictly concave). Then the total demand facing firm j at price pj is:

xj = Pr[w ≥ ŵ(pj)] = 1− Φ
(

1
σ

log
(
ŵ(pj)
z

))
, (21)

where Φ is the standard normal cumulative distribution function.
The resulting profit of firm j is revenue minus costs πj = pjxj − x1/α

j Aggregate profits are π =
∫ 1

0
πjdj.

Since in equilibrium pj = p for all j, πj = π for all j too. In equation (20), aggregate profits π enter the
reservation price function p̂(w) and therefore enter the inverse ŵ(p) too. To acknowledge this dependence,
write ŵ(p, π). To compute an equilibrium numerically, then, we need to solve a fixed point problem of the
form π = F (π) where:

F (π) := max
p≥0

{
p

[
1− Φ

(
1
σ

log
(
ŵ(p, π)
z

))]
−
[
1− Φ

(
1
σ

log
(
ŵ(p, π)
z

))]1/α}
. (22)

We do this numerically, guessing an initial π0, iterating on πk+1 = F (πk) for k ≥ 0 and then iterating until
|πk+1 − πk| < 10−6.
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Steady state calibration targets We solve for six parameters (α, γ, ν, θ, σ, z) such that the steady
state of our model delivers the following six properties:

elasticity of labor supply = E[d log(ni)/d log(wi)] = 1.67
earnings dispersion = σSTY = 0.29

hours worked = E[ni] = 0.33
labor share = E[wini]/y = 0.70

aggregate markup = m = 1.11
x-sector markup = mx = 1.30

We use the following properties of the model repeatedly: individual labor supply is, from (16), ni = (wi/θ)1/γ .
Since log idiosyncratic productivity log(wi) is normal with mean log(z) and standard deviation σ, log labor
supply is:

log(ni) ∼ N[(1/γ) log(z/θ), (σ/γ)2],

and so:
E[ni] = (z/θ)1/γ exp[0.5(σ/γ)2].

Similarly, log earnings is:

log(wini) ∼ N[((1 + γ)/γ) log(z)− (1/γ) log(θ), ((1 + γ)σ/γ)2],

and so:
E[wini] = z(1+γ)/γθ−1/γ exp[0.5((1 + γ)σ/γ)2].

Given this, the average elasticity of labor supply is E[d log(ni)/d log(wi)] = 1/γ which equals 1.67 when
γ = 0.60. The standard deviation of log earnings is [(1 + γ)/γ]σ which equals the Storesletten, Telmer, and
Yaron (2004) estimate of σSTY = 0.29 when σ = (0.60/1.60)(0.29) = 0.11.

The remaining four parameters (α, ν, θ, z) have to be solved for simultaneously. From our previous
calculations, one condition is immediate:

E[ni] = (z/θ)1/0.60 exp[0.5(0.11/0.60)2] = 0.33. (23)

We also use labor’s share E[wini]/y = 0.70 and since y = E[wini]+π, we need to have E[wini] = (0.70/0.30)π.
To calculate π we need to solve the fixed point problem π = F (π) outlined above. The solution of the fixed
point problem depends on all four parameters and to acknowledge this write π(α, ν, θ, z). Using the formula
for average earnings derived above, we then have a second equation in the four unknowns:

E[wini] = z(1.60)/0.60θ−1/0.60 exp[0.5((1.60)(0.11)/0.60)2] =
0.70
0.30

π(α, ν, θ, z). (24)

The solution to the fixed point problem also gives us an optimal price p(α, ν, θ, z) and associated percentage
markup mx(α, ν, θ, z) for the x-sector. Our third equation in the four unknowns is therefore:

mx(α, ν, θ, z) = 1.30. (25)

Let x denote the amount of the x-good sold by the firm at the price p and let εx := (px)/y denote the
expenditure share on the x-sector. We define the aggregate markup as the expenditure share weighted
average of the x-sector and c-sector markups, m := εxmx + (1 − εx), since the c-sector percentage markup
is zero by definition. Rearranging gives our fourth equation:

