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Abstract

We consider a recently proposed method of estimating the tail index and testing the
goodness-of-fit of dependent stable processes. Through Monte Carlo simulations, we
evaluate the ability of the procedure to distinguish between stable and non-stable processes
in the presence of non-linear dependence and to estimate the tail index of the distribution.
We then apply the test to black market East European exchange rates, whose distributional
and tail behaviour has been analysed previously in the literature. After adjusting for
seasonality, we conclude, unlike the earlier analysis, that a stable process cannot be rejected
as a model for some of the currencies. Estimates of the tail index for these currencies are
also obtained. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is now well accepted in the literature that the empirical distributions of
exchange rates exhibit thicker tails than are to be expected from Gaussian
distributions. However, there does not seem to be any agreement as to which

Ž .distribution is the appropriate one to model this behaviour. Mandelbrot 1963 and
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Ž .Fama 1963 , in their seminal papers, proposed the non-Gaussian stable distribu-
tions as candidate distributions for such data. Since then, other researchers have
proposed alternatives like the Student’s t distribution and mixtures of normal
distributions. Unfortunately, so far there is no simple goodness-of-fit test in the
literature for any of these hypotheses and so disagreement about the underlying
distribution remains. To the best of our knowledge, none of the studies so far on
the applicability of stable distributions to financial data have carried out formal

Ž .goodness-of-fit tests. As Baillie 1993 points out, AOne apparently appealing
property of stable distributions is the invariance of the characteristic exponent over
changes in the sampling interval. As mentioned by Mittnik and Rachev, this
property is generally not consistent with previous empirical findings. However, the
estimation of the characteristic exponent has invariably not been by maximum
likelihood methods and the standard errors on the estimated exponent parameter
may well be very wide. No formal test of this property of stable distributions
appears to have yet been done.B A further complication which has been generally
ignored in most empirical studies of exchange rate distributions which deal with
stable distributions is the lack of independence in such data. It is a well-accepted
fact that though the returns themselves are uncorrelated, their absolute values or
squares are not and hence the returns are not independently distributed. Any
procedure which attempts to check the adequacy of a marginal probability
distribution to the data must at least make some attempt to incorporate this
non-linear dependence.

Ž .Recently, Deo 2000 has proposed a goodness-of-fit test for stable distributions
which remains valid when the data is m-dependent, where m is a finite unknown

Ž � 4integer. A series X is said to be m-dependent if X and X are independent fort i j
< < .all i, j such that iy j )m . Thus, the test allows for possible non-linear depen-

dence in the series. Though m-dependence might be a simplification of the true
underlying dependence, we believe that it is far more realistic than the assumption
of independence made by all studies involving stable distributions as models of
marginal distributions so far. Furthermore, the test does not assume any knowl-
edge about the value of m beyond that it is finite. Thus, m may be large enough to
provide an adequate approximation to the true underlying process.

In this paper we examine the performance of this goodness-of-fit test to
distinguish between stable and non-stable processes which are conditionally
heteroscedastic and also dependent at all lags. We then apply the testing procedure
to black market East European exchange rates, which have been analysed in the
literature. We find that the exchange rates have seasonality. After adjusting for
seasonality, our goodness-of-fit test shows that a marginal stable distribution
cannot be rejected as a model for some of the returns.

The layout of this paper is as follows. In Section 2, we describe the estimation
Ž .and goodness-of-fit testing procedure of Deo 2000 and report the Monte Carlo

simulation results. In Section 3, the empirical data analysis of the exchange rates is
carried out.
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2. The goodness-of-fit test

We briefly describe the intuition behind the estimation and goodness-of-fit
Ž .procedure of Deo 2000 for stable distributions. Let X , X , . . . , X be n1 2 n

independently and identically distributed observations from a stable distribution
with tail index a . Using the form of the characteristic function of stable

Ž .distributions see Samorodnitsky and Taqqu, 1994 , it can be shown that for
integers k and s such that k)s,

1rak
DX qX q . . .qX yX yX y . . .yX ˜1 2 k kq1 kq2 2 k ž /s

= X q . . .qX yX yX y . . .yX , 1Ž . Ž .1 s sq1 sq2 2 s

where D denotes Aidentically distributedB. This relationship arises basically due to
˜the fundamental property of invariance of stable distributions under aggregation.

