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Abstract

This paper considers a two-stage development problem for information goods with
costless quality degradation. In our model, a seller of information goods faces customers
that are heterogeneous with regard to both the marginal willingness to pay for quality
and the outside opportunity. In the development stage, the seller determines the quality
limit of the product. In the second stage, the seller’s problem is to design the price
schedule corresponding to different quality levels, taking into account production and
distribution costs.

We show that versioning is optimal for the seller when customers have multiple
outside options, or more generally, convex reservation utilities. In addition, we show
that in the optimal solution, the seller discards both low-end and high-end customers.
Among those that are served, the seller offers a continuum of (inferior) versions to
customers with relatively low willingness to pay, and extracts full information rent
from each of them. A common version with the quality limit is offered to the rest.

We further prove that the seller should offer a single version when reservation
utilities are either concave or linear. Through numerical experiments, we study the
sensitivity of our results to changes in the cost structure and customer utilities.
Keywords: versioning, quality degradation, price discrimination, informa-
tion goods, heterogeneous outside opportunities

1 Introduction

The value of a digital good is measured by its information content rather than its physical

content. Hence, it is usually hard to produce the first copy, but easy to reproduce and

distribute the product. These characteristics of “information goods” imply that they have

a fairly specific cost structure: high fixed cost for product development but zero or near

zero marginal cost for production and distribution. For example, the cost of establishing a

database such as the Wharton Research Data Services (WRDS) is considerably high, but
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once it is established, the marginal cost of serving additional subscribers is not very high.

Music recording, movies, internet search engines, on-line content providers, and journals all

share the same characteristics, since sellers do not have to incur significantly more cost for

allowing one more subscription or download.

Similarly, software is another product that represents and justifies the nomenclature of

information good. For example, to design a scientific application software such as Mathe-

matica, one has to consider the ability to import/export data, the flexibility of working on

multiple platforms (Linux, Mac, and Windows), and the ability to carry out symbolic opera-

tions, produce graphic outputs, and do sophisticated numerical investigations. The decisions

to be made in developing an antivirus software such as Symantec Norton include multi-layer

delegation, timely virus code updating, Firewall/VPN function designs, email verification

and attack prevention, and website filtering as well as antispam. Numerous features are

carefully considered for inclusion in the development stage for scientific software such as

ILOG, Maple, Matlab, Minitab, and antivirus software (Kaspersky and TrendMicro), and

other functional software packages. Compared to the cost of developing the above features,

the production and distribution costs are negligible.1

The second and perhaps more subtle characteristic of information goods is that degrada-

tion, i.e., reduction, of the product’s quality is relatively easy and inexpensive. For example,

the degradation of software typically involves disabling a subset of functions, inserting in-

compatibility with respect to accessing contemporary software, closing the access to high

level databases, introducing intentional delay, and providing restricted technical support.

Examples of software that utilize some of these degradation techniques include Adobe Acro-

bat, ILOG, Norton Antivirus, Visio, and numerous others. These degradations can be done

by minor manipulation of the features without any physical change to the product. There-

fore, the cost is negligible compared to the amortized development and marketing related

costs. Internet service also has the same characteristic. Many Internet services offer free-

sponsored sites that provide daily news as well as fee-based sites that convey more specific

or detailed information, for example, AOL, Classmates.com, CNN.com, and Yahoo (Riggins

1For example, it typically costs less than $1.50 to make one more CD copy, see Raghunathan [2000].
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[2002]). Versioning may also be implemented by the choice of timing, (e.g., InterQuote and

PAWWS), or by introducing banner advertisement to discomfort users (Eudora, Kazaa, and

Silicon investor membership).

To capitalize on these two specific characteristics of information goods, information

providers usually develop a high-end (flagship) product in the “development” phase. Af-

ter the technological quality limit has been established with the development of a flagship

product, in the “production/distribution” phase the sellers degrade the product to provide

quality-differentiated versions. This is known as the “versioning” strategy. This strategy,

which Shapiro and Varian [1998] call “the smart way to sell information”, is believed to be

profitable in both software and information services industries. In this paper, we use the

word “quality” in the following way: Like other goods, the quality of software and informa-

tion goods is multi-dimensional. For example, these dimensions can be delay, user interface,

convenience, image resolution, speed of operation, format, capability, features, comprehen-

siveness, annoyance, and support (Shapiro and Varian [1998]). Juran and Gryna [1951]

propose a methodology to aggregate quality measures on multiple dimensions such as these

into a single quality score. Using this approach, each user aggregates the measure of quality

on different dimensions into a score using weights that reflect the relative importance of the

dimensions. It is usual to assume that the weights are the same for all customers within a

target segment. Thus, the quality limit can be viewed as the maximum quality score that a

customer can obtain from the combination of features of the product.

In this paper, we investigate the design and distribution problem of information good

providers that serve individual users. Unlike institutional users who may purchase multiple

licenses or subscriptions of the same product, an individual user typically demands at most

one unit of the product. The key ingredients of the design and distribution problem are: (1)

The cost of developing the product, which might depend on the quality limit, i.e., the set

of features, functionality, etc. (2) The production, distribution, and servicing cost (which

may or may not depend on quality). (3) The utility derived by customers. (4) Customers’

reservation values. We discussed the high fixed cost of development above, and hence in the

sequel describe the other elements. Following this, we discuss the prior research in this area.
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In the production stage, since the quality degradation is relatively easy (as for the

information goods such as software and information service), the variable cost does not

increase significantly in the quality of the product. Thus, it is reasonable to assume that the

variable cost is independent of the quality level. Therefore, the marginal production cost is

usually neglected in the analysis. Other than the cost of producing the copy, the seller might

incur a distribution cost for each sale transaction. This expenditure might comprise the cost

of obtaining a new subscription, the handling fee for accepting returns/exchanges, and other

administrative/marketing-related costs. In all these activities, costs can usually be allocated

on a per customer basis. The literature on versioning of information goods usually ignores

these variable costs for simplicity.

Customers’ utilities are an important input to the versioning strategy. Since versions

are quality-differentiated (high-end products may contain more functions, allow switching

among platforms, be compatible to more products), it is normal to assume that all customers

unambiguously prefer higher quality to lower quality. Nevertheless, customers differ in unob-

servable preferences (types) with regard to quality. This inherent heterogeneity among cus-

tomers induces the seller to offer different versions at different prices. Customers self-select

after evaluating the cost-benefit trade-off amongst these versions. Following the celebrated

monopoly pricing paper by Mussa and Rosen [1978], the majority of papers on pricing in-

formation goods model heterogeneity by allowing customers to have different but constant

marginal willingness to pay for quality, see Bhargava and Choudhary [2001, 2004], Jing

[2006], and Jones and Mendelson [1998]. Ghose and Sundararajan [2005] and Raghunathan

[2000], who adopt nonlinear (quadratic) utility functions, are exceptions to this literature.

The last ingredient is the heterogeneity in the customers’ outside opportunity, which

gives rise to type-dependent reservation utilities. The heterogeneity of reservation utilities

could arise due to several reasons. Three specific reasons are important for the information

good versioning problem: (1) The option to use off-the-shelf substitute products from com-

peting firms. (2) Options created by the recourse to self-developed solutions. (3) The option

to use a custom designed product. As an example, suppose a user needs to perform numer-

ical investigations. She might be leaning towards purchase of Mathematica from Wolfram
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Research Inc. But, she is also aware that she can alternatively purchase scientific software

from Scientific Workplace or Symbolic Math Toolbox. She could also write a C++/Matlab

program or continue to use the customized product (e.g., Maple) that she already subscribes

to. As another example, investors that wish to subscribe to PAWWS will consider subscrib-

ing to Bloomberg, Reuters, or RiskView, or evaluate searching financial information online

as required, and self-customization using MSN Money or Yahoo! Finance. These reasons

lead to convex reservation utilities, and will be considered in the main model (Secs. 2-5).

Outside opportunities also can be type-dependent due to the differences in the cost

of adapting to or switching to a new product. Different customers may have different ex-

isting subscription levels, technical sophistication, and software/hardware. Due to these

differences, customers might experience different switching costs. Switching costs could also

be related to compatibility with the products currently used by the customers. However,

switching cost need not always result in convex reservation utilities. The concave and linear

cases are discussed separately in Section 6.

Thus, “heterogeneous outside opportunities” in our view is probably more the norm

than the exception for information goods. Other writers have observed this phenomenon for

information goods. For example, Sundararajan [2004] introduces outside opportunity as the

chance of obtaining a pirated version of the software, and Huang and Sundararajan [2005]

interpret the reservation utility as the effort required to self-develop the product.

Many papers have investigated the profitability of versioning information goods using

some (but not all) of the above ingredients. Most papers focus on the second-stage problem

of versioning given a finite set of quality levels (already developed in the first stage), and in

fact argue that the variable cost is either zero or concave in quality. They typically adopt

constant marginal willingness to pay to model customer preferences and do not consider the

heterogeneity of outside opportunities. With these assumptions, Bhargava and Choudhary

[2001] find the optimal solution is to create a single version, see also Jones and Mendelson

[1998] and Weber [2002]. Bhargava and Choudhary [2001] suggest in the conclusion to their

paper that additional factors must be included to justify the versioning strategy. Our model

incorporates heterogeneous reservation utilities, and demonstrates that it is an important
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Table 1: Summary of previous literature on versioning information goods

Paper Utility Variable cost Other features No. of versions

Bhargava and Choudhary [2001] linear concave one
Bhargava and Choudhary [2004] linear 0 externality two
Ghose and Sundararajan [2005] quadratic 0 empirical multiple
Jing [2006] linear 0 externality two
Jones and Mendelson [1998] linear 0 competition one
Raghunathan [2000] quadratic 0 sequential game multiple

factor for versioning of information goods.

Versioning has been reported as a profitable strategy when the information goods con-

vey network effects, see Bhargava and Choudhary [2004] and Jing [2006]. These papers

predict that the seller should provide exactly two versions. Deviating from the standard

utility setting, some authors assume nonlinear (quadratic) utility functions, which induces

versioning (Ghose and Sundararajan [2005] and Raghunathan [2000]). Table 1 summarizes

recent findings regarding versioning, along with assumptions regarding utilities, costs, etc.

Both Bhargava and Choudhary [2004] and Jing [2006] argue that it is optimal to offer

exactly two versions when there are network effects. Therefore, network effects cannot

explain the multiplicity of versions of products, such as MS Encarta, MS Windows XP,

Quickbooks, TurboTax, and PC-Cillin (Ghose and Sundararajan [2005]). Multiplicity of

versions is widely observed in the information services industry as well (e.g., Reuters.com

provides different packages for financial market professionals, corporate customers, and media

professionals). When customers’ utility function is nonlinear, the number of versions could

depend on the number of distinct customers’ segments (types). This result has been known

in the product design literature, see, e.g., Maskin and Riley [1984]. However, the added

effect of nonlinearity on versioning has not been previously studied. We do this by solving

the two-stage problem of development and production for both the standard and nonlinear

utility function cases and compare the solutions. We show via numerical experiments that

the structure of the optimal solution to the versioning problem carries over to the nonlinear

case for a wide range of problem parameters.
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In this paper, we first justify the rationale for creating multiple versions of information

goods under the standard utility setting and without network effects. We do not deny that

these other effects exist, and that they are important. However, we believe our approach

provides useful design principles that are different from the ones identified in the earlier work

due to the insight provided by joint solution to the two-stage problem. Since we model all

ingredients described above, our versioning solution also differs quite a bit from the previous

solutions, as described next.

We show that versioning could be profitable because customers have multiple outside op-

tions, or more generally, convex reservation utilities, even though they have constant marginal

willingness to pay and network effects do not contribute to the utilities. We show that the

convexity of reservation utility is a direct consequence of the multiplicity of outside options.