εx(α, ν, θ, z) =
m− 1
mx − 1

=
0.11
0.30

. (26)

In short, we solve for the four parameters (α, ν, θ, z) by solving the four equations (23)-(26) simultaneously.
This gives us α = 0.24, ν = 100, θ = 15 and z = 7.68.
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Consumption-dispersion model level relative std dev corr with GDP

x-good markup 24% 0.42 -0.36
profit share 0.32 0.78 0.88
labor 0.33 0.44 0.98
real wages 5.8 0.18 0.32
Low-α model (α = 0.12) level relative std dev corr with GDP

x-good markup 28% 0.95 -0.38
profit share 0.46 0.96 0.66
labor 0.33 0.44 0.67
real wages 4.4 0.64 -0.26
High-α model (α = 0.48) level relative std dev corr with GDP

x-good markup 35% 0.75 -0.09
profit share 0.21 0.93 0.80
labor 0.33 0.52 0.99
real wages 6.8 0.24 0.89

Table 4: Second moments of aggregate variables in the low-dispersion model.
Standard deviations are divided by the standard deviation of GDP.

A.2 Sensitivity analysis

Replace earnings dispersion with consumption dispersion One criticism of the model
calibration is that there are many reasons the the distribution of customer willingness to pay that a firm
faces may be lower than earnings dispersion. One reason is that agents use savings to smooth out temporary
income shocks. Another reason is that stores may not serve the entire population, but cater to a segment of
it. For these reasons, it is important that the model’s results survive with a lower level of dispersion.

Storesletten, Telmer, and Yaron (2004) also report consumption dispersion estimates, using food con-
sumption data from the PSID. We use the procedure described in appendix A.3 for transforming annual
to quarterly estimates. Since the persistence of consumption is slightly lower than earnings, the annual to
quarterly conversion factor is different. The quarterly AR1 coefficient in persistent piece of individual earn-
ings is ρξ = 0.8621/4 = 0.964. This delivers a factor for converting annual to quarterly standard deviations
Q = (1 + ρξ + ρ2

ξ + ρ3
ξ)
−1 = 0.264. This conversion yields the parameters of the idiosyncratic earnings

process. To convert these to parameters of the idiosyncratic productivity process that we feed into the
model, multiply each by γ/(1 + γ). Thus, σh = 0.172Qγ/(1 + γ) = 0.017, σl = 0.222Qγ/(1 + γ) = 0.02, and
σuQγ/(1 + γ) = 0.283Q = 0.028. The resulting steady state dispersion of consumption is 0.21, about 2/3rds
of the steady state earnings dispersion (0.29) from the benchmark model. None of the other parameters are
changed.

Table 4 shows that lowering the dispersion makes markups more counter-cyclical. Obviously, there is a
limit to how low dispersion can fall since in the zero-dispersion case, markups are pro-cyclical. The level of
the markup is lower. This is also true for the aggregate markup (9.8%). The moments for the macro variables
look very similar to those from the benchmark model. The important take-away from this exercise is that
the results are not very sensitive and even get stronger if the dispersion in willingness to pay is substantially
lower than the dispersion in earnings.

Vary diminishing returns parameter α Since aggregate markups are used to calibrate α, α is
sensitive to the markup level, and markups are not precisely estimated, α is a prime candidate for robustness
analysis. Two exercises alleviate these concerns. The bottom two sections of table 4 show that halving or
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doubling α leaves most of our main results in tact. The most notable exception is that when α is very low,
real wages become counter-cyclical. This happens because firms’ marginal costs are very volatile. Since
those costs are pro-cyclical, it makes prices strongly pro-cyclical and real wages counter-cyclical.

A.3 Data and simulation details

Making annual dispersion quarterly The quarterly persistence and standard deviation of in-
come are derived from the annual estimates of Storesletten, Telmer, and Yaron (2004) as follows: ρξ =
0.9521/4, the standard deviation to the persistent component is 0.125Q when productivity is above average
and is 0.211Q when productivity is below average while the standard deviation of the transitory component
is 0.255Q where the adjustment factor is Q := 1/(1 + ρξ + ρ2

ξ + ρ3
ξ) = 0.2546.

