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ABSTRACT 

Feld, Grofman and Ray (2003) offer a bargaining model for weighted 

voting games that is a close relative of the nucleolus and the kernel.  They look 

for a set of weights that preserves winning coalitions that has the property of 

minimizing the difference between the weight of the smallest and the weight of 

the largest Minimum Winning Coalition.  They claim that such a set of weights 

provides an a priori measure of a weighted voter’s bribeworthiness or market 

value. Here, after reviewing the basic elements of their model, we provide a 

characterization result for this model and show its links to other bargaining model 

approaches in the literature.  Then we offer some limit results showing that, with 

certain reasonable conditions on the distributions of weights, as the size of the 

voting body increases, the values of bribeworthiness we calculate will approach 

both the weights themselves and the Banzhaf scores for the weighted voting 

game. We also show that, even for relatively small groups using weighted voting, 

such as the membership of the European Council of Ministers (and its 

precedessors) 1958-2003, similarities among the usual a priori power scores, 

bribeworthiness/market value, and the weights themselves, will be quite strong. 



 

Building on the work of Feld, Grofman and Ray (2003), the approach we 

offer is very similar in spirit to work from the game theoretic literature on 

bargaining games such as the Aumann-Maschler bargaining set, and to closely 

related work on “near-core” solutions such as the nucleolus and the kernel 

(Aumann and Maschler, 1964; Maschler, Peleg and Shapley, 1979; Schmeidler, 

1969; see also McKelvey, Ordeshook and Winer, 1978; Sudhölter, 2001). But it is 

even more similar to the work of Young (1978) and that of Taylor and Zwicker 

(1997; see also Taylor and Zwicker, 1993) and other work on  bribery models 

(e.g., Snyder, 1991), as well as to work on power rankings based on membership 

in minimal winning coalitions (e.g.; Morriss, 2002).1.    

Specifically, we suggest that the set of values that minimizes the range of 

values (i.e. highest minus lowest) of the size of the minimum winning coalitions 

in a game will determine what we might call the approximate fungible power 

scores, or approximate market values.  In contrast, the nucleolus can be thought of 

as minimizing the maximum complaints made by coalitions, while the kernel 

seeks to balance claims by individuals. 

Maschler (1992) points out that the Aumann-Maschler bargaining model 

and related approaches (the kernel and the nucleolus) assume that a given 

coalition has been formed, and then ask how the members of that coalition will 

bargain over the spoils that coalition can gain.2  Here, however, rather than 

assuming bargaining among the members of an already formed coalition, we posit 

an external entrepreneur making bids to individuals with the aim of 

assembling a winning coalition, and seeking to minimize the total amount of 

bribes s/he pays out by paying potential  members of some winning coalition no 

more than s/he is “worth” -- in a setting where the structure of the weighted game 

is such that one can usually replace that member with some one or more others to 

achieve a different coalition that will also have a majority sufficient for winning.3  

The chief attractions of the bargaining model variant we offer are three-

fold.  First, while it is a kissing cousin to other better known methods, it can be 

described and explained quite simply.  Second, its roots are relatively intuitive.  



Third, and perhaps most importantly for present purposes, we have written a 

computer algorithm that will allow us to calculate its values.   

Market Values in Homogenous Majority Voting Games 

To motivate our bargaining model variant, we begin with what are called 

homogeneous weights, i.e., a weighted voting game in which all minimal winning 

coalitions (henceforth abbreviated MWCs) have equal total weights (Zwicker and 

Taylor, 1997: 51).  Consider a e five-voter example, where A is given a weight of 

3, and the other four actors a weight of 1, with a quota of four. This is a 

homogeneous game.  The minimal winning coalitions (MWCs) are A, together 

with any one of B, C, D and E; or the set {B, C, D, E}.  Of course there are an 

infinite number of possible weights (plus quotas) which give rise to the same 

MWCs.4  Nonetheless, if we are given a game which gives rise to some set of 

minimal winning coalitions, it seems reasonable to represent that game in the 

most parsimonious way possible, and if we can find homogeneous weights to 

represent a game it seems reasonable to do so.5   For games with homogeneous 

weights, weights can be regarded as measures of each actor's market 

value/bribeworthines. Moreover, even for such seemingly easy to model games, 

the market values so determined can be quite far from the values determined by 

indices such as those of Banzhaf or Shapley-Shubik.  