Ž .From Eq. 1 , it follows that

y1 < <k X qX q . . .qX yX yX y . . .yX1 2 k kq1 kq2 2 k
log log , 2Ž .ž /ž / < <s X q . . .qX yX yX y . . .yX1 s sq1 sq2 2 s

y1 Žwill be unbiased for a . There is nothing special about the set X , X , . . . ,1 2
. Ž . Ž .X in Eq. 2 and one may use any arbitrary group X , X , . . . , X instead.2 k i i i1 2 2 k

Ž . Ž .Thus, averaging the form 2 over all subsets X , X , . . . , X would give ani i i1 2 2 k

estimator of ay1, and hence of a . This is the rationale behind the estimation
Ž .procedure for a proposed in Deo 2000 . Furthermore, by varying k and s in Eq.

Ž .2 , one gets several different estimators of the same quantity a . Once again, these
different estimators of the tail index a arise from the fundamental property of
invariance of stable distributions under aggregation. From a practical point of

Ž .view, computing an estimator of a by averaging Eq. 2 over all possible subsets
Ž . Ž .X , X , . . . , X is a computationally prohibitive task. As a result, Deo 2000i i i1 2 2 k

proposed using incomplete estimators of a , which we describe next.
�Ž .For a positive integer k)1, let As i , i , . . . , i : 1F i - i - . . . - i1 2 2 k 1 2 2 k

4 Žn . � 4Fn be the collection of the 2k-tuples obtained from the set 1, 2, . . . ,n . For2 k

a positive integer N , let D be the collection of N elements of A obtained by0 0

sampling with replacement from A. Let s and k be positive integers such that
1-2 s-2k-n and define

f) X , X , . . . , XŽ .k , s i i i1 2 2 k

y1 < <X q . . .qX yX y . . .yXk i i i i1 k kq1 2 ks log log . 3Ž .½ 5ž / < <s X q . . .qX yX y . . .yXi i i i1 s sq1 2 s
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Now let

y1
y1a s N f X , X , . . . , X , 4Ž .ˆ Ž .Ýk , s 0 k , s i i i1 2 2 k

D

Ž . ) Žwhere f X , X , . . . , X is the symmetric version of the function f X ,k , s i i i k , s i1 2 2 k 1

.X , . . . , X , obtained byi i2 2 k

1
)f X , X , . . . , X s f X , X , . . . , X ,Ž . Ž .Ýk , s i i i k , s j j j1 2 2 k 1 2 2 k2k !Ž . p

Ž . Ž .where Ý denotes summation over all the 2k ! permutations j , j , . . . , j ofp 1 2 2 k
Ž . Ž .i , i , . . . , i . The estimator 4 is incomplete in that it no longer averages over1 2 2 k

Ž .all possible choices X , X , . . . , X but over a smaller selection N of suchi i i 01 2 2 k

choices. Note that for a fixed value of k, the set D remains the same for all values
of s-k and hence the set D does not have to be selected again for different

Ž .values of s. Deo 2000 showed that under the hypothesis that the observations
Ž .X , . . . , X come from an m-dependent stable process, as N ™`,1 n 0

D'n aya1 ™N 0,S ,Ž . Ž .ˆ
Ž .X Ž .Xwhere as a , . . . ,a , 1s 1, . . . , 1 , s - . . . -s -k and S is as inˆ ˆ ˆk , s k , s 1 p1 p

Ž . y1 Ž y2 .Theorem 1 of Deo 2000 . Furthermore, if N sO n , a consistent estimator0
Ž .of S, the asymptotic variance of a , can be obtained, as provided in Eq. 19 ofˆ k , s

Ž .Deo 2000 .
Note that neither the construction of the estimator nor the limiting results

require knowledge of m, which governs the degree of dependence, nor is any
assumption made about the scale, location and skewness parameters of the