Simulations All simulations in this paper begin by sampling the exogenous state variables for a ‘burn-
in’ of 1000 quarters. This eliminates any dependence on arbitrary initial conditions. A cross-section of
2500 individuals is tracked for 200 quarters, corresponding to the dimensions in Storesletten, Telmer, and
Yaron (2004). Realizations of endogenous variables are then computed. The moments discussed in the text
are averages over the results from 100 runs of the simulation (that is, averages over 200 × 100 = 20000
observations).

Aggregate data All data is quarterly 1947:1-2006:4 and seasonally adjusted. Real GDP is from the
Bureau of Economic Analysis (BEA). This is nominal GDP deflated deflated by the BEA’s chain-type price
index with a base year of 2000. We measure aggregate labor productivity by real output per hour and
and real wages by real compensation per hour in the non-farm business sector, both from the Bureau of
Labor Statistics (BLS) Current Employment Survey (CES) program. Nominal output and compensation are
deflated by the BLS’s business sector implicit price deflator with a base year of 1992.

State-level data First, we describe the data sources. The state employment, earnings and wage data
come from three sources. The first is the County Wage and Salary Summary (CA34), produced by the BEA’s
Regional Economic Accounts (REA). The data are reported annually from 1963-2004. GDP by state, also
from the REA, is aggregated based on weights from the Standard Industrial Classification (SIC) codes from
1963-97, and based on the revised North American Industry Classification System (NAICS) from 1997-2005.
Since the underlying methodologies are so different, we do not attempt to splice GDP numbers from the SIC
and NAICS accounts and instead, end the sample in 1997. Due to missing data for Alaska, we use 49 states.
The District of Columbia is excluded because computing dispersion is impossible with only one county. We
use a second source for state consumer price indices, which we use to construct real wages. The BEA reports
state price indices, but only from 1990-2005. Del Negro (1998) estimated the indices for 1969-1995. Both
measures are annual. The result is a balanced panel of 49 states and 27 time periods for a total of 1323
observations.

Next, we construct the three variables productivity z, earnings dispersion σ and markupsm. Productivity
measures output per worker (labor productivity). It is state GDP, divided by the state CPI to get real state
GDP, then divided again by total state employment. Earnings dispersion uses county-level data on the
average labor earnings per capita. To get a units-free measure of dispersion, first take the log of earnings in
each county. In each period, state earnings dispersion is the standard deviation of log earnings, across all
the counties in the state. Finally, markups are the inverse of the real wage. The state real wage the average
nominal wage, divided by the state CPI.

To make our data stationary we remove trends from all variables. While we could remove state-specific
deterministic trends, we instead remove a single national trend. This helps preserve as much cross-sectional
information as possible. For example, according to our measure a state with persistently lower inequality
relative to the national average always has below-trend dispersion; if we had instead removed a state-specific
trend then this state would sometime have below trend dispersion and sometime above trend dispersion.
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We calculate national trends for each variable v as the average across states with each state weighted by its
total number of employed workers: vnational,t =

∑49
s=1 vs,tls,t/(

∑49
s=1 ls,t), where l is the number of employed

workers in state s and year t. The de-trending is done by computing the log deviation of the state series
from the national average: log(vs,t)− log(vnational,t).

A.4 Computing the decline in business cycle volatility

In each decade, the model’s earnings dispersion by decade is chosen so that its log change from the previous
decade matches Heathcote, Storesletten, and Violante (2006). When only that change is made to the model,
business cycle volatility increases because of an unintended side-effect: When dispersion increases, the average
productivity level does as well because idiosyncratic productivity is log-normal. Higher productivity raises
hours worked and shifts the expenditure from c-good to consumption to x-good consumption. x-good
consumption is more volatile because of its linear utility.