We begin with an analysis of simple majority games.  In such games, 

neglecting ties, winning coalitions and coalitions with power to block winning 

outcomes are one and the same. Our model assumes that the primary value of 

votes is their value in exchange. The question we examine is how much each 

voter’s share of weights is worth to an outsider who would purchase a collective 

decision.  For a majority rule game, purchasing a collective decision requires 

purchasing a majority vote. Since it is reasonable to assume that the purchaser 

will not pay any more than necessary, it seems reasonable that he will purchase no 

more than a minimal winning coalition. Furthermore, since purchasers are willing 

to pay the same amount for any minimal coalition, if actors are otherwise 



indifferent among alternatives, the value of all minimal winning coalitions should 

converge towards having the same total price.    

For any weighted majority rule voting game, if we could set up a series of 

linear equations in which the sum of the values of the actors in each minimal 

winning coalition is equal to the sum of the values in every other minimal 

winning coalition, and we normalize those values to sum to one, and that set of 

simultaneous equations has a unique solution, then the values so arrived at would 

give us a natural way to establish the relative market values (bribeworthiness) of  

each actor. For homogenous games, we have a nice result. 



 

Proposition 1: If a weighted majority rule voting game is homogeneous 
and decisive,6 then this set of linear equations involving minimal winning 
coalitions7 has a solution in which the market value (bribeworthiness) of any non-
dummy actor is proportional to that actor's weight.8   

 

For games with homogeneous weights we can thus arrive at a notion of 

what we shall call fungible power, i.e., a situation in which weight and power are 

the same.    

We will illustrate this proposition with the previous example, where A has 

three votes and each of the other four voters has a single vote, and thus each 

minimal coalition has exactly four votes.  Our approach focuses attention on the 

fact that the three votes of actor A are directly substitutable for the votes of any 

three other actors, and that should be reflected in their power scores -- at least if 

we neglect transaction costs.   But, then, by symmetry, the actor whose share is 

three votes should have market power equal to the total of any other three voters.  

If values are normalized, then the market value scores are (.430, .143, .143, .143, 

.143).    

 Note that these weights are substantially different from what we got from 

the two standard power scores: the Banzhaf values of (.64, .09, .09, .09, .09), and 

the Shapley-Shubik power scores of (.60, .10, .10, .10, .10).  Unlike the usual 

power score approach we do not assume that an actor who is pivotal in many 

coalitions will be more heavily bribed. Rather, since only one coalition will 

actually form, we ask what, in that coalition, is a reasonable "bribe" for that actor, 

given that all actors in the winning coalition will have to be paid "what they are 

worth.”  Note also that the method we have initially used to assessing market 

value makes no assumptions whatsoever about the likelihoods of particular 

coalitions, or about the extent of common interests among actors. Indeed, in the 

calculations we gave, it turns out not to matter how many different coalitions an 

actor is decisive or pivotal in. Rather, what matters is her imputed market power 

relative to set of coalitions in which s/he might find herself.  



Unfortunately, there are sets of weights for which there is no functionally 

equivalent homogeneous set of weights.9  For example, consider a weighted  

voting game in which A, B, C, D, E, F have, respectively, weights 6, 5, 4, 3, 2, 1, 

totaling 21, with a vote quota of 11 votes.  It can be readily determined that these 

weights are not homogeneous.  ACD is a minimal winning coalition with 13 

votes, and AB is another MWC, but it has 11 votes. Since all MWCs do not have 

the same total votes, the set of weights is not homogeneous. With further analysis, 

it is also apparent that there does not exist any homogeneous set of weights that is 

functionally equivalent to these weights in terms of giving rise to the same set of 

minimal winning coalitions.  To see this, we simply observe that if all minimal 

winning coalitions in the game above would have the same totals, then, i. a., the 

weight of ACE would have to equal that of ADE, and therefore the weight of C 

would have to equal that of D. On the other hand, BCE is a minimal winning 

coalition, but BDE is not-- so C and D can never have the same weights under this 

decision rule.  This is sufficient to show that there can be no homogeneous set of 

weights for this game. We can generalize this intuition as follows.   

 

Proposition 2:  Market values are uniquely defined only for games that 
can be represented with homogeneous weights.10  

 
We can illustrate this proposition using the weighted majority rule voting 

game example discussed immediately above.  The minimum winning coalitions 

are {A, B}, {A, C, D}, {A, C, E}, {A, C, F}, {B, C, D}, (A, D, E}, {B, D, E, F}.  

If we equate the values of the members of each of these minimal winning 

coalitions to one another, we get the set of equations below: 

A + B = A + C + D = A + C + E = A + C + F = B + C + D = A + D + E = B + D + E + F. 