� 4distribution of X . As a matter of fact, it is easy to see that the estimators aret

scale and location invariant. Furthermore, by changing values of k and s, various
estimators of the same quantity a may be obtained. All these estimators are jointly
asymptotically normal and their limiting variance covariance matrix can be
estimated. Hence, a goodness-of-fit test of stability may be obtained by computing
a t -statistic based on the difference of two different estimates of a . For example,
one could compute

a yaˆ ˆk , s k , si j
ts 1- i- j-k , 5Ž .

s.e. a yaˆ ˆž /k , s k , si j

Ž .where s.e. a ya is the standard error of a ya and is obtained fromˆ ˆ ˆ ˆk , s k , s k , s k , si j i j

the estimate of the limiting variance matrix S. Under the null hypothesis that the
� 4series X comes from an m-dependent process with a marginal stable distribu-t

Ž .tion, the t-statistic in Eq. 5 will have an asymptotic standard normal distribution.
Though the procedure outlined above assumes m-dependence in the series, this

assumption may be unrealistic in real data. To assess the performance of the
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procedure under infinite dependence, we carried out a simulation study. To study
the size properties, we generated 1000 observations of the series

X sY 1r2e , 6Ž .t t t

� 4 Ž .where Y st Y qÕ . The series e was chosen to be i.i.d. N 0,1 andt ty1 t t
� 4 � 4independent of the innovation series Õ . The series Õ was a sequence oft t

independent positive stable random variables chosen in such a way that the
� 4 Ž .marginal distribution of X was stable with tail index a . The process 6 wast

Ž .originally proposed in de Vries 1991 as an example of a conditionally het-
eroscedastic process with a marginal stable distribution. We generated the series
� 4X for two values of a , 1.7 and 1.8. These values were chosen since estimatedt

values of the tail index in most empirical studies of exchange rates range between
� 41.6 and 1.85. For each fixed value of a , we generated observations on X fort

values of ts0.2, 0.3, 0.4, 0.5 and 0.7. We selected these values of t since de
Ž .Vries 1991 had estimated values of t between 0.15 and 0.46 for the same model

Ž Ž .. Ž .Eq. 6 using European exchange rate returns. For each pair of values a ,t , we
Ž .computed three estimators a , a and a defined by Eq. 4 above. Theˆ ˆ ˆ3,2 3,1 2,1

Ž .value of N was chosen to be 4,000,000 based on simulations in Deo 2000 . Each0

experiment was replicated 1000 times.
In Table 1, we present the averages of each of the three estimators of a over

Ž .the 1000 replications for each pair of values a ,t . It is seen that for a fixed
estimator, the bias increases as the value of t increases. This is to be expected,
since the degree of dependence in the series increases with t . However, it is
reassuring that even in the worst possible case, when as1.7 and ts0.7, the bias
is never more than 1%. Indeed, when t-0.7, the bias in all three estimators of a

is less than 0.5% for both values of a . Furthermore, for every pair of values of
Ž .a ,t , the bias in all three estimators is the least in a . This superiority of aˆ ˆ2,1 2,1

to the other two estimators when aF 1.8 was also noted in the Monte Carlo
Ž .study in Deo 2000 in the case of independent observations. As a matter of fact, it

was shown in that study that a uniformly outperforms, by a wide margin, theˆ 2,1

regression estimator which is currently the most popular estimator of the tail
Ž .index. See Akgiray and Lamoureux 1989 .

Table 1
Averages of estimators over 1000 replications for Stable Process Standard deviations are in parentheses

t as1.7 as1.8

a a a a a aˆ ˆ ˆ ˆ ˆ ˆ3,2 3,1 2,1 3,2 3,1 2,1

Ž . Ž . Ž . Ž . Ž . Ž .0.2 1.704 0.079 1.703 0.069 1.703 0.065 1.803 0.068 1.802 0.061 1.801 0.058
Ž . Ž . Ž . Ž . Ž . Ž .0.3 1.705 0.086 1.704 0.076 1.704 0.071 1.804 0.074 1.803 0.066 1.802 0.063
Ž . Ž . Ž . Ž . Ž . Ž .0.5 1.709 0.104 1.707 0.092 1.706 0.086 1.807 0.090 1.805 0.080 1.804 0.075
Ž . Ž . Ž . Ž . Ž . Ž .0.7 1.717 0.130 1.713 0.115 1.711 0.107 1.812 0.111 1.809 0.099 1.807 0.093
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Table 2
Monte Carlo sizes for goodness-of-fit tests at the 5% l.o.s.