With the balanced growth correction, results improve. Our model predicts essentially flat business cycle
volatility. To achieve a decrease in business cycle volatility, we need a smaller and less rapidly growing
dispersion process, like that for consumption dispersion. Storesletten, Telmer, and Yaron (2004) report that
food consumption has about 2/3rds the dispersion of earnings. We match the level of dispersion in the 70’s
and its cyclical properties to their estimate. For the long-run increase in consumption dispersion, we use
the 5% per-decade increase in non-durable consumption dispersion reported by Krueger and Perri (2005a)
for 1970-2000. (See appendix A.2 for further details.) The 10% rise in consumption dispersion from the
1970’s-90’s results in a 24% drop in the standard deviation of log real GDP, but it does not reproduce the
halving of business cycle volatility in the data.

Decade model (benchmark σ) model (low σ) data

50’s 1.50 2.1
60’s 1.49 1.3
70’s 1.55 2.10 2.2
80’s 1.55 1.68 1.7
90’s 1.53 1.70 0.9
00’s 1.50 1.0

Table 5: Business cycle volatility as dispersion increases.
Volatility measured as standard deviation of log(y) in percent. The trend added to the model is the decade-
by-decade increase in earnings dispersion estimated by Heathcote, Storesletten, and Violante (2006). ‘Low σ’
refers to the model calibrated to match the rise in consumption dispersion as estimated by Krueger and Perri
(2005a). In both cases we use the balanced growth correction described in the text. All other parameter
values are listed in table 1. Data: standard deviations of quarterly GDP, by decade.

30



References

Ball, L., and D. Romer (1990): “Real Rigidities and the Non-Neutrality of Money,”
Review of Economic Studies, 57(2), 183–203.

Berry, S., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market Equilib-
rium,” Econometrica, 63(4), 841–890.

Bilbiie, F., F. Ghironi, and M. J. Melitz (2006): “Endogenous Entry, Product Variety,
and Business Cycles,” Working Paper.

Bils, M. (1987): “The Cyclical Behavior of Marginal Cost and Price,” American Economic
Review, 77(5), 838–855.

(1989): “Pricing in a Customer Market,” Quarterly Journal of Economics, 104(4),
699–718.

Caballero, R., and M. Hammour (1994): “The Cleansing Effect of Recessions,” Amer-
ican Economic Review, 84, 1350–68.

Chari, V., P. Kehoe, and E. McGrattan (2000): “Sticky Price Models of the Business
Cycle: Can the Contract Multiplier Solve the Persistence Problem?,” Econometrica, 68(5),
1151–1179.

Chevalier, J., A. Kashyap, and P. Rossi (2003): “Why Don’t Prices Rise During
Periods of Peak Demand? Evidence from Scanner Data,” American Economic Review,
93, 15–37.

Comin, D., and M. Gertler (2006): “Medium Term Business Cycles,” American Eco-
nomic Review, 96(3), 523–551.

Cooley, T., R. Marimon, and V. Quadrini (2004): “Aggregate Consequences of Lim-
ited Contract Enforceability,” Journal of Political Economy, 112, 817–847.

Cooley, T., and E. Prescott (1995): “Economic Growth and Business Cycles,” in
Frontiers in Business Cycle Research, ed. by T. Cooley. Princeton University Press.

Del Negro, M. (1998): “Aggregate Risk Sharing Across US States and Across European
Countries,” FRB Atlanta Working Paper.

Diaz-Gimenez, J., V. Quadrini, and J. Rios-Rull (1997): “Dimensions of Inequality:
Facts on the U.S. Distributions of Earnings, Income and Wealth,” Federal Reserve Bank
of Minneapolis Quarterly Review, 21(2), 3–21.

Gali, J. (1994): “Monopolistic Competition, Business Cycles, and the Composition of
Aggregate Demand,” Journal of Economic Theory, 63, 73–96.

31



Gali, J., M. Gertler, and D. Lopez-Salido (2007): “Markups, Gaps and the Welfare
Costs of Business Cycles,” Review of Economics and Statistics, 89(1), 44–59.