Normalizing, we also require: A + B + C + D + E = 1. However, it is easy to see 

that there is no consistent solution to this set of equations.11    

The fact that most voting games cannot be represented with homogeneous 

weights might seem to be a major limitation of our approach. But we will show how we 

can extend our notion of fungible power scores beyond the case of games with 



homogeneous weights for the case of games where a set of constraining equations does 

not have a solution, by considering the best approximation to homogeneous weights.   

Conceptualizing Bribeworthiness for Weighted Majority Rule Voting Games 
without Homogeneous Weights by Calculating Approximate Market Values 
 

We previously suggested that all minimal winning coalitions should have the 

same total value, because an outsider would not pay more for any one minimal winning 

coalition than for any other.  But we would argue that, even if there is no way to make the 

values exactly equal, there will still be a tendency towards making the values of the 

minimal winning coalitions as similar as possible. Specifically, we suggest that the set of 

values that minimizes the range of values (i.e. highest minus lowest) will determine what 

we might call the approximate fungible power scores, or approximate market values.  

Determining precise bounds for the set of weights with minimal discrepancies is a 

complex linear programming problem, but we have been able to estimate these power 

scores by using an  algorithm involving a simple least-squares minimization and 

successive approximations.12  This process seems to work well.  Starting with an arbitrary 

set of weights, we can generally find a new set of weights that reduce the difference in 

weights of the largest and smallest minimum winning coalition; but better weights 

become more elusive as we seek to improve further.     

Let us again consider the  system of equations above, for a game with weights of 

6, 5, 4, 3, 2, and 1, respectively, with a majority quota of 11, now with the aim of  

generating  a "plausible" set of weights. 

 

<<Table 1 about here>> 

 

While both our approximate market values and the Banzhaf scores recognize the 

equivalence of the actors initially given weights of 2 and 3, there are big differences in 

the relative weights of some of the other actors.  Specifically, our value for the actor with 

smallest weights is more than twice her Banzhaf score, and our value for the actor with 

the fourth-highest weighting is much less than her Banzhaf score.  As a consequence, the 



ratio between the fourth actor and the first is 2:1 for our approach, compared with 5:1 for 

the Banzhaf scores.13  

Plausible Mechanisms for Bribery 

We can imagine a number of different mechanisms by which bribery of the sort 

contemplated in this paper might be implemented, but two stand out for their intuitive 

plausibility.  In each, the potential briber has in mind how much a favorable outcome is 

worth to him/her.   

In one, the briber offers a total bribe to some particular minimal winning 

coalition, and expects the members of this coalition to bargain among themselves about 

how to share this bribe among themselves. In such a situation, actors might  assess their 

marginal value to coalitions in terms of the likelihood that if a given coalition fails to 

form because they, a pivotal member of that coalition refuse to join it,  they could still 

expect to be a member of some other winning coalition in which they would be pivotal.  

While this probability can be defined in urn model terms, even in this case, we might 

think that actors would consider not their probability of being in a coalition in which they 

are decisive (or pivotal) but rather their value to the coalitions in which they are, with 

equivalent (sets of) actors being paid the same bribe. This latter type of collective 

bargaining agreement story offers one type of rationale that has been offered for the 

nucleolus and related concepts (Maschler, 1992: 611).14  

A second way to think of the coalition formation process makes use of ideas from 

the literature on sequential coalition formation. (See e.g., Brams, 1972, Brams and 

Garrigo-Pico, 1975; Brams and Riker, 1972; Grofman, 1982; Straffin and Grofman, 

1984; Grofman, 1996; Grofman, Straffin and Noviello, 1996.)  Here the bribe offerer can 

be thought of as fishing for bribe-takers, one or more at a time, and throwing them back 

in if they demand too large a bribe. This “fishing” continues until a winning coalition is 

reached.15     

While both these mechanisms  posit  only a single briber, we believe the idea of 

market value can be extended to the two competing bribers case along the lines discussed 

in Owen (1992).16  

 



Robustness of Minimal Winning Coalitions 

Because our modeling approach is based on the idea of those with a stake 

in the outcome “bribing” voters to either achieve a particular outcome or to block 

change from the status quo, there might appear to be no reason for a briber to 

purchase more than a minimal winning coalition. Nonetheless, for two reasons, 

we might anticipate that observed voting coalitions would be larger than minimal 

winning.  

