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Abstract

This paper develops a method for solving for the dynamic general equilibrium of a de-
terministic continuous time overlapping generations model with a finite-horizon life-cycle.
The model has isoelastic preferences and allows for general assumptions about individual
endowments and demographics. Solving for an equilibrium reduces to solving a nonlinear
integral equation. In the special case of log utility, the integral equation is linear and global
approximations to a solution are easily computed with linear algebra.
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The overlapping generations model is one of the workhorses of modern macroeconomics. This

paper outlines a continuous time OLG model where agents live for a given finite interval of time

so that genuine life-cycle behavior is possible.1

In applied macroeconomics, OLG models are set in discrete time and individuals have many

decision periods per lifetime (Auerbach and Kotlikoff, 1987; Ŕıos-Rull, 1996). Long-lived models

of this kind are attractive because they allow for realistic timing conventions and an intuitive

calibration to annual or quarterly data. In practice, however, long-lived discrete time models

are difficult to work with computationally. The main advantage of the continuous time model

outlined below is that it simultaneously permits agents to have many decisions per lifetime but is

computationally simple.

The model is presented in Section 1 and allows for isoelastic utility and general assumptions

about individual endowments (and demographics). The main result of this paper is given in

Section 2 which shows how to represent the equilibrium fixed point problem as a specific, generally

nonlinear, integral equation which needs to be solved for an unknown intertemporal price function.
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I thank Costas Azariadis for his continued enthusiasm and advice. I am also grateful to Jess Benhabib, Roger
Farmer, Herakles Polemarchakis and seminar participants at UCLA, the University of Melbourne and NYU for
comments.

1Following Yaari (1965), Blanchard (1985) studies a continuous time OLG model where agents die at an exoge-
nously given exponential rate. This simplifies the analysis considerably but also excludes life-cycle behavior. Weil
(1989) studies a similar model of overlapping families with infinite horizons. Other related literature is discussed
at the end of the paper.
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Section 3 shows for the special case of log utility that this integral equation is linear and solving

for an equilibrium involves finding intertemporal prices p(t) satisfying:

p(t) =

∫ ∞
0

p(s)k(t, s)ds+ f(t)

for time t ∈ [0,∞). In this equation the integral kernel k(t, s) and forcing process f(t) are known

functions of primitives of the economy, including individual endowments and the initial asset

distribution. Although this problem generally does not have a closed form solution, there are well

known algorithms for finding global approximations to its solution (Atkinson, 1997; Baker, 1977;

Judd, 1998; Press, Teukolsky, Vetterling, and Flannery, 1992). These methods exploit the analogy

between the linear integral equation and finite dimensional linear algebra. The case of general

isoelastic utility leads to a similar (but nonlinear) integral equation that, as discussed in Section 4,

is also computationally tractable — no matter how long-lived individuals are.

1 Model

Consider a deterministic endowment economy populated by an infinity of overlapping generations

of agents. Time is continuous and indexed by t ∈ [0,∞).

Demographics. The economy is populated by two kinds of agents. First, at each instant of time

t > 0 a continuum of identical agents are born and live for a finite period of time, l > 0. Second,

at date t = 0 there is a pre-existing mass of agents. Since agents have a lifetime of l, at date

t = 0 we need to account for all the generations ‘born’ in the interval (−l, 0]. These transitional

generations play the role of the ‘initial old’ in the classic two-period overlapping generations model

of Diamond (1965). A transitional generation v ∈ (−l, 0] lives over t ∈ [0, v + l). Let the set of all

generations alive at date t ≥ 0 be G(t) := (t− l, t]. Also, let the set of dates over which generation

v ∈ (−l,∞) lives be A(v) := {t ≥ 0|max[0, v] ≤ t < v + l}. For v ≥ 0 this is just [t, t + l). To

simplify notation, let the total population be constant (and normalized to size one).2

Endowments. Each instant t generation v is endowed with an exogenous amount of a single non-

storable consumption good y(t, v) ≥ 0. No endowment is received if the agent is not alive: y(t, v) =

0 for all (t, v) /∈ A(v)× G(t). Let Y (t) :=
∫

G(t)
y(t, v)dv > 0 denote the aggregate endowment at t

and let ϕ(t, v) := y(t, v)/Y (t) ≥ 0 denote the density of generation v’s endowment.