Goldberg, P. (1996): “Dealer Price Discrimination in New Car Purchases: Evidence from
the Consumer Expenditure Survey,” Journal of Political Economy, 104(3), 622–654.

Gomme, P., and J. Greenwood (1995): “On the Cyclical Allocation of Risk,” Journal
of Economic Dynamics and Control, 19, 19–124.

Greenwood, J., Z. Hercowitz, and G. Huffman (1988): “Investment, Capacity Uti-
lization, and the Real Business Cycle,” American Economic Review, 78(3), 402–417.

Guvenen, F. (2005): “An Empirical Investigation of Labor Income Processes,” U. Texas
Working Paper.

Heathcote, J., K. Storesletten, and G. Violante (2006): “The Macroeconomic
Implications of Rising Wage Inequality in the United States,” NYU Working Paper.

Jaimovich, N. (2006): “Firm Dynamics, Markup Variations, and the Business Cycle,”
Stanford University Working Paper.

Kimball, M. (1995): “The Quantitative Analytics of the Basic Neomonetarist Model,”
Journal of Money Credit and Banking, 27, 1241–1277.

King, R., and S. T. Rebelo (1999): “Resuscitating Real Business Cycles,” in Handbook
of Marcoeconomics, ed. by J. Taylor, and M. Woodford. Elsevier.

Kiyotaki, N., and R. Wright (1989): “On Money as a Medium of Exchange,” Journal
of Political Economy, 97(4), 927–954.

Krueger, D., and F. Perri (2005a): “Does Income Inequality Lead to Consumption
Inequality? Evidence and Theory,” Review of Economic Studies, 73, 163–193.

(2005b): “Public versus Private Risk Sharing,” Working Paper.

Krusell, P., and A. Smith (1998): “Income and Wealth Heterogeneity in the Macroe-
conomy,” Journal of Political Economy, 106(5).

Lustig, H., and S. Van Nieuwerburgh (2005): “Housing Collateral, Consumption
Insurance and Risk Premia: An Empirical Perspective,” Journal of Finance, 60(3), 1167–
1219.

(2007): “Why Have Payouts to U.S. Corporations Increased?,” Working paper.

Menzio, G. (2007): “A Search Theory of Rigid Prices,” U. Penn working paper.

Murphy, K., A. Shleifer, and R. Vishny (1989): “Building Blocks of Market-Clearing
Models,” NBER Macroeconomics Annual, pp. 247–286.

32



Nakamura, E., and J. Steinsson (2006): “Price Setting in Forward-Looking Customer
Markets,” Harvard University working paper.

Nevo, A. (2001): “Measuring Market Power in the Ready-to-eat Cereal Industry,” Econo-
metrica, 69(2), 307–342.

Portier, F. (1995): “Business Formation and Cyclical Markups in the French Business
Cycle,” Annales D’Economie et de Statistique, 37-38, 411–440.

Rampini, A. (2004): “Entrepreneurial Activity, Risk, and the Business Cycle,” Journal of
Monetary Economics, 51, 555–573.

Rios-Rull, J. (1996): “Life-Cycle Economies and Aggregate Fluctuations,” Review of
Economic Studies, 63, 465–490.

Rotemberg, J., and G. Saloner (1986): “A Supergame-Theoretic Model of Price Wars
during Booms,” American Economic Review, 76(3), 390–407.

Rotemberg, J., and M. Woodford (1999): “The Cyclical Behavior of Prices and Costs,”
in Handbook of Marcoeconomics, ed. by J. Taylor, and M. Woodford. Elsevier.

Stock, J., and M. Watson (1999): “Business Cycle Fluctuations in US Macroeconomic
Time Series,” in Handbook of Marcoeconomics, ed. by J. Taylor, and M. Woodford. Elsevier.

Storesletten, K., C. Telmer, and A. Yaron (2004): “Cyclical Dynamics in Idiosyn-
cratic Labor Market Risk,” Journal of Political Economy, 112(3), 695–717.

33