 First, some unbribed voters might vote for the winning outcome even if 

they get no bribe.  Consequently, even though actors are only willing to pay for 

minimal winning coalitions, the “free” votes might make the actual winning 

coalitions considerably larger than minimal.  Of course, if there are voters who 

can be counted on to vote as the briber wants without being bribed, and if the 

briber knows who they are, then the size of the coalition which must be bribed in 

order to assembly a minimal winning coalition is reduced, and we can simply do 

the market value calculations for the set of remaining voters.17  

Second, however, some processes for forming minimal winning coalitions 

can actually result in larger than minimal outcomes.  Consider, for example, what 

happens  if we apply  the  sequential “fishing for minimal winning coalitions” 

process to the game with four voters, A, B, C and D, with weights 1, 2, 3 and 4 , 

respectively and a  quota of  6..  If the briber’s sequence of contacts is first A, 

then C, than D, and each accepts the bribes offered them, and no reneging on the 

part of either briber or bribee is possible, then the winning coalition formed will 

be of weight 8, and will be non- minimal-winning, since member A can be deleted 

without affecting the winning status of the coalition.18 

Approximately Fungible Power in Qualified Majority Rule Non-
Homogeneous Weighted Voting Games 

Note that our discussion above applies to majority rule, i.e., where either a 

coalition is winning or its complement is winning. These ideas can readily be 

extended to qualified majority rule (i.e. involving higher than majority quotas).  

A qualified majority rule is homogeneous when all minimal winning coalitions 

have the same values as one another and all minimal blocking coalitions have the 



same value as one another.  Such sets of weights, if they exist, are unique up to a 

scalar multiplier, just as for majority rule.  For homogeneous qualified majority 

rule weighted voting games it seems straightforward to use the weights as market 

values. 

When a qualified majority rule game does not possess a representation in 

terms of homogeneous weights then, just as with majority rule games, there is a 

discrepancy between the largest and smallest MWC, but there is also a 

discrepancy between the smallest and largest minimum blocking coalition (MBC).  

We would now suggest that, for qualified majority rule games, approximately 

fungible power or approximate market share values be defined as the weights that 

minimize the larger of these two discrepancies.   



II. Applications to the European Union 
 

We show in Table 2, for the period 1958-2003, the actual EU weights, the 

Banzhaf scores, and our computer algorithm-based estimates of the best-fitting 

market values, i.e., the weight assignments that bring the game closest to 

homogeneity.   

 

<<Table 2 about here>> 

 

Note that, as we eyeball the data, the estimated market share weights and 

the actual weights are close, and appear to be getting closer as the number of 

members of the Council of Ministers increases over the five weight assignments 

we are looking at.  But of course, we must be careful in interpreting this finding 

since there are many different “actual” weights that could have been used to 

represent the same set of minimal winning coalitions.  Indeed, in 1981 the 

resemblance between the actual weights and our estimated weights in Table 2 

underestimates the degree of fit of the market value model, since that game is 

actually homogeneous -- a fact that we do not see from the actual weights, but can 

only discover when we look for weights that will bring us closer to  

homogeneity. 19  

 



III. Propositions about Convergence Among Alternative 
Approaches to Power 
 

Market-Based Power and Weights in the Limit  
Although, we can readily find hypothetical (or even actual) examples in which the 

best estimates of market share values give us minimal winning coalitions of substantially 

unequal weight, in practice, often the “optimal” weights/approximate market share values 

generated by our computer program will produce small differences between the weight 

share of the largest and the smallest MWC, even when the size of the weighted voting 

body is relatively small. In the previous section of the paper we presented empirical 

results for the EU Council of Ministers about the discrepancies between the largest and 

smallest MWCs and MBCs to provide unequivocal evidence that problems caused for our 

approximation approach to market values by the existence of non-homogeneous MWCs 

may not be that serious in at least some real world settings. We also suggested  that the 

similarities tended to increase with an increase in the size of the Council of Ministers.  

We can generalize that insight.  For very large voting bodies, under plausible 

conditions, we might expect the differences between the weight share of the largest and 

the smallest MWC to be very small, indeed.  Now we turn to results about limiting 

theorems. We will consider larger and larger sets of voters, with certain assumptions.  

Suppose that the quota, q, is given, not as a fixed number of votes, but 

rather as some fraction (say .5 or .667) of the total number of votes. This q is kept 

fixed. We then define an increasing chain, as a sequence of sets, A1 ⊂ A2 ⊂ … Ak 

⊂ Ak+1 ⊂ …. of players. The total number of players grows without bound. Each 

of the players, i, is assigned a weight, wi, a positive integer, which is the number 

of votes he has. (We disregard the existence of dummies.) Then, for a given Ak, a 

winning coalition will be any coalition that has at least qak (or, in some case, more 

than qak) votes, where ak is the total number of votes in Ak. We then let hk be the 

smallest integer that has this property. Thus, the game in Ak is simply a voting 

game in which any coalition with at least hk votes wins. 