In addition to physical endowments, transitional generations are endowed with assets — pre-

existing claims to consumption. Let a(0, v) denote the net assets of generation v at time t = 0.

For generations v > 0 these are zero. For transitional generations v ∈ G(0) these may be positive

or negative but must net out to zero,
∫

G(0)
a(0, v)dv = 0. There is no outside asset.

2Appendix A generalizes the model to allow for aggregate population growth, changes in the relative proportions
of young and old, and within-cohort endowment heterogeneity.
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Preferences and budget constraints. Each individual has preferences over dated consumption goods

represented by a time-seperable utility function with isoelastic instantaneous utility and exponen-

tial discounting:∫
A(v)

e−ρ(t−v)u[c(t, v)]dt, u(c) :=
c1−σ − 1

1− σ
, ρ ≥ 0, σ > 0 (1)

For t ∈ A(v) the flow constraint facing an individual is:

ȧ(t, v) = r(t)a(t, v) + y(t, v)− c(t, v) (2)

where a dot denotes differentiation with respect to time and with given initial conditions a(v, v)

and instantaneous interest rate r(t).

We can integrate the flow constraint to get each individual’s intertemporal budget constraint:∫
A(v)

p(t)c(t, v)dt =

∫
A(v)

p(t)y(t, v)dt+ p(v)a(v, v) (3)

where p(t) is the intertemporal price of consumption, ṗ(t)/p(t) =: −r(t). Using y(t, v) = 0 for

all (t, v) /∈ A(v) × G(t) and a(v, v) = 0 for all v > 0, the right-hand side of the intertemporal

constraint can be written:

W (p, v) :=

∫ ∞
0

p(s)y(s, v)ds+ p(0)a(0, v) (4)

where W (p, v) denotes an individual’s intertemporal wealth as of date t = 0 given prices p.

Optimization. Taking prices as given, each individual chooses consumption c(t, v) ≥ 0 to maximize

utility (1) subject to their intertemporal constaint (3). This a concave programming problem over

a convex constraint set. The first order condition characterizing consumption is:

e−ρ(t−v)c(t, v)−σ = λ(v)p(t) (5)

where λ(v) ≥ 0 is the time-invariant Lagrange multiplier on the intertemporal budget constraint

of generation v. Differentiating both sides of (5) with respect to t gives the standard consumption

Euler equation ċ(t, v)/c(t, v) = (r(t)− ρ)/σ.

Using the intertemporal constraint, the solution for the Lagrange multiplier is:

λσ(p, v) :=

[∫
A(v)

e−
ρ
σ

(s−v)p(s)
σ−1
σ ds

]σ
W (p, v)−σ (6)

Plugging this solution for the multiplier into (5) gives the consumption function:

cσ(p, t, v) := ασ(p, t, v)
W (p, v)

p(t)
(7)

where ασ(p, t, v) denotes the expenditure shares:

ασ(p, t, v) :=
e−

ρ
σ
tp(t)

σ−1
σ∫

A(v)
e−

ρ
σ
sp(s)

σ−1
σ ds

(8)

In the special case of log utility (σ = 1), we have the familiar property that expenditure shares do

not depend on prices p.
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Equilibrium. An equilibrium is feasible consumption c ≥ 0 and a price p > 0 such that (i) taking

as given prices, each individual chooses consumption to maximize utility, and (ii) markets clear:∫
G(t)

cσ(p, t, v)dv =

∫
G(t)

y(t, v)dv =: Y (t) (9)

The aggregate endowment Y (t) > 0 is exogenous, so we know the right-hand side of (9). We need

to find a function p that ensures that markets clear on all dates. That is, we have to solve a

nonlinear integral equation for p. The market clearing condition gives us an integral equation of

the ‘first kind,’ meaning that the unknown function p enters only inside the integral. In general

finding numerical solutions of first kind equations is harder that finding solutions of ‘second kind’

integral equations where the unknown function also enters outside the integral operator (Atkinson,

1997; Press, Teukolsky, Vetterling, and Flannery, 1992).3 In Section 2 below, the properties of the

consumption function (7) are used to rewrite (9) as a second kind integral equation.

Because the consumption function is zero degree homogeneous in prices, if p is an equilibrium

price, so is ξp for any scalar ξ > 0. We can only determine relative prices. Let p(0) = 1 be the

normalization.