t as1.7 as1.8

Z Z Z Z Z Z1 2 3 1 2 3

0.2 0.049 0.046 0.016 0.045 0.034 0.009
0.3 0.062 0.048 0.018 0.041 0.033 0.031
0.5 0.098 0.088 0.039 0.057 0.051 0.017
0.7 0.160 0.149 0.068 0.100 0.085 0.032

We also assessed the performance of three goodness-of-fit tests in our study.
The test statistics are based on t-statistics of the differences between two estima-

Ž . Ž .tors of a , as defined in Eq. 5 . These tests are: i the test based on the difference
Ž .a ya and denoted by Z ; ii the test based on the difference a ya andˆ ˆ ˆ ˆ3,2 3,1 1 3,2 2,1

Ž .denoted by Z ; and iii the test based on the difference a ya and denotedˆ ˆ2 3,1 2,1

by Z . The test statistics all have limiting standard normal distributions. The3
Ž .Xvariance covariance matrix of the vector a a ,a ,a was calculated byˆ ˆ ˆ ˆ3,2 3,1 2,1

Ž . Ž .using the prewhitened kernel estimator described in Eq. 19 of Deo 2000 . In
Table 2, we report the empirical sizes of these three goodness-of-fit test statistics

Ž .at the 5% level of significance for each pair of values of a ,t . It is seen that for
both values of a , the sizes of the tests increase as t increases with the tests based
on Z and Z becoming quite oversized at ts0.7. The test based on Z is most1 2 3

undersized for all values of t , the loss in size increasing as t decreases. For
values of t between 0.2 and 0.5, the test based on Z seems to maintain its size3

reasonably well.
We next evaluated the performance of the procedure when the data was

conditionally heteroscedastic but not stably distributed. Towards this end, we
Ž . Ž .simulated 1000 observations from a GARCH 1,1 and an IGARCH 1,1 process.

Ž .The GARCH 1,1 was generated as

X ss e , 7Ž .t t t

where s 2s4.67=10y7 q0.0529X 2 q0.915s 2 and the e were i.i.d. fromt ty1 ty1 t

a t-distribution with 6 df. The values of the parameters in the volatility process

Table 3
Ž . Ž .Averages of estimators over 1000 replications for GARCH 1,1 and IGARCH 1,1 Standard deviations

are in parentheses

Ž . Ž .GARCH 1,1 IGARCH 1,1

Ž . Ž .a 1.773 0.116 1.906 0.081ˆ3,2
Ž . Ž .a 1.717 0.124 1.867 0.107ˆ3,1
Ž . Ž .a 1.687 0.128 1.845 0.122ˆ2,1
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Table 4
Ž . Ž .Power at the 5% l.o.s. for GARCH 1,1 and IGARCH 1,1

Ž . Ž .GARCH 1,1 IGARCH 1,1

a 0.981 0.638ˆ3,2

a 0.976 0.600ˆ3,1

a 0.871 0.440ˆ2,1

s 2 were chosen to reflect those obtained when such models are fit to real data.t

The use of a t-distribution with 6 df for the innovations e implies that X has at t

thick-tailed distribution with tail index between 2 and 3. Hence, the process has a
finite variance. In Table 3, we report the averages of each of the three estimators

Ž .of a over 1000 replications for the GARCH 1,1 process. It is seen that the
estimators are all biased downwards and actually indicate that the process has
infinite variance. However, it should be noted that the estimators a describedˆ k , s

above are designed for stable distributions and not for any arbitrary thick tailed
distributions. Furthermore, it is seen from Table 4 that all the three goodness-of-fit
tests soundly reject the process as being stably distributed. Hence, the estimation
and testing procedure is able to detect the lack of a stable distribution for the data.