Now, in any minimal winning coalition S, the total number of votes is at 

most hk+wm -1, where wm is the weight of the weakest player in S. In turn, this wm 

≤ wM,k , where wM,k is the weight of the strongest player in Ak. Note that equality 

might actually hold here. For example, in a game with a total of 73 votes, suppose 

q = 0.5. Then any coalition with at least 37 votes will win. Suppose that, among 

the 73 votes, total, there are 10 players with 4 votes each (and none with more 

than 4). Then these 10 players form a minimal winning coalition, with a total of 

40 votes. Thus the excess here is 3 votes, i.e., exactly wM,k-1.  

We now put a condition on the weights of the several players: 

Assumption 1: there is a maximal value, α, such that no player in the chain has 
more than α votes. 

With Condition 1, we see that the discrepancy can never be more than α-1. In 

fact, any minimal winning coalition has at least hk, and at most hk+α-1 votes. Similarly, 

any minimal blocking coalition will have at least bk = ak–hk+1 votes, and (by an 

argument similar to the one above) at most bk+α–1 votes. Moreover, note that this upper 

bound can only be attained if there are sufficiently many voters with this maximal weight 

– enough to form a winning coalition all by themselves. An easy corollary of this is that 

the relative discrepancy (i.e., the discrepancy as a fraction of total votes) will be bounded 

by (α-1)/ak. Thus, in the limit, the relative discrepancy goes to zero. 

The next question is whether the weights can be changed in some way to decrease 

the absolute discrepancy. This can always be done by dividing all weights by the same 

constant, so we will assume that all weights are integers, and that the greatest common 

divisor of these weights is 1. 

 It is clear that, in many cases, the discrepancy can be decreased. For example, 

suppose that, in some Ak, there are 50 voters with weight 2, and one (call him j) with 

weight 3. This means ak = 103, so that, with q = 0.5, the winning coalitions are those with 

at least 52 votes. However, there are minimal winning coalitions consisting of voter j, 

along with 25 of the remaining voters. These have 53 votes, and thus there is a 



discrepancy of 1 unit. It is then possible to decrease the discrepancy by decreasing j’s 

weight to 2. Then all minimal winning coalitions have a total of 52 votes, and there is 0 

discrepancy. The point is that player j’s extra vote does him no good in this situation, and 

he is no more bribe-worthy than any of the other players.  

In general, we can conceive of a situation in which some minimal winning 

coalitions have exactly h votes, while one minimal winning coalition, S, has h+d 

votes, where d > 0. Thus there is a discrepancy of d votes. Let j ∈ S, and suppose j 

has wj votes, where wj ≥ 2. In that case, by decreasing wj to wj’ = wj-1, the total 

number of votes in S decreases to h+d-1. This would decrease the discrepancy – 

unless j belongs to some other winning coalition, T, with exactly h votes. Then the 

total number of votes in T would also decrease by 1 unit, so the discrepancy 

would still be equal to d. Therefore, we would like the following to happen: that 

every player belong to some winning coalition with exactly hk votes. 

This same condition is important from another point of view. In fact, we would 

like wj to represent the bribeworthiness of player j. The briber wishes to “buy” a winning 

coalition as cheaply as possible. Thus we can expect that he will bribe, not merely a 

minimal winning coalition, but one for which the sum of the bribes is a minimum. 

Assume next that the players’ demands are proportional to their weights. Now, if player j 

does not belong to such a minimum-cost winning coalition, then she will never be bribed, 

i.e., the demand wj will have priced her out of the market. Once again, therefore, stability 

of the situation requires that each player belong to such a minimum-cost coalition. 

To be sure of this, we make another assumption: 

Assumption 2. Among the weights, there is some subset W = {w1, w2, …, wr}, 
with greatest common divisor equal to 1. Moreover, for each l, 1 ≤ l ≤ r, the number of 
players (in set Ak) with weight wl grows without bound as k → ∞. 

With this assumption, we have the following: 

Proposition 3. Under assumptions 1 and 2, then for sufficiently large k, each 
player i∈Ak belongs to at least one coalition T ⊂Ak with exactly hk votes.  



Thus the discrepancy cannot be decreased by the simple expediency of decreasing 

j’s weight. 

Proof: the proof of this statement is given in the Appendix (see Lemma). 

Of course, such a result holds also for blocking coalitions: 

Corollary to Proposition 3. Under assumptions 1 and 2, then for sufficiently 
large k, each player i∈Ak belongs to at least one coalition T ⊂Ak with exactly bk votes, 
where bk = ak –hk+1. 