Benchmark and the role of compositional effects. Since each individual satisfies their consumption

Euler equation, they all have the same consumption growth. But in general this does not mean

the growth of the aggregate endowment satisfies a corresponding ‘aggregate’ Euler equation. In

general Ẏ (t)/Y (t) 6= (r(t)− ρ)/σ. To see this, multiply both sides of the Euler equation by c(t, v)

and integrate both sides over G(t) to get:∫
G(t)

ċ(t, v)dv =
r(t)− ρ

σ

∫
G(t)

c(t, v)dv =
r(t)− ρ

σ
Y (t)

But using Leibniz’s rule:

Ẏ (t) =
d

dt

∫
G(t)

c(t, v)dv = c(t, t)− c(t, t− l) +

∫
G(t)

ċ(t, v)dv

= c(t, t)− c(t, t− l) +
r(t)− ρ

σ
Y (t)

Only if the consumption of the very young and very old is the same, c(t, t) = c(t, t− l), does this

reduce to the familiar benchmark Ẏ (t)/Y (t) = (r(t) − ρ)/σ in which case the equilibrium price

function is simply log[p(t)] = −ρt− σ
∫ t

0
γ(s)ds with γ(t) := Ẏ (t)/Y (t) the instantaneous growth

rate of the aggregate endowment. See Blanchard (1985) or Weil (1989) for further discussion.

2 Integral equation representation of equilibrium prices

The main contribution of this paper is a simple functional equation representation of the equilib-

rium fixed point problem. Intertemporal prices p solve a fixed point problem of the form p = Tσp

where Tσ is defined by a nonlinear integral operator.

3If the right-hand side of (9) is smooth then the unknown function p has to be something that when integrated
gives a smooth answer. But lots of badly behaved functions are smooth after they have been integrated. See Press,
Teukolsky, Vetterling, and Flannery (1992) for detailed discussion of these ill-posed inversion problems.
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Proposition 1. Intertemporal prices p solve the nonlinear integral equation:

p(t) =

∫ ∞
0

p(s)kσ(p, t, s)ds+ fσ(p, t) (10)

where:

kσ(p, t, s) :=

∫
G(t)

ασ(p, t, v)
y(s, v)

Y (t)
dv (11)

fσ(p, t) :=

∫
G(t)

ασ(p, t, v)
a(0, v)

Y (t)
dv (12)

and where the expenditure shares ασ(p, t, v) are given by (8).

Proof. Substitute the consumption function cσ(p, t, v) from equation (7) into the market clearing

conditions (9) and multiply both sides by p(t) to get:

p(t)Y (t) =

∫
G(t)

ασ(p, t, v)W (p, v)dv (13)

Now substitute in the definition of intertemporal wealth:

p(t)Y (t) =

∫
G(t)

ασ(p, t, v)

[∫ ∞
0

p(s)y(s, v)ds+ p(0)a(0, v)

]
dv

And change the order of integration for the double integral on the right-hand side of this expression

(for this calculation, t is taken as a parameter) to get:

p(t)Y (t) =

∫ ∞
0

∫
G(t)

ασ(p, t, v)p(s)y(s, v)dvds+ p(0)

∫
G(t)

ασ(p, t, v)a(0, v)dv (14)

If we divide both sides by Y (t) > 0 and define kσ(p, t, s) and fσ(p, t) as in equations (11)-(12),

then we have the desired representation.

Equation (10) is a nonlinear Urysohn integral equation (Baker, 1977). The right hand side of

(10) defines an operator Tσ that takes prices as an argument:

(Tσp)(t) :=

∫ ∞
0

kσ(p, t, s)ds+ fσ(p, t) (15)

Equilibrium prices are fixed points of this operator. In practice, approximations to equilibrium

prices can be obtained by iterating on Tσ, as outlined below.