Ž . Ž .The IGARCH 1,1 process was also generated by Eq. 7 , though now the
volatility was modelled as s 2s4=10y7 q0.05 X 2 q0.95s 2 and the et ty1 ty1 t

Ž . Ž .were chosen to be i.i.d. N 0,1 . It is well known that such an IGARCH 1,1
Ž .process has infinite variance and it can be shown using results in Nelson 1990

that the tail index is approximately 1.99. In Table 3, we report the averages of
each of the three estimators of a over 1000 replications. It is seen that the
estimators reflect the fact that the process has infinite variance since the estimated
tail index is less than 2. However, from Table 4 we see that once again the
goodness-of-fit tests are able to detect quite well that the process is not stable. The

Ž .power of the tests is lower than in the case of the GARCH 1,1 model. This is not
Ž .too surprising and can be attributed to the fact that the IGARCH 1,1 process has

infinite variance and is able to masquerade as a stable process more successfully
Ž .than the finite variance GARCH 1,1 .

The simulation study is encouraging and indicates that the estimation procedure
is able to provide quite good estimates of the tail index when the process is stably
distributed, even in the presence of strong conditional heteroscedasticity. Further-
more, the goodness-of-fit tests are capable of detecting non-stable processes, even
when the process has infinite variance.

In the next section, we apply these methods to real data.

3. East European black market exchange rate data

The data we study are monthly black market exchange rate observations on
seven East European currencies vis-a-vis the U.S. dollar for the period from



( )R.S. DeorJournal of Empirical Finance 9 2002 257–270264

January 1955 to December 1990. The seven currencies are the Bulgarian Lev, the
Czechoslovak Koruna, the East German Mark, the Hungarian Forint, the Polish
Zloty, the Rumanian Lei and the Soviet Ruble. The data were studied in Koedijk

Ž .and Kool 1992 and we have obtained them from their Appendix. The exchange
rates for Bulgaria and the U.S.S.R. were modified since currency reforms took
place in these countries in December 1961 and January 1961, respectively. In both
countries, one new currency unit was set equal to 10 old currency units. We thus
modified the exchange rates prior to the currency reforms to new currency units
and used these in the subsequent analysis. This modification is the same one used

Ž .in Koedijk and Kool 1992 . The exchange rate returns, which are the variables we
actually study, are defined as 100 times the first difference of the natural
logarithms of the black market exchange rates.

Fig. 1 is a plot of the autocorrelation function of the Hungarian Forint returns.
The plot reveals a roughly sinusoidal pattern, an indication of seasonality. This is
confirmed by Fig. 2, which plots the periodogram of the Hungarian returns. The
plot has a major spike corresponding to seasonality of period 12. The nature of the
seasonal effect is illustrated in Fig. 3, which is a plot of the monthly 5% trimmed

Ž .means see Hoaglin et al., 1983, p. 311 against the corresponding months. The
5% trimmed means were used instead of the monthly means to reduce the effect of
outliers in the data. The monthly average returns are lowest in the winter months

Fig. 1.
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Fig. 2.

Fig. 3.
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Table 5
p-Values for Fisher’s test

Lev Koruna Mark Forint Zloty Lei Ruble

Original data 0.000 0.000 0.052 0.004 0.179 0.000 0.899
Adjusted data 0.407 0.693 0.457 0.749 – 0.254 –

of January and February and peak in the summer months of August and Septem-
ber, probably an effect of the presence of tourists. There is a puzzling drop in the
average in May, for which we do not have an explanation. Similar patterns reveal
themselves in the autocorrelation plots, periodograms and monthly average plots
of almost all the other currencies with monthly averages peaking in summer and
dropping in winter. To check whether the spikes in the periodogram were

Žsignificant, we carried out Fisher’s test for periodicities see Bloomfield, 1976, p.
.112 . The corresponding p-values are reported in Table 5 and indicate that there is

overwhelming evidence of seasonality in all the currencies except the Polish Zloty
and the Soviet Ruble. As a result, we de-seasonalised only the other five
currencies by subtracting the monthly 5% trimmed averages from the correspond-