 

Market-Based Power and Banzhaf (or Shapley-Shubik) Values in the Limit 

The central claimed justification for making use of power scores is that the 

weights themselves are not good indicators of a voter’s bargaining power. Yet, when we 

define voter bargaining power in “bribeworthiness” terms, the arguments above suggest 

that, for homogeneous games, power will actually be directly proportional to voter 

weight, and even for small non-homogenous games, power will often be approximately 

proportional to weight. Now we wish to show that, for large non-homogeneous games 

with many players, if the weight distribution satisfies certain assumptions, power will 

converge to be proportional to the voter weight.  

 

Proposition 4. Under the same assumptions as in Proposition 1, and assuming that 
q = 0.5, the Banzhaf-Coleman index will, in the limit as k →∞, be proportional to the 
number of votes.   

Proof: this is given in Lindner and Machover (2003). 

Note: Interestingly enough, proposition 4 above does not seem to generalize to the 

case where q ≠ 0.5. See Chang, Chua and Machover (2004) who use simulation to test 

these results. 

For the Shapley value, we will use one further definition. Given the chain A1 ⊂ A2 

⊂ … Ak ⊂ Ak+1 ⊂ …, we will say a weight w is frequent if there exists β> 0 such that, for 

all sufficiently large k, the number of voters with weight w in set Ak is at least βak. 

 



Proposition 5. Given the chain A1 ⊂ A2 ⊂ … Ak ⊂ Ak+1 ⊂ …, suppose the weight 
wi is a frequent weight. Then in the limit, the product ak ϕi  → wi  as k→∞, where ϕi is 
the Shapley value of a player with weight wi . 

 

Proof: see Lindner (2004) for this. 

 
 

Discussion 
 

While propositions 3-5  hold only in the limit, the empirical results we gave in the 

previous section for the European Council of Ministers suggest, that even for the 

relatively limited number of actors in the various historical Common Market and EU 

weighted voting games, there is considerable concordance of actual weights and power 

scores – at least once we specify the appropriate equivalent set of  weights in each case 

that minimizes the discrepancy between largest and smallest minimum winning coalition. 

In this context we would also note that recent work of Gelman, Katz and Bafumi (2004: 

662) finds that weights in the U.S. Electoral College majority rule weighted voting game 

in 2004 are very close to the a priori Shapley-Shubik values for that game, while Owen 

(1975) found a similar result for the 1970 Electoral College.  

 



 

APPENDIX  
 
Lemma: 
.  
     Let A1 ⊂ A2 ⊂ ... Ak ⊂ Ak+1 ⊂ ... be an increasing chain of sets of voters, with each 

voter i having an integer number wi ≥ 1 of votes (his weight). Let ak be the total number 

of votes in set Ak, and for a given real number q, 0 < q < 1, let hk be the smallest integer ≥ 

qak. For any coalition B, let w(B) be the total number of votes in B.  Let α be an upper 

bound on all wi, on all sets Ak. Assume that there are integers z1, z2, ..., zr such that (a) for 

each j, 1 ≤ j ≤ r, the number of voters with weight zj in set Ak grows without bound as k 

→∞, and (b) the greatest common divisor (g.c.d.) of z1, z2, ..., zr is 1.   Then, for 

sufficiently large k, each voter i belongs to at least one coalition T ⊂ Ak with w(T) =  hk .  

 
Proof:  
 
Since the zj have g.c.d. equal to 1, we know any integer m can be expressed in the form of 

a linear combination x1z1 + ... + xrzr, where the xj are integers. More importantly, there 

exists a number, s, such that any m ≥ s can be expressed in the form x1z1 + ... + xrzr, where 

the xj are non-negative integers. Clearly, if all are non-negative, then none can be larger 

than m itself. From this it will follow that any integer m, with s ≤ m ≤ s+α, can be written 

in the form x1z1 + ... + xrzr, where the xj are non-negative integers, not greater than s+α. 

     Choose now k large enough so that 

(a) Ak contains a subset S with at least s+α voters of each weight zj (1 ≤ j ≤ r). 

(b) Ak–S has at least one voter of each type.  

(c) w(S) ≤ ak – hk, and  

(d)  s+2α ≤ hk. 

     From the above discussion, we know that S will have subsets S’ such that w(S’) can 

have any integer value between s and s+α.  

     From (c) we have that  

w(Ak –S) ≥ hk. 

 



     From (d) we see that, for any player i,  

 

hk – s – α – wi  ≥  0. 

 

     There is no loss of generality, now, in assuming that i ∈ Ak–S. (In fact, by (b), even if 

i∈S, there will be some other player with the same weight in Ak–S.) Let V = Ak–S–{i}. 