3 Solving the model with log utility

In the special case of log utility, the operator Tσ is linear. This is interesting in its own right, but

also, because it makes the log case especially easy to solve, helps provide a ‘good’ initial condition

for approximate solutions of the general problem computed by iterating on Tσ.
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3.1 Linear integral equation

As σ → 1 the expenditure shares no longer depend on p and we have:

lim
σ→1

ασ(p, t, v) =
e−ρt∫

A(v)
e−ρsds

=: α(t, v) (16)

For generations v ≥ 0 expenditure shares are proportional to e−ρ(t−v) with a constant of propor-

tionality ensuring they integrate to 1 over a lifetime of length l. We now have:

lim
σ→1

kσ(p, t, s) =

∫
G(t)

α(t, v)
y(s, v)

Y (t)
dv =: k(t, s) (17)

lim
σ→1

fσ(p, t) =

∫
G(t)

α(t, v)
a(0, v)

Y (t)
dv =: f(t) (18)

both independent of prices. So the nonlinear Urysohn integral equation (10) becomes:

p(t) =

∫ ∞
0

p(s)k(t, s)ds+ f(t) (19)

This is a linear Fredholm equation of the second kind (Atkinson, 1997; Baker, 1977; Judd, 1998;

Press, Teukolsky, Vetterling, and Flannery, 1992; Tricomi, 1957).4 Equilibrium prices are fixed

points p = Tp of the linear operator T := limσ→1 Tσ.

Discussion. Let K denote the linear integral operator implied by the kernel function k(t, s) so that

equilibrium prices solve p = Tp = Kp+ f . Then if the resolvent operator R =:
∑∞

i=0K
i exists, we

have:

p = (I −K)−1f = Rf = f +KRf

A standard sufficient condition for the resolvent operator to exist is that the operator norm ||K|| <
1 (Atkinson, 1997; Tricomi, 1957). Intuitively, this ensures

∑∞
i=0K

i converges to a well behaved

limiting operator.

The properties of equilibrium prices are determined by the known integral kernel function k(t, s)

and the known forcing process f(t).

Integral kernel. The integral kernel k(t, s) encodes information about the (appropriately dis-

counted) relative scarcity of consumption goods at different dates (t, s). Since y(t, v) = 0 for

all (t, v) /∈ A(v)× G(t), the integral kernel can be rewritten:

k(t, s) =


0 if s < t− l
k−(t, s) if t− l ≤ s < t
k+(t, s) if t ≤ s ≤ t+ l
0 if s > t+ l

(20)

4Many macroeconomists will be familiar with linear Fredholm integral equations of the second kind. A leading
example is the Lucas (1978) asset pricing model where the unknown function is the price of the single non-storable
consumption good in a given state where the state follows an exogenous Markov process with continuous support.
See Tauchen and Hussey (1991).
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where

k−(t, s) :=

∫ s

max{0,t−l}
α(t, v)

y(s, v)

Y (t)
dv, t− l ≤ s < t

k+(t, s) :=

∫ t

max{0,s−l}
α(t, v)

y(s, v)

Y (t)
dv, t ≤ s ≤ t+ l

Forcing process. The know forcing process f(t) inherits its key properties from the distribution of

initial assets a(0, v). In particular, because a(0, v) = 0 for v > 0, we also have f(t) = 0 for t > l.

That is, for t > l there are no more living transitional generations and their direct influence on

current prices is exactly zero. Of course, the transitional generations continue to have an indirect

effect. The first round of indirect effects takes place because the forcing process at (say) the point

t = l/2 directly affects the price at t and indirectly affects all the prices on dates [0, l/2+ l] through

the kernel. There are also a whole collection of higher order rounds of indirect effects so the value

of the forcing function at any date t matters for the whole price function.

Example: balanced growth. Let the aggregate endowment grow at rate γ ≥ 0 so that Y (t) = eγt

and let the endowment be uniformly distributed with ϕ(t, v) = 1/l for all (t, v) ∈ A(v) × G(t).

Then for t > l so that we are removed from the influence of the transitional generations:

k−(t, s) = βe(γ+ρ)(s−t)[1− e−ρ(s−t+l)] (21)

k+(t, s) = βeγ(s−t)[1− e−ρ(t−s+l)] (22)

where β := 1/[(1 − e−ρl)l]. Notice that k− is increasing in s and that k+ is decreasing in s and

k−(t, t) = k+(t, t) = 1/l. In short, the kernel is a two-sided smoother around the point t giving

most weight to s close to t (and zero weight to those s that are more than l from the current t).

Around t the speed at which the weight given to s falls off depends on the rate of time preference

ρ and the growth rate of the aggregate endowment γ. The weights diminish faster when the rate

of time preference is higher.