Hence, a slight perturbation of standard setting induces the sellers to adopt versioning. The

implication for providers of information goods is that careful investigation of available outside

options facing their target customers is critical before implementing versioning. For exam-

ple, the inherent difference of customers’ outside opportunities could potentially explain why

some software providers sell a single quality to all customers (Microsoft Visual FoxPro, Nova

PhotoImpact, and UBI Soft’s Red Steel) but others offer multiple versions (Mathematica,

Norton Antivirus, and TurboTax), even though they have similar cost structures for product

development and network effects are present.2 When there is no or only one effective outside

option accessible to target customers, a single version is preferred by the seller; if multiple

options co-exist, the seller can increase her revenue by offering multiple versions.

We also show that, in addition to offering multiple versions, the seller will discard

both the low-end and the high-end customers. This peculiar exclusion result is new to the

information goods and more generally, the product design literature. Among those served,

the seller extracts full information rent from customers with relatively low willingness to

pay, and offers a common version (the quality limit) to the rest. Note that this full rent

2The information regarding the number of versions of all examples cited in this paper was updated last on
January 14, 2007. These include Microsoft Visual FoxPro (http://www.amazon.com/software), Nova Pho-
toImpact (http://www.novadevelopment.com/), UBI Soft’s Red Steel (http://store.ubi.com/), Mathematica
(http://www.wolfram.com/products/), Norton Antivirus (http://www.symantec.com/product/index.jsp),
and TurboTax (http://turbotax.intuit.com/).
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extraction of a continuum of low-end customers is not reported as an equilibrium outcome

when versioning results from either network effects or nonlinearity of utilities. The result

that a continuum of high-end customers obtain the product with quality limit is also in

contrast to the predictions offered by introducing network effects or nonlinear utilities: in

both cases, efficiency is achieved only for the highest-type customer.

We provide a simple rule for selecting the optimal quality limits to achieve either first-

degree or second-degree discrimination. When the quality limit is pre-determined, the in-

formation asymmetry forces the seller to give up some transactions that are efficient in the

first-best scenario. As the quality limit is raised, the seller gathers a strictly higher profit

under both forms of price discrimination. The existing literature often ignores the distri-

bution cost for simplicity. Our analysis does not rule it out and hence is more general.

We demonstrate that the profitability of versioning is independent of this effect, and the

simplification of assuming no distribution cost can be incorporated as a special case. The

exclusion point of low-end customers is completely determined by the reservation utility and

distribution cost, independent of other inputs such as the quality limit and the distribution

of customers’ types. Nevertheless, the starting point of offering the flagship product is jointly

determined by all above primitives. This demonstrates the different degrees of sophistication

needed in order to identify these two key thresholds, which might serve as handy guidelines

for practitioners in the information goods industry.

We then extend our studies to incorporate linear or concave variable costs and concave

reservation utilities. We show that if the reservation utility is linear or concave, versioning is

suboptimal. We then numerically examine the optimal quality schedule with convex reser-

vation utilities but concave variable costs. In these experiments, we examine the sensitivity

of our results with regard to variable costs, customers’ utilities, and their reservation values.

The managerial implications of these findings are discussed in Section 6.

The rest of this paper is organized as follows. In Section 2, we introduce the model.

Section 3 considers the scenario where the seller is able to observe the customers’ willingness-

to-pay, and in Section 4 this becomes customers’ private information, and hence the seller

has to offer a menu to induce self-selection. In Section 5, we discuss some comparative statics
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for both informational scenarios. Section 6 provides some simulation results and managerial

insights, and Section 7 concludes.

2 Model

In our model, a seller of information goods faces customers that possess heterogeneous will-

ingness to pay on the quality. The product development takes place sequentially in two

stages: the development stage and the production/distribution stage. In the development

stage, the seller chooses the quality limit q̄ by devoting a deterministic convex cost C(q̄).

This formulation captures the various decisions she might have to make to impact the qual-

ity limit. We assume that degradation is costless, and hence the seller can provide any

quality level q ∈ [0, q̄] in the production stage, without incurring any extra cost of reengi-

neering/redeveloping. There is a distribution cost c(q) ≡ c if a product is sold to a customer,

independent of the product’s quality. That is, if the seller sells a product with quality q to a

customer, her net payoff will be π(q) = p(q)−c, ∀q ∈ [0, q̄], where p(q) is the money transfer

between the seller and the customer. The seller’s problem is to first find an optimal target

quality level q̄, and then propose a menu of quality/price bundles to these customers.

Customers’ willingness to pay is assumed to be of the linear, separable format u(q, θ) =

θq− p(q), where θ is the user’s marginal willingness to pay (type) with distribution function

F (θ) and its density f(θ) over a finite support [0, R]. The value of R captures the maximum

marginal willingness to pay for quality and the extent of market heterogeneity of customer

preferences on quality. The seller knows the utility function u(q, θ), the entire distribution

F (θ), but she is unable to observe customers’ types.

We assume that multiple outside options are available if customers refuse to purchase

from the seller. Each outside option is characterized by the quality level q and its asso-

ciated nonnegative cost s(q) with s(0) normalized to 0. These outside options may refer

to the substitute products offered by competing firms, the self-developed solutions, or the

customized products customers have already been endowed with. In the above scenarios,

the cost s(q) corresponds to respectively the price paid for purchasing a competing product,

the self-development cost, and the subscription fee paid for the customized product.

The reservation utility r(θ) corresponds to a customer’s payoff after self-selecting her
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favorite outside option, which has the desired properties as shown below. If all customers

unambiguously prefer one option, then we say there exists only one effective option.

Lemma 1. Suppose customers are free to select from a number of outside options {q, s(q)},
and their reservation utility follow from this alternative. Then r(θ) is increasingly convex in

θ, and r(0) = 0. r(θ) is linear if and only if there exists only one effective option.

Proof. By definition r(θ) = maxq≥0 {θq − s(q)} . Consider two types θ1 and θ2. Assume

that the maximizer for type-θ1 customer is q1 ≥ 0, i.e., r(θ1) = θ1q1 − s(q1). We have

r(θ2) = maxq≥0 {θ2q − s(q)} ≥ θ2q1 − s(q1) = θ1q1 − s(q1) + q1(θ2 − θ1) = r(θ1) + q1(θ2 − θ1),

and therefore r(θ2) ≥ r(θ1) + q1(θ2 − θ1),∀θ1, θ2. Note that the above inequality holds for

arbitrary pair of types θ1, θ2, and hence it implies that r(θ) is convex in type.

We now show that r(θ) is monotonic. Without loss of generality we assume θ1 ≤ θ2.

The optimality condition leads to r(θ2) ≥ θ2q1 − s(q1) = θ1q1 − s(q1) + q1(θ2 − θ1) ≥ r(θ1),

where the last inequality follows from q1 being nonnegative. Therefore r(θ) is increasing.

The only possibility for r(θ) being linear occurs when the maximizer q is identical for

all types, in which case a unique outside option dominates all other options unambiguously.

This case degenerates to the single option scenario.

This lemma implies that with multiple non-degenerate outside options, the reservation

utility r(θ) will inevitably be convex.3 We believe “multiple outside options”, thus “convex

reservation utility”, is the natural model setting. We therefore use this assumption in our

main model in Sections 3-5. In Section 6 we consider concave and linear cases.

For technical convenience, we further assume that r(θ) is strictly convex in θ, and

r
′
(·), r′′

(·) exist. These assumptions allow us to simplify the analysis. We now introduce a

function: G(θ) ≡ θr
′
(θ) − r(θ) − c, which we show later is the “virtual surplus” associated

with type-θ customer when she is offered a specific version. Its structural properties are used

in the subsequent analysis. Let θ∗ > 0 denote the solution to G(θ) = 0.

Lemma 2. G(θ) is strictly increasing for θ > 0. Moreover, ∀c ≥ 0, θ∗ is unique.

The above lemma implies that the potential revenue the seller can obtain from selling

to a customer is increasing in the customer’s valuation. Moreover, given the variable cost c,

a seller discards customers with valuation less than θ∗.
3Note that we do not impose restrictions on the cost function s(q), except that for all customers a

maximizer exists (which makes r(θ) well-defined). Note also that for any customer, the favorite option need
not even be unique.
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3 First-degree price discrimination
We first assume the seller can observe customers’ types. This benchmark case is not only il-

lustrative but facilitates why our model stands alone from all others in the existing literature.

Following the technique of backward induction, we start with the production stage.

Proposition 1. Let q̄ denote the quality level chosen in the development stage. Then if

q̄ ≤ r
′
(θ∗), then no customer is served. If q̄ > r

′
(θ∗), then for a given q̄, there exists a

unique pair (θ(q̄), θ̄(q̄)) with θ(q̄) < θ∗ < θ̄(q̄) such that the seller provides qFB(θ) = q̄ to

customers with θ ∈ [θ(q̄), θ̄(q̄)] and no other customer purchases the product. Moreover,

∀q̄1, q̄2 s.t. q̄1 ≤ q̄2, we have θ(q̄1) ≥ θ(q̄2) and θ̄(q̄1) ≤ θ̄(q̄2).

Under first-degree price discrimination, every customer that is offered a version receives

the same quality level, but is charged a different price. Whenever the transaction is efficient,

trade always occurs, and the reservation utilities of those excluded customers are so high

that the seller finds it unprofitable to even offer the highest possible quality. Moreover, as

the quality limit q̄ increases, the set of customers served enlarges from both ends, and the

low-end customers also benefit from the technology shift. In particular, when θ̄(q̄) hits the

upper bound R of θ’s support, the seller’s incentive to increase the quality limit arises due

to (1) the ability to charge a higher price for high-end customers; (2) the ability to include

more low-end customers. Note also that when q̄ > r
′
(θ∗), the type-θ∗ customer is always

served under first-degree price discrimination.

The fact that every customer who is served receives the same quality level is in strict

contrast with the majority of results in the nonlinear pricing literature. In that literature,

it is common to assume the strict concavity of the social surplus s(q, θ) ≡ u(q, θ) − c(q),

see, e.g., Jullien [2000] and Sundararajan [2004]. With this assumption and the single-

crossing condition (uqθ(q, θ) > 0, ∀q, ∀θ), we can show that the first-best quality level

qFB(θ) is strictly increasing in θ.4 In our information good pricing framework, especially

the software versioning scenario, this seems to be implausible, since it implies that some

customers strictly prefer technologically inferior versions. If the price is not a concern, does

a customer really prefer a student edition of Mathematica that cannot perform a huge number

of functions/macros to the enterprise edition? Do people feel excited when they realize that

4The strict concavity implies that a unique solution qSB(θ) can be obtained from the first-order condition,
i.e., sq(qFB(θ), θ) = 0. Differentiating this equality by θ, we have sqq(qFB(θ), θ)d qF B(θ)

dθ +sqθ(qFB(θ), θ) = 0.

Note that sqq(qFB(θ), θ) < 0 < sqθ(qFB(θ), θ), we conclude that d qF B(θ)
dθ must be strictly positive, and hence

every served customer receives a version specific for her.
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some functions of the software they just obtained are intentionally disabled? In this context,

assuming every customer prefers the best quality makes better sense.

The next step is to consider the quality selection problem in the development stage.

Theorem 1. Let q̆ denote the unique solution to the equation
∫ θ̄(q̆)

θ(q̆)
θf(θ)dθ = Eθ, and

q̄FB denote the optimal quality limit in the first-best scenario. Then q̄FB can be obtained

by searching over points that satisfy
∫ θ̄(q̄)

θ(q̄)
θf(θ)dθ = C

′
(q̄), provided that q̄ ≥ r

′
(θ∗). If the

above equation has no solution, then q̄FB = 0.

In particular, if C
′
(r

′
(θ∗)) > Eθ, then q̄FB = 0; if C

′
(q̆) > Eθ, then q̄FB < q̆. More-

over, in all cases q̄FB > r
′
(θ∗), and choosing any quality limit less than r

′
(θ∗) is a strictly

dominated strategy, independent of the structure of the development cost.

This theorem characterizes the optimal level of quality limit in the first-best scenario,

and has a clear economics intuition. Any choice below the critical level r
′
(θ∗) is suboptimal

since by offering it no transaction is efficient but the seller pays the development cost. If the

development cost is fairly high (i.e., if C
′
(r

′
(θ∗)) > Eθ), then the seller finds it unprofitable

to develop the information goods, and no transaction occurs due to the inefficiency. When

the development cost is moderate, the optimal quality limit falls in the region [r
′
(θ∗), q̆].