Žing observations i.e., by subtracting the January trimmed average from the
January observations, the February trimmed average from the February observa-

.tions and so on . Fig. 4 is a plot of the periodogram of the de-seasonalised

Fig. 4.
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Hungarian returns and does not show a single significant spike. Similar behaviour
is shown by the periodograms of the other de-seasonalised returns. The p-values
of Fisher’s test for periodicities for the de-seasonalised data are also shown in
Table 5 and indicate that the seasonal component has indeed been successfully
removed. The subsequent analysis was carried out on the de-seasonalised returns
Ž .except for the Polish Zloty and the Soviet Ruble , which we merely refer to as the
returns henceforth.

For the sake of comparison, we fit using maximum likelihood estimation the
Ž .benchmark GARCH 1,1 model

y ss Õt t t

s 2sa qa y2 qb s 2 ,t 0 1 ty1 1 ty1

to the returns. Table 6 contains the estimated values of a and b when the1 1

innovations Õ were assumed to be standard normal variables. The columns headedt

K and S contain the coefficients of kurtosis and skewness for the standardized
residuals from the fitted model, while the column headed BL contains the values15

of the Box–Ljung statistic for the squared standardized residuals at lag 15. Under
the assumption of normality, the coefficient of kurtosis should be approximately
normally distributed with mean 3 and variance 24rn, while S should be approxi-
mately normally distributed with mean zero and variance 6rn. We see that the

Ž .GARCH 1,1 process with conditional normal distribution is clearly unable to
Ž .account for the extreme kurtosis in the data. We then fit the GARCH 1,1 model

with a conditional t-distribution to the data, where the degrees of freedom, y , of
the t-distribution were estimated. Table 7 contains the estimated parameters of this
model, with the standard error of the estimated degrees of freedom, y , inˆ
parentheses. To facilitate comparison, the standardized residuals from the fitted
model were transformed to standard normal variables by using first the inverse of
the Student’s t distribution and then the standard normal distribution function. The
coefficients of kurtosis and skewness and the Box–Ljung statistic were then
computed from these transformed residuals. It can be seen from Table 7 that the
conditional t-distribution has successfully accounted for the kurtosis in the data.

Table 6
Ž .GARCH 1,1 with conditional normal distribution

ˆa b K S BLˆ1 1 15

Bulgarian Lev 0.0265 0.9481 8.988 1.188 5.20
Czech Koruna 0.0829 0.8225 5.901 0.638 13.18
E. German Mark 0.1128 0.7666 16.119 1.603 5.23
Hungarian Forint 0.4931 0.0368 3.880 0.011 31.91
Polish Zloty 0.2296 0.7052 5.742 0.736 11.00
Rumanian Lei 0.1214 0.8022 4.939 y0.162 10.36
Soviet Ruble 0.4059 0.2711 7.483 0.435 43.70
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Table 7
Ž .GARCH 1,1 with conditional t-distribution

ˆa b y K S BLˆ ˆ1 1 15

Ž .Bulgarian Lev 0.0496 0.7857 3.447 0.620 3.049 0.230 13.30
Ž .Czech Koruna 0.1006 0.7045 5.139 1.271 2.994 0.210 14.06
Ž .E. German Mark 0.0849 0.8136 3.804 0.626 3.072 0.139 15.06
Ž .Hungarian Forint 0.2776 0.0398 7.309 2.946 2.966 0.027 26.78
Ž .Polish Zloty 0.1596 0.6404 4.911 1.202 2.879 0.174 23.39
Ž .Rumanian Lei 0.1663 0.6334 6.815 1.996 3.069 y0.053 10.01
Ž .Soviet Ruble 0.1197 0.6000 2.661 0.483 2.869 0.086 22.25

However, the estimated degrees of freedom turn out to be extremely low, even
falling below 3 for the Soviet Ruble. Though the Forint and the Lei seem to have
high values for the degrees of freedom, note that their standard errors are much
larger. Furthermore, the symmetric t distributions seem to have problems account-
ing for the asymmetry in some of the currencies, as evinced by the high values of
S for the Bulgarian Lev and the Czech Koruna. Also, the values of the Box–Ljung
statistic indicate that the conditional heteroscedasticity in the Forint, the Zloty and
possibly the Ruble has not been accounted for.