Given that for any kernel f(t) = 0 for t > l, the integral equation characterizing equilibrium

prices can be written:

p(t) =

∫ t+l

t−l
p(s)k(t, s)ds, t > l (23)

And with this balanced growth example, from (21)-(22), the integral kernel can be written as a

function of t−s only, k(t, s) = k̂(t−s). So (23) provides a simple way of solving for the steady-state

price path along which ṗ(t)/p(t) = −r for some constant interest rate r. We have:

1 =

∫ t+1

t−l
e−r(s−t)k(t, s)ds =

∫ +l

−l
e−rzk̂(z)dz, t > l (24)

which is one equation to be solved for r (there may be several solutions). This interest rate

characterizes the limiting equilibrium price path, p(t) ∼ e−rt for large t, but since f(t) affects
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prices at all t, even for this simple example equilibrium prices will not exactly equal e−rt at any

t. Also, the steady state interest rate r does not generally equal the benchmark ρ+ γ that would

obtain with log utility when there are no compositional effects.

One approach to solving the model numerically would be to use local approximation methods

based on perturbing the price path p(t) around e−rt. But this neglects the role of transitional

generations and makes such solutions unattractive for analyzing both the effects of policy changes

along a transition path as well as the full welfare implications of such policy changes. For linear

Fredholm integral equations of the second kind, like (19), there are several well known global

approximation methods, as outlined below, and so there is no need for local approximations around

steady-state.

3.2 Global approximation of p(t) with log utility

The two most common global approximation methods for solving a linear integral equation like

(19) are Nystrom’s extension and the method of approximation by separable kernels. Both methods

reduce the integral equation problem to a finite dimensional linear algebra problem. Since these

methods are well known in the numerical analysis literature (Atkinson, 1997; Baker, 1977; Judd,

1998; Press, Teukolsky, Vetterling, and Flannery, 1992), the discussion here is deliberately terse.

Nystrom’s extension. Let si, ωi for i = 1, ..., J denote a set of J numerical quadrature nodes and

weights that allow us to approximate the integral operator on the right hand side of (19) by a

finite sum:∫ ∞
0

p(s)k(t, s)ds ≈
J∑
i=1

p(si)k(t, si)ωi (25)

Then the linear integral equation can be approximated by the finite system of equations:

pi =
J∑
j=1

pjkij + fi, i = 1, ..., J (26)

where in a slight abuse of notation, pi := p(si), kij := k(si, sj) and fi := f(si). In matrix notation,

p = Kp + f . If det(I − K) 6= 0 then there is a unique vector, call it p̂, given by the resolvent

matrix R = (I−K)−1 so that p̂ = Rf = (I−K)−1f . This gives us approximate equilibrium prices

p̂i at the numerical quadrature nodes si, for i = 1, ..., J . Nystrom’s extension then gives prices for

any t ∈ [0,∞) using:

p(t) =
J∑
i=1

p̂ik(t, si)ωi + f(t) (27)

Separable kernels. If the integral kernel can be written k(s, t) =
∑J

i=1 gi(s)hi(t) for a finite collec-

tion of (known) basis functions gi(s) and hi(t) then it is separable. In this case, the linear integral
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equation (19) reduces exactly to a finite dimensional linear algebra problem and has the solution:

p(t) =
J∑
i=1

p̂ihi(t) + f(t) (28)

where p̂i for i = 1, ..., J denote the solutions to the finite system of equations pi =
∑J

j=1 pjkij + fi

[as in (26)]. And exploiting the separability of the kernel we have exact formulas for the coefficients:

kij :=

∫ ∞
0

hi(t)gi(t)dt (29)

fi :=

∫ ∞
0

hi(t)f(t)dt (30)

If the kernel is separable, then (28) gives an exact global solution for the equilibrium price function.

In general, the kernel will not be exactly separable but can be arbitrarily well approximated as

such k(s, t) ≈
∑J

i=1 gi(s)hi(t) for large enough J and appropriate basis functions gi(s) and hi(t).

3.3 Numerical examples

The following examples were computed using Nystrom’s extension. In each case, the lifetime was

set to l = 75 years.

Stationary economy. Let the aggregate endowment be constant and the distribution of individual

endowments within the current population be uniform, ϕ(t, v) = 1/l. The solid line in Figure 1

is the equilibrium price function when the time discount rate is ρ = 0.05. The dashed line

is the benchmark e−0.05t which gives the equilibrium prices that would obtain in an analogous

representative agent model. The equilibrium real interest rates in this continuous time OLG

economy are high. For this example, the initial asset distribution has old agents with positive

assets and young agents with negative assets. The top row of Figure 2 shows the initial asset

distribution a(0, v), the corresponding forcing process f(t), and again the equilibrium prices p(t).