4 Second-degree price discrimination
We now consider the optimal strategy to achieve second-degree price discrimination. We first

take the quality limit q̄ as given, and derive the optimal quality-price schedule assuming that

the seller offers versions to only an interval of customers. We next allow arbitrary exclusions

of customers, and show that it is in the seller’s best interest to serve only an interval of

customers. Finally, we consider the optimal quality limit in the development problem.

We make the following assumption regarding the distribution of θ in the sequel. Let

F c(·) = 1 − F (·) be the complementary cdf of θ.

Assumption 1. θF c(θ) is unimodal and has a unique maximum at k ∈ (0, R).

In particular, Assumption 1 implies that the function F c(θ) − θf(θ) is initially positive

and then becomes and stays negative. 5

5This is more general than the regularity condition d
dθ

1−F (θ)
f(θ) < 0 (the monotone hazard rate, or increasing

failure rate (IFR) property). IFR is adopted in the screening literature to exclude the possibility of bunching.
If a distribution is IFR, it also has the increasing generalized failure rate property (IGFR), namely, θf(θ)/(1−
F (θ)) is increasing in θ. IGFR is a sufficient condition for Assumption 1, see Lariviere [2006].

If we interpret θ as the price and the complementary cdf as the effective demand, θF c(θ) represents the
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Before our analysis, let us first explain the intuition on how we obtain the optimal

schedule. We first conjecture that at optimality the seller serves an interval of customers,

and the seller should offer high-type customers higher quality levels to extract more revenue.

The development cost of flagship product is a sunk cost, and hence it does not make sense

not to sell the flagship product. Furthermore, the flagship product has to be offered to high-

end customers among those customers that are served. This leads to a natural candidate of

menu of versions. We will in the sequel formulate the optimization problem following this

logic, and then verify its optimality.

4.1 Optimal schedule when an interval of customers are served
We start with the case when the seller offers versions to an interval of customers. We will

first take the interval as given and characterize the optimal quality-price schedule under

such an assumption. We then allow the seller to choose one interval arbitrarily, and find the

optimal boundary points that maximize the seller’s profit.

We will assume that the seller offers a menu of versions to customers with θ ∈ [θ, τ),

customers with θ ∈ [τ, θ̄] accept the same version with quality limit q̄ ≡ q(τ) and price

p(τ), and customers in [0, θ) ∪ (θ̄, R] are excluded, where 0 ≤ θ ≤ τ ≤ θ̄ ≤ R. We further

assume that by accepting (q̄, p(τ)), the type-τ customer receives her reservation utility, i.e.,

p(τ) = τ q̄−r(τ), independent of the quality-price schedule give for customers with θ ∈ [θ, τ).

We will verify later that this is a necessary condition for optimality.6

Suppose the customers with θ ∈ [θ, τ) are offered versions with (q(θ), p(θ)) being the

revenue as a function of price. If it is unimodal, there is an unambiguous revenue maximizing solution. Thus
this provides a more natural interpretation than IFR.

6For a given quality limit q̄, these thresholds θ, τ, θ̄ shall be functions of q̄, but for notational ease we
suppress this dependence in the analysis. Notice also that we do not exclude the possibilities of θ = 0, θ = τ ,
τ = θ̄, or θ̄ = R, which represent respectively the cases when no low-end customer is excluded, no versioning
occurs, only one customer receives the quality limit, and no high-end customer is excluded.
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quality and price. The seller’s problem is to find a quality-price schedule that solves :

max
q(·),p(·)

{
(p(τ) − c)(F (θ̄) − F (τ)) +

∫ τ

θ

(p(θ) − c)f(θ)dθ

}
,

s.t. (IC-1) θ ∈ argmaxz∈[θ,τ)θq(z) − p(z), ∀θ ∈ [θ, τ),

(IC-2) θq̄ − p(τ) ≥ max
z∈[θ,τ)

θq(z) − p(z), ∀θ ∈ [τ, θ̄],

(IC-3) r(θ) ≥ max
z∈[θ,τ ]

θq(z) − p(z), ∀θ ∈ [0, θ),

(IC-4) r(θ) ≥ max
z∈[θ,τ ]

θq(z) − p(z), ∀θ ∈ [θ̄, R],

(PC-1) θq(θ) − p(θ) − r(θ) ≥ 0, ∀θ ∈ [θ, τ),

(PC-2) θq̄ − p(τ) ≥ r(θ), ∀θ ∈ [τ, θ̄].

(1)

In Eq. (1), the first four inequalities are incentive compatibility (IC) conditions, where

(IC-1) is for a customer that receives a version specific for herself, (IC-2) is for those cus-

tomers that accept the same version with quality q̄, and (IC-3) and (IC-4) are for respectively

customers whose types are excluded from below and above. The last two inequalities in

Eq. (1) represent participation constraints, i.e., each customer should get at least her reser-

vation utility. Since customers with θ ∈ [0, θ) ∪ [θ̄, R] obtain their reservation utilities, their

participation constraints are automatically satisfied. The optimal quality price schedule is

summarized below, where θ∗ solves G(θ∗) = 0.

Theorem 2. Suppose that q̄ is given and the seller wishes to obtain second-degree price dis-

crimination. Then customers with θ ∈ [0, θ∗) are not served, independent of q̄. Transactions

occur if and only if R > θ∗ and r
′
(θ∗) < q̄, in which case ∃τ ∈ (θ∗, k] and θ̄(τ) such that

• Customers with θ ∈ [0, θ∗) ∪ (θ̄(τ), R] are not served.

• Each customer with θ ∈ [θ∗, τ) receives a specific version with q(θ) = r
′
(θ), p(θ) =

θr
′
(θ) − r(θ). No information rent is left for any customer in this region.

• Customers in [τ, θ̄(τ)] accept the same version with quality q̄ and price τ q̄ − r(τ), and

everybody in the interior of this region receives a nonzero surplus.

• The seller gets positive profit from every customer she serves.

• θ̄(τ) = R if r(R) ≥ (R − τ)q̄ + r(τ); otherwise, r(θ̄(τ)) = (θ̄(τ) − τ)q̄ + r(τ).
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• The value of τ is then determined by the exhaustive search of local maxima on points in

[0, k] that satisfy [τ q̄− r(τ)− c]f(θ̄(τ))dθ̄(τ)
dτ

+(q̄− r
′
(τ))[F (θ̄(τ))−F (τ)− τf(τ)] = 0.7

When either q̄ ≤ r
′
(θ∗) or R ≤ θ∗, the seller is unable to make any profit by offering

versions and maintaining customers’ incentive compatibility, and therefore no transaction

occurs. Transactions are efficient when θq̄ ≥ c, but the information asymmetry drives out

the possibility of transactions. If q̄ > r
′
(θ∗) and R > θ∗, the seller will offer different versions

to customers. This is in contrast with the scenario where customers are endowed with a

common reservation utility (Bhargava and Choudhary [2001]), where versioning is known to

be suboptimal. Our result uncovers an incentive for the seller to provide different versions.

As customers possess convex reservation utility, versioning helps the seller to extract more

profits even if the customers possess constant marginal willingness to pay, and the products

do not exhibit network effects. The inclination to provide versioning is fairly strong since

the production cost does not change as a different quality level is provided.

Figure 1: An example of the optimal quality schedule under the second-degree price discrimination.

Furthermore, Theorem 2 characterizes the optimal quality-price schedule, whereas a

generic shape of the quality levels offered to customers is presented in Fig. 1. At optimality,

the seller discards both the low-end and high-end customers. For those served, the seller

extracts full information rent for customers with relatively low willingness to pay, and offers

a common version to the rest.8

7If f(·) is widely spread-out, i.e., f(θ̄(τ)) is relatively small, the second term (q̄− r
′
(τ))[F (θ̄(τ))−F (τ)−

τf(τ)] dominates. Since q̄ − r
′
(τ) > 0, the sign of the derivative depends only on F (θ̄(τ)) − F (τ) − τf(τ),

which approximately is the derivative of τ(1 − F (τ)) as θ̄ → R, and hence it turns negative right at τ = k.
This ties in with the unimodality assumption (Assumption 1).

8The rationale to exclude low-end customers is clear in the standard nonlinear pricing literature: the
seller is unable to extract positive rent from a low-end customer, and therefore the seller should not serve
her. The cutoff point is one at which the virtual surplus turns positive.
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In the region [θ∗, τ), each customer is offered a version specific for her. Nevertheless, by

accepting it the customer receives exactly her reservation utility. The seller is able to fully

extract the information rent from customers in this region, but has to distort the quality

levels away from the first-best levels to maintain incentive compatibility. Inefficiency occurs

due to this, because the seller cannot observe customers’ types. Moreover, the offered quality

level is strictly increasing in the type, i.e., customers with higher marginal willingness to pay

receive products of better quality.

The customers in [τ, θ̄(τ)] are offered a common version that makes the type-τ customer

receives her reservation utility. The seller earns no information rent from these customers.

The upper bound of this region is determined by the critical customer who is indifferent to

accepting this version and staying with her outside opportunity if such a critical customer

exists; otherwise, the upper bound is R, i.e., no high-end customer is excluded. Moreover, at

the critical point τ we see a clear discontinuity in the version specification: both the quality

and the price have jumps at θ = τ . This implies that the profit the seller collects is also

discontinuous at τ since the marginal cost is independent of the quality.

Finally, the exclusion of high-end customers is due to the pre-determined quality limit in

the development stage, and hence with the linear utility format and strictly convex reserva-

tion utility, the seller must give up those high-end customers because their outside opportuni-

ties are too high. This was observed in the first-best scenario, even though the determination

of the cutoff type is based on a different criterion.

Figure 2: An example to show the net utility
under the second-degree price discrimination.

Figure 3: The influence of profits while
changing the value of τ .

The shape of net utilities is also worth noting. Assuming that some high-end customers
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are excluded by the optimal quality-price schedule, we draw in Fig. 2 the received utilities

of customers and the “net” utilities (the received utility net the reservation utility). Except

θ ∈ (τ, θ̄(τ)), customers receive their reservation utilities in the end, regardless of whether she

accepts a version or stays unserved. Inside the region (τ, θ̄(τ)), the net utility is unimodal,

and the customer that receives the maximal rent is located in the interior.

The optimal schedule can be interpreted as follows. Sundararajan [2004] reports that the

optimal schedule can be decomposed into two parts: one is driven by the outside opportunity

and the other is determined by the heterogeneity of utility. In our model, the first one

corresponds to the case θ ∈ [θ∗, τ), where the optimal quality schedule is determined by

customers’ outside opportunities. Nevertheless, the seller obtains positive profits from these

customers, in contrast to Jullien [2000]. The second part corresponds to the region θ ∈ [τ, θ̄].

If r(·) were constant, a common version with q̄ would be offered to all customers but at a

lower price. Thus, we see the price shift alluded to above (c.f. Sundararajan [2004]).

Fig. 3 demonstrates the trade-off the seller faces while choosing the value of τ . As a

seller increases τ from τ1 to τ2, i.e., she increases the starting point of offering a common

version, the price for that common version increases even though the quality remains q̄. This

change influences the profit in three ways: First, the seller loses some profits on customers

with θ between τ1 and τ2, since the quality levels offered to them are {r′
(θ)}’s rather than q̄.

Second, the shift of τ increases the profit gained from those who accept the common version;

the seller gets (τ2 − τ1)q̄ − (r(τ2) − r(τ1)) more in the region [τ2, θ̄(τ2)]. Third, since for a

given quality limit q̄ this version is priced higher (from τ1q̄ − r(τ1) to τ2q̄ − r(τ2)), fewer

customers are willing to purchase, and hence this shift excludes more high-end customers.

The optimal value of τ balances the gains and losses.