We see then that w(V) ≥ hk–wi . Since no voter has more than α votes, it will follow that, 

if we remove players, one by one, from the set, the total votes in the set can never 

decrease by more than α at each step. Thus we see that, for every n satisfying 0 ≤ n ≤ hk–

wi–α, the set V has a subset T’ such that n ≤ w(T’) ≤ n+α. In particular, there is some T’⊂ 

V with 

 

hk – s– wi  – α  ≤  w(T’)  ≤ hk – s – wi 

 

This means however that 

 

s  ≤  hk – wi  –  w(T’)  ≤  s+α. 

 

Thus, S has at least one subset, S’, with w(S’) = hk – wi  –  w(T’). Now, let T = 

T’∪S’∪{i}. 

     Since T’ and S’ are disjoint, and neither contains i, it follows that 

 

w(T)  =  w(T’) + w(S’) + wi  = hk. 

 

Q.E.D. 

 

     Note: the proof of the corollary is similar to this. We omit details. 

 



Table 1 
Normalized Weights, Estimated Market Values, and Banzhaf Scores 
for an Illustrative Six Voter Majority Rule Weighted Voting Game 

 

Weights 1 2 3 4 5 6 size 
range of 
MWCs 

normalized 

weights 

 

.048 .095 .143 .190 .238 .286  .095 

 

Estimated 
market 
shares 

 

.074 .111 .111 .148 .259 .296  .037 

 

Banzhaf 

scores 

 

.036 .107 .107 .179 .250 .321  

 



Table 2 
 

Values of (normalized) EU Weights, Estimated Market-Values, and Banzhaf Scores:  
1958-1995 
 
(a) 1958 
 
1958  
wts 

normalized 
wts 

normalized 
 wts2* 

market value  
wts2* 
 

Banzhaf 
scores 

1 .059 0 0 0 
2 .118 .125 .141 .143 
2 .118 .125 .141 .143 
4 .235 .250 .240 .238 
4 .235 .250 .240 .238 
4 .235 .250 .240 .238 
 
* dummy omitted 
 
(b) 1973 
 
1973  
wts 

normalized 
wts 

market value  
wts 
 

Banzhaf 
scores 

2 .034 .049 .016 
3 .052 .066 .066 
3 .052 .066 .066 
5 .086 .082 .091 
5 .086 .082 .091 
10 .172 .164 .167 
10 .172 .164 .167 
10 .172 .164 .167 
10 .172 .164 .167 
 
  



Table 2 (cont.) 
 

Values of (normalized) EU Weights, Estimated Market-Values, and Banzhaf Scores: 
1958-1995 
 

 
(c) 1981 

 
1981  
wts 

normalized 
wts 

market value  
wts 
 

Banzhaf 
scores 

2 .032 .04 .041 
3 .048 .04 .041 
3 .048 .04 .041 
5 .079 .08 .082 
5 .079 .08 .082 
5 .079 .08 .082 
10 .159 .16 .158 
10 .159 .16 .158 
10 .159 .16 .158 
10 .159 .16 .158 

 

 

(d) 1986 

 
1986  
wts 

normalized 
wts 

market value  
wts 
 

Banzhaf 
scores 

2 .026 .026 .029 
3 .039 .048 .046 
3 .039 .048 .046 
5 .066 .067 .067 
5 .066 .067 .067 
5 .066 .067 .067 
5 .066 .067 .067 
8 .105 .107 .109 
10 .132 .126 .129 
10 .132 .126 .129 
10 .132 .126 .129 
10 .132 .126 .129 



Table 2 (cont.) 
 

Values of (normalized) EU Weights, Estimated Market-Values, and Banzhaf Scores:  
1958-1995 
 

(e) 1995 
 
1995  
wts 

normalized 
wts 

market value  
wts 
 

Banzhaf 
scores 

2 .023 .025 .023 
3 .034 .036 .036 
3 .034 .036 .036 
3 .034 .036 .036 
4 .046 .046 .048 
4 .046 .046 .048 
5 .057 .057 .059 
5 .057 .057 .059 
5 .057 .057 .059 
5 .057 .057 .059 
8 .092 .093 .092 
10 .115 .114 .112 
10 .115 .114 .112 
10 .115 .114 .112 
10 .115 .114 .112 
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1 For example, Morriss (2002:167-68), following Goldman (1974) proposes a rank-ordered idea of 
power by ranking players by the number of minimal winning coalitions of which they are a part ( 
breaking ties by looking at membership in coalitions of the next smallest size). 
 