The bottom row of Figure 2 shows the reverse case, when the young have assets and the old have

liabilities. The forcing process f(t) obtains much of its shape from key properties of the initial

asset distribution, so, for example, when the initial old have positive assets then f(0) > 0 and

f(t)→ 0− as t→ l−. The reverse is true when the old have initial liabilities. In this example, the

equilibrium price function is not very sensitive to properties of the forcing process. The dashed

lines show the same objects but with a higher discount rate of ρ = 0.10. This has a much greater

influence over the whole price function.

Distributional effects. The top panel of Figure 3 shows the equilibrium price function p(t) for

the case of a uniform distribution of individual endowments and for ‘hump-shaped’ individual

endowments that are a quadratic function of age, proportional to (t − v)(l − t + v). The only

difference between these economies is the distribution of individual endowments. These different

patterns of individual endowments lead to quite pronounced differences in equilibrium prices.
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Figure 1: Equilibrium intertemporal prices p(t) versus benchmark e−ρt.
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Figure 2: Sensitivity to initial asset distribution a(0, v). Solid lines have discount rate ρ = 0.05, dashed
lines have ρ = 0.10. Equilibrium prices are much more sensitive to ρ than to the initial distribution.
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To get some sense of how big an influence is exerted by the pattern of individual endowments,

consider the bottom panel of Figure 3. This shows the same exercise but with growing endowments

Y (t) = e0.05t. Relative to this increase in the aggregate growth rate, the change in the distribution

of individual endowments has a large effect on equilibrium prices.
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Figure 3: The change in the distribution of individual endowments (from uniform to ‘hump-shaped’ in
age) has a large effect on p(t). The top panel has discount rate ρ = 0.05 and no aggregate endowment
growth γ = 0. The bottom panel has growing aggregate endowment γ = 0.05.

4 Solving the model with general isoelastic utility

Recall that we are interested in solutions to the fixed point problem p = Tσp where Tσ is the

nonlinear operator:

(Tσp)(t) =

∫ ∞
0

p(s)kσ(p, t, s)ds+ fσ(p, t)

Global approximations to the equilibrium price function can be obtained by iterating on an ap-

proximating nonlinear operator formed using numerical quadrature. Suppose we have a J-point

quadrature rule with nodes ti and weights ωi for t ∈ [0,∞). Suppose also that we have some

J-dimensional candidate price vector p̂n with typical elements p̂n,i. For example, this candidate

price vector may be the solution from the same model but with log utility.

Now associate with each ti a set of M quadrature nodes zim and weights δim that give numerical

integration over [ti − l, ti). Write the approximate expenditure shares given the price function p̂n

as α̂n with typical elements:

α̂n,im :=
e−

ρ
σ
ti p̂

σ−1
σ

n,i∑J
j=1 e

− ρ
σ
tj p̂

σ−1
σ

n,j 1{tj ∈ A(zim)}ωj
(31)

11



for i = 1, ..., J and m = 1, ...,M (in this expression, 1 denotes the indicator function). Similarly

compute elements k̂n,ij and f̂n,ij according to:

k̂n,ij :=
M∑
m=1

α̂n,im
y(tj, zim)

Y (ti)
δimωj (32)

f̂n,i :=
M∑
m=1

α̂n,im
a(0, zim)

Y (ti)
δim (33)

for i, j = 1, ..., J . With these formulas in hand, a new estimate of the price vector, p̂n+1 is computed

with typical elements given by the formula:

p̂n+1,i =
J∑
j=1

p̂n,j k̂n,ij + f̂n,i (34)

for i = 1, 2, ..., J .

Now test if the norm ||p̂n+1 − p̂n|| meets some pre-set tolerance criterion. If not, update to

(say) p̂n+1 and compute new expenditure shares, α̂n+1,im, and new coefficients, k̂n+1,ij and f̂n+1,i,

using (32)-(33). This procedure is repeated until ||p̂n+1 − p̂n|| is sufficiently small.