4.2 Optimal schedule and target quality with arbitrary exclusion
Theorem 2 provides the optimal quality-price schedule when an interval of customers is

served. An immediate question is whether this schedule remains optimal if the seller can

exclude customers arbitrarily, e.g., she excludes customers with θ ∈ [0.23, 0.31]∪ [0.45, 0.79].

The set of excluded customers can be even more sophisticated, namely any measurable set

with respect to the probability space ([0, R],B, F (·)), where B is the collection of Borel

measurable sets over [0, R].9 Nevertheless, our proposed quality schedule is indeed optimal.

9The seller might want to create two products that are far apart so that the price effect does not lead
to cannibalization. Separation of quality levels could also help the seller to manage them easily and change
them independently. Thus, we have to examine this possibility before arriving at a conclusion regarding the
optimality of the quality schedule.
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Theorem 3. Given the quality limit q̄, the quality-price schedule proposed in Theorem 2 is

optimal even if arbitrary exclusion is allowed.

The proof follows the approach of Jullien [2000]. We show that no intermediate exclusion

is profitable, and hence at optimality the seller must offer versions to an interval of customers.

Since the schedule proposed in Theorem 2 is optimal if customers in an interval are served, its

optimality continues to hold in this broader class of schedules. This implies that the optimal

versioning has a specific structure, namely that, the seller offers a pool of customers a common

version and excludes some customers. This is labelled as “bunching with exclusion” in the

literature, and it appears due to the unique cost structure of information goods.

Our characterization and verification of optimal quality-price schedule is now complete.

The seller’s problem in the development stage is as follows. Let V (q̄) be the optimal value

of Eq. (1) when quality-price schedule is optimally chosen. The optimal quality limit can be

found through exhaustive search of the local maxima: q̄SB = argmaxq̄{V (q̄) − C(q̄)}.

5 Comparative statics
In this section we discuss the comparative statics of our model. This includes (1) given a

fixed quality limit, how does second-degree price discrimination differ from the first-degree

price discrimination? (2) How does the profit change as the quality limit varies? We first

compare these two informational scenarios while assuming a fixed quality limit q̄.

Theorem 4. Suppose that the quality limit q̄ is given. Then

• If q̄ > r
′
(θ∗), let θFB(q̄), θSB(q̄), θ̄FB(q̄), θ̄SB(q̄) denote respectively the lowest and high-

est type of customers that are offered a version under the two price discrimination.

Then for all q̄, θFB(q̄) < θSB(q̄) < θ̄SB(q̄) < θ̄FB(q̄). In particular, customers with

θ ≤ θ∗ are never served under second-degree price discrimination, whereas an interval

around the type-θ∗ customer is included in first-degree price discrimination.

• Under first-degree price discrimination, each customer either is not served or receives q̄.

However, under the second-degree price discrimination, a continuum of versions may

be offered. If at optimality the seller chooses τ = (r
′
)−1(q̄), then only the customer

with θ = (r
′
)−1(q̄) receives the efficient quality level q̄.

• When R ≤ θ∗, where θ∗ is the critical customer whose virtual surplus just turns positive,

under the second-degree price discrimination the seller will not develop the information
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goods, regardless of the cost structure C(·). Nevertheless, there exist situations where

the seller does use first-degree discrimination over customers.

The first comparison shows that the set of customers offered under the second-degree

price discrimination is a proper subset of that under the first-degree price discrimination.

The information asymmetry does prevent the seller from serving some customers although

the transactions are efficient. The second comparison demonstrates the inefficiency on the

quality levels offered under the second-degree price discrimination. Except possibly a subset

of customers, a continuum of customers receive versions that have inferior quality levels. By

intentionally shading the quality levels, the seller gains against the information asymmetry.

Finally, to induce development of information goods, the second-best scenario requires

a larger maximal marginal willingness to pay of customers. If we interpret value of R as a

measure of customers’ heterogeneity, a higher degree of heterogeneity among customers is

needed to overcome the information asymmetry faced by the seller.

Now we discuss the impact of different quality limits on the quality-price schedule under

both first- and second-degree price discrimination.

Theorem 5. Suppose the two quality limits q̄1, q̄2 are pre-determined, and q̄2 > q̄1. Then in

the production stage, the seller obtains strictly greater profits with q̄2 compared to the case

with q̄1 under both first- and second-degree price discrimination.

In the first-best scenario, when a higher quality limit is set in the development stage,

the prices are higher and the set of served customers is larger. Under second-degree price

discrimination, as a higher quality limit is chosen, the seller can always choose the same

starting point of offering a common version. By doing so she gains in two ways: (1) the

price of this common version is strictly higher; (2) more high-end customers are willing to

purchase this version compared to the case with q̄1. This simple rule is particularly useful

if a sudden increase of quality limit takes place, since the seller can increase her profit by

introducing a new flagship product without changing the extant versions.

6 Discussions and extensions
In this section we first extend our model to incorporate more general variable costs, cus-

tomers’ utilities, and reservation values. We then discuss managerial implications.
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6.1 Extensions
We first let the reservation utility be either linear or concave rather than convex, and allow

the variable cost c(q) to be linear or concave.10 Observe that when the cost is convex

in quality, even if customers do not have heterogeneous outside opportunities, it may be

optimal for the seller to offer multiple versions. The case with convex cost function can be

analyzed following the standard approach (e.g., Jullien [2000] and Mussa and Rosen [1978]),

and therefore the detailed derivations are omitted.

We show that when r(θ) is either linear or concave and c(q) is linear or concave, offering

a single version is optimal.

Theorem 6. Suppose that r(θ) is concave or linear. Offering a single version is optimal if:

(1) the distribution cost is independent of quality. (2) c(q) is linear or concave in q and the

usual regularity condition d
dθ

1−F (θ)
f(θ)

≤ 0 ≤ d
dθ

F (θ)
f(θ)

holds.

The intuition for Theorem 6 is as follows. When the variable cost is constant or weakly

concave, the only reason for the seller to offer multiple versions is to match the reservation

utilities of a continuum of customers. However, when the reservation utility is linear or

concave, the corresponding quality schedule that matches their outside options q(θ) = r
′
(θ)

is decreasing in type. This would inevitably violate incentive compatibility. Linear or concave

reservation utilities could arise if switching can be done relatively easily by high-end users,

such as in the case of word processing or browsing the web.

Thus, we have established that when customers have constant marginal willingness to

pay and the variable cost is constant or concave, the convexity of reservation utility is

necessary to induce versioning. The next question we address is how changing the utility

function and variable cost but keeping the reservation utility convex affect the structure of the

optimal quality schedule. We examine this numerically. Specifically, we solve a mathematical

program in which we incorporate nonlinear utility functions, and concave variable costs, but

the reservation utilities remain convex. We focus on how these factors determine the number

of versions offered and the exclusion of customers.

We first set up the optimization problem below. Let the utility function u(q, θ) be

θq − ρθ2, where ρ ≥ 0. Note that if ρ = 0, this degenerates to the linear utility case. We

discretize the customers’ types into n classes with corresponding weights {wi,∀i = 1, ..., n}.
10As argued by Bhargava and Choudhary [2001], “[t]he costs of duplicating a higher-quality information

good are not likely to be much higher than that for a low-quality product.”

20



The optimization problem is as follows.

max
{πi,yi,qi,pi}

n∑
i=1

πiwi

θiqi − ρθ2
i − pi ≥ θiqj − ρθ2

i − (1 − yi)M,∀j 
= i,∀i, j = 1, ..., n,

θiqi − ρθ2
i − pi ≥ r(θi) − (1 − yi)M,∀i = 1, ..., n,

qi ≤ q̄,∀i = 1, ..., n,

πi ≤ min {yiM,wi(pi − c(qi))} ,∀i = 1, ..., n,

where yi ∈ {0, 1},∀i = 1, ..., n, is the indicator of whether type-i customer is included (yi = 1

if included), and M is a sufficiently large number. The first two constraints are (IC) and

(PC) (where the extra (1 − yi)M allows us to verify these two conditions for only those

customers that are served). The third constraint depicts that the quality should not exceed

the limit. The last one ensures that the profit earned from an excluded customer is zero and

that from a served customer coincides with the revenue minus the variable cost at optimality.

Having formulated the optimization problem, we can now investigate a variety of sce-

narios. We consider situations when products are more profitable and those in which they

are less profitable, and when the quality limit is high or moderate. We also examine how

the degree of heterogeneity affects the optimal schedule. For this purpose, we assume θ

follows a uniform distribution over a bounded support, i.e., wi = 1
n
, i = 1, ..., n. We represent

the reservation utility by a simple power function r(θ) = ξθa, where a > 1 captures the

curvature of customers’ reservation values. The variable cost is chosen as c(q) = Kqb, where

K ≥ 0 represents how costly it is to offer the products (or how profitable the product is), and

b ∈ [0, 1] measures the curvature of variable cost. The impact of the nonlinearity of utility

on the optimal quality schedule is measured by ρ. The benchmark case has the following

parameters: ρ = 0, q̄ = 3, a = 2, ξ = 0.4, K = 0.1, and b = 0.8. In the experiments we vary

one parameter at a time and keep all other parameters the same to examine how sensitive

the optimal quality schedule is with regard to each factor. We use LINGO (Lindo Systems

Inc.) to solve the optimization problem.

In Fig. 4, we vary the value of K, and observe that reducing profitability may reduce

versioning. In order to compensate the costly production/distribution of information goods,

the seller should provide only the flagship product to extract more revenue. We also observe

that when the product is less profitable, more low-end customers get excluded due to their

low willingness to pay. In Fig. 5, we change the quality limit. Fig. 5 shows that increasing

the quality limit might induce versioning, since the seller can choose quality over a wider
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range. When the quality limit is high, the seller tends to offer multiple versions and cover

all high-end customers. When the quality limit becomes moderate, the seller offers only a

single version and gives up high-end customers due to their high reservation utilities. The

exclusion of low-end customers is insensitive to the quality limit.
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Figure 4: The quality schedule under differ-
ent profitability.
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Figure 5: The quality schedule under differ-
ent quality limits.

Figs. 6 and 7 demonstrate the effect of heterogeneity on versioning. In Fig. 6, we vary

the exponent a of the reservation utility. We observe that when the reservation utility is

highly heterogeneous (i.e., a is large), the seller should offer more versions to carefully match

outside options, and offer the flagship product to fewer customers. When a is very small

(a = 1.1), only one version is offered. In Fig. 7 we change the exponent b of the cost, and

we find that only two kinds of quality schedules are possible. Note that there are only two

regions: a full rent extraction region and the region where the quality limit is offered. Quality

schedules in both regions are independent of the variable cost. Hence, when we change b,

only the threshold between these two regions change. Moreover, when the variable cost is

more concave, the seller excludes more low-end customers and offers fewer versions.

Finally, we introduce nonlinearity of utility by using positive ρ’s in Fig. 8 with low quality

limit (q̄ = 1) and Fig. 9 with high quality limit (q̄ = 3). We observe that the outcome depends

on the quality limit. The more nonlinear the utility, the more likely the seller is to exclude

high-end customers. Nevertheless, whether nonlinearity induces versioning is ambiguous.

Nonlinearity leads to fewer versions under low quality limit (as in Fig. 8) but more versions

under high quality limit (Fig. 9). Whether the nonlinearity of utility affects the exclusion

of low-end customers is also ambiguous. This might be because when we increase ρ to add

more nonlinearity, the utility also becomes lower. The exclusion of high-end customers in
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Figure 6: The quality schedule under differ-
ent reservation utilities.
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Figure 7: The quality schedule under differ-
ent variable costs.

Fig. 8 also results from the reduction in utility. When ρ is high, the utility becomes lower,

but the reservation utility is still the same.
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Figure 8: The quality schedule under differ-
ent customers’ utilities with q̄ = 1.
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Figure 9: The quality schedule under differ-
ent customers’ utilities with q̄ = 3.

Table 2 summarizes our findings via these simulations.11 In this table, we show the

effects of increasing various factors on the number of versions, and exclusion of low-end and

high-end customers. The variation in the optimal quality schedule due to the change in these

factors is not significantly different from the benchmark case, except due to the change in

quality limit. Therefore, we conclude that solving the two-stage problem is important in

order to determine the quality limit.12

11We have tried many combinations of parameters and found that these insensitive results are robust
against choices of parameters.