2  See also Maschler, Peleg and  Shapley (1979). 
 
3 Our approach is thus analogous to identifying a market clearing price structure. 
 
4   For example, if we assigned weights of one 9 and four 4s, or  weights of one15 and four 4s, 
we get the same MWCs as   previously. These weighted voting games all allow the “big guy” 
and one “little guy: or all four little guys to make a decision.  Yet, these  relative weights are very 
different from one and different from our original representation.  But more importantly for 
present purposes,  these two later representations do not have the property that all minimal 
winning coalitions have the same total value.  With one 9 and four 4s, the mixed coalition adds 
up to 13, while the little guy coalition adds to 16.  With  one 15 and four 4s, the mixed coalition 
adds to 19, and the little guy coalition adds to 16.  So, these weights do not meet our condition.    
 
5  Moreover, for a game with homogeneous weights, if we either assume no dummies or that all 
dummies have a weight of zero, then a game with weights that are exact multiples of those 
weights also gives rise to the same set of MWCs, i.e., the weighted voted game with A given a 
weight of 3k and with four actors with weights of  1k, with a quota of 4k,  will generate the same 
set of MWCs as the homogeneous game with weights of (3, 1, 1, 1, 1) with a quota of 4.    
 
6 A game is decisive if the complement of any losing coalition is winning. 
 
7  If we focus on minimal winning coalitions we are implicitly excluding dummies, who would be 
assigned a value of zero.   
 
8  This result follows from results in Gurk and Isbell (1959).  The solution to this set of equations gives 
us, i.a., the nucleolus of the game.  
 
9 Elsewhere we have generated some theorems about conditions sufficient to guarantee the 
existence of a set of  homogeneous weights . These results are available upon request from the 
authors. . 
 
10 This result follows from results in Gurk and Isbell (1959).   
 
11 Even if we have homogeneous weights, this does not guarantee that the solution to the relevant system 
of equations will be unique when the game is not decisive.  Consider the homogeneous four voter game 
with weights 1, 2, 2 and 3 and a quota of 5 votes.  To assign consistent weights so that each minimum 
winning coalition gets the same payoff we must have B = C and  D = A + B.  One possibility is (1/8, ¼, 
¼, 3/8), but another is (0, 1/3, 1/3. 1/3).  And, there are an infinite number of other feasible weight 
assignments.  We are indebted to Guillermo Owen (personal communication, 2004) for calling this 
example to our attention.  In this example, the second solution given is the nucleolus (see Maschler, 
1992).   



                                                                                                                                                                         
 
12 The computer program we use to calculate optimal weights automatically excludes dummies.  
While our estimates of optimal weights are not the same with and without dummies, given our 
ideas about the bribing process as resulting in zero values for dummies, we believe the 
calculations with the dummies excluded are the correct ones.    
 
13 If the Banzhaf scores shown in Table 1 were themselves to used as weights, they would describe a 
slightly different game from the original game; i.e. they do not yield the same set of MWCs.  In the 
original game, {5, 3, 2, 1} is a MWC, but the Banzhaf scores for these actors add to exactly .50, not 
enough for the quota.  A slight modification of these scores (increasing the value for the 1 and 
decreasing it for the 4) reproduces the original game.  When that modification is made, the range in 
values of the MWCs is more than .10 for these values, which is greater than for the original normalized 
weights. 
 
14 If bribery is to be of a given coalition, we might think of this as analogous to purchasing an entire 
meal from a prix fixe menu with an already specified set of items that can be purchased as a package, 
and with some items found in more than one package. 
 
15 We may think of this piscatorial perspective as treating bribery more like choice from an a la carte 
menu than from a pre-specified package of entries. 
 
16 There one bidder  chooses (the incumbent) chooses an imputation  x, while  another (the challenger) 
chooses a second imputation y which presumably dominates x.  Now the imcumbent looked for a z as 
close as possible to x that would dominate y.  For simple games of the sort considered here, this 
calculation was not that difficult, but for more general games it was incredibly difficult. 
 
17 We can thus neglect “fixed votes” since they do not affect the fundamental structure of our results. 
 
18 We might think, though, for transaction costs reduction reasons, if no other, that potential 
bribers would begin by trying to bribe the more highly weighted actors.   
 
19 The question of sensitivity to alternative weight assignments is a potentially important issue. 
Elsewhere some of the present authors have developed some propositions about the maximum 
adjustments to the elements of a given set of weights that are possible without changing the nature of the 
MWCs and MBCs in the new game. We show that, for certain not unreasonable assumptions about the 
weights, we can expect that, as the number of actors increases, the calculations we get about the 
differences between minimum and maximum minimal winning and minimal blocking coalitions will be 
insensitive to which of the possible weight assignments we use, since the maximum feasible differences 
should shrink toward zero. 
 