5 Related literature

Work on continuous time OLG economies began with Cass and Yaari (1967). They study a

model with finite horizons, log utility and physical capital. They derive the possibility of multiple

balanced growth equilibria [analogous to multiple solutions r to equation (24)] and examine the

ways in which dynamic efficiency can be addressed in such a setting. OLG models with continuous

time but infinite horizons were studied by Blanchard (1985) and Weil (1989). Farmer (2002) uses

a stochastic version of Weil’s model for business cycle analysis. The tradition of using long-lived

discrete time OLG models for policy analysis is due to Auerbach and Kotlikoff (1987). Rı́os-Rull

(1996) is the standard reference on related long-lived discrete time stochastic OLG economies.

Burke (1996) tackled the problem of equilibrium existence in a continuous time OLG setting.

A closely related recent paper is Demichelis and Polemarchakis (2007) who have a continuous

time OLG economy with log utility but no discounting and restrictive assumptions about endow-

ments.5 Two other closely related papers are d’Albis and Augeraud-Véron (2004, 2007). d’Albis

and Augeraud-Véron (2004) has production and log utility but age-independent wages, i.e., every

individual alive at t receives the same competitive wage (there is no heterogeneity in the quantity of

efficiency units supplied over the life-cycle). Production exhibits constant returns in capital so the

real interest rate and hence intertemporal prices are essentially exogenous. They then derive capi-

tal accumulation paths consistent with asset market clearing. They study the problem by recasting

the integral equation that emerges naturally from market clearing conditions as a delay-differential

equation. d’Albis and Augeraud-Véron (2007) studies an exchange economy with age-independent

5The advantage of these additional assumptions give rise to a linear integral equation of the convolution kind
that can (almost) be solved in closed form by Fourier transformation.
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endowments but general isoelastic utility. The analysis uses local perturbations to a steady state

and ignores transitional generations.

6 Conclusions

This paper provides a method for solving for the dynamic general equilibrium of a deterministic

continuous time OLG model. The model allows for isoelastic utility and general assumptions about

individual endowments (and demographics). The computational task in solving for an equilibrium

reduces to solving a specific nonlinear integral equation problem. In the case of log utility the

integral equation becomes linear and global approximations can be obtained with finite dimensional

linear algebra. The paper outlines a numerical procedure for solving the general integral equation

and provides examples.

A continuous time OLG model useful for applied macroeconomics must also be able to handle

stochastic environments, capital accumulation and elastic labor supply, amongst other things.

Perhaps the framework developed in this paper can be extended along these lines.

A Variable demographics and within-cohort heterogeneity

The mass of agents of generation v ∈ (−l,∞) at date t ≥ 0 is assumed to be given by a function
n(t, v) ≥ 0. This notation allows for exogenously given changes in the relative proportions of young
and old. Let each generation be a continuum [0, 1] of individuals indexed by i with idiosyncratic
endowment y(i, t, v) ≥ 0 at t and aggregate endowment Y (t) :=

∫ 1

0

∫
G(t)

y(i, t, v)n(t, v)dvdi > 0.

Let the initial asset distribution be a(i, 0, v) with
∫ 1

0

∫
G(0)

a(i, 0, v)n(0, v)dvdi = 0. Individual
consumption is again given by:

cσ(p, i, t, v) := ασ(p, t, v)
W (p, i, v)

p(t)

where ασ(p, t, v) denotes the expenditure shares, the same as in equation (8), and where individual
intertemporal wealth is:

W (p, i, v) :=

∫ ∞
0

p(s)y(i, s, v)ds+ p(0)a(i, 0, v)

Market clearing requires
∫ 1

0

∫
G(t)

cσ(p, i, t, v)n(t, v)dvdi = Y (t). This can be rearranged to give the

Urysohn integral equation p(t) =
∫∞

0
p(s)kσ(p, s, t)ds+ fσ(p, t) as in equation (10) but now:

kσ(p, t, s) =

∫ 1

0

∫
G(t)

ασ(p, t, v)
y(i, s, v)

Y (t)
n(t, v)dvdi

fσ(p, t) =

∫ 1

0

∫
G(t)

ασ(p, t, v)
a(i, 0, v)

Y (t)
n(t, v)dvdi

This allows for general endowments and demographics but the analysis is the same.
Almost immediately this allows the model to be generalized to an economy with determin-

istic aggregate endowment but stochastic idiosyncratic endowments that can be insured away by
dynamically complete markets (in which case equilibrium individual consumption is deterministic).
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