We then computed three estimators of the tail index a for all the currencies by
the method described in Section 2 above. The three estimators we computed were

Ž .a ,a and a defined by the formula in Eq. 4 above. The value of N wasˆ ˆ ˆ3,2 3,1 2,1 0
Ž .chosen to be 4,000,000 based on the simulations in Deo 2000 . For some of the

elements of D, the function f turned out to be infinite, since f involvesk , s k , s

logarithms. The number of elements for which this happened was negligible and
Ž .the corresponding terms were dropped from the sum in Eq. 4 . The variance

Ž .Xcovariance matrix of the vector as a ,a ,a was calculated by using theˆ ˆ ˆ ˆ3,2 3,1 2,1
Ž .prewhitened kernel estimator described in Deo 2000 . The three estimators of a

for each of the currencies are reported in Table 8 along with their estimated

Table 8
Estimates of the tail index

a a aˆ ˆ ˆ3,2 3,1 2,1

Ž . Ž . Ž .Bulgarian Lev 1.716 0.056 1.678 0.056 1.660 0.059
Ž . Ž . Ž .Czech Koruna 1.860 0.044 1.819 0.051 1.794 0.059
Ž . Ž . Ž .E. German Mark 1.673 0.068 1.612 0.072 1.583 0.077
Ž . Ž . Ž .Hungarian Forint 1.779 0.130 1.771 0.114 1.762 0.108
Ž . Ž . Ž .Polish Zloty 1.745 0.065 1.724 0.071 1.717 0.075
Ž . Ž . Ž .Rumanian Lei 1.867 0.052 1.844 0.061 1.834 0.068
Ž . Ž . Ž .Soviet Ruble 1.566 0.137 1.496 0.113 1.462 0.105
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Table 9
z Values and p values for goodness-of-fit tests

Z Z Z1 2 3

Ž . Ž . Ž .Bulgarian Lev 2.044 0.041 1.871 0.061 1.451 0.147
Ž . Ž . Ž .Czech Koruna 2.048 0.041 2.044 0.041 1.834 0.067
Ž . Ž . Ž .E. German Mark 2.638 0.008 2.546 0.011 2.179 0.029
Ž . Ž . Ž .Hungarian Forint 0.325 0.745 0.424 0.672 0.552 0.581
Ž . Ž . Ž .Polish Zloty 0.962 0.336 0.810 0.418 0.449 0.653
Ž . Ž . Ž .Rumanian Lei 1.373 0.170 1.202 0.229 0.803 0.422
Ž . Ž . Ž .Soviet Ruble 2.080 0.038 2.089 0.037 2.011 0.044

standard errors in parentheses. The distribution of the ruble seems to have the
thickest tails, with an estimated a around 1.5, while the Rumanian Lei has the
thinnest tails with an estimated a of around 1.85.

As before, we computed the three goodness-of-fit tests Z ,Z and Z . Table 91 2 3

contains the values obtained for these three test statistics along with the corre-
sponding p-values in parentheses. The only currency for which there is very
strong evidence against a stable process is the East German mark for which the
p-values never exceed 0.029. There is some evidence that a stable process is
inappropriate for the Soviet Ruble and the Czech Koruna. However, we cannot
reject the stable hypothesis for the Bulgarian Lev, the Hungarian Forint, the
Rumanian Lei and the Polish Zloty, though the Lev may be a borderline case. Our

Ž .findings are in contrast with those obtained in Koedijk and Kool 1992 for this
same data set. Interestingly enough, they concluded that the stable distribution was
inadequate for the Lev, the Koruna, the Forint and the Lei. However, it should be
noted that their analysis was on data which was not seasonally adjusted and they
did not account for the non-linear dependence in the data in their analysis. This
latter fact may also be responsible for their concluding that the data generating
process might be changing across different time periods.
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