12Originally, we believed that exclusion of intermediate customers might be optimal for concave variable
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Table 2: Summary of impacts of relevant factors on versioning

Factor No. of versions exclusion of low-end exclusion of high-end

profitability increases more likely insensitive
quality limit increases insensitive less likely
convexity of r(θ) increases less likely insensitive
concavity of c(q) decreases more likely insensitive
nonlinearity of utility ambiguous ambiguous ambiguous

6.2 Managerial implications
Our analysis identifies a previously ignored driving force that induces versioning. If there

are multiple effective outside opportunities that are accessible to target customers, then the

seller should adopt versioning to extract more revenue; otherwise, she should offer a single

version (illustrated in Fig. 6). To this end, careful investigation of available outside options

facing target customers is critical to crafting a versioning strategy. The inherent difference of

customers’ outside opportunities could potentially explain why amongst software producers,

some sell a single quality to all customers but others offer multiple versions, even though they

have similar cost structures for product development and they all exhibit network effects.

This could be due to lack of multiplicity of outside options.

Our results also suggest that when customers have access to various outside options, it

may be suboptimal for the seller of information goods to always serve all high-end customers.

Even though high-end customers have higher willingness to pay, they are also endowed with

higher outside opportunities. For example, Decisioneering, Inc. offers multiple versions of

Crystal Ball and serves only the mid-range customers (high-end customers are captured by

Computer Aided Design of Microelectronic Packages or ASTi FAA Commercial Simulation

Package, and low-end customers use Excel). Another example is Microsoft Encarta. Encarta

currently has Academic, Premium, and Standard versions.13 However, customers that need

to look up specific information regularly may prefer Britannica, and low-end customers can

use free online encyclopedia such as Wikipedia and would not purchase Encarta. To extract

more revenue, the seller has to fine-tune the quality levels of versions (below the high-end)

so that these offers match customers’ outside options. Sufficient knowledge of customers’

costs and nonlinear utility functions. However, we are unable to uncover this phenomenon in our numerical
experiments. We conjecture that the structure of optimal quality schedule (Fig. 1) might occur in most
scenarios that are of practical interest.

13http://www.microsoft.com/products/encarta/ (last cited on January 14, 2007).
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outside options is essential for doing this fine-tuning (Figs. 4, 6, and 7). This might be an

issue for Bloomberg and SAP.

In order to implement the optimal schedule summarized in Theorem 2, two thresholds

need to be determined, namely, the exclusion point of low-end customers and the starting

point at which to offer the flagship product. The exclusion point of low-end customers

is completely determined by the reservation utility and distribution cost, independent of

the quality limit and the distribution of customers’ types. In contrast, the starting point of

offering the flagship product is jointly determined by all the above inputs. This demonstrates

the different degrees of sophistication needed in order to locate these two key thresholds. For

software, the basic editions are usually easy to design. In contrast, there are far more issues

to consider when positioning professional editions, such as functions of user interface, image

resolution, speed of operation, and compatibility (e.g., Maple, Microsoft Money, TurboTax).

For information services, designing appropriate high-end products to avoid cannibalization

is also a difficult task, compared to the basic or free-sponsored versions (Classmates.com,

CNN, NY Times, Yahoo!). The sellers have to carefully investigate customers’ time values,

technical background, heterogeneity of willingness to pay, and the largest benefit their current

technology can provide. This is more critical when the quality limit is low (as seen in Fig. 5).

Sometimes marketing departments manage to acquire more information from target

customers so that certain degree of personalization/customization is possible, but the flagship

product cannot be changed immediately (it cannot be achieved without going back to the

development phase). We suggest that in this case, they could enlarge the base of served

customers from both ends. Note that under first-degree discrimination only the flagship

product is offered. Thus, when managers have more detailed information regarding customer

preferences, they should reduce the span of versioning (e.g., reduce the number of versions,

narrow down the quality differences), and focus on better horizontal differentiation to achieve

customization. This is the case for Virtual Vineyards: they regularly make special offers

to customers based on their clickstreams. Another example of personalized pricing is the

market for computer servers. Hewlett Packard, IBM, and Sun Microsystems conduct an

ROI (Return on Investment) analysis of their customer accounts. They then offer various

personalized discounts over identical products to customers based on their ROIs. LexisNexis

charges libraries different prices even though they offer them identical information service.

Finally, if a sudden increase of quality limit takes place, but redesigning the versioning

strategy either is time-consuming or could cause dissatisfaction amongst existing customers,

using the proof of Theorem 5 we can construct a simple rule to increase the revenue in-
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Table 3: Comparison of our paper with previous literature on versioning information goods

Paper Utility Variable cost Reservation utility Versions Exclusion

Bhargava and Choudhary [2001] linear concave homogeneous one low end
Bhargava and Choudhary [2004] linear 0 homogeneous two low end
Ghose and Sundararajan [2005] quadratic 0 homogeneous multiple low end
Jing [2006] linear 0 homogeneous two low end
Jones and Mendelson [1998] linear 0 homogeneous one low end
Raghunathan [2000] quadratic 0 homogeneous multiple N/A
This paper both concave convex multiple both ends

both concave linear/concave single low end
both convex convex multiple both ends
both convex linear/concave multiple low end

stantaneously. The seller can introduce a new flagship product, keep extant versions, and

modify the pricing schedule to avoid cannibalization. An unexpected increase of quality

limit may be due to a significant technological advance made by internal R&D groups, the

acquisition of more advanced modules that improve the quality, release of features that were

kept secret for strategic concerns, etc. This issue is particularly important for the software

industry. Due to its rapid and evolving technological improvement, many software packages

have successive generations and multiple versions (e.g., Acrobat, Encyclopaedia Brittanica,

Illustrator, and McAfee). This rule may be useful to determine the pricing of these software

generations and versions.

7 Conclusion
In this paper we consider a two-stage problem for information goods production. We include

all ingredients of information goods and provide novel guidelines to sellers that wish to

adopt a versioning strategy. The deviations of our model setting and results are listed in

Table 3. We show that versioning is profitable when customers possess convex reservation

utilities, and characterize the optimal quality-price schedule. In the optimal strategy, the

seller discards both the low-end and high-end customers. For those served, the seller extracts

full information rent from customers with relatively low willingness to pay, but offers a

common version to the rest. We also provide a simple rule for selecting the optimal quality

limit in both cases, and perform comparative statics under both types of discrimination.

We then extend our model to incorporate concave variable costs and concave reservation

utilities. We find that versioning is suboptimal if the reservation utility is linear or concave,

but it might occur at optimality with convex reservation utilities. Thus, the profitability of
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versioning depends significantly on the structure of customers’ reservation utilities.

Several extensions arise naturally, a particular one being the incorporation of network

externalities. When network effects are measured by the total usage of the product across

different versions, the seller always has an incentive to include more customers. However, if

products of different quality levels share only part of the benefit, the seller faces an intriguing

trade-off: should she offer user-specific versions to fully extract low-end customers’ rent or

should she offer only a limited number of versions to induce higher network effects?

Also, most software products have different maintenance programs. As pointed out

in Shapiro and Varian [1998], the maintenance of software products is very costly, and it

critically depends on the quality the company offers to customers. This trade-off is worth

investigating. Another direction that seems worth while to pursue is to extend the analysis

to a dynamic setting in which generations of customers purchase the product and the distri-

bution of reservation utilities varies over time. Since the choice of quality limit is irreversible,

the seller faces a constrained optimization problem in the development stage with respect

to the current quality limit. Because developing a new (and higher) quality limit is costly,

the dynamic setting may allow us to predict the optimal timing for investing in new product

development in such an industry.

Introducing competition amongst sellers is a potential avenue for research. As sellers

choose quality limits upfront, they may distinguish themselves by selecting different levels,

and therefore adopt different quality-price schedules given the quality limits. This differ-

entiation bypasses the head-to-head price competition that could potentially drive away all

the profit. Extending our research to incorporate quantity differentiation is another fruitful

direction to pursue. The seller’s problem can then be regarded as one in which customers

obtain more utility from possessing or consuming more units of the information good. This

introduces the scope for enhancing profitability through quantity differentiation, a strategy

that is commonly adopted by mainframe application providers (e.g., IBM) and manufacturers

of enterprise database systems such as Oracle.

Appendix. Proofs

Proof of Lemma 2

Differentiating G(θ) by θ, we have G
′
(θ) = θr

′′
(θ) ≥ 0, and hence G(θ) is increasing

and G(θ) = G(0) +
∫ θ

0
xr

′′
(x)dx. By strict convexity, r

′
(θ) → ∞ as θ → ∞. Therefore,

limb→∞
∫ b

0
r
′′
(θ)dθ = ∞. Let M be an arbitrary large number. Since limb→∞

∫ b

0
r
′′
(θ)dθ =

∞, given any constant C1, ∀M1 ≡ C1 × M , there exists another constant C2 such that
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∫ C2

C1
r
′′
(θ)dθ > M. Multiplying the integrand by θ, we obtain that

∫ C2

C1
θr

′′
(θ)dθ > M , and

therefore limθ→∞ G(θ) = limb→∞
∫ b

0
θr

′′
(θ)dθ = ∞.

Since G(0) = −r(0)−c ≤ 0 and limθ→∞ G(θ) = ∞, a solution exists for θr
′
(θ)−r(θ)−c =

0 from the intermediate value theorem, and it is unique by strict monotonicity of G(θ).

Proof of Proposition 1

If a customer is served, the seller’s best response is to offer her q̄ due to the common

marginal cost. Thus the maximum rent that the seller can extract from a type-θ customer

is θq̄ − r(θ). Thus, the type-θ customer is served if and only if θq̄ − r(θ) − c ≥ 0.

Consider the case q̄ = r
′
(θ∗). In this case, θ∗ is a solution to θq̄ − r(θ) − c = 0.

Define H(θ, q̄) = θq̄ − r(θ) − c. Differentiating H(θ, q̄) by θ while q̄ = r
′
(θ∗), we have

∂H(θ, r
′
(θ∗))/∂θ = r

′
(θ∗) − r

′
(θ), which is negative when θ < θ∗ and positive when θ >

θ∗. Thus H(θ, r
′
(θ∗)) attains its maximum uniquely at θ = θ∗. This also implies that

θq̄ − r(θ) − c is negative for all θ, and no customer shall be served. When q̄ < r
′
(θ∗), we

have θq̄ − r(θ) − c < θr
′
(θ∗) − r(θ) − c ≤ 0,∀θ ≥ 0. Thus, the seller serves no customer.

When q̄ > r
′
(θ∗), θ∗q̄ − r(θ∗) − c > θ∗r

′
(θ∗) − r(θ∗) − c = 0. H(0, q̄) = −r(0) − c <

0, ∀q̄, and thus by intermediate value theorem, there exists θ(q̄) ∈ [0, r
′
(θ∗)) such that

H(θ(q̄), q̄) = 0. From ∂H(θ, q̄)/∂θ = q̄− r
′
(θ), eventually H(θ, q̄) will become negative when

θ is sufficiently large. Therefore, there exists a constant τ(q̄) > θ∗ such that H(τ(q̄), q̄) = 0.

To see that H(θ, q̄) ≥ 0 if and only if θ ∈ [θ(q̄), τ(q̄)], since r
′
(θ) is strictly increasing in θ

and H(θ(q̄), q̄) = H(τ(q̄), q̄) = 0, r
′
(θ) < q̄ if and only if θ < τ(q̄). Thus if θ > τ(q̄),

H(θ, q̄) = θq̄ − r(θ) − c < τ(q̄)q̄ − r(τ(q̄)) − c − (θ − τ(q̄))
(
q̄ − r

′
(τ(q̄))

)
= H(τ(q̄), q̄) = 0,

where the strict inequality follows from the strict concavity of H(θ, q̄) with respect to θ. The

strict concavity of H(θ, q̄) also implies that ∀θ < θ(q̄),

H(θ, q̄) = θq̄ − r(θ) − c > θ(q̄)q̄ − r(θ(q̄)) − c − (θ − θ(q̄))
(
q̄ − r

′
(θ(q̄))

)
> H(τ(q̄), q̄) = 0,

where we have used q̄ > r
′
(θ(q̄)) in the second inequality. A similar argument shows that

H(θ, q̄) ≥ 0, ∀θ ∈ [θ(q̄), τ(q̄)]. Hence only customers with θ ∈ [θ(q̄), τ(q̄)] are served.

Proof of Theorem 1

The optimal quality limit q̄FB solves maxq̄{
∫ θ̄(q̄)

θ(q̄)
[θq̄−r(θ)−c]f(θ)dθ−C(q̄) : q̄ ≥ r

′
(θ∗)},

where θ(q̄) and θ̄(q̄) are the two roots of θq̄ − r(θ) − c = 0. Note that we have ignored the

trivial case where q̄ ∈ (0, r
′
(θ∗)], since by doing so the seller gets a strictly negative payoff.

Let ΠFB(q̄) ≡ ∫ θ̄(q̄)

θ(q̄)
[θq̄− r(θ)− c]f(θ)dθ−C(q̄) denote the expected payoff when q̄ is chosen.

Differentiating ΠFB(q̄), we can express dΠFB(q̄)
dq̄

as
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[θ̄(q̄)q̄ − r(θ̄(q̄)) − c]f(θ̄(q̄))θ̄
′
(q̄) − [θ(q̄)q̄ − r(θ(q̄)) − c]f(θ(q̄))θ

′
(q̄) +

∫ θ̄(q̄)

θ(q̄)
θf(θ)dθ − C

′
(q̄).

By definition of θ̄(q̄) and θ(q̄), the first two terms vanish. Thus we obtain
∫ θ̄(q̄)

θ(q̄)
θf(θ)dθ =

C
′
(q̄), where the right-hand side is downward sloping. Moreover, by the nonnegativity of

θf(θ) and that [θ(q̄), θ̄(q̄)] expands as q̄ increases, the integral is nondecreasing in q̄, and

there exists a constant q̆ such that
∫ θ̄(q̄)

θ(q̄)
θf(θ)dθ = Eθ whenever q̄ ≥ q̆.

Now we discuss the position of the optimal quality limit q̄FB. When q̄ = r
′
(θ∗),

dΠFB(q̄)/dq̄ < 0, and therefore the seller tends to increase the quality limit. If there exists at

least one quality limit q̄ such that dΠFB(q̄)/dq̄ = 0, then the optimal level can be obtained

by searching over these local maxima; otherwise, q̄FB = 0 is the unique optimal strategy.

If C
′
(r

′
(θ∗)) > Eθ, then any choice of q̄ will make dΠFB(q̄)/dq̄ negative, since

C
′
(q̄) ≥ C

′
(r

′
(θ∗)) > Eθ = maxq̄

∫ θ̄(q̄)

θ(q̄)
θf(θ)dθ. In this case, any choice of quality limit

above r
′
(θ∗) is suboptimal. Because q̄ ∈ (0, r

′
(θ∗)] are all dominated strategies, the optimal

choice is q̄FB = 0 if C
′
(r

′
(θ∗)) > Eθ. When C

′
(q̆) > Eθ, increasing q̄ after q̆ will not change∫ θ̄(q̄)

θ(q̄)
θf(θ)dθ but will drive up the cost C(q̄). Hence, any choice above q̆ is suboptimal.

Proof of Theorem 2

We shall start with the case when R > θ∗ and q̄ > r
′
(θ∗). Our strategy is to first ignore

the IC and participation conditions for customers outside the interval [θ, τ ], i.e., (IC-2),

(IC-3), (IC-4), and (PC-2), and then verify that they are satisfied under our proposed menu.

1. Proposing the candidate menu

Define U(θ) = θq(θ)−p(θ)−r(θ), ∀θ ∈ [θ, τ). Since each served customer should receive

at least her reservation utility, we have condition (PC): U(θ) ≥ 0.

Consider (IC-1) in Eq. (1). For each type θ ∈ (θ, τ), the incentive compatibility requires

that the payoff is maximized at z = θ, and hence the first-order condition yields θq
′
(θ) −

p
′
(θ) = 0, ∀θ ∈ (θ, τ). Differentiating U(θ) and plugging in this equality, we have

(LO) U
′
(θ) = q(θ) − r

′
(θ), θ ∈ [θ, τ).

We shall replace constraint (IC-1) in Eq. (1) by (LO), and obtain the necessary con-

ditions for optimality for the modified problem. We will later verify that our proposed

schedule satisfies all the imposed constraints and hence it is indeed optimal. Note that

p(θ) = θq(θ) − r(θ) − U(θ). Observing that the first term in the objective function is in-

dependent of the choice of (q(θ), p(θ)), ∀θ ∈ [θ, τ), we can ignore it for the optimization

problem. Replacing p(θ) by the above expression, the seller’s objective becomes

max
∫ τ

θ
[θq(θ) − r(θ) − U(θ) − c]f(θ)dθ, subject to (LO) and (PC).
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Observe that adding and subtracting constants will not influence the optimal solution,

we now remove −r(θ) − c from the integrand and add −θr
′
(θ) instead. The integrand now

becomes [θq(θ) − θr
′
(θ) − U(θ)]f(θ), which is equivalent to [U(θ) − θU

′
(θ)]f(θ) from (LO).

Hence, the seller’s problem becomes max
∫ τ

θ
[U(θ)−θ dU(θ)

dθ
]f(θ)dθ, s.t. U(θ) ≥ 0, U(τ) = 0.

We first claim that type-θ customer should not obtain any surplus, i.e., U(θ) = 0.

Suppose θ > 0. If U(θ) > 0, then θq(θ)− p(θ) > r(θ) and there exists a constant δ such that

θq(θ)−p(θ)−r(θ) > δ. Consider a customer with type θ slightly below θ such that θ > θ− δ
2q̄

and r(θ) > r(θ) − 1
2
δ. Such a customer exists since θ > 0 and r(·) is continuous. Now if

type-θ customer chooses (q(θ), p(θ)), she receives (θ − ε)q(θ) − p(θ) > r(θ) − δ
2q̄

q(θ) + δ >

r(θ) − 1
2
δ − δ

2q̄
q(θ) + δ > r(θ), because q(θ) ≤ q̄. On the other hand, suppose that θ = 0. If

under the optimal quality-price schedule U(θ) were positive, we can make a uniform shift of

prices p(θ) while fixing q(θ). This adjustment does not destroy incentive compatibility but

strictly increases the seller’s profit.

Let U(θ) be the state variable, and u(θ) = dU(θ)/dθ be the control. Through this

transformation, the design of the optimal menu of versions can be recast as an optimal

control problem and can be solved by use of calculus of variation. The Hamiltonian is

given by H(θ) = (−U(θ) + θu(θ))f(θ) + η(θ)u(θ). The adjoint equation is given by dη(θ)
dθ

=
−∂H
∂U

= f(θ), and the transversality condition gives no information. Denote η(τ) = e, we

obtain η(θ) = e − F c(θ). The necessary condition for optimality is that the Hamiltonian is

maximized by the choice of u since H is linear in u.

Consider the coefficient of u in H: e+θf(θ)−F c(θ). If the coefficient of u were positive,

the solution would be unbounded, and hence e = 0 due to the uniqueness of the maximum.

Note that θf(θ)−F c(θ) is the derivative of −θF c(θ), and hence from Assumption 1, θf(θ)−
F c(θ) > 0 if θ > k, and θf(θ) − F c(θ) < 0 if θ < k. The case θ = k has measure zero and

hence it will not contribute to the objective. If θf(θ)−F c(θ) > 0, there is no maximum since

we can take u → ∞. When θf(θ) − F c(θ) < 0 we should make u as negative as possible.

But, the boundary conditions U(θ) ≥ 0 on [θ, τ) on the other hand they require that u(θ)

be greater than or equal to zero whenever U(θ) = 0. It therefore follows that U(θ) = 0 for

all θ in [θ, τ) if U(θ) = 0 is implementable.

Note that this immediately leads to q(θ) = r
′
(θ) and p(θ) = θr

′
(θ) − r(θ), ∀θ ∈ [θ, τ),

whenever r
′
(τ) ≤ q̄. In this case, a jump in quality occurs at θ = τ and θ̄ is determined

by the minimum of R and the solution to the equality θ̄q̄ − (τ q̄ − r(τ)) = r(θ̄). From the

convexity of r(·) and that r
′
(τ) < q̄, there exists a unique θ̄ for any given q̄ and τ .
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When r
′
(τ) = q̄, the interval [τ, θ̄] degenerates since if a type-θ customer accepts the

version (r
′
(τ), p(τ)) when θ > τ , her payoff will be θr

′
(τ) − (τr

′
(τ) − r(τ)). But the strict

convexity of r(·) implies that r(θ) > θr
′
(τ)− (τr

′
(τ)− r(τ)), and no customer with θ higher

than τ would accept the bundle. This completes the derivation of the proposed menu.

2. Checking the necessary and sufficient conditions

Now we check that all other IC and participation conditions are satisfied.

Checking (IC-1). Suppose θ ∈ [θ, τ). (IC-1) requires that θr
′
(z) − (zr

′
(z) − r(z)) ≤

r(θ), ∀z ∈ [θ, τ) and r(θ) ≥ θq̄ − (τ q̄ − r(τ)). The former is simply the gradient inequality.

For the latter, we have r(τ)− (τ −θ)q̄ ≤ r(τ)− (τ −θ)r
′
(τ) ≤ r(θ), where the first inequality

follows from that q̄ ≥ r
′
(τ) and the second one is again the gradient inequality.

Checking (PC-2) and (IC-2). We first verify that the participation conditions hold

for θ ∈ [τ, θ̄]. Recall that by accepting the version (q̄, p(τ)) both types τ and θ̄ receive

their respective reservation utilities, and therefore r
′
(τ) < q̄ < r

′
(θ̄). If there exists a

type θ ∈ (τ, θ̄) such that θq̄ − (τ q̄ − r(τ)) < r(θ), then r
′
(θ) must be greater than q̄. By

monotonicity of r(·), the type-θ̄ customer cannot receive r(θ̄) if she accepts the same version.

Now we consider their incentive compatibility. Given the menu, (IC-2) becomes

θq̄ − (τ q̄ − r(τ)) ≥ θr
′
(z)− zr

′
(z) + r(z), ∀θ ∈ [τ, θ̄], ∀z ∈ [θ, τ ]. Having established (PC-2),

it suffices to show that r(θ) ≥ θr
′
(z)−zr

′
(z)+r(z), ∀θ ∈ [τ, θ̄], ∀z ∈ [θ, τ ], which is identical

to r(θ) ≥ r(z) + (θ − z)r
′
(z). Therefore, (IC-2) is true by the convexity of r(·).

Checking (IC-3) and (IC-4). This follows directly from gradient inequality.

Checking the necessity of p(τ) = τ q̄ − r(τ). Suppose this were not true. Then for

type-τ customer, τ q̄ − p(τ) > r(τ) since her participation condition has to be satisfied. Let

δ ≡ τ q̄ − p(τ)− r(τ) > 0. By continuity and the finiteness of q̄, there must exist a θ̌ slightly

less than τ such that θ̌ > τ − δ
2q̄

and r(θ̌) > r(τ) − 1
2
δ. The type-θ̌ customer is supposed to

receive her reservation utility according to the seller’s plan. But choosing (q̄, p(τ)) gives rise

to a payoff θ̌q̄ − p(τ) = (τ − θ̌)q̄ + τ q̄ − p(τ) = (τ − θ̌)q̄ + r(τ) + δ > −1
2
δ + r(τ) + δ > r(θ̌).

Thus, p(τ) must be τ q̄ − r(τ) to avoid profitable deviations.

Checking the sufficiency. As the Hamiltonian is linear in u, it is concave in u and

satisfies the sufficient condition for optimality (Sethi and Thompson [1981, Theorem 2.2]).

3. Optimal choice of θ, τ, and θ̄

We now consider the optimal choice of θ and τ . θ̄ is determined once we have fixed τ .

Choice of θ. Following the proposed quality-price schedule, the seller’s net profit from
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serving a type-θ customer is p(θ) − c = θr
′
(θ) − r(θ) − c, which coincides with G(θ). Since

G(θ) is positive if and only if θ ≥ θ∗, the seller should not sell any version to customers with

θ below θ∗. This suggests that θ = θ∗. Furthermore, the choice of θ will not change either

the quality-price schedule for θ ∈ [θ, τ ] or the decision of τ and θ̄, and thus θ = θ∗.

Choice of τ . Let Ξ(τ) denote the profit function of the seller when customers whose

types fall into [τ, θ̄] are offered the same version (q̄, p(τ)) and customers with θ ∈ [θ∗, τ) are

offered the bundle (r
′
(θ), θr

′
(θ) − r(θ)). To indicate the dependence of θ̄ on τ , we shall use

θ̄ ≡ θ̄(τ). Hence Ξ(τ) = (τ q̄ − r(τ) − c)[F (θ̄(τ)) − F (τ)] +
∫ τ

θ∗(θr
′
(θ) − r(θ) − c)f(θ)dθ.

We first consider the case q̄ ≥ r(R)−r(k)
R−k

. Since r(R) ≤ Rq̄−(kq̄−r(k)), θ̄(τ) is forced to be

R if τ = k. Thus, Ξ(τ) = (τ q̄−r(τ)−c)[1−F (τ)]+
∫ τ

θ∗(θr
′
(θ)−r(θ)−c)f(θ)dθ. Using the rule

for differentiating under the integral we obtain dΞ(τ)/dτ = [q̄−r
′
(τ)][1−F (τ)−τf(τ)]. Since

q̄ > r
′
(τ) from the definition of τ , the sign of dΞ(τ)/dτ depends only on 1−F (τ)−τf(τ). The

point at which the profit function achieves its maximum is independent of the reservation

utility. Moreover, 1 − F (τ) − τf(τ) is the derivative of τF c(τ), which by Assumption 1 has

a unique maximum in the interior of [0, 1]. We conclude that τ = k is optimal.

Now we discuss the case q̄ < r(R)−r(k)
R−k

. First we assume that θ̄(τ) ≤ R, and later we will

verify that for the optimality we need not consider other cases. The derivative becomes

dΞ(τ)

dτ
= [τ q̄ − r(τ) − c]f(θ̄(τ))

dθ̄(τ)

dτ
+ (q̄ − r

′
(τ))[F (θ̄(τ)) − F (τ) − τf(τ)].

The term τ q̄ − r(τ) − c is nonnegative since τ q̄ − r(τ) − c ≥ τr
′
(τ) − r(τ) − c > 0 if τ > θ∗.

To obtain dθ̄(τ)
dτ

we shall fix q̄ and consider two choices τ1, τ2 of τ , and assume that

τ1 < τ2. The discussion is divided into cases. If θ̄(τ1) = R, then θ̄(τ2) ≤ θ̄(τ1) as desired.

Now assume that θ̄(τ2) = R. In this case, r(R) ≤ Rq̄−(τ2q̄−r(τ2)), and hence q̄ ≥ r(R)−r(τ2)
R−τ2

.

By convexity of r(·), we obtain that q̄ ≥ r(R)−r(τ1)
R−τ1

as well. Rearranging the above inequality,

we conclude that θ̄(τ1) = R too. Hence in this case, θ̄(τ2) = θ̄(τ1).

Finally, let us consider the case when θ̄(τ1), θ̄(τ2) 
= R. Recall the equality r(θ̄(τ)) =

θ̄(τ)q̄ − (τ q̄ − r(τ)). From the definition of θ̄ we have r(θ̄(τ1)) = θ̄(τ1)q̄ − (τ1q̄ − r(τ1)) and

r(θ̄(τ2)) = θ̄(τ2)q̄ − (τ2q̄ − r(τ2)). Let type-θ̄(τ2) customer take the version (q̄, τ1q̄ − r(τ1)),

i.e. the version designed for customers with θ ∈ [τ1, θ̄(τ1)] if τ1 is chosen to be the switching

customer to accept the same version. The type-θ̄(τ2) customer’s payoff becomes θ̄(τ2)q̄ −
(τ1q̄− r(τ1)) = r(θ̄(τ2))+ τ2q̄− r(τ2)− (τ1q̄− r(τ1)). By the mean value theorem, there exists

a constant τ3 ∈ [τ1, τ2] such that r(τ2) − r(τ1) = r
′
(τ3)(τ2 − τ1). Hence we can rewrite the

type-θ̄(τ2) customer’s payoff as r(θ̄(τ2))+(τ2−τ1)(q̄−r
′
(τ3)) ≥ r(θ̄(τ2)), where the inequality
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follows from that q̄ ≥ r
′
(τ2) and the convexity of r(·). Thus, θ̄(τ) is decreasing in τ and

dθ̄(τ)
dτ

≤ 0. We conclude that [τ q̄ − r(τ) − c]f(θ̄(τ))dθ̄(τ)
dτ

≤ 0.

Now consider the second term (q̄ − r
′
(τ))[F (θ̄(τ))−F (τ)− τf(τ)]. Due to q̄ ≥ r

′
(τ) we

only need to consider the sign of the term inside the parentheses. If τ > k, F (θ̄(τ))−F (τ)−
τf(τ) ≤ 1 − F (τ) − τf(τ) < 0. Thus any τ above k cannot be an optimal solution. This

completes the characterization of the optimal menu of contracts when R > θ∗ and q̄ > r
′
(θ∗).

If either condition does not hold, then the seller cannot gather any positive profit.

Proof of Theorem 3

We will follow Jullien [2000] to prove this theorem and hence shall introduce his notation

to make a clear connection. Let v(θ, q) be the gross utility of type-θ customer while offered

quality q, and s(θ, q) = v(θ, q)−c(q) be the total surplus from the transaction, and w(θ) is the

net utility received by the type-θ customer given the quality-price schedule {q(θ), p(q(θ))}.
In our model v(θ, q) = θq, w(θ) = θq(θ) − p(q(θ)). Since in the production stage q > q̄ is

impossible, the production cost is c(q) = c if q ∈ (0, q̄], and c(q) = ∞ when q > q̄.

In the sequel, we will verify those relevant conditions required in Jullien [2000], and

state and prove the results parallel to Jullien [2000] in our model. The following four lemmas

(Lemmas 3-6) are stated and used only in the appendix. The first observation is that the

seller never loses money by offering a version:

Lemma 3. Suppose that q∗(θ) is an optimal allocation and w∗(θ) is the corresponding net
utilities. If type-θ participates, then s(θ, q∗(θ)) − w∗(θ) ≥ 0.

Proof. Let T = {θ|s(θ, q∗(θ))−w∗(θ) < 0}. Suppose θ ∈ T . By definitions of s(θ, q∗(θ)) and
w∗(θ), we have θq∗(θ)− c− (θq∗ − p(q∗)) < 0, i.e., p(q∗)− c < 0. Therefore, the seller gets a
strictly negative profit from the type-θ customer, for every θ ∈ T .

Suppose now the seller offers instead (q∗(θ), c) to every θ ∈ T and keeps every other
version the same. For all θ

′
/∈ T , choosing version (q∗(θ

′
), p(q∗(θ

′
)) is still optimal because

the prices for θ ∈ T are higher. For θ ∈ T , if the customer chooses any version originally
designed for θ

′
/∈ T , then the seller gets p(q∗(θ

′
)) − c ≥ 0; otherwise, if she chooses a new

version (q∗(θ
′
), c), θ

′ ∈ T , by construction the seller would just break even. Thus, in all cases
the seller obtains a higher profit, which contradicts the optimality of (q∗, p∗) if T 
= ∅.

We then introduce the following technical definitions.

Definition 1. (v(θ, q), r(θ)) satisfies Homogeneity (H) if we can find a nondecreasing quality
schedule q̂(θ) such that r

′
(θ) = vθ(θ, q̂(θ)), ∀θ. (v(θ, q), r(θ)) is a full participation model

(FPM) if there exists a tariff ĉ(q) such that r(θ) = maxq{v(θ, q) − ĉ(q)}, ∀θ.

33



We now prove that our model satisfies both conditions given above.

Lemma 4. When v(θ, q) = θq, and r(θ) is differentiable, increasing, and strictly convex,
then both (H) and (FPM) are satisfied.

Proof. If we choose q̂(θ) = r
′
(θ), then r

′
(θ) = q̂(θ) = vθ(θ, q̂(θ)) and q̂(θ) is increasing by the

convexity of r(θ). Hence, (H) is satisfied in our model.

We next show that by setting ĉ(q) = (r
′
)−1(q)q − r((r

′
)−1(q)), r(θ) = maxq{θq −

ĉ(q)}, ∀θ. Recall that q̂(θ) = r
′
(θ). Since r(·) is strictly convex, r

′
(·) is strictly increas-

ing and its inverse (r
′
)−1(·) exists. If we represent ĉ ≡ ĉ(θ) and set ĉ(θ) = θr

′
(θ)− r(θ), then

while checking (IC-1) in the proof of Theorem 2 we know that θ = argmaxz{θq̂(z) − ĉ(z)}
and r(θ) = maxz{θq̂(z) − ĉ(z)}. The participation condition corresponds to θq̂(θ) − ĉ(θ) =
θr

′
(θ)−[θr

′
(θ)−r(θ)] = r(θ), and hence is satisfied. Therefore r(θ) = maxz{θq̂(z)−ĉ(z)},∀θ.

Because there exists a one-to-one correspondence between q̂ and θ by the strict mono-
tonicity of r

′
(·), we redefine ĉ(θ) = ĉ(q̂). Note that the existence of r

′′
(·) gives us the

continuity of q̂(·). Replacing θ by (r
′
)−1(q̂) in ĉ and rename q̂ as the dummy variable q,

ĉ(q) = (r
′
)−1(q)q − r((r

′
)−1(q)) implements {r, q̂}, i.e., r(θ) = maxq{v(θ, q) − ĉ(q)}, ∀θ.

Define q̂(θ) = r
′
(θ) and ĉ(q) = (r

′
)−1(q)q − r((r

′
)−1(q)). Since {q̂, ĉ} implements r(θ),

we can represent ĉ ≡ ĉ(θ) = θr
′
(θ) − r(θ). Hence in the following we will use ĉ(q) and

ĉ(θ) alternatively for convenience.14 We now follow Jullien [2000, Section 4]. We slightly
modify the original problem in which the seller has the option to serve customers using this
technology and charge them at cost ĉ(·). Note that ĉ(q) has to be equal to (r

′
)−1(q)q −

r((r
′
)−1(q)) as defined above. The following lemma describes the set of customers served

using the alternate technology ĉ(·).
Lemma 5.Let the seller be endowed with the two technologies c(·), ĉ(·). Suppose {q∗(θ), p∗(θ)}
is an optimal schedule, and w∗(θ) is the corresponding customers’ utility under this schedule.
If ĉ(q∗(θ)) ≤ c(q∗(θ)), then q∗(θ) = q̂(θ), p∗(q∗(θ)) = ĉ(θ), and w∗(θ) = r(θ). Moreover, only
customers with ĉ(q∗(θ)) ≤ c(q∗(θ)) are served by the technology ĉ(·).

Proof. From Lemma 3, s(θ, q∗(θ)) = θq∗(θ) − min{c(q∗(θ)), ĉ(q∗(θ))} ≥ w∗(θ), ∀θ. When
ĉ(q∗(θ)) ≤ c(q∗(θ)), we obtain
0 ≤ θq∗(θ) − min{c(q∗(θ)), ĉ(q∗(θ))} − w∗(θ) ≤ θq∗(θ) − ĉ(q∗(θ)) − w∗(θ) ≤ r(θ) − w∗(θ),
where the last inequality follows from that r(θ) = maxq{θq − ĉ(q)}. Recall that a customer
should receive at least her reservation utility, i.e., w∗(θ) ≥ r(θ). Therefore, w∗(θ) = r(θ).

Now we show that when ĉ(q∗(θ)) ≤ c(q∗(θ)), q∗(θ) = q̂(θ). We only need to consider
the case where ĉ(q∗(θ)) ≤ c(q∗(θ)) occurs in an open interval: if this occurs only at isolated
points, then the contribution of these customers to the seller’s profit is negligible. Assume

14Note also that for any optimal schedule {q(θ), p(q(θ))}, we can also represent p(q(θ)) by p(θ) according
to the revelation principle. This convention is also adopted here.
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q∗(θ) > q̂(θ) for some θ and define δ = q∗(θ) − q̂(θ) > 0. Since ĉ(q∗(θ)) ≤ c(q∗(θ)), we know
that w∗(·) = r(·) in a neighborhood of θ. Thus, there must exist a θ1 > θ that satisfies
w∗(θ1) = r(θ1) and q̂(θ1) < q̂(θ) + 1

2
δ. By choosing type-θ’s version, the type-θ1 customer

receives θ1q
∗(θ) − p∗(q∗(θ)) = (θ1 − θ)q∗(θ) + r(θ) > (θ1 − θ)q̂(θ1) + r(θ) ≥ r(θ1), where

the strict inequality is by construction, and the last inequality follows from that q̂ ≡ r
′
and

the convexity of r(·). This violates the IC condition for θ1. Similarly, we can show that
q∗(θ) < q̂(θ) is also impossible. Since r(θ) = w∗(θ) = θq̂(θ) − p∗(q̂(θ)) = θr

′
(θ) − p∗(θ),

we have p∗(q̂(θ)) = θr
′
(θ) − r(θ), identical to ĉ. Thus, p∗(θ) = ĉ(θ) if ĉ(q∗(θ)) ≤ c(q∗(θ)).

When ĉ(q∗(θ)) > c(q∗(θ)), it is optimal to use the original technology c(·), and hence only
customers with condition ĉ(q∗(θ)) ≤ c(q∗(θ)) are served by the alternate technology.

Finally, we claim that any optimal schedule must include an interval of customers.

Lemma 6. If {q∗(θ), p∗(θ)} is optimal, it must serve an interval of customers.

Proof. We first prove that ĉ(q) is strictly increasing. Let us recall the definition of q̂(θ) = r
′
(θ)

and ĉ(·) can be represented as a function of θ: ĉ(θ) = θr
′
(θ)−r(θ). Differentiating ĉ by θ, we

have ĉ
′
(θ) = θr

′′
(θ), which is positive when θ > 0 by the strict convexity of r(θ). Therefore,

ĉ is strictly increasing in θ. The result follows from the strict monotonicity of q̂(θ) = r
′
(θ).

Following Jullien [2000, Section 4], we can always assume full participation with the
alternate tariff ĉ, in which q∗(θ) must be monotonic. If a customer θ is not included, then
we can have the seller offer (q̂(θ), ĉ(θ)) to her, and the incentives of both parties are verified.
Moreover, the payoff is equivalent under such a modification.

We can apply Lemma 5 to characterize the set of excluded customers. Note that in our
model c(q) = c if q ∈ (0, q̄], and c(q) = ∞ when q > q̄. Define J = {θ|q∗(θ) ≤ q̄} as the set
of customers that receive a version with quality less than q̄. By monotonicity of q∗ J should
be an interval [0, β] if it does not degenerate. Since ĉ and q∗ are both monotonic, the set
JE = {θ : ĉ(q∗(θ)) ≤ c, θ ∈ J} is either empty or an interval [0, α] where α ≤ β. According
to Lemma 5, in J the seller can at most exclude an interval of customers that starts from
θ = 0 ([0, α] as labelled); otherwise, she has to serve all customers in J under the schedule
q∗. When θ /∈ J , q∗(θ) > q̄, in which case ĉ(q∗(θ)) < c(q∗(θ)) = ∞, and hence by Lemma 5
the customers not in J should be excluded. Note that from the monotonicity of q∗(θ), this
set is either empty or an interval (β,R]. Combining all above, the exclusion can either be an
interval [0, α] with α ≤ β, or (β,R], and therefore at optimality no intermediate exclusion is
considered, i.e., the seller must serve an interval of customers.

Since the optimal schedule must serve an interval of customers, the schedule proposed in
Theorem 2 remains optimal when the seller is allowed to exclude customers arbitrarily.

Proof of Theorem 4

Recall that θSB = θ∗, and the boundary points for the first-degree price discrimination
are the two roots of θq̄ − r(θ) − c = 0. Plugging θ = θ∗ in this equation, we have θ∗q̄ −
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r(θ∗) − c ≥ θ∗r
′
(θ∗) − c = 0, and hence θFB ≤ θSB. For the right boundary points, we

have θ̄SB q̄ − τ q̄ + r(τ) ≥ r(θ̄SB), and the equality holds when R has not been hit. Thus,
θ̄SB q̄−r(θ̄SB)−c ≥ τ q̄−r(τ)−c ≥ τr

′
(τ)−r(τ)−c ≥ 0, where the second inequality follows

from the choice of τ , and the third inequality is because τ ≥ θSB = θ∗. When θ̄SB = R,
we obtain Rq̄ − r(R) − c ≥ τ q̄ − r(τ) − c ≥ τr

′
(τ) − c ≥ 0, and therefore θ̄FB = R as well.

Hence, we also have θ̄SB ≤ θ̄FB. The last two observations follow directly from the optimal
schedules characterized in Proposition 1 and Theorem 2.

Proof of Theorem 5

Consider the first-degree price discrimination. While replacing q̄1 by q̄2, the difference
between the total surplus and the reservation utility becomes larger. Therefore, the seller
collects more profit from every served customer. Since the set of served customers is strictly
larger, the total profit in the production stage can only go higher.

Now we switch to the second-degree price discrimination. Let τ(q̄1) be the optimal
starting point of offering the version of the highest quality when the quality limit is q̄1 and
assume the seller chooses the same τ(q̄1) under quality limit q̄2. First, because the choice
of τ affects neither the schedule offered before this switching point nor the cutoff point of
discarding the low-end customers, the seller gets exactly the same profits from every customer
with θ ≤ τ(q̄1). Note that when θ ∈ [θ∗, τ(q̄1)) the incentive compatibility and participation
constraints require that q(θ) = r

′
(θ) and exactly the same price schedule.

Regarding the set of customers that accept a common version, she gains in two aspects.
First, the price of this common version is strictly higher because τ(q̄1)q̄2−r(τ(q̄1)) > τ(q̄1)q̄1−
r(τ(q̄1)). Second, more high-end customers are willing to purchase this version compared
to the case with q̄1. Define θ̄ ≡ θ̄(τ(q̄1)) for ease of notation. If θ̄ has hit the boundary R,
then we have r(R) ≤ Rq̄1 − [τ(q̄1)q̄1 − r(τ(q̄1))], which gives us q̄1 ≥ r(R)−r(τ(q̄1))

R−τ(q̄1)
. Now if

we replace q̄1 by q̄2, we obtain q̄2 > q̄1 ≥ r(R)−r(τ(q̄1))
R−τ(q̄1)

⇒ r(R) < Rq̄2 − [τ(q̄1)q̄2 − r(τ(q̄1))] ,
which implies that with q̄2 no high-end customers is excluded as well. The only case left here
is θ̄ < R. In this case, r(θ̄) = θ̄q̄1 − [τ(q̄1)q̄1 − r(τ(q̄1))], and hence r(θ̄)−r(τ(q̄1))

θ̄−τ(q̄1)
= q̄1 < q̄2.

This inequality implies that customers with θ ∈ [τ(q̄1), θ̄] are served with q̄2 in place of q̄1.
Therefore, the seller serves more high-end customers under q̄2.

By adopting the same starting point τ(q̄1), the seller gains more with q̄2 in place of q̄1.
If she chooses the starting point optimally, her profit can only be higher.

Proof of Theorem 6

Let S(θ) = arg maxz {θq(z) − p(z)} = θq(θ)−p(θ) denote the utility of type-θ customer,
where the second equality follows from incentive compatibility. Define U(θ) ≡ S(θ)− r(θ) ≥
0, where the inequality follows from the participation constraint. Incentive compatibility
requires that q(θ) be monotonic, and local optimality implies that dU(θ)

dθ
= q(θ) − r

′
(θ).

Recall that p(θ) = θq(θ) − S(θ) = θq(θ) − U(θ) − r(θ). For ease of illustration, we first
assume that the seller serves an interval of customers [θ0, θ1].

36



The seller’s optimization problem is

max
q(θ),U(θ)

∫ θ1

θ0

{θq(θ) − U(θ) − r(θ) − c(q(θ))} f(θ)dθ,

s.t. dU(θ)/dθ = q(θ)−r
′
(θ), and U(θ) ≥ 0,∀θ ∈ [θ0, θ1]. q is the control variable and U is the

state variable. The Hamiltonian is defined as H(U, q, µ, θ) = {θq(θ) − U(θ) − r(θ) − c(q(θ))} f(θ)+
µ

[
q(θ) − r

′
(θ)

]
, where µ is the costate variable, and the Lagrangian is L = H(U, q, µ, θ) +

δ(θ)U(θ). The optimal solution should jointly satisfy

∂H

∂q
= (θ − c

′
(q))f(θ) + µ(θ) ≥ 0,

dµ

dθ
= −∂L

∂U
= f(θ) − δ(θ),

dU(θ)

dθ
= q(θ) − r

′
(θ),

δ(θ)U(θ) = 0, δ(θ) ≥ 0, U(θ) ≥ 0,

µ(θ0)U(θ0) = 0, µ(θ0) ≤ 0, µ(θ1)U(θ1) = 0, µ(θ1) ≥ 0,

where the first inequality follows from first-order condition, the second is the costate equation,
the third is the local optimality, the fourth is the complementary slackness, and the last set
of equations are transversality conditions.

We first argue that participation constraints cannot be binding within an interval, say,
[θ2, θ3]. If this were the case, q(θ) = r

′
(θ),∀ θ ∈ [θ2, θ3]. However, incentive compatibility

requires q(θ) be increasing, i.e., r
′
(θ) ≥ 0. in the interior of [θ2, θ3]. If r(θ) is concave, this is

impossible. If r(θ) = aθ, where a ≥ 0, then it must be that q(θ) = a, p(θ) = 0,∀ θ ∈ [θ2, θ3].
By doing so the seller would lose money due to the positive variable cost c(q(θ)). Thus,
The full rent extraction region degenerates. This argument continues to hold when we allow
arbitrary exclusion. Therefore, we conclude that when r(θ) is linear or concave, participation
constraints cannot be binding within an interval.

Therefore, if versioning occurs at optimality, it must come from the first-order condition
of Hamiltonian. If c(q(θ)) = c, q(θ) does not get into ∂H/∂q. Therefore, the solution has to
be bang-bang: when θf(θ) + µ(θ) < 0, type-θ customer should be excluded; otherwise, she
should be offered the quality limit. Versioning cannot appear in this case.

Now suppose c(q) is linear or concave. When participation constraint is not binding,
δ(θ) = 0 from complementary slackness. Therefore, the costate equality implies that the
costate equation dµ

dθ
= f(θ) ⇔ µ(θ) = F (θ) − A, where A is a constant. This interval could

either start with 0 or end with 1 (from Maggi and Rodriguez-Clare [1995]). In these two cases,
the transversality condition yields respectively µ(θ) = F (θ) and µ(θ) = F (θ) − 1. Plugging
in these two values in the binding first-order condition, we have either c

′
(q(θ)) = θ + F (θ)

f(θ)

or c
′
(q(θ)) = θ − 1−F (θ)

f(θ)
. When the regularity condition holds, the right-hand sides are both
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increasing. Thus, if q(θ) is increasing (from the local optimality condition), it must be that
c(q) is convex. This contradicts our assumption on c(q). The proof is now complete.